
Extending the Logic IM-SPDL with Impulse and

State Rewards

Boudewijn R. Haverkort, Matthias Kuntz

University of Twente,
Faculty for Electrical Engineering, Mathematics and Computer Science

Abstract. This paper presents the logic SDRL (Stochastic Dynamic
Reward Logic), an extension of the stochastic logic IM-SPDL, which sup-
ports the specication of complex performance and dependability require-
ments. SDRL extends IM-SPDL with the possibility to express impulse-
and state reward measures. The logic is interpreted over extended action-
based Markov reward model (EMRM), i.e. transition systems containing
both immediate and Markovian transitions, where additionally the states
and transitions can be enriched with rewards. We define ne the syntax
and semantics of the new logic and show that SDRL provides powerful
means to specify path-based properties with timing and reward-based
restrictions. In general, paths can be characterised by regular expres-
sions, also called programs, where the executability of a program may
depend on the validity of test formulae. For the model checking of SDRL
time- and reward-bounded path formulae, a deterministic program au-
tomaton is constructed from the requirement. Afterwards the product
transition system between this automaton and the EMRM is built and
subsequently transformed into a continuous time Markov reward model
(MRM) on which numerical analysis is performed.

1 Introduction

Distributed hard- and software systems have become part of our daily life and it
becomes more and more important to assert that they are working correctly and
that they meet high performance and dependability requirements (performabil-
ity, cf. [19, 20]). In order to carry out performance and dependability analysis,
it is necessary to have both a model and a number of measures of interest, such
as utilisation, mean number of jobs, mean time to failure, etc.

In the realm of functional verification, temporal logics such as CTL [8] provide
powerful means to specify complex requirements that a system has to satisfy.
In the recent years big efforts have been made to provide similar means for the
specification of system properties in the area of performance analysis. One result
of these efforts is the logic CSL (continuous stochastic logic) [1, 4].

Very recently, the relatively new but established technique of stochastic
model checking has been extended to the verification of performability prop-
erties. This extension required a new semantic model (Markov Reward models
(MRM)), new logics (continuous stochastic reward logic (CSRL) and new model
checking algorithms [9, 5].

In [17] we presented an extension of the logic CSL, IM-SPDL, which allows
us to reason on a very abstract manner about satisfying paths of a model that is
under verification. Paths can be specified via regular expressions of actions and
so-called tests. IM-SPDL can be used for specifying requirements for models that
contain both immediate and Markovian transitions.

Here, we will combine the logic GCSRL [11], with IM-SPDL, i.e. we extend
IM-SPDL with the possibility of expressing reward-based measures.

In recent years, many efforts have been made to devise temporal logics for
the specification of system properties in the area of performance analysis, where
the underlying model is a labelled Markov chain. One result of these efforts is the
logic CSL (continuous stochastic logic) [4], introduced by [1] and extended in [6]
with an operator to reason about steady-state behaviour. CSL allows the speci-
fication of certain types of performability measures (cf. [3]), but the specification
of these measures is completely state-oriented, i.e. based on atomic propositions.
In [12] an action-based variant of CSL, called aCSL, was proposed, which is not
based on atomic propositions but on sequences of named actions and therefore
more suitable for action-oriented formalisms such as process algebras. A first
combination of the state-oriented and action-oriented approach was the logic
aCSL+ [21], where regular expressions of actions are used to characterise sat-
isfying paths. In [15] we presented the first ideas of a stochastic extension of
the logic PDL (SPDL) which also combines state-oriented and action-oriented
features, and where paths can be specified via regular expressions of actions
and so-called tests. The logic asCSL [2], inspired by the path-based reward vari-
ables of [22], follows a similar motivation. However, we emphasise the fact that
the model to be checked by all logics mentioned in this paragraph is a labelled
CTMC which is not allowed to contain immediate transitions. For stochastic
logics without rewards, there are two logics, that allows us to reason about sys-
tems with both timed and untimed behaviour. In [7] an extension of the logic
CSL is described that allows to specify and verify CSL properties over Markov
chains with both timed and untimed transitions. In [17] an extension of the logic
SPDL [14], IM-SPDL, having the same aim was described. For stochastic reward
logics, such an extension has not been proposed so far.

We will now introduce a running example, that is used throughout this report.

Example 1 (Running example: Fault-tolerant packet collector). Throughout this
paper, we use the example of a fault-tolerant packet collector. Fig. 1 shows the
GSPN-style specification of this simple system which has the following repeating
behaviour: n data packets arrive independently, are stored, and then all n data
packets are jointly processed. Arrivals can either be error-free (upper transition
ARR, rate λ) or erroneous (lower transition ARR, rate µ). Rather unusual for
GSPNs, there are two timed transitions bearing the same name, ARR, which
expresses the fact that these transitions are not distinguishable by an observer.
If a data packet contains an error, this error can be correctable (immediate tran-
sition c) with a certain probability p, or non-correctable (immediate transition
nc) with the complementary probability. In case of a correctable error, the error
is corrected (transition CO) and more data packets can be received. If the er-

2

arrived
n

waitrt

packets n

n

waitcorerror

ARR, λ

ARR, µ CO, γ

RT, κ

PRC, ω

c, p

nc, (1 − p)

Fig. 1. GSPN-style model of a fault-tolerant packet collector

ror is non-correctable, the data packet has to be retransmitted (transition RT).
During the processing of an erroneous packet, no new packet can arrive, which
is modelled by the inhibitor arcs from places error, waitcor, and waitrt to the
ARR transitions of the model.

We add to the following transitions and places have rewards greater than
zero:

– c, p obtains an impulse reward of 2 and nc, 1 − p has an impulse reward of
zero

– The place “arrived” is enriched with a state reward of 5 and the place
“waitcorr” will have a state reward of 2.

2

2 The Semantic Model

The model of the logic SDRL is an extended Markov reward model (EMRM).
An EMRM has two types of transitions and states, immediate and Markovian
transitions and vanishing and tangible states. Immediate transitions are untimed
transitions, whereas Markovian transitions are associated with an exponentially
distributed delay. Tangible states possess only Markovian outgoing transitions,
whereas vanishing states have at least one outgoing immediate transition. Fur-
thermore the tangible state EMRMs can be enriched with state rewards, and
both types of transitions can be annotated with impulse rewards.

