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Abstract

Fuzzy extractors are a powerful tool to extract randomness from noisy
data. A fuzzy extractor can extract randomness only if the source data is dis-
crete while in practice source data is continuous. Using quantizers to trans-
form continuous data into discrete data is a commonly used solution. How-
ever, as far as we know no study has been made of the effect of the quan-
tization strategy on the performance of fuzzy extractors. We construct the
encoding and the decoding function of a fuzzy extractor using quantization
index modulation (QIM) and we express properties of this fuzzy extractor in
terms of parameters of the used QIM. We present and analyze an optimal (in
the sense of embedding rate) two dimensional construction. Our 6-hexagonal
tiling construction offers (% — 1) & 0.3 extra bits per dimension of the
space compared to the known square quantization based fuzzy extractor.

1 Introduction

A fuzzy extractor is a procedure to extract cryptographic keys from noisy
data composed typically from two functions. The first is the encoder which
takes a noise free feature vector and an independently generated secret and
outputs a public sketch. The second is the decoder which takes as input a
noisy feature vector and a public sketch and outputs the secret unless the
noise exceeds a given threshold. Three parameters are important when ex-
tracting secrets from noisy data. Reliability represents the probability of an
identification error, embedding rate is the number of bits that are embedded
in each component of a feature vector and leakage quantifies the amount of
secret information leaked by publishing the sketch. The problem is that to
the best of our knowledge this relationship has not been formalized, yet to
be able to achieve the best tradeoff between the parameters for a specific ap-
plication, such a formalization is essential. Once it has been decided which
is the most important parameter the formalization helps to find the optimal
setting of the other, related parameters.



There is a strong resemblance between cs-fuzzy extractors (where the cs
denotes that we start from a continuous source) and watermarking schemes.
During watermark encoding, secret information (the watermark) is embed-
ded into a host signal. Without the host signal it should be hard to find or
alter the watermark hidden in the cover. If we consider the feature vector
in a biometric system as the host signal and the secret key to be the water-
mark we observe a similarity between fuzzy extractors and watermarking.
However they are not exactly the same: the fuzzy extractor should hide the
host signal, while a watermarking scheme should publish a signal close to
the host.

Quantization Index Modulation (QIM) is a class of data hiding codes
used for the construction of optimal watermaking schemes [5]. A QIM is
an ensemble of quantizers, where the number of quantizers in the ensemble
determines the number of distinct possible watermarks. In this context wa-
termarking refers to modulating an index or a sequence of indices with the
information that is hidden and then quantizing the space with the indexed
quantizer. The quantization function divides a continuum into decision re-
gions and labels each decision region with one reconstruction point. A quan-
tizer is specified by the set of its reconstruction points and by the partition of
the continuum into decision regions.

Contribution. Our contribution is to show that by using a QIM to con-
struct a cs-fuzzy extractor it is possible to develop a deep understanding of
the tradeoffs between the three properties of a cs-fuzzy extractor (i.e reliabil-
ity, rate and leakage). Our approach is intuitive because it allows modelling
the properties of a cs-fuzzy extractor in terms of properties of the QIM . In
our construction reliability is determined by the size and shape of the de-
cision regions. The number of quantizers in the ensemble determines the
embedding rate. The distances between neighboring reconstruction points
determines the security of a cs-fuzzy extractor. Thus optimizing reliability,
rate and security can be seen as maximizing the size of the decision regions,
maximizing the number of quantizers in the ensemble while keeping the dis-
tance between the centroids of different quantizers as small as possible. In
this sense an optimal cs-fuzzy extractor can be modelled as a dual optimum
sphere covering and sphere packing problem. As a result properties of the cs-
fuzzy extractor can be improved by using higher-dimensional constructions,
rather than just stacking one-dimensional constructions as is common in the
literature.

The rest of the paper is organized as follows. Related work is discussed
in section 2. Section 3 contains notations and fundamental definitions of the
QIM and fuzzy extractor. In section 4 we construct a cs-fuzzy extractor in
terms of a QIM and study its properties. Section 5 contains two practical
constructions for the quantization based cs-fuzzy extractor . We compare the
properties of these construction with the existing square lattice packing.



