
D-FLER: A Distributed Fuzzy Logic Engine for

Rule-based Wireless Sensor Networks

Mihai Marin-Perianu and Paul Havinga

University of Twente, Enschede, The Netherlands
{m.marinperianu, p.j.m.havinga}@utwente.nl

Abstract. We propose D-FLER, a distributed, general-purpose reason-
ing engine for WSN. D-FLER uses fuzzy logic for fusing individual and
neighborhood observations, in order to produce a more accurate and reli-
able result. Thorough simulation, we evaluate D-FLER in a fire-detection
scenario, using both fire and non-fire input data. D-FLER achieves bet-
ter detection times, while reducing the false alarm rate. In addition, we
implement D-FLER on real sensor nodes and analyze the memory over-
head, the numerical accuracy and the execution time.

1 Introduction

Initially perceived as a cost-effective method for monitoring large geographical
areas in detail, Wireless Sensor Networks (WSN) exhibit today a rapidly in-
creasing uptake in various industrial and business-related fields [20]. There are
two main reasons for this trend. First, the comprehensive set of features (digital
I/O, storage and processing, wireless communication) available on current sen-
sor nodes makes the term “intelligent sensor” real to the industrial automation
community. Second, WSN are self-organizing, collaborative networks, capable of
executing logic in a distributed way, at the point of action. This is a desirable
property because it decreases the load on the back-end system [12] and improves
the overall reliability and responsiveness. There are, however, several important
challenges in this regard. The sensor nodes have limited resources and usually
execute only simple logic, such as concise business rules [20]. This may lead to
erroneous decisions in the presence of inaccurate or faulty sensors. Sensor data
fusion techniques can reduce the errors, but also require complex computations
that sensor nodes cannot handle, or prior information that is infeasible to obtain
practically [15].

In this paper, we explore fuzzy logic as an alternative solution to these prob-
lems. The field of fuzzy logic has been developing for more than forty years, with
many successful applications in diverse areas as automotive industry, artificial
intelligence, medicine, behavioral science, just to mention some [11]. Fuzzy in-
ference systems (FIS) match two of the most challenging requirements of WSN:
(1) they are simple and can be executed on limited hardware, and (2) toler-
ate imprecise, unreliable data. In addition, FIS have several properties that are
less mentioned in the WSN literature, but are equally important from a practi-
cal point of view. First, fuzzy logic can reduce the development time compared

with other techniques. In Bayesian calculus for example, prior probabilities need
to be acquired by means of a statistical analysis requiring massive amounts of
data [15]. With fuzzy logic, it is possible to have a running system by using
only an intuitive, common-sense description of the problem. Second, fuzzy logic
is flexible; it can be built on top of the expert knowledge, mixed with conven-
tional control methods and easy to add or change functionality. Third, FIS are
computationally fast [15], which is important because the processing capabilities
of sensor nodes are limited. Fourth, FIS can be implemented with little mem-
ory overhead, which is a desirable property in WSN because of (1) the limited
memory on the sensor nodes and (2) the latency of the network reprogramming.
Finally, FIS, potentially combined with neural networks, are adaptive, i.e. can
be trained with examples or can learn at runtime from feedback.

To the extent of our knowledge, there is little research effort in the field
of WSN that involves fuzzy logic. In this paper, we make a step forward and
propose a lightweight, distributed fuzzy logic engine operating with simple IF-
THEN rules applied over both the individual sensor readings and the neighbor-
hood observations. We choose event detection (more precisely, fire detection) as
an application example to evaluate our approach compared with conventional
crisp logic methods. We believe that many other practical WSN applications can
benefit from using a distributed inference engine, capable of fusing multi-sensor,
multi-node unreliable information, in order to produce a more reliable result.

2 Related Work

Previous research has also considered the idea of reasoning engines for embedded
devices. Cooperative Artefacts [23], for example, can autonomously reason about
their situation by means of an inference engine based on a Prolog interpreter.
The functionality of the interpreter is however limited, since it has to run on
resource-poor sensor nodes. An application specific virtual machine, such as
Maté [19], offers more flexibility for programming WSN, but at the price of
significant overhead. The ubiquitous chip [14] is an event-driven I/O control
device based on ECA (Event, Condition, Action) rules. A similar model is used
by the business rules for sensor nodes [20], which are designed to express service-
oriented business logic in a compact way. Compared to these examples, a fuzzy
logic inference engine has the advantage of preserving the simplicity of rule-based
logic, while handling unreliable and imprecise numeric information.