Definition 1 (Extended Markov Reward Model). An extended Markov
reward model (EMRM) is a nine-tuple M := (s, S, L, AP, Act, ρZ , ρJ , RI , RM),
where:

– s ∈ S is the unique initial state of M.
– S is a finite set of states.
– L : S 7→ 2AP is the state labelling function that associates with every state

s ∈ S the set of atomic propositions which hold in that state.
– AP is the set of atomic propositions.
– Act is a finite set of actions, that is composed of two disjoint subsets:

3

• ActI is a finite set of immediate action labels, i.e. actions, that are as-
sociated with immediate transitions.

• ActM is a finite set of Markovian action labels, i.e. actions, that are
associated with Markovian transitions.

– ρZ : S 7→ IR>0, is the state reward function, that associates with every state
a reward rate,

– ρJ : (RI ∪RM) 7→ IR>0 is the impulse reward function, that relates to every
transition in M an impulse reward,

– RI : S×ActI ×IP ×S is the immediate transition relation, where IP = (0, 1].

If (s, a, p, j, s′) ∈ RI , we write s
a,p,j

---------➤ s′. ActI is a finite set of immedi-
ate action labels, i.e. actions, that are associated with immediate transitions,
p ∈ IP is a probability, and j is the impulse reward attached to that tran-
sition. The probabilities associated with the immediate transitions leaving a
particular state must sum up to 1 (provided that the state has at least one
emanating immediate transition).

– RM : S × ActM × IR × S is the Markovian transition relation. ActM is a
finite set of Markovian action labels, i.e. actions, that are associated with
Markovian transitions. We require that ActI ∩ ActM = ∅. If (s, a, λ, j, s′) ∈

RM , we write s
a,λ,j
−−−→ s′, with λ the transition rate and j the impulse reward

of that transition.

Example 2 (EMRM of packet collector). In Fig. 2, the EMRM M for the packet
collector GSPN from Fig. 1 is shown, where we assume that the number n of
data packets that are to be processed is equal to four.

s1 s2 s3 s4 s5

s6 s7 s8 s9

s10 s11 s12 s13

s14 s15 s16 s17

ARR, λ ARR, λARR, λARR, λ

ARR, µARR, µARR, µARR, µ

CO, γCO, γ CO, γ CO, γ

RT, κ RT, κ RT, κ RT, κ

PRC, ω

c, p, 2c, p, 2c, p, 2c, p, 2

nc, 1 − p, 1nc, 1 − p, 1nc, 1 − p, 1 nc, 1 − p, 1

Fig. 2. EMRM of the GSPN model for n = 4

The system has the following state labels:

L(s5) = {full}, L(s6) = ... = L(s9) = {error},
L(s10) = = L(s13) = {waitrt}, L(s14) = ... = L(s17) = {waitcor}

The sets of immediate and Markovian actions are given as follows:

ActI := {nc, c}, ActM := {ARR, RT, CO, PRC}

4

For example, transitions s6
nc,1−p,1

-------------➤ s10 and s6
c,p,2

---------➤ s14 are immediate,

whereas s1
ARR,λ
−−−−→ s2 and s14

CO,γ
−−−→ s2 are Markovian transitions.

From the high-level description we know, that c, p and nc, 1 − p transitions
are attached an impulse reward of 2 respectively 1. In the low-level model, we
find the actual transitions with those rewards in Fig. 2. The state rewards of the
high-level model correspond to the following low-level state rewards:

– The state reward of place “arrived” is attached to state s5.
– The state reward of place “waitcorr” is attached to states s14 to s17.

2

Since an EMRM may have two types of transitions, there are two types of states,
vanishing and tangible states.

Definition 2. (Vanishing and tangible states) A state of an EMRM is
called vanishing (instable) if it possesses at least one outgoing immediate tran-
sition. Otherwise the state is called tangible (stable).

A vanishing state is left as soon as it is entered, i.e. its sojourn time is zero.
A tangible state has at least one outgoing Markovian transition (unless it is
absorbing), therefore its sojourn time is governed by an exponential distribu-
tion whose rate parameter λ equals the sum of all the rates of the Markovian
transitions emanating from that state. In the context of compositional mod-
elling formalisms, such as stochastic process algebras, a further refinement of
the notions of tangible/vanishing states is possible [23]. However, as our model
checking approach is independent of any high-level modelling formalism, as long
as the model to be checked is a single EMRM which is considered in isolation,
it suffices to distinguish between vanishing and tangible states.

Example 3. In Fig. 2 states s6, s7, s8, and s9 are vanishing, the remaining states
are tangible. 2

For the semantics of the logic SDRL, the following notion of a path is of great
importance:

Definition 3. (Paths in M) An infinite path σ of an EMRM M is a sequence

of transitions of the form s0
a0,t0,j0
−−−−−→ s1

a1,t1,j1
−−−−−→ s2 . . . where:

– ti = τ(σ, i) ∈ IR≥0 is the real-valued sojourn time in si before passing to
si+1.

– if ai ∈ ActM , then ∃λ : (si, ai, λ, j, si+1) ∈ RM and ti > 0 is the sojourn
time in state si (i.e. ti is the value drawn from an exponential distribution).

– if ai ∈ ActI , then ∃p : (si, ai, p, j, si+1) ∈ RI and ti = 0 is the sojourn time
in state si.

– σ[i] is the (i + 1)st state on path σ.
– σ@t is the state at time point t.
– a[i] is the (i + 1)st action on path σ.

5

A finite path σ is a finite sequence of transitions of the form: s0
a0,t0,j0
−−−−−→ s1

a1,t1,j1
−−−−−→

s2 . . . sn−1
an−1,tn−1,jn−1
−−−−−−−−−−→ sn, where sn is an absorbing state. For a finite path,

τ(σ, i) is defined for i < n as for infinite paths, and for i = n we define
τ(σ, i) = ∞. The set PATH

M(s) := {σ
∣

∣σ[0] = s} is the set of all finite or
infinite paths with initial state s.

3 Syntax of the Logic SDRL

The logic SDRL is a stochastic extension of PDL [10], a multi-modal program
logic. Beside the standard ingredients such as propositional logic and the modal
⋄-operator (“possibly”), PDL enriches the ⋄-operator with so-called regular pro-
grams which are basically regular expressions of actions and tests (cf. Def. 5
below). If Φ and Ψ are PDL formulae and ρ is a program, then Φ ∨ Ψ , ¬Φ and
〈

ρ
〉

Ψ are formulae.
〈

ρ
〉

Ψ means that it is possible to execute program ρ, thereby
ending up in a state that satisfies Ψ .