2 Related work

Our work combines results from the area of data hiding, signal processing
and randomness extraction from noisy data.

Uniformly reproducible randomness is the main ingredient of a good
cryptographic system. Good quality uniform random sources are rare com-
pared to the more common non-uniform sources. Biometric data is easily
accessible, high entropy data. However it is not uniformly distributed and its
randomness cannot be exactly reproduced. Depending on the source prop-
erties several constructions were proposed. Dodis et al [6] consider discrete
distributed noise and propose fuzzy extractors and secure sketches for differ-
ent error models. These models are not directly applicable to continuously
distributed sources. Linnartz et al. [11] construct shielding functions for con-
tinuously distributed data and propose a practical construction which can be
considered a one-dimensional QIM. The same approach is taken by Li et
al [10] who propose quantization functions for extending the scope of secure
sketches to continuously distributed data. Buhan et al [2] analyze the achiev-
able performances of such constructions given the quality of the source in
terms of FRR and FAR .

The process of transforming a continuous distribution to a discrete dis-
tribution influences the performance of fuzzy extractors and secure sketches.
Quantization is the process of replacing analog samples with approximate
values taken from a finite set of allowed values. The basic theory of one-
dimensional quantization is reviewed by Gersho [7]. The same author in-
vestigates [8] the influences of high dimensional quantization on the perfor-
mance of digital coding for analogue sources. QIM constructions are used
by Chen and Wornell [4] in the context of watermarking. The same authors
introduce dithered quantizers [3]. Moulin and Koetter [12] give an excel-
lent overview of QIM in the general context of data hiding. Barron et al [1]
develop a geometric interpretation of conflicting requirements between in-
formation embedding and source coding with side information.

3 Fundamentals

Notation. With capital letters we denote random variables, with small let-
ters we denote realizations of random variables, while calligraphic letters are
reserved for sets and Greek letters are used to describe properties. Let /¥ be
a k-dimensional continuous space endowed with a metric d and with back-
ground distribution Py«. Let X be a k-dimensional random vector sampled
from U* with joint density P, = p(z1,x,...x;). For optimal encoding-
decoding performance during encoding we use the best representative of dis-
tribution P,, the estimated mean denoted with E[P,]. Let M be a set of
labels, and M| = N. By P, we denote the uniform distribution of all se-
quences of length [. The min-entropy or the predictability of X denoted by



H_,(X) is defined as minus the logarithm of the most probable element in
the distribution: Ho(X) = —log,(max, P(X = z)). The min-entropy
represents the number of nearly uniform bits that can be extracted from the
variable X. By H(A|B) we denote the conditional entropy which shows the
number of bits of randomness remaining in A when B is made public. By
I(A; B) we denote the Shannon mutual information. The Kolmogorov dis-
tance or statistical distance between two probability distributions A and B is
defined as: SD(A, B) = sup,|Pr(A =v) — Pr(B =v)|.

Quantization. A quantizer is a function Q : * — C that maps each
point in /¥ into one of the reconstruction points in a set C = (cy,ca,...)
where each ¢; € U" such that Q(z) = argmin, .- d(x,c;) (the function
argmin returns the argument instead of the actual minimum).

An N point QIM : U x M — Cyry is a set of quantizers {Q1, Qz, ... Qn ),
that maps * € U* into one of the reconstruction points of the quantiz-
ers in the set. The quantizer is chosen by the input value m € M such
that QIM(x, m) = @, (x). The set of all reconstruction points is Cory =
UWE i COm where (), is the set of reconstruction points of quantiz¢r Qm.
The Voronoi cells of points in this set are called decision regions (%, ).

A dithered quantizer is a special type of QIM for which all decision re-
gions of all quantizers are congruent polytopes (generalization of a polygon
to higher dimensions). Each quantizer in the ensemble can be obtained by
shifting the reconstruction points of any other quantizer in the ensemble. The
shifts correspond to dither vectors. The number of dither vectors is equal to
the number of quantizers in the ensemble.