3 D-FLER

In this section we describe D-FLER, a distributed rule-based fuzzy logic engine
designed for collaborative WSN. We start with a short overview of general fuzzy
logic systems and than present the detailed design of D-FLER.

Fig. 1. D-FLER structure.

3.1 Overview of Fuzzy Logic

Fuzzy logic systems are in general non-linear input-output mappings [21]. FIS
operate with fuzzy sets, which extend the ordinary notion of crisp sets. A fuzzy
set F is characterized by a membership function µF (x), which gives the degree of
similarity of x to F . An important consequence is that FIS are universal approx-
imators, capable of approximating any continuous function with an arbitrary
bound ǫ. In engineering, the most widely used are the rule-based FIS. These
systems are composed of four basic components. First, the fuzzifier maps crisp
inputs into fuzzy sets by using the membership functions. Second, the fuzzified
values activate the rules, which are provided by experts or extracted from nu-
merical data. The rules are expressed as a collection of IF-THEN statements,
having fuzzy propositions as antecedents and consequences. Third, the fuzzy in-

ference engine combines the rules to obtain an aggregated fuzzy output. Finally,
the defuzzifier maps the fuzzy output back to a crisp number that can be used
for making decisions or control actions.

3.2 D-FLER Design

WSN usually try to compensate the resource limitations and the lack of relia-
bility through cooperative algorithms, which exploit the high density of nodes
deployed. This is why FIS for WSN have to go distributed and embed collab-
orative mechanisms of reasoning on the observed data and taking decisions or
actions in a coordinated manner.

Following this idea, D-FLER uses two types of inputs: individual observations
(sensor readings of the current node) and neighborhood observations (fuzzified
sensor data from the neighboring nodes). Fig. 1 illustrates how D-FLER fuses
these inputs. We distinguish the following main operations:

1. Fuzzification of individual observations. D-FLER obtains the sensor readings
from the sensor interface of the current node. Both the sensor raw values and

their differential variations ∆ are fuzzified through the predefined member-
ship functions. The fuzzified values are scheduled for being broadcast within
the local neighborhood by the MAC layer.

2. Quantification of neighborhood observations. When receiving neighborhood
observations over the radio, the MAC layer forwards them to D-FLER. Then,
D-FLER updates the sigma-count factor [25], which is formally defined as

∑

Count(F) =
∑

i

µF (xi) (1)

where X = {x1, ..., xn} is the set of neighbors and F is a property of interest
related to their observations, e.g. “smoke level is high”.
Optionally, the neighborhood observations can be given weighting factors
based on the confidence of each neighbor (e.g. given by the precision of its
sensors, distance from the event observed, past accuracy computed as false
alarm and rejection rates, etc.). In this case, we have a weighted sigma-count

∑

Count(F ;w) =
∑

i

wiµF (xi) (2)

The neighborhood observations are eventually characterized through a fuzzy
majority quantifier, such as most [18]

µmost(

∑

Count(F)

|X|
) = µmost(

∑

i µF (xi)

n
) (3)

where

µmost(x) =







0 if x ≤ 0.3;
2x − 0.6 if 0.3 < x < 0.8;
1 if x ≥ 0.8.

(4)

The most quantifier gives a fuzzified indication of the consensual neighbor-
hood opinion that the current node can add to its own observations, in order
to take a more accurate decision. However, the decision of the node is not
fed back into the neighborhood, in order to avoid an artificial increase of
confidence due to ping-pong effects.

3. Inference. In addition to conventional fuzzy inference, the D-FLER rules in-
corporate both the fuzzified individual observations and the quantified neigh-
borhood observations. Such a “distributed” rule has the following structure

IF s1 is Fi1 AND s2 is Fi2 AND ... sp is Fip
AND

Q n1 is Fj1 AND Q n2 is Fj2 AND... Q nq is Fjq

THEN o is G (5)

where si are fuzzified sensor readings, nj are neighborhood observations, Q
is the majority quantifier, o is the output, Fik,jl

and G are input and output
fuzzy sets, respectively.
Considering the fire detection example (see Sec. 4), a rule can be written as

IF Smoke is High AND Temp is Low AND

most(SmokeNeigh) is High AND most(TempNeigh) is High

THEN FireDecision is High (6)

During the inference process, several rules are activated and contribute to the
combined fuzzy output. Optionally, the combination of rules can be weighted
according to the degree of belief to each rule, if such information is available.