With respect to PDL we have added the following operators to obtain SDRL:

– A path operator that extends the original PDL
〈

.
〉

-operator by specifying
time and state and impulse reward bounds that must be met, if the formula
is to be satisfied.

– a probabilistic path quantifier P⊲⊳p to reason about the transient probabilistic
behaviour of a system,

– a steady-state operator S⊲⊳p to reason about the behaviour of the system
once stationarity of the underlying Markov chain is reached.

3.1 Syntax of SDRL

The formulae of SDRL are formally defined as follows:

Definition 4. (Syntax of SDRL) Let p ∈ [0, 1] be a probability and q ∈ AP

an atomic proposition and ⊲⊳∈ {≤, <,≥, >} a comparison operator.
The state formulae Φ of SPDL are defined as follows:

Φ := q
∣

∣Φ ∨ Φ
∣

∣¬Φ
∣

∣S⊲⊳p(Φ)
∣

∣P⊲⊳p(φ)
∣

∣(Φ)

Path formulae φ are defined by:

φ := Φ[ρ]IJ,ZΦ

where I is the closed time interval [t, t′] of the real axis. J = [j, j′] is the real
impulse reward interval, with j ∈ IR≥0 and j′ ∈ IR>0 ∪ {∞}, and Z = [y, y′] is
the real state reward interval, with y ∈ IR≥0 and y′ ∈ IR>0 ∪ {∞}. The symbol ρ
represents a program as defined by Def. 5.

Definition 5. (Programs) Let Act = ActI ∪ ActM be a set of actions, which
are also called atomic programs, and TEST be a set of SDRL state formulae. A
program ρ is defined by the following grammar:

ρ := ǫ
∣

∣Φ?; a
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣ρ∗
∣

∣Φ?; ρ
∣

∣(ρ)

where ǫ 6∈ Act is the empty program, a ∈ Act and Φ ∈ TEST.

6

The operators ; (sequential composition), ∪ (choice), and ∗ (Kleene star) have
their usual meaning. The operator Φ?; ρ (resp. Φ?; a) is the so-called test operator
(also called guard operator). Its informal semantics is as follows: Test whether Φ
holds in the current state of the model. If this is the case, then execute program
ρ, otherwise ρ is not executable. Def. 5 requires that every atomic program is
preceded by a test formula Φ, but this can be the trivial test (i.e. Φ = true).
From standard automata theory it is known that regular expressions coincide
with regular languages, i.e. sets of words that are generated according to the
rules of regular expressions. Programs as defined in Def. 5 can be seen as regular
expressions over the alphabet Σ = TEST × (Act ∪ ǫ). Words that are generated
from programs in SDRL will be referred to as program instances. The set of these
program instances is called, as before, a language.

The length of a program instance r, denoted by
∣

∣r
∣

∣, is the number of elements

from Σ occuring in it. For 0 ≤ i <
∣

∣r
∣

∣, r[i] is the (i + 1)st element of r. TF (r[i])
denotes the test formula part of r[i], and Act(r[i]) denotes the action part of r[i].

Example 4 (Programs and program instances). Let Act = ActI∪ActM as in Ex. 2
be the set of atomic programs, and TEST = {error, full, ...,¬error,¬full, ...} the
set of test formulae. Using the grammar from Def. 5, possible programs are1

ρ1 = ARR; (¬error?; ARR)∗; c; CO; ARR∗ and
ρ2 = (¬full?; ARR); c; CO; (full?; ǫ).

Some program instances of ρ1 are:

q = ARR; c; CO; ARR; ARR,
r = ARR; (¬error?; ARR); c; CO and
s = ARR; (¬error?; ARR); (¬error?; ARR); c; CO; ARR.

For r it holds that
∣

∣r
∣

∣ = 4, Act(r[1]) = ARR and TF (r[1]) = ¬error. 2

4 Semantics of the Logic SDRL

At first, we will describe the semantics of SDRL in an informal style

4.1 Informal SDRL Semantics

The meaning of SDRL formulae can informally be described as follows.

1. All states that are labelled with atomic proposition q satisfy q.
2. The semantics of negation (¬Φ), and disjunction (Φ∨Ψ) is defined the usual

way [18].
3. S⊲⊳p(Φ) asserts that the steady-state probability of the set of Φ-states, i.e. the

probability to reside in a Φ-state, once the system has reached stationarity,
satisfies the bounds as imposed by ⊲⊳ p.

1 For better readability we often omit the trivial test formula, i.e. we write a instead
of (true?;a).

7

4. P⊲⊳p(φ) asserts that the (transient) probability measure of the paths that
satisfy φ is within the bounds as given by ⊲⊳ p.

5. Φ[ρ]IJ,ZΨ means that a state that satisfies Ψ is reached within at least t but
at most t′ time units, the state resp. impulse rewards gained on σ must lie
within J resp. Z, and that all preceding states must satisfy Φ. Additionally,
the action sequence of the path to the Ψ state must correspond to the action
sequence of a word from the language Lρ (the language induced by program
ρ) and all test formulae that are part of program ρ must be satisfied by the
corresponding states on the path.

4.2 Formal Semantics of GCSRL

In the sequel, we will define the formal semantics of both SDRL state and path
formulae in a very detailed way.

Definition 6. (State probabilities) The probability to be in state s′ at time
point t, provided that the system is in state s at time 0, is given by

πM(s, s′, t) = Pr(σ ∈ PATH
M(s)

∣

∣σ@t = s′)

The definition for steady-state probabilities is similar, taking into account that
steady-state means ’on the long run’:

πM(s, s′) = limt→∞πM(s, s′, t)

These definitions can be extended to sets of states: For S′ ⊆ S:

πM(s, S′, t) :=
∑

s′∈S′

πM(s, s′, t) and πM(s, S′) :=
∑

s′∈S′

πM(s, s′).

As usual, we define the semantics over the binary satisfiability relation |= [18].

