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Abstract

Our Multi Processor System on Chip (MPSoC)
template provides processing tiles that are con-
nected via a network on chip. A processing tile
contains a processing unit and a Scratch Pad Mem-
ory (SPM). This paper presents the Omphale tool
that performs the first step in mapping a job, rep-
resented by a task graph, to such an MPSoC, given
the SPM sizes as constraints. Furthermore a mem-
ory tile is introduced. The result of Omphale is a
Cyclo Static DataFlow (CSDF) model and a task
graph where tasks communicate via sliding win-
dows that are located in circular buffers. The
CSDF model is used to determine the size of the
buffers and the communication pattern of the data.
A buffer must fit in the SPM of the processing unit
that is reading from it, such that low latency access
is realized with a minimized number of stall cycles.
If a task and its buffer exceed the size of the SPM,
the task is examined for additional parallelism or
the circular buffer is partly located in a memory
tile. This results in an extended task graph that
satisfies the SPM size constraints.

1 Introduction

The shrinking transistor size makes it possible for
embedded systems to have multiple processors on a
single chip, such a chip is called a Multi Processor
System on Chip (MPSoC). A job is represented by
a task graph and can for example be specified by
a C-program. Typically multimedia jobs process
streams of data, this requires the computational
power that an MPSoC can provide.

In order to run streaming multimedia jobs on an
MPSoC, throughput and latency requirements have
to be satisfied, in order to deliver a certain quality
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Figure 1: MPSoC template, with n processing tiles

of service (QOS). The QOS can only be guaranteed
when the MPSoC behaves in a predictable manner.
In general an MPSoC is not used for running a sin-
gle job, a user can run multiple jobs, starting or
stopping the jobs at an arbitrary moment. The in-
tegration effort of multiple jobs on a single MPSoC
can be reduced by making sure that the jobs do
not influence each others temporal behavior, such
a system is called composable [1].

The template defined in [1] describes a pre-
dictable and composable architecture for an MP-
SoC. The architecture consists of processing tiles
that are connected with each other via a Network
on Chip (NoC), as shown in figure 1. A process-
ing tile contains a processor, a local Scratch Pad
Memory (SPM), a network interface (NI) and an
arbiter. The processor can write and read from the
local SPM and can write in the SPM of another pro-
cessing tile. Jobs interact by writing in each others
SPM, where arbiters makes sure that jobs do not
influence each others temporal behavior. Although
the focus is on communication via a SPM it might
be possible to use a cache, however using caches
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may introduce predictability issues.

To enable communication between multiple pro-
cessing tiles, a tile is connected to the NoC via its
network interface. The NoC should provide guar-
anteed services, like uncorrupted lossless ordered
data delivery, guaranteed throughput and bounded
latency. The Æthereal [9] network provides such a
guaranteed service.

The C-program of a job that serves as input
should contain task level parallelism. This means
that the job should be composed out of multiple
tasks that can be performed concurrently. The C-
program either explicitly defines the tasks, or they
need to be manually identified. Tasks communi-
cate via channels. In the task graph of the job,
these channels correspond to the edges between
tasks. The analysis and simulation flow accepts a
Dynamic Data Flow (DDF) graph derived from the
task graph, where the tasks are mapped to actors
and they are still connected via edges. Analysis
techniques are used to determine the temporal be-
havior of a job and the resources it requires, for ex-
ample the buffer sizes. At run-time the last step in
the mapping process can be performed, by assign-
ing the tasks to processors in the MPSoC, given the
determined resource requirements.

A task graph of a multimedia job communicates
parts of shared data structures over its edges. With
modern multimedia jobs, data structures tend to
get larger due to higher quality requirements, for
example the large frames used for High-Definition
Television. Since the cost of off-chip DRAM is at
least a factor 10 lower than on-chip SRAM and the
memory required differs per task, additional mem-
ory should be provided for some tasks. This can
be done in the form of a memory tile where jobs
can store their data. Such a memory tile should be
connected to the NoC, making it a shared resource
in the system. In order to keep the system pre-
dictable and composable, the memory tile should
also be predictable and composable.

It may be necessary to derive additional task
level parallelism from the task graph, when a task
requires more memory than available on a process-
ing tile. Trying to derive task level parallelism from
sequential C-code can be difficult, due to unclear
dependencies [2]. An alternative is to restrict the
syntax used in C-code, allowing only Nested Loop
Programs (NLPs) with affine expressions for which
all dependencies can be derived [8]. The Compaan

tool flow [11] shows that a sequential NLP can auto-
matically be converted to a Kahn Process Network
(KPN), that contains task level parallelism.