4. Defuzzification. The last phase, defuzzification, produces a crisp output com-
puted using one of the common methods: maximum, mean of maxima, cen-
troid, etc.

In addition to these operations, D-FLER can be trained and can learn at
runtime if feedback is available. To achieve this, two parameters can be adjusted:

– The confidence of each neighbor in the weighted sigma-count factor. For
example, nodes that constantly report observations in contrast with the right
decision will receive a lower weight in the result of the quantification.

– The importance of each rule in the inference process. For example, after
training, the rules contributing to correct decisions will be assigned a larger
weight in forming the combined fuzzy output.

4 Application Example - Fire Detection

We propose large-scale fire detection as an application example for evaluating
D-FLER. The potential usage of WSN for real-time fire detection and firefight-
ing assistance is currently under investigation in several research projects [2, 3].
Advanced fire detection algorithms consider distributed sensing as an alternative
for improving time to alarm over single-station detectors [6]. In addition, com-
prehensive experiments show that the use of combined sensors [9] (e.g. smoke
and CO) can significantly reduce the false alarm rate, while increasing sensitivity
(i.e., decreasing the detection time for real fires). Since fuzzy logic systems can
fuse naturally multi-sensor data, they appear as a promising solution for robust
fire detection algorithms [7].

In this paper, we show that a distributed FIS, running within the WSN,
can improve the overall detection time and reliability, while providing better
coverage for monitoring large hazardous areas. We utilize as input data the fire
tests carried on by Bukowski et al. [13] to evaluate the performance of modern
residential alarms. Both the fire and non-fire (i.e., nuisance alarms) test data
is publicly available on the NIST website and well documented. We consider
four representative tests: two fire scenarios (flaming mattress and flaming chair)
and two nuisance scenarios (fried hamburgers and toasted bagel halves). For
the fire scenarios, we follow the temperature and smoke data for approximately
one minute after the moment of ignition. Similarly, for the nuisance scenarios, we
follow the temperature and smoke data for approximately one minute around the
time when the smoke alarms used in the tests reach medium alarm thresholds.

In Fig. 2 we plot two example data sets for a fire and a nuisance scenario,
respectively. Fig. 2(a) and 2(b) show the temperature and smoke data for the first
fire test used in our simulations (test SDC05 - flaming mattress in bedroom [13]).
The ignition takes place at time 0. We notice that the temperature increases
much slower than the smoke level, which raises abruptly after 5s and reaches

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

T
em

pe
ra

tu
re

 [o C
]

Time [s]

Initiation of suppression

Temperature

(a) Fire test (flaming mattress)
- temperature.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

S
m

ok
e

le
ve

l

Time [s]

Initiation of suppression

Smoke

(b) Fire test (flaming mattress)
- smoke level.

 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60

T
em

pe
ra

tu
re

 [o C
]

Time [s]

Temperature

(c) Nuisance test (toasted bagel)
- temperature.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

S
m

ok
e

le
ve

l

Time [s]

Smoke

(d) Nuisance test (toasted bagel)
- smoke level.

Fig. 2. Example of fire and nuisance test data.

a maximum at 9s. However, the temperature has also to be monitored for a
reliable detection because smoke can also occur in the case of a failed ignition.
The temperature starts to raise quickly after 29s and reaches a maximum at 38s,
right before the initiation of suppression.

Fig. 2(c) and 2(d) show the temperature and smoke sample data for the
second nuisance test used in our simulations (test MHN20 - two frozen bagel
halves toasted [13]). During this test, the frozen bagels were toasted to a medium
brown color and did not char significantly. We notice an approximately 5◦C rise
in temperature, with a peak between 32s and 40s. Similarly, the smoke level
increases to a peak level until 32s. After stopping the toaster, the conditions
come back to normal at approximately 48s.

The sensor nodes are assumed to sample the temperature and smoke values
under two simple fire models:

– Basic model. All the nodes deployed on the area measure the same values
at the same time, with the variations introduced by their different accuracy
and measurement errors.

(a) OMNeT++ simulation. (b) µNode platform.

Fig. 3. D-FLER simulation and prototype.

– Radial model. The fire spreads from a central point in circular rings with a
specified speed. The nodes therefore measure the fire parameters shifted in
time, according to their position on the area.