Definition 7 (Semantics of SDRL State Formulae). Let q ∈ AP be an
atomic proposition, p ∈ [0, 1] be a probability and ⊲⊳∈ {<,≤, >,≥} be a compar-
ison operator, then the semantics of state formulae is defined as follows:

M, s |= q ⇐⇒ q ∈ L(s)

M, s |= ¬Φ ⇐⇒ M, s 6|= Φ

M, s |= (Φ ∨ Ψ) ⇐⇒ M, s |= Φ or M, s |= Ψ

M, s |= S⊲⊳p(Φ) ⇐⇒ πM(s, Sat(Φ)) ⊲⊳ p

M, s |= P⊲⊳p(φ) ⇐⇒ ProbM(s, φ) ⊲⊳ p

Sat(Φ) is the set of states that satisfy Φ, and ProbM(s, φ) is the probability
measure of all paths σ ∈ PATH(s) that satisfy φ:

ProbM(s, φ) := Pr(σ ∈ PATH
M(s)

∣

∣M, σ |= φ)

8

For the semantics of path formulae we have to relate the instances of the program
ρ to words on paths in the EMRM M.

Definition 8. (Words on paths) The word Wk of length k ≥ 0 on a path
σ ∈ PATH

M is defined as follows:

W0(σ) := ǫ

Wk(σ) := Wk−1(σ) ◦ a[k − 1]

where a[k − 1] ∈ ActM ∧ σ[k − 1]
a[k−1],tk−1
−−−−−−−→ σ[k] or

a[k − 1] ∈ ActI ∧ σ[k − 1]
a[k−1],0
−−−−−→ σ[k].

For i = 0, 1, . . . , k − 1, Wk(σ)[i] denotes the i + 1st action on path σ.

Example 5. Consider a path σ := s1
ARR,t1
−−−−−→ s6

c,0
−−→ s14

CO,t2
−−−−→ s2

ARR,t3
−−−−−→ . . .

of the EMRM from Fig. 2. The word of length 2 induced by σ is (ARR, c), the
word of length 4 is (ARR, c, CO, ARR) and W4(σ)[2] = CO. 2

Definition 9 (Semantics of SDRL Path Formulae). Let σ be a path in an
EMRM M, let I, J , and Z be intervals as defined in definition 1. The semantics
of path formulae is defined as follows:

M, σ |= Φ[ρ][t,t
′]Ψ ⇐⇒ ∃k

(

M, σ[k] |= Ψ ∧ ∀0 ≤ i < k(M, σ[i] |= Φ)

∧ time reward restriction

∧ program matching
)

The formula time reward restriction is defined as follows:

time reward restriction :=

(t ≤
k−1
∑

l=0

tl ≤ t′ ∧ JRk ∈ J ∧ SRk ∈ Z) ∨

(

k−1
∑

l=0

tl < t ∧ ((

k−1
∑

l=0

tl + δ) ≥ t ∧ JRk ∈ J ∧ (SRk + δ · ρZ(σ[k])) ∈ Z) ∧

(M, σ[k] |= Φ) ∧ ((δ = t −
k−1
∑

l=0

tl) ∧ δ ≤ τ(σ, k)))

where δ := t −
k−1
∑

l=0

.

The formula program matching is defined as follows:

program matching :=
(

∃r ∈ L(ρ) ∧
∣

∣r
∣

∣ = k ∧ Act(r[k − 1]) 6= ǫ ∧

∀0 ≤ i ≤ k − 1(Act(r[i]) = W(k)(σ)[i] ∧M, σ[i] |= TF (r[i]))
)

∨
(

∃r ∈ L(ρ) ∧
∣

∣r
∣

∣ = k + 1 ∧ Act(r[k]) = ǫ ∧ σ[k] |= TF (r[k]) ∧

∀0 ≤ i ≤ k − 1(Act(r[i]) = W(k)(σ)[i] ∧M, σ[i] |= TF (r[i]))
)

9

This formula expresses that the word induced on path σ must be matched by the
corresponding action parts of a program instance r and that the tests appearing
in the program must be satisfied by the appropriate states on the path. There are
two possibilities, as indicated in the formula: (1) If the last element of r is of the
form Φ?; a, where a 6= ǫ, the corresponding state must satisfy the test formula
and the last transition on the path must have a label identical to the action part
of r[k − 1]. (2) If the last element of r is of the form Φ?; ǫ, i.e. has an empty
action part, then it only has to be checked whether the corresponding state on
the path satisfies the test formula.

Example 6 (SDRL formulae). With respect to the EMRM M of Fig. 2 we specify
four example requirements:

– Is the probability to receive four data packets with at most one packet con-
taining a non-correctable error within 5 time units greater than 0.9? If,
additionally a state reward between 15 and 25 was accrued?

Φ1 := P>0.9(¬full [ARR∗; nc; RT ; ARR∗ ∪ ARR∗]
[0,5]
[0,0],[15,25] full)

– Is the probability to reach a state in which the buffer is full with a single
arrival greater than zero?

Φ2 := P>0(¬full [ARR]
[0,∞]
[0,0],∞ full)

Requirement Φ2 characterises state s4.
– Is the probability that the buffer is full after at most 7.3 time units greater

than 75 percent, if the following side conditions must be met:
• The only packet that contains an error is the fourth packet. This error

must be correctable.
• An impulse reward of exactly 2 is gained and at most 45 state rewards

are accrued.
Φ3 := P>0.75(true [ARR∗; (Φ2?; ARR); c; CO]

[0,7.3]
[2,2],[0,45] true)

– In steady-state, is the probability that the system is currently processing
either a correctable or a non-correctable error, less than 3%?

Φ4 := S<0.03(waitcor ∨ waitrt)

2

5 Model Checking SDRL

In this section, we describe the model checking algorithm for the logic SDRL.
Central for this are the notions of program automata and product transition
systems which we introduce in the sequel. Due to restricted space we will only
describe the general idea of how to model check SDRL path formulae, full details
can be found in [16].

10

5.1 General Idea

The overall model checking algorithm for SDRL is similar to that of CTL in the
sense that we start by checking elementary subformulae and then proceed to the
checking of more and more complex subformulae until the overall formula has
been checked. Model checking propositional logic subformulae works as for CTL.
Steady-state subformulae are checked in three steps as follows:

1. The EMRM M is transformed into a state-labelled CTMC M′, by eliminat-
ing the vanishing states, as described, by the algorithm in section 5.2.

2. On M′, model checking the steady-state operator works as for CSL [4]. Step
2 yields the verification results for the tangible states only.

3. During step 1, for each vanishing state the probability to reach a certain
tangible state as the next tangible state is recorded. These probabilities are
now combined with the results of step 2 in order to obtain the verification
results for the vanishing states.