We define the minimum distance, d,,;,, between centroids of the same
quantizer as:

Pin = i sediee, 1om =l
so spheres with radius d,,i, /2 and centers in Cyry are disjoint. Let ,,, be the
smallest radius circle such that circles centered in the centroids of quantizer
Qn with radius ¢,,, cover the universe U*. We define the covering distance
Amax as:
/\max - TII?G%\)S[ Cma

so spheres with radius A,,x and centers in C; cover the universe U k.

Fuzzy extractors For modelling the process of randomness extraction
from noisy data, Dodis et al. [6] define the notion of a fuzzy extractor. En-
rollment is performed by a function Enc, which on input of the noise free
biometric = and the binary string m, will compute a public string w. The
binary string m can be extracted from the biometric data itself [13] or can
be generated independently [11]. During authentication, the function Dec
takes as input a noisy measurement x’ and the public w and it will output



the binary string m if  and 2’ are close enough. For a discrete source, the
formal definition of a fuzzy extractor may be found in Dodis et al [6].

4 Constructing cs-fuzzy extractor using a QIM

In this section we propose a general approach to extract cryptographic keys
from noisy data represented in a continuous domain. The first step is to
recall the extension of a fuzzy extractor to a cs-fuzzy extractor introduced by
Buhan et al [2]. We make the assumption that the random binary string m is
not extracted from the random vector x but generated independently.

Definition 1 (cs-Fuzzy Extractors) A cs-fuzzy extractor scheme is a tuple
(U*, M, W, Enc,Dec), where Enc : U* x M — W is an encoder and
Dec : U* x W — M is a decoder.

We say the scheme is p-reliable for the distribution X on U* if

P(Dec(z,Enc(E[X],m)) =m|X =z) > p,
Sfor all m € M. We say the scheme is e-secure if for any x we have that
SD[(M, W), (Pnm, W)] <,

where the joint distribution (M, W) is induced by the tuple (m,Enc(x, m))
and Py is uniformly distributed over the labels M.

As discussed in the previous section, we construct a cs-fuzzy extractor
using a QIM. We will assume U k C R*. Our construction works as follows:

Definition 2 (QIM-Fuzzy Extractor) A QIM-Fuzzy Extractor is a cs-fuzzy
extractor where the encoder and decoder are defined as

Enc(z,m) = QIM(z, m) — z,

and Dec is the minimum distance Euclidian decoder:

Dec(y,w) = Q(y + w),

where _ _
Q:U* - M,Q(y) = argmin d(y, Cy,).
meM

Intuitively, our construction, is a generalization of the scheme of Linnartz and
Tuyls [11]. Figures 1 and 2 illustrate the encoding respectively the decoding
functions for a QIM ensemble of three quantizers (Q,, Q4+, Q). During
encoding the secret m € {o,x, +} selects a quantizer, say .. The selected
quantizer finds the centroid @, (x) closest to = and the encoder returns the
difference between the two as w, with |w| < Apax. Decoding w and y should
return o if y is drawn from P,, however this happens only if ¥ + w is close
to Q. (z) or in other words if y + w is in the decision region of the chosen
centroid (gray area in figure 2). Errors occur if (y+w) ¢ Q(Q.(x)), thus the
size of Q(Q,(x)) parametrized by J,,;, determines the probability of errors.
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Figure 1: Encoding with a QIM Figure 2: Decoding with a QIM

4.1 Performance criteria for cs-fuzzy extractor

In the following we express the properties of a cs-fuzzy extractor in terms of
the used quantizers. The proofs for the theorem and lemmas in this section
are given in appendix A.

4.1.1 Embedding Rate

The embedding rate or simply rate of a cs-fuzzy extractor represents the num-
ber of bits that can be embedded per dimension. The number of quantizers in
the ensemble, IV and the dimensionality of the space k, gives the embedding
rate, written as [ = logy N

Depending on the method of quantization and the background distribu-
tion Py, the a-posteriori randomness in M can change. This remark is
rather subtle. During encoding each m is drawn uniformly at random from
M. However when the decoder map is published some labels may become
more probable then others if Py« is not uniform. H,, (M) measures the ran-
domness remaining in M after publishing the decoding map. In all cases we
know that Ho (M) < log, N. Buhan et al. [2] show that the min-entropy
and the embedding rate determine an upper bound on e. We call effective em-
bedding rate the min-entropy of the label distribution given the background
distribution and the QIM construction.