In case of fire, it is desirable that the large majority of nodes within the event
radius report fire in the shortest possible time. Likewise, in the presence of
nuisance conditions, a correct behavior minimizes the number of false alarms.
Therefore, we take the percentage of nodes agreeing upon the real event sta-
tus (fire/non-fire) as a measure of reliability, and the time within which the
percentage converges to 100% as a measure of responsiveness.

We are now ready to introduce our simulation model and present the perfor-
mance results.

5 Simulation

5.1 Simulation setting

We consider a random deployment of 100 nodes within a rectangular area of
500m x 500m. The radio range is set to 150m. The nodes are considered to be
randomly equipped with temperature and/or smoke sensors. The temperature
sensor data is expressed in Celsius degrees. The smoke sensor data is derived from
the ionization smoke alarm analog output used in the NIST tests, and scaled to
100. The accuracy of the sensors is modeled according to the characteristics of a
real sensor [4], by taking into account the linearity, offset and gain errors, plus
Gaussian white noise. The overall accuracy lies in the interval ±1–4%.

We implement the following four detection methods in the OMNet++ sim-
ulation environment [5] (see Fig. 3(a) for a graphical image of the simulation
setting):

−50 0 50 100
0

0.5

1

T

µ(
T

)

hi

−20 −10 0 10 20
0

0.5

1

dT

µ(
dT

)

lo

−50 0 50 100
0

0.5

1

S

µ(
S

)

lo

hi

−20 −10 0 10 20
0

0.5

1

dS

µ(
dS

)

lo

−100 −50 0 50 100
0

0.5

1

Output

µ(
O

ut
pu

t)

lo med hi

0 0.2 0.4 0.6 0.8 1
0

0.5

1

µ m
os

t(x
)

x

hi

hilo

(a) Membership functions and µmost. (b) Rule set (partial).

Fig. 4. Fuzzy-logic fire detection engine.

1. Threshold. Each node decides that a fire occurred when the temperature and
smoke values exceed predefined thresholds. The thresholds correspond to the
activation time of the medium alarm level in the NIST fire tests.

2. Average. A simple distributed mechanism is implemented, where each node
takes the mean value between its own samples and the average of the read-
ings reported by its neighbors. The decision it made according to the same
thresholds as in the previous case. This method is expected to decrease the
false alarm rate in the case of nuisance scenarios, by reducing the effect of
individual sensor errors.

3. Fuzzy. Each node uses a local fuzzy logic engine. If the node has both tem-
perature and smoke sensors, then four inputs are analyzed: T - temperature,
S - smoke level, dT - temperature change (current sample minus previous
sample) and dS - smoke level change (current sample minus previous sam-
ple). For the nodes with only one sensor, the fuzzy logic engine takes two
inputs (T and dT or S and dS). The membership functions are shown in
Fig. 4(a). Similar to the first method, no information is exchanged among
the nodes.

4. D-FLER. As described in Sec. 3, the nodes broadcast their fuzzified tem-
perature and smoke values within the local neighborhood. D-FLER operates
with both the inputs mentioned in the previous method (T , S, dT and dS)
and the quantified neighborhood observations. The most quantifier defined
in Eq. 4 is used (see Fig. 4(a)). The rules have the format described in Eq. 5
and 6 and are partially shown in Fig. 4(b).

5.2 Results

The four data sets (fire and nonfire) are input to the four simulated detection
methods. We collect the decisions of the nodes at every time step. The results

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(a) First fire test - basic model.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(b) First fire test - radial model.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(c) Second fire test - basic model.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(d) Second fire test - radial model.

Fig. 5. Simulation results of fire tests.

 0
 10
 20
 30
 40
 50
 60
 70

 0 10 20 30 40 50 60 70 80N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(a) First nuisance test - basic model.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(b) First nuisance test - radial model.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(c) Second nuisance test - basic model.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60N
od

es
 r

ep
or

tin
g

fir
e

[%
]

Time [s]

Threshold
Average

Fuzzy
Distributed fuzzy

(d) Second nuisance test - radial model.

Fig. 6. Simulation results of nuisance tests.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Nonfire radialNonfire basicFire radialFire basic

E
rr

or
 r

at
e

[%
]

Event type

Threshold
Average

Fuzzy
Distributed fuzzy

Fig. 7. Summary of simulation results - error rates of the four methods.

presented in Fig. 5 and 6 are averaged over 10 simulation runs with different
random topologies.