The basic model checking procedure for SDRL path formulae with leading P⊲⊳p

operator is more involved: We assume that we want to check whether state s
of a given EMRM M satisfies the formula P⊲⊳p(φ), where φ = Φ[ρ][t,t

′]Ψ . The
basic idea is to reduce the SDRL model checking problem M, s |= P⊲⊳p(φ) to the
CSRL model checking problem of deciding whether M∗, s∗ |= P⊲⊳p(F

I
J,Zsucc) for

a CTMC M∗ (to be constructed) and a state s∗ of M∗. A path satisfies the
CSRL path formula FI

J,Zsucc, if within the time interval I a state is reached
that satisfies the new atomic proposition succ, and where the accrued rewards
lie within the bounds as imposed by J and Z respectively. We take the following
steps:

1. From the program ρ we derive a deterministic program automaton Aρ, which
is a variant of deterministic finite automata.

2. Using the given EMRM M and the program automaton Aρ, we construct
a product EMRM (PEMRM) M×. The state space of M× is the product
between M and Aρ, i.e. states are of the form (si, zi), where si is a state of
M and zi a state of Aρ. In addition, M× contains an absorbing error state
with the new state label fail. The transitions in M× are labelled with rates
in case of Markovian transitions and with probabilities in case of immediate
transitions. The purpose of building this PEMRM is to check whether φ =
Φ[ρ][t,t

′]Ψ is functionally satisfiable in M or not.
3. In order to compute the probability measure of the paths satisfying φ we

proceed as follows:
(a) All states (si, zi) of M× for which si is a Ψ -state and zi is an accepting

state are replaced by a single absorbing goal state, with the special state
label succ (for “success”). All transitions leading to a state (sj , zj) of the
kind just described are redirected to this succ-state.

(b) The PEMRM M× is transformed into a CTMC M∗ by eliminating
vanishing states as in section 5.2.

4. On M∗ we can compute the probability measure of all paths satisfying the
CSRL formula P⊲⊳p(F

I
J,Zsucc), which is equivalent to the probability measure

of the paths satisfying the original formula P⊲⊳p(φ) in the original model M.

11

5.2 Elimination of Vanishing States

Following [23], the procedure of transforming an EMRM M into an MRM M′

can roughly be described as follows.

1. Make ¬Φ and Ψ states in M absorbing: M[¬Φ ∨ Ψ] [4].
2. Compute M′ from M[¬Φ ∨ Ψ] [23]:

(a) While SV an is not empty
i. choose a state sv from SV an

ii. incoming transitions to sv have to be redirected to its successor:

– s
a,λ,j1
−−−−→ sv ∧ sv

b,p,j2
----------➤ s′ ⇒ s

a,p·λ,j1+j2
−−−−−−−→ s′

– s
a,p1,j1

-----------➤ sv ∧ sv
b,p2,j2

-----------➤ s′ ⇒ s
a,p1·p2,j1+j2

------------------➤ s′

Generally, the algorithm computes the transitive hull over the untimed transi-
tions.

5.3 Program Automata

According to Sec. 5.1 we have to derive an automaton from a given program ρ.
This is done by the following steps:

– At first, we construct from ρ a non-deterministic program automaton (NPA)
ρ. The definition of NPA is identical to that of non-deterministic finite
automata as known from standard automata theory, albeit with special input
alphabet Σ as introduced above in Sec. 3.1.

– Secondly, we turn # ρ into a deterministic program automaton (DPA) Aρ.
DPAs are formally defined in Def. 10. From this definition, it follows that the
determinisation of an NPA is quite different from making a non-deterministic
finite automaton deterministic. We will exemplify and justify our approach
in example 7.

Definition 10 (Deterministic program automaton DPA). A DPA A is a
quintuple (ZA, ΣA, zStart, EA, δA) where

– ZA is a finite set of states,
– ΣA = TEST × (Act ∪ ǫ) is the input alphabet,
– zStart

A ∈ ZA is the initial state,
– EA ⊆ ZA is the set of accepting states and
– δA : ZA ×ΣA → ZA is the state transition function which has to satisfy the

following condition: If a state z possesses more than one outgoing transition
then, either the action parts of the labellings of all outgoing transitions must
be pairwise different, or if there are two or more transitions whose action
parts are identical, then the test formula parts of them must not be true at
the same time.

Our model checking approach relies on the following theorem:

Theorem 1. For every NPA, an equivalent DPA can be constructed.

12

Although Theorem 1 seems quite obvious, it should be noted that its proof is not
the same as the equivalence proof of deterministic and non-deterministic finite
automata from standard automata theory, since the input symbols have both a
test part and an action part, and during determinisation the semantics of the
test part must be taken into account. Instead of a formal proof of Theorem 1,
we consider the following illustrative example:

A B DC
Φ2?; ARR

ARR

c CO

Fig. 3. Non-deterministic program automaton #
ρ

for the program of Φ3

Example 7 (NPA and DPA). Fig. 3 shows a non-deterministic program automa-
ton # ρ for the program ρ = ARR∗; (Φ2?; ARR); c; CO (taken from Ex. 6, re-
quirement Φ3). The automaton is non-deterministic since the arcs emanating
from state A, labelled with ARR (which is equivalent to (true?; ARR)) and
(Φ2?; ARR), have identical action label and the test parts are not disjoint. We
cannot directly use such a non-deterministic automaton for our model checking
algorithm, as the product construction explained in Sec. 5.4 could modify the
stochastic behaviour of M and thus lead to wrong numerical results. Therefore
we first construct a deterministic program automaton Aρ, which is shown in
Fig 4. In Aρ, no two transitions are activated at the same time. This deter-
minisation guarantees that the product automaton will preserve the branching
structure and therefore the stochastic behaviour of M. 2

5.4 Product EMRM Construction and Analysis

The central part of model checking probabilistic path formulae is the construc-
tion of the PEMRM of the model M and the DPA Aρ for the program ρ of the
path formula that is to be checked.