4.1.2 Reliability

We link in the following lemma the reliability of a cs-fuzzy extractor to the
geometric construction of a QIM. More precisely we link reliability to the
size and shape of the decision regions.

Lemma 1 (Bounds on p) The reliability of a QIM-Fuzzy Extractor for any
random X € U* with joint density function P, and any secret m € M can



be bounded as follows:

p < / Py(y — Enc(B[X], m))dy
U; Q(ct,)

ox [ p
B(E[X],émi“)

2

where B(x,r) is the sphere centered in x with radius r.

4.1.3 Security

We require that the cs-fuzzy extractor keeps the value of E[X] secret. If
compromised, noisy data characterized by X cannot be used for generating
secrets. When X is biometric data, leaking the value of E[X]| means com-
promising the privacy of the biometric data. We measure the information
leaked about E[X] when publishing the sketch by the Shannon mutual infor-
mation I(X; W). A good cs-fuzzy extractor should leak as little information
as possible about F[X]. Lemma 2 links I(X; W) to the covering distance.
However it was shown by Tuyls et al. [14] that the sketch cannot be made
independendent of X, thus I(X; W) cannot be zero. Lemma 4 gives a lower
bound on the covering distance in terms of minimum distance, number of
quantizers and dimension of the space.

Lemma 2 For a QIM-Fuzzy Extractor the amount of information leaked
when publishing the encoder output for any random X on U* is bounded
by above by the covering distance as: I1(X; W) < logy Amax-

Another problem is leaking information about the secret m € M. This prob-
lem was extensively studied in the context of digital watermarking and infor-
mation embedding [1, 3, 5], where the solution of dither modulated quantiz-
ers surfaced. In this case they will also hide the key perfectly, as shown in
the next lemma.

Lemma 3 Our QIM-Fuzzy Extractor construction perfectly hides the key
(i.e. € = 0), when the QIM is a set of dithered quantizers and a uniformly
random point x € U* is encoded.

4.2 Optimizing cs-fuzzy extractor

Optimizing a fuzzy extractor means increasing the reliability and the em-
bedding rate while keeping the size of the sketch as small as possible. The
constraint on both the sketch size and the reliability and the requirement that
from any location in the space it should be possible to chose any label is
similar to a simultaneous sphere covering and sphere packing problem. The
sphere covering is induced by the encoder: from any point in the space it
should be possible to find any label at a distance at most A\, SO we need a



Figure 3: Decoding of 7-hexagonal tiling

covering of the space with spheres of radius \.x. We have a sphere pack-
ing problem at the decoder side since spheres centered in the reconstruction
points with radius 5?“ cannot overlap. In this setting we obtain an optimum
embedding rate by having a dense sphere packing. A good QIM construction
will maximize both d,,;, and N while keeping Ay .x to a minimum. These
two radii can be linked as follows.

Lemma 4 The covering distance of a QIM ensemble, defined as above is
lower bounded by:

Amax > VN 5”2““

where k represents the dimension of the space and N is the number of differ-
ent quantizers.

Figure 4: Decoding of 6-hexagonal tiling

Assuming a spherically symmetric background distribution (which is weaker

then the often made gaussian assumption), there is only so much different
equiprobable labels one can achieve:

Theorem 1 (Optimal high dimensional packing.) Assume the background
distribution to be spherically symmetrical. If one wants to achieve equiprob-
able labels given this distribution, the number of labels in a k-dimensional
QIM is upper bounded by the kissing number 7 (k).

Combined with known bounds on the kissing number [9, 15], we arrive
at the following somewhat surprising conclusion:



Corrolary 1 Assuming a spherically symmetrical distribution on U* and
equiprobably labels, for a QIM-Fuzzy Extractor the best rate is attained by
quantizing two dimensions at a time, leading to

N(k) = 6lzlot-215])

different labels.