In the case of fire, we are interested in a rapid and reliable detection. The
more nodes detect the fire, the more reliable is the decision on the average case
and the information about the event can be transported faster toward the sink
or gateway nodes. Fig. 5 plots the percentage of nodes reporting fire during the
two fire tests, considering both the basic and the radial spread model. We can
make the following observations:

– D-FLER achieves the shortest detection times both for the basic and radial
fire models, followed by the individual fuzzy engine. This indicates that fuzzy
logic can model with more granularity the event of interest and provide a
more robust inference result.

– The individual fuzzy engine has a few decision oscillations (especially notice-
able in Fig. 5(a)), while D-FLER has a clear transition from non-fire to fire
state in all the situations. This shows that the individual reasoning method
is more sensitive to sensor errors than the distributed one.

– The average method is slightly slower to converge to 100% nodes reporting
fire than the direct threshold method because of the slow temperature raise
and the influence of the neighbors samples.

In the case of nuisance tests, we are interested in reducing the false alarm
rate. Fig. 6 presents the simulation results of the two nuisance scenarios. We can
make the following observations:

– The average method reduces the false alarm rate compared to the direct
threshold method, proving to be less sensitive to individual sensor errors.

– The fuzzy logic-based methods are clearly more robust to nuisance condi-
tions, with D-FLER approaching to 0% erroneous nodes.

Fig. 7 gives a summarized view of all the simulation results. The error rate
is computed as the percentage of erroneous decisions, over all the nodes and the

entire simulation duration. The fuzzy logic methods prove to be more reliable
than the threshold solutions, D-FLER having an average error rate less than 2%
in the case of fire and approaching 0% in the case of nuisance tests.

6 Implementation

We implemented D-FLER on the Ambient µNode 2.0 platform [1] (see Fig. 3(b)),
which is based on the MSP430 micro-controller. The µNodes run AmbientRT [16],
a real-time multitasking operating system based on publish/subscribe inter-task
communication. The publish/subscribe model simplifies the implementation, as
D-FLER can abstract from various types of inputs by subscribing only to their
data. Similar to our previous work [20], the reasoning engine is decoupled from
the drivers (custom interfaces giving the sensor readings or radio protocol stack
delivering the neighbors messages) that provide the input data. The system is
therefore modular and easy to reconfigure over the air.

The following list summarizes the implementation details of the D-FLER
components (see also Sec. 3):

1. Fuzzification. The local sensor readings are fuzzified according to the user-
specified membership functions. D-FLER currently accepts only triangular
membership functions. Our implementation of the fuzzification is computa-

tional oriented [8] due to the small amount of RAM available on the node. To
reduce the computational complexity, the maximum fuzzified value is scaled
to a power of 2, as recommended by Dannenberg [10].

2. Quantification of neighborhood observations. The data from the neighboring
nodes is processed through the sigma-count factor and µmost operator (see
Eq. 1 - 4).

3. Inference. The rules are formatted as in Eq. 5, taking into account all the
fuzzified inputs. D-FLER uses max-min inference for computational simplic-
ity.

4. Defuzzification. The aggregated result of the rule evaluation is defuzzified
using the centroid method.

We evaluate the D-FLER implementation by following three properties of
interest: the memory overhead, the numerical accuracy and the execution time.

The code memory footprint amounts to ≈1kB FLASH memory (out of 48kB
available), leaving thus enough space for the OS kernel, sensor drivers, network
stack etc. In addition, D-FLER occupies 20 bytes RAM for static variables and
allocates dynamically heap space for the inputs, outputs and rules. To estimate
the memory consumption M at runtime, we use the following formula

M = I(4mi + 1) + NImi + 2R(Imi + 1) + O(4mo + 1) (7)

where I is the number of inputs, each input having mi membership functions,
N is the number of neighbors providing same type of inputs (fuzzified), R is
the number of rules and O is the number of outputs, each output having mo

0

10

20

30

40

0
20

40
60

80
100
−15

−10

−5

0

5

10

15

Distance
Speed

A
cc

el
er

at
io

n

(a) Matlab.

0

10

20

30

40

0
20

40
60

80
100
−15

−10

−5

0

5

10

15

Distance
Speed

A
cc

el
er

at
io

n

(b) D-FLER.