Definition 11. (Product Extended Markov Reward Model (PEMRM))
Let the EMRM M = (s, S, AP, Act, L, ρZ, ρJ , RI , RM) and the DPA Aρ =
(Zρ, Σρ, z

start
ρ , Eρ, δρ) given. A PEMRM M× = (s×, AP, L×, S×, ρ×Z , ρ×J , R×

I , R×
M)

is defined as follows:

– state space: S× := {(si, z
j
ρ)

∣

∣si ∈ S ∧ zj
ρ ∈ Zρ} ∪ {FAIL, SUCC}

– initial state: s×Start := (si, z
Start
ρ)

– accepting states: S×
Acc := {(si, z

j
ρ) ∈ S×

∣

∣si ∈ Sat(Ψ) ∧ zj
ρ ∈ Eρ}

– labelling:
1. ∀(si, z

j
ρ) ∈ S×\S×

Acc(L
×(si, z

j
ρ) = L(si))

2. ∀(si, z
j
ρ) ∈ S×

Acc(L
×(si, z

j
ρ) = {succ})

3. L×(FAIL) = {FAIL}
4. L×(SUCC) = {succ}

– ρ×Z , = ρZ and ρ×J = ρJ , i.e. ρ×Z ((s, z)) = ρZ(s) and ρ×J (((s, z), a, λ, (s′, z′))) =
ρJ((s, a, λ, s′))

13

– Immediate transition relation: R×
I ⊆ S× × p × S× where p is a probability.

– Markovian transition relation: R×
M ⊆ S× × IR>0 × S×

The relation R×
I is defined in definition 13. The relation R×

M is as defined in
definition 12.

succ is a state formula that characterises exactly those states whose automa-
ton part is an accepting state and whose Markov chain part is a state in which
the formula Ψ of the path formula Φ[ρ][t,t

′]Ψ holds.

Definition 12. For A, B ∈ 2S××IR+×S×

with B = ∅ or |B| = 1, A⊎B is defined
as follows:

– B = ∅: A ⊎ B = A
– |B| = 1 ∧ B = {(s, λ, s′)}:

A ⊎ B =

{

A ∪ B iff 6 ∃γ ∈ IR>0((s, γ, s′) ∈ A)
(A\{(s, γ, s′)} ∪ {(s, γ + λ, s′)} otherwise

R×
M is successively defined as follows:

1. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. M offers transitions with labelling a, so does Aρ.

R×
M ⊎ {(s, zρ), λ, j, (s′, z′ρ)

∣

∣ s
a,λ,j
−→ s′ ∧ zρ

a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc}

2. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Aρ offers a test transition with test Ξ?; and atomic program
a. M offers transitions with labelling a and satisfies the test formula of the
corresponding transition in the DPA.

R×
M ⊎ {(s, zρ), λ, j, (s′, z′ρ)

∣

∣ s
a,λ,j
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ)}

3. In the PEMRM no accepting state has been reached. The original state s
in M satisfies Φ. Aρ offers in z a transition with labellings from Actρ. M
satisfies in s the test formula of the corresponding z-transition. The target
state of M satisfies Ψ and the target state of the z-transition is an accepting
state.

R×
M ⊎ {(s, zρ), λ, j, SUCC

∣

∣ s
a,λ,j
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

(s′, z′ρ) ∈ S×
Acc}

14

4. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Aρ offers in z a transition with labellings from Actρ the target
state of this transition offers a transition with a labelling from TEST, say
Θ. M satisfies in s the test formula of the corresponding z-transition. The
target state of M satisfies Ψ and Θ.

R×
M ⊎ {(s, zρ), λ, j, SUCC

∣

∣ s
a,λ,j
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ ∈ Sat(Θ) ∧

(s′, z′′ρ) ∈ S×
Acc}

5. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. M offers in s a transition labelled with a. Aρ does not offer
a transition bearing such a labelling.

R×
M ⊎ {(s, zρ), λ, j, FAIL

∣

∣ s
a,λ,j
−→ s′ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

(zρ
a

−→ z′ρ) 6∈ δρ}

6. In the PEMRM no accepting state has been reached. The original state s in
M does not satisfy Φ. The source state of M× is not accepting.

R×
M ⊎ {(s, zρ), λ, j, FAIL

∣

∣ s 6∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc}

7. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Both M and Aρ offer in s resp. z a transition labelled with
a, where in Aρ a is preceeded by a test. M does not satisfy the test formula
in its current state s.

R×
M ⊎ {(s, zρ), λ, j, FAIL

∣

∣ s
a,λ,j
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s 6∈ Sat(Ξ)}

8. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Both M and Aρ offer in s resp. z a transition labelled with
a, where in Aρ a is preceeded by a test. The target state z′ρ is not accepting
and offers a transiton with labelling from TEST to an accepting state z′′ρ . The

15

target state s′ of M does not satisfy Θ.

R×
M ⊎ {(s, zρ), λ, j, FAIL

∣

∣ (s
a,λ,j
−→ s′ ∧ zρ

Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ 6∈ Sat(Θ) ∧

z′′ρ ∈ Eρ}

Definition 13. R×
I is successively defined as follows:

1. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. M offers transitions with labelling a, so does Aρ.

R×
I ⊎ {(s, zρ), p, j, (s′, z′ρ)

∣

∣ s
a,p,j

---------➤ s′ ∧ zρ
a

−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc}

2. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Aρ offers a test transition with test Ξ?; and atomic program
a. M offers transitions with labelling a and satisfies the test formula of the
corresponding transition in the DPA.

R×
I ⊎ {(s, zρ), p, j, (s′, z′ρ)

∣

∣ s
a,p,j

---------➤ s′ ∧ zρ
Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s ∈ Sat(Ξ)}

3. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Aρ offers in z a transition with labellings from Actρ the target
state of this transition offers a transition with a labelling from TEST, say
Θ. M satisfies in s the test formula of the corresponding z-transition. The
target state of M satisfies Ψ and Θ.

R×
I ⊎ {(s, zρ), p, j, SUCC

∣

∣ s
a,p,j

---------➤ s′ ∧ zρ
Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ ∈ Sat(Θ) ∧

(s′, z′′ρ) ∈ S×
Acc}

4. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Aρ offers in z a transition with labellings from Actρ to z′. M
satisfies in s the test formula of the corresponding z-transition. The target

16

state of M satisfies Ψ and z′ of Aρ is an accepting state.

R×
I ⊎ {(s, zρ), p, j, SUCC

∣

∣ s
a,p,j

---------➤ s′ ∧ zρ
Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

s ∈ Sat(Ξ) ∧

(s, zρ) 6∈ S×
Acc ∧

(s′, z′ρ) ∈ S×
Acc}

5. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. M offers in s a transition labelled with a. Aρ does not offer
a transition bearing such a labelling.