5 Practical constructions

In this section we present two constructions for cs-fuzzy extractors in two
dimensional space using a dithered QIM. We choose a hexagonal lattice for
the QIM, since this gives both a smallest circle covering (for the encoder)
and a densest circle packing (for the decoder). The first construction has a
rate of log% bits. The scheme is optimal from the reliability point of view.
However, in this scheme keys are not equiprobable if the distribution isn’t flat
enough. The second construction fixes this problem, but has a slightly lower
rate of logT26 bits. Reconstruction points of all quantizers are shifted versions
of some base quantizer (y. A dither vector v,, is defined for each possible
m € M. The tiling polytope is the repeated structure in the space that is
obtained by decoding to the closest reconstruction points. It follows from
the definition that the tiling polytope contains exactly one decision region of

each quantizers in the ensemble.

5.1 7-Hexagonal Tiling

The first construction is a dithered QIM defined as an ensemble of 7 quan-
tizers. Decision regions for this tiling are regular hexagons. A tiling poly-
tope is a union of 7 hexagons. In figures 3, 4 the tiling polytopes are de-
limited by the red dotted line. The reconstruction points of the base quan-
tizer, Qo are defined by the lattice spanned by the vectors E{ = (5, \/§)q,
§2> = (4,—2/3)q, where ¢ is the scaling factor of the lattice. In figure 3
these points are labelled kg. The other reconstruction points of quantiz-

ers (Q;,¢ = 1,...,6 are obtained by shifting the base quantizer with the
dither vectors {v7, - - - , g } such that Q;(z) = Qo(T + v;). The values for

these dithered vectors are: v7 = (2,0), v3 = (—3,v/3), v3 = (—1,—/3),
vy = (—2,0), v3 = (3,—+/3) and v§ = (1,+/3). Encoding and decoding
works as in our construction. The decoding is shown graphically in figure 3.

5.2 6-Hexagonal Tiling

This construction eliminates the middle hexagon, to make all keys equiprob-
able (see Theorem 1). The embedding rate is logTﬁ bits. The tiling polytope

is formed by 6 decision regions and thus there are only 6 dither vectors,
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see figure 4. The same dither vectors, {v7,--- ,vg} are used to construct
the quantizers, but the basic quantizer @) is not used itself. The encoding-
decoding functions are defined as in the previous section 5.1.

5.3 Performance comparison

We compare the two constructions proposed above, 7-hexagonal tiling fig-
ure 3, and 6-hexagonal tiling figure 4, in terms of reliability, embedding rate
and leakage with the scalar quantization scheme introduced by Linnartz et
al. [11] on each dimension separately (we will refer to this as 4-square tiling).

To perform the comparison we consider identically and independently
distributed (i.i.d) Gaussian sources. We assume the background distribution
P> to have mean (0, 0) and standard deviation o;,2. Without loss of gener-
ality we assume that for any random X € U2, the probability distribution P,
has mean E[X] drawn from Py;2, and standard deviation o,

To evaluate reliability we compute probabilities associated to equal area
decision regions, with the reconstruction point centered in the mean E[X]
of distribution P,. The curves in figure 5 where obtained by progressively
increasing the area of the decision regions. The size of decision region is con-
trolled by the scaling factor of the lattice, . The best performance is obtained
by the hexagonal decision regions. This is because the regular hexagon best
approximates a circle, the optimal geometrical form. However, differences
between reliability of the three QIM cs-fuzzy extractor are not spectacular.

We measure the effective embedding rate by calculating the min-entropy
given the background distribution. The min-entropy associated to the labels
distribution is compared in figure 6 among 7-hexagonal tiling, 6-hexagonal
tiling and 4-scalar tiling. Maximizing the min-entropy means minimizing the
probability for an attacker to guess the key correctly on her first try. The min-
entropy of the 7-hexagonal tiling decreases rapidly with the increase of the
lattice scaling factor g relative to o;,2. While for a small lattice scaling fac-
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QIM based cs-fuzzy extractors constructions three QIM based cs-fuzzy extractors

tor ¢ one can approximate the background distribution as uniform, with the
increase in scaling the center hexagon has a substantially higher probability
associated and thus one label is more likely then the others. The 6-hexagonal
tiling construction eliminates the middle hexagon and as a result all labels
become equiprobable, at the cost of a somewhat lower reliability.