Fig. 8. The car control problem.

membership functions. An important optimization can be made if every input
has two membership functions (mi = 2). In this case, the rules can be repre-
sented only as their consequence parts (“o is G” from Eq. 5). Then, the binary
representation of the rule index gives the combination of inputs and fuzzy input
sets in the antecedents, e.g. rule number 5 (binary 101) means “i0 is F 0

1
AND

i1 is F 1

0
AND i2 is F 2

1
”. Using this optimization, a running instance of D-FLER

with 5 inputs and 2 outputs allocates 326 bytes RAM out of 10kB available.
D-FLER performs the computations on two-byte signed integers. In order to

evaluate the precision error, we run a simple car control problem [24] with two
inputs (distance and speed) and one output (acceleration). Fig. 8(a) and 8(b)
plot the rule surfaces generated with Matlab and D-FLER, respectively, where
the latter is obtained by iterating through the whole input space with unit step.
The absolute error of D-FLER (due to integer approximation) is 1% on average,
with a maximum of 3.33%.

D-FLER execution time is depicted in Fig. 9 (at logarithmic scale) for dif-
ferent problem complexities, given by the number of inputs, outputs and rules
(the number of membership functions is fixed at mi = 2 and mo = 3). For each
case, the execution time is computed by averaging over the entire input space,
as in the previous example. We can make the following observations:

– The fuzzification and inference times are in the same range, varying approx-
imately linearly with the number of inputs and rules, respectively. The fuzzi-
fication operation takes between 180 and 360µs, while the inference process
takes between 80µs and 1.13ms.

– The defuzzification is clearly the most time-consuming operation (between
6.56 and 25.86ms) because of the computation involved in calculating the
centroid of the output area. There are several alternatives to reduce the
defuzzification time: (1) use rectangular output membership functions [10],
(2) use a fast centroid approximation method [22] or (3) use a simpler de-
fuzzification method, e.g. maximum.

 0.01

 0.1

 1

 10

 100

5/4/325/3/325/2/325/1/324/3/164/2/164/1/163/2/83/1/82/1/4

T
im

e
[m

s]

Inputs / Outputs / Rules

Fuzzification
Inferrence

Defuzzification
Total

Fig. 9. Performance of D-FLER on µNode platform.

– The total execution time is basically given by the defuzzification speed and,
consequently, varies linearly with the number of outputs.

7 Discussion

In this section, we briefly discuss the impact of several factors on the performance
of D-FLER, pointing out the main advantages and limitations.

Communication. Exchanging the observed data within the one-hop neigh-
borhood increases the communication overhead and, consequently, the energy
consumption. On average, each node would send one packet and receive Nπr2/A
packets per time step, where N is the total number of nodes, A is the area size
and r is the radio range. Reducing the duty cycle alleviates the problem, but at
the price of increasing the detection time. A better approach is to use cross-layer
integration and piggyback the data to the periodic heartbeat messages of the
MAC or routing protocols.

Sensing errors. In practical deployments, cheap sensors with low precision
may be used due to cost concerns. Likewise, the phenomenon to be detected
(e.g. fire) may itself introduce considerable sensing errors. We repeated the sim-
ulations from Sec. 5.1 considering sensors with two times lower accuracy (2-8%).
The results are shown in Fig. 10. In the case of fire, there is little increase in
the detection error rate (< 0.3%). However, for the nuissance scenarios, the false
alarm rate grows with up to 3.7% for all the methods except D-FLER, which
stays lower the 0.5%.

Computation. The fuzzification using triangular or trapezoidal membership
functions and the max-min inference prove computationally fast in our imple-
mentation. However, the usage of other membership functions, such as Gaussian,
would impose a memory-oriented implementation [8], less suitable for the low

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Nonfire radialNonfire basicFire radialFire basic

E
rr

or
 r

at
e

[%
]

Event type

Threshold
Average

Fuzzy
Distributed fuzzy

Fig. 10. Error rates for sensors with lower accuracy.

amount of RAM typically available on sensor nodes. The centroid-based defuzzi-
fication introduces the highest latency and should be optimized or replaced with
a simpler method if execution times less than 6ms are needed.

Training and learning. In order to produce optimal results, tedious tun-
ing of the membership functions may be required. In practice, standard methods
such as ANFIS [17] and fuzzy clustering are used to build a fuzzy model based on
both human knowledge and stipulated input-output data pairs. Since D-FLER
is a distributed solution, learning at runtime about the confidence of the neigh-
borhood observations would also be a valuable feature in real-life deployments.