R×
I ⊎ {(s, zρ), p, j, FAIL

∣

∣ s
a,p,j

---------➤ s′ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

(zρ
a

−→ z′ρ) 6∈ δρ}

6. In the PEMRM no accepting state has been reached. The original state s in
M does not satisfy Φ. The source state of M× is not accepting.

R×
I ⊎ {(s, zρ), p, j, FAIL

∣

∣ s 6∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc}

7. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Both M and Aρ offer in s resp. z a transition labelled with
a, where in Aρ a is preceeded by a test. M does not satisfy the test formula
in its current state s.

R×
I ⊎ {(s, zρ), p, j, FAIL

∣

∣ s
a,p,j

---------➤ s′ ∧ zρ
Ξ?;a
−→ z′ρ ∧

s ∈ Sat(Φ) ∧

(s, zρ) 6∈ S×
Acc ∧

s 6∈ Sat(Ξ)}

8. In the PEMRM no accepting state has been reached. The original state s in
M satisfies Φ. Both M and Aρ offer in s resp. z a transition labelled with
a, where in Aρ a is preceeded by a test. The target state z′ρ is not accepting
and offers a transiton with labelling from TEST to an accepting state z′′ρ . The
target state s′ of M does not satisfy Θ.

R×
I ⊎ {(s, zρ), p, j, FAIL

∣

∣ (s
a,p,j

---------➤ s′ ∧ zρ
Ξ?;a
−→ z′ρ

Θ?
−→ z′′ρ) ∧

(s, zρ) 6∈ S×
Acc ∧

s′ 6∈ Sat(Θ) ∧

z′′ρ ∈ Eρ}

17

Example 8 (Constructing the PEMRM). Let the EMRM M from Fig. 2 and
the DPA Aρ, shown in Fig. 4, be given. We now explain by example, how their
PEMRM M×, shown in Fig. 5, is constructed:

– The combinations of the transitions s1
ARR,λ
−−−−→ s2 in M and A

¬Φ2?;ARR
−−−−−−−→ A

in Aρ leads to the transition (s1, A)
λ
−→ (s2, A) in M×.

– In M, transition s1
ARR,µ
−−−−→ s6 is also possible, therefore M× also has the

transition (s1, A)
µ
−→ (s6, A).

– Transition (s9, AB)
p,2

-------➤ (s17, C) in M× stems from the transition s9
c,p,2

---------➤

s17 in M and AB
c
−→ C in Aρ.

– Transition (s6, A)
1,3

-------➤ fail is composed of the transitions s6
c,p,2

---------➤ s14

and s6
nc,1−p,1

-------------➤ s10 in M, since in state A neither a c nor an nc transition

is possible. Therefore in M× we obtain the transitions (s6, A)
p,2

-------➤ fail and

(s6, A)
1−p,1

----------➤ fail which can be replaced by a single immediate transition
that has probability one.

– In state C there is a transition C
CO
−−→ D, where D is an accepting state,

and in M there is a transition s17
CO,γ
−−−→ s5. In M× this leads to transition

(s17, C)
γ
−→ succ, which stems from the fact that the automaton goal state

D is accepting and that the goal state s5 of the EMRM satisfies Ψ = true,
i.e. state (s5, D) satisfies the conditions of Sec. 5.1, item 3(a). 2

Example 9 (Elimination of vanishing states). Let the PESLTS M× from Fig. 5
be given. The vanishing states (s6, A), (s7, A), (s8, A) and (s9, AB) are elimi-
nated, thereby redirecting their incoming arcs to the respective successor states2

and weighing them with the corresponding probabilities. This leads to the la-
belled CTMC M∗ shown in Fig. 6. 2

6 A Bisimulation for SDRL

In this section we define a bisimulation relation for EMRMs and prove that the
satisfiability of SDRL formulae is preserved under this notion of bisimulation.
Having such a result model checking SDRL can be performed on EMRMs which
are minimal with respect to bisimulation.

2 In general, sequences and even cycles of immediate transitions are possible, which
situation can be handled by several published elimination algorithms.

A AB DC

Φ2?; ARR

Φ2?; ARR

¬Φ2?; ARR

¬Φ2?; ARR

c CO

Fig. 4. Deterministic program automaton Aρ for the program of Φ3

18

λ

λλλ

µ, 3µ, 3µ, 3

µ, 3

1, 3
1, 3 1, 3

p, 2

1 − p, 1
ω

γ
(s1, A) (s2, A) (s3, A) (s4, A) (s9, AB) (s17, C) succ

(s6, A) (s7, A) (s8, A) (s5, AB)

fail

Fig. 5. Product EMRM M
×

λ

λλλ

µ, 3µ, 3µ, 3

ω µ · (1 − p), 1

µ · p, 2 γ
(s1, A) (s2, A) (s3, A) (s4, A) (s17, C) succ

(s5, AB)

fail

Fig. 6. M∗: Result of the elimination of vanishing states

6.1 A Bisimulation Relation for EMRMs

Definition 14 (Probabilistic Markov AP Reward (APMAPR) Bisim-
ulation). An equivalence relation B on the set S of states of an EMRM M
is a probabilstic- Markov-AP-Reward bisimulation (APMAPR-bisimulation), if
(s1, s2) ∈ B implies that for all equivalence classes C of B it holds that:

1. L(s1) = L(s2)
2. ρZ(s1) = ρZ(s2)
3. ∀a ∈ ActM (γrate(a, s1) = γrate(a, s2))
4. ∀a ∈ ActI(γprob(a, s1) = γprob(a, s2))
5. ∀a ∈ Act(γimp(a, s1) = γimp(a, s2))

Two states s1 and s2 are APMAPR-bisimilar s1 ∼APMAPR s2 if they are con-
tained in a APMAPR-bisimulation.

Definition 15 (Cumulative Rate). The cumulative rate from a state s of an
EMRM M to a set of states C of M is defined by function γrate : ActM×S×2S 7→
IR:

γrate(a, s, C) :=
∑

λ∈E(a,s,C)

λ,

where

E(a, s, C) := {|λ
∣

∣s
a,λ
−−→ s′ ∧ s′ ∈ C|}

{|, |} denote multi-set brackets.