Finally, we evaluate the leakage when publishing the helper data. While
in the theoretical section we defined security of a QIM based cs-fuzzy extrac-
tor in terms of statistical distance, in practice one learns more from looking
at the closely related leakage. Leakage is defined as I(M; W), the mutual
information between the key distribution (assumed to be uniform) and the
helper data distribution (induced by the key and background distributions).
It can be interpreted as the amount of key bits one reveals by publishing the
helper data. Unlike in Lemma 3, our z is not distruted uniformly. Since pub-
lishing the helper data effectively means that the original = was that vector
plus a centroid, one should concentrate on the distribution of . As long as it
can be approximated as uniform, the leakage is O (as proven in Lemma 3).

6 Conclusions

We use QIM to construct the encoding and decoding functions of a cs-fuzzy
extractor . We describe the rate-leakage tradeoff as a simultaneous sphere-
packing sphere-covering problem and we show that quantizing dimensions
in pairs gives the highest rate. We give two explicit two-dimensional con-
structions, which perform better then the existing stacked one-dimensional

11



4-square tiling. We show that 6-hexagonal tiling realizes the optimal two
dimensional quantization. Using the 6-hexagonal construction we obtain
k(logT26 — 1) more bits compared to the 4-tiling scheme.
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APPENDIX A
Lemma 1. Proof: We can write the first relation as:

P(pec(z',Enc(z,m)) =m) = / P(z)dx
icl Q(Cf—n,)

where 2/ € X. We have that (V)m € M:

oy
iEZI Q(ci,)P(z)dx

We have equality when probability associated to the sum of all decision re-
gions of all quantizers is equal. In other words if probability associated to all
codewords is equal.

The second relation is straightforward. Reliability is at least the sum of all
balls of radius 6HT inscribed in the decision regions. Thus the size of this
ball determines reliability. The shape of the decision region that inscribes the
ball is important as well.

Lemma 2. Proof:

I(X;W) = H(X) = H(X|W) < H(X) — H(X) +log; [W] = logs Amax

Lemma 3. Proof: The proof is immediate due to the property of the
dither-modulated quantizers to make the published sketch independent of the
embedded secret. As a consequence no information is leaked as long as
Py is uniform. Since the QIM is dithered, all individual quantizers in the
ensemble are just v; translations of each other. In particular, we have that
Enc(z,m;) = Enc(z+0d; —06;,m;). Aslong as P, is distributed uniformly,
the output of the encoder function is independent of the used label, and hence
e=0.

Lemma 4. Proof: As noted above, all spheres with radius i, /2 cen-
tered in the centroids of the whole ensemble are disjoint. Each collection
of spheres with radius \p,,x centered in the centroids of an individual quan-
tizer gives a covering of the space U k_ Therefore, a sphere with radius Appax,
regardless of its center, contains at least the volume of N disjoint spheres
of radius d,nin/2, one for each quantizer in the ensemble. Comparing the
volumes, we have that

5min
Sk)\k >SkN( 5 )k

vmax —

where s, is a constant only depending on the dimension.
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Theorem 1. Proof sketch: Our reliability constraints imply that we use
a densest sphere packing for the decoder. If we want to achieve a maximum
number of equiprobable labels (without sacrificing too much reliability), the
best construction is to center the distribution in one sphere, and give each
touching sphere a different label. Note that disregarding this “first” ring of
spheres doesn’t help to embed more labels in general, since there generally
are multiple distances with only 7 (k) different spheres at that distance.

Corollary 1. Proof: Known upper bounds on the kissing number in %
dimensions [9] state 7(k) < 20-401k(1+o(1)) This means that N'(k) > 7(k)
in all dimensions, since N (k) ~ 2!-3* and small dimensions can easily be
verified by hand. Also note that N (k1 + k2) < N(k1)N(k2). Thus quantiz-
ing dimensions pairwise gives the biggest number of equiprobable keys for
any spherically symmetric distribution.
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