8 Conclusions

In this paper, we described D-FLER, a distributed fuzzy logic reasoning engine
for WSN. By combining individual sensor inputs with neighborhood observa-
tions, D-FLER produces more accurate results and is more robust to sensor
errors. For performance evaluation, we use fire detection as an application sce-
nario. The simulation results show that distributed fuzzy logic is a promising
alternative for event detection with WSN, as it improves the detection time,
while reducing the false alarm rate. From the implementation point of view, D-
FLER proves effective and feasible to run on resource-constrained sensor nodes.
As future work, we want to study the impact of WSN communication char-
acteristics (low duty cycle, multihop, high error rates) on the performance of
D-FLER. In addition, we plan to conduct an application trial in a real setting
for firefighting assistance and distributed coordination, as part of the AWARE
project [2].

References

1. Ambient Systems. http://www.ambient-systems.net.
2. AWARE project. http://grvc.us.es/aware.

3. Fire Information and Rescue Equipment (FIRE). http://fire.me.berkeley.edu.
4. National Semiconductor LM92 temperature sensor. http://www.national.com.
5. OMNeT++. http://www.omnetpp.org.
6. T. Cleary and K. Notarianni. Distributed sensor fire detection. In International

Conference on Automatic Fire Detection, 2001.
7. T. Cleary and T. Ono. Enhanced residential fire detection by combining smoke

and co sensors. In International Conference on Automatic Fire Detection, 2001.
8. A. Costa, A. De Gloria, F. Giudici, and M. Olivieri. Fuzzy logic microcontroller.

IEEE Micro, 17(1):66–74, 1997.
9. R. J. Roby D. T. Gottuk, M. J. Peatross and C. L. Beyler. Advanced fire detection

using multi-signature alarm algorithms. Fire Safety Journal, 37:381–394, 2001.
10. A. Dannenberg. Fuzzy logic motor control with msp430x14x. Technical Report

SLAA235, Texas Instruments, 2005.
11. J. Espinosa, J. Vandewalle, and V. Wertz. Fuzzy logic, identification and predictive

control. Springer-Verlag, 2004.
12. M. Marin-Perianu et al. Decentralized enterprise systems: A multi-platform wire-

less sensor networks approach. Technical Report TR-CTIT-07-31, CTIT, Univer-
sity of Twente, 2007.

13. R. W. Bukowski et al. Performance of home smoke alarms. Technical Report 1455,
NIST, 2004.

14. T. Terada et al. Ubiquitous chip: A rule-based i/o control device for ubiquitous
computing. In Pervasive, pages 238–253, 2004.

15. S. J. Henkind and M.C. Harrison. An analysis of four uncertainty calculi. IEEE
Transactions on Systems, Man and Cybernetics, 18(5):700–714, 1988.

16. T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M. Havinga. AmbientRT - real
time system software support for data centric sensor networks. In Intelligent Sen-
sors, Sensor Networks and Information Processing (ISSNIP), pages 61–66, 2004.

17. J. S. Roger Jang. Anfis: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics, 23:665–684, 1993.

18. J. Kacprzyk. Group decision making with a fuzzy linguistic majority. Fuzzy Sets
and Systems, 18(2):105–118, 1986.

19. P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 85–95, 2002.

20. M. Marin-Perianu, T.J. Hofmeijer, and P. J. M.Havinga. Implementing business
rules on sensor nodes. In 11th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pages 292–299, 2006.

21. J. M. Mendel. Fuzzy logic systems for engineering: a tutorial. Proceedings of the
IEEE, 83:345–377, 1995.

22. T. A. Runkler and M. Glesner. Decade - fast centroid approximation defuzzification
for real time fuzzy control applications. In ACM Symposium on Applied Computing
(SAC ’94), pages 161–165, 1994.

23. M. Strohbach, H. W. Gellersen, G. Kortuem, and C. Kray. Cooperative artefacts:
Assessing real world situations with embedded technology. In Ubicomp, pages
250–267, 2004.

24. K. Tanaka. An Introduction to Fuzzy Logic for Practical Applications. Springer-
Verlag, 1996.

25. L. A. Zadeh. A computational approach to fuzzy quantifiers in natural languages.
Computers and Mathematics, 9:149–184, 1983.