Definition 16 (Cumulative Probability). The cumulative probability to come
from a state s of EMRM M to a set of states C of M is defined by the function
γprob : ActI × S × 2S 7→ IP :

γprob(a, s, C) :=
∑

p∈Ep(a,s,C)

p,

19

where

Ep(a, s, C) := {|p
∣

∣s
a,p

-------➤ s′ ∧ s′ ∈ C|}

{|, |} denote multi-set brackets.

Definition 17 (Cumulative Impulse Reward). The cumulative impulse re-
ward of a state s of EMRM M that is accumulated when taking transitions to a
set of states C of M is defined by the function γimp : Act × S × 2S 7→ IR:

γimp(a, s, C) :=
∑

j∈Ej(a,s,C)

j,

where

Ej(a, s, C) := {|j
∣

∣(s
a,p,j

---------➤ s′ ∨ s
a,λ,j
−−−→ s′) ∧ s′ ∈ C|}

{|, |} denote multi-set brackets.

Theorem 2 (APMAPR-Bisimulation Preserves SDRL Satisfiability).
Let B be a APMAPR-bisimulation, and s a state of EMRM M, it holds that:

1. For all SDRL state formulae Φ: M, s |= Φ ⇔ M/ B , [s] B |= Φ

2. For all SDRL path formulae φ: ProbM(s, φ) = ProbM/ B ([s] B , φ).

Especially it holds, bisimilar states satisfy the same set of SDRL formulae.

The proof of theorem 2 is by induction on the length and structure of the SDRL
formulae under consideration. The proof is straight-forward and will therefore
be omitted.

7 Conclusion

In this paper we have presented an extension of the logic IM-SPDL to SDRL
such that we can also reason about reward-based properties of systems that have
both timed and untimed behaviour.

We have defined in some detail the semantics and model checking algorithms
for this logic.

We have also introduced a notion of bisimulation on EMRMs, such that
model checking of SDRL formulae can also be carried out on systems which are
minimal with respect to this special bisimulation relation. If we consider the
high numerical complexity of GCSRL model checking, to which we could reduce
SDRL model checking such a result can yield in a reduction of model checking
times, as reported for CSL model checking in [13].

In the next future we plan to implement model checking and bisimulation
algorithms for SDRL for Markovian approximation [9] in a symbolic, i.e. BDD-
based way both serially and on parallel machines.

20

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T.A. Henzinger, editors, Computer-Aided Verification,
volume LNCS 1102, pages 146–162. Springer, 1996.

2. Ch. Baier, L. Cloth, B. Haverkort, M. Kuntz, and M. Siegle. Model checking action-
and state-labelled Markov chains. In Proc. of Int. Conf. on Dependable Systems
and Networks (DSN), Performance and Dependability Symposium, pages 701–710.
IEEE Press, 2004.

3. Ch. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical charac-
terisation of performability properties. In ICALP, pages 780–792. Springer, LNCS
1853, 2000.

4. Ch. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking Algo-
rithms for Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1–
18, July 2003.

5. Ch. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. Model Checking
Continuous-Time Markov Chains by Transient Analysis. In E.A. Emerson and
A.P. Sistla, editors, Computer Aided Verification, volume LNCS 1855, pages 358–
372. Springer, 2000.

6. Ch. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symbolic Model Checking
of Continuous-Time Markov Chains. In J.C.M. Baeten and S. Mauw, editors,
Conurrency Theory, volume LNCS 1664, pages 146–162. Springer, 1999.

7. Davide Cerotti, Susanna Donatelli, Andras Horvath, and Jeremy Sproston. CSL
Model Checking for Generalized Stochastic Petri Nets. In QEST ’06: Proceedings of
the 3rd international conference on the Quantitative Evaluation of Systems, pages
199–210, Washington, DC, USA, 2006. IEEE Computer Society.

8. E.M. Clarke, E.A. Emerson, and A. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
10th ACM Annual Symp. on Principles of Programming Languages, pages 117–126,
1983.

9. L. Cloth. Model Checking Algorithms for Markov Reward Models. PhD thesis,
University of Twente, Enschede, Netherlands, 2006.

10. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. J.
Comput. System Sci., 18:194–211, 1979.

11. B.R. Haverkort and M. Kuntz. GCSRL - A Logic for Stochastic Reward Models
with Timed and Untimed Behaviour. In Proc. 8th Int. Workshop on Performability
Modeling of Computer and Communication Systems (PMCCS-8). to appear, 2007.

12. H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model check-
ing stochastic process algebra. In Integrated Formal Methods, volume LNCS 1945,
pages 420–439. Springer, 2000.

13. J.-P. Katoen, T. Kemna, I. Zapreev, and D. Jansen. Bisimulation minimisation
mostly speeds up probabilistic model checking. In Proc. 13th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’07), LNCS 4424, pages 76–92. Springer, 2007.

14. M. Kuntz. Symbolic Semantics and Verification of Stochastic Process Algebras.
PhD thesis, Universität Erlangen-Nürnberg, Institut für Informatik 7, 2006.

15. M. Kuntz and M. Siegle. A stochastic extension of the logic PDL. In Proc. Sixth Int.
Workshop on Performability Modeling of Computer and Communication Systems
(PMCCS-6), pages 58–61, Monticello, Illinois, 2003.

21

16. M. Kuntz and M. Siegle. A Stochastic Extension of the Logic PDL. Technical
Report 03/03, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2003.

17. M. Kuntz and M. Siegle. Symbolic Model Checking of Stochastic Systems: The-
ory and Implementation. In 13th International SPIN Workshop, pages 89–107.
Springer, LNCS 3925, 2006.

18. M. Manzano. Model Theory. Oxford University Press, 1999.
19. J.F. Meyer. On Evaluating the Performability of Degradable Computing Systems.

IEEE Transactions on Computer Systems, C-29(8):720–731, August 1980.
20. J.F. Meyer. Performability: A retrospective and some pointers to the future. Per-

formance Evaluation, 14(3-4):139–156, February 1992.
21. J. Meyer-Kayser. Verifikation stochastischer, prozessalgebraischer Modelle mit

aCSL+. Technical Report IB 01/03, Universität Erlangen-Nürnberg, Institut für
Informatik 7, 2003.

22. W.D. Obal and W.H. Sanders. State-space support for path-based reward variables.
Performance Evaluation, 35:233–251, 1999.

23. M. Siegle. Behaviour analysis of communication systems: Compositional modelling,
compact representation and analysis of performability properties. Shaker Verlag,
Aachen, 2002.

22