This paper describes the Omphale tool flow that
performs the first step in mapping a job to a target
MPSoC, given the memory constraints of the MP-
SoC. The code of the tasks in the job should be in
the form of NLPs. A software solution, that partly
can be replaced by hardware, is applied where in-
structions are inserted in the code of the tasks,
to organize the communication via circular buffers
[13]. When a task combined with its buffer re-
quires more memory than available in the SPM
of the processing tile, two solutions are available.
The first solution is to extract additional paral-
lelism from the NLP of the task, thereby reducing
the amount of memory required by the job. The
second solution is to store a part of the circular
buffer in a memory tile. The result of Omphale is a
task graph where the tasks communicate via circu-
lar buffers and a corresponding Cyclo Static Data
Flow (CSDF) model, which shows the communica-
tion patterns.

2 Related work

Many research has been performed in the area of
mapping applications to a system on chip. In this
section the focus is on related methods, that ex-
tract additional task level parallelism and organize
the inter-task communication in order to perform
the mapping. First the tool flows are described
that organize the inter-task communication at the
granularity of a data structure. The last tool flow
organizes the inter-task communication at a word
level granularity, as the Omphale tool flow will do.

Two sub categories of task level parallelism can
be identified, data level parallelism and function
level parallelism. Data level parallelism is ex-
tracted when a single task is divided in multiple
similar tasks, not necessarily identical, where each
task processes another part of the data structure,
reducing the part of the data structure that has to
be buffered. Data level parallelism can be exploited
to balance the load of a computational intensive
task over multiple processing tiles.

Function parallelism means that the set of oper-
ations from a job can be divided in non overlap-
ping subsets, where each subset represents a task
that can be performed concurrent with the other
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tasks. When function parallelism is exploited, each
task performs a specific operation. This allows the
exploitation of heterogeneous processors, such that
tasks can be performed on specialized cores. It also
keeps the code size small, since every task has it
own group of operations. The dependencies be-
tween the tasks lead to a natural pipeline.

Data needs to be communicated between the
tasks of a job. When the data is stored in a back-
ground memory communication latency is intro-
duced. Communication latency can be hidden by
making sure that the data, or a part of it, is avail-
able at the processing tile before it is actually being
used. When it is locally available it can be accessed
at a very low latency, which reduces the number of
the stall cycles of the processor and with it the re-
quired processing time, thus increasing its effective-
ness. Culler et al. [6] describes the precommunica-
tion method, which generates the communication
before data is actually needed by the job. Precom-
munication at the receiver, known as receiver ini-
tiated communication, can be either performed in
hardware or in software. Hardware can be used to
detect at run-time which address from the memory
to precommunicate. Software can insert precom-
munication operations in the code at compile time.
A special kind of precommunication distinguished
is sender initiated communication. Here the sender
produces data and writes it in the local memory of
the receiver. In this case the receiver can read the
data with a low latency from its local memory.

Different granularities can be used for the data
communicated.It is possible to keep the inter-task
communication simple by communicating the com-
plete data structure. Communicating multiple
words together is called a block data transfer by
Culler et al. [6] and has the advantage that there
is only the communication overhead for a single
block. A large drawback is that the whole data
structure needs to be stored in the local memory
of the receiver and the block data transfers cause
communication peaks on the NoC. An alternative is
performing the receiver or sender initiated commu-
nication at a word level granularity. This requires
a thorough analysis of the read patterns and write
patterns of the shared data structure. In this case
the communication overhead per word is compen-
sated by a more balanced load of the NoC, possibly
requiring less communication bandwidth. Further-
more memory space can be saved when pipelining

is based on words instead of larger data blocks.

A common hardware solution to reduce the com-
munication latency when reading from an off-tile
memory is a cache. A cache is build up from cache
lines, where a cache line contains the data of a num-
ber of consecutive addresses in the memory. When
an address is read the data is stored in the corre-
sponding location in the cache line, and the data for
the consecutive addresses in the cache line is pre-
communicated. Since the cache is smaller than the
off-tile memory, multiple addresses from the off-tile
memory are mapped to one cache line, in case an
associative cache is used an address can be mapped
to a number of cache lines. The functioning of a
cache is based on the locality of reference, assuming
that when an address is read it is probable that the
next read will be in a consecutive address. Care
has to be taken when a data structure, used by
a task, is stored over multiple addresses that are
mapped to the same cache line. In case the data
structure is not read in a consecutive way from its
first address till the last, it is possible that cache
lines are overwritten before they are actually used,
causing additional communication latency. In [15]
a method is proposed to store the data structures
and scalars, such that there are as few as possible
conflicts in the cache, reducing the communication
latency. Even though there is always communica-
tion latency when a cache line is not yet precommu-
nicated and communicating cache lines may causes
a communication peak on the NoC, depending on
the number of words in the cache line.

The Decoupled SoftWare Pipelinig (DSWP) ap-
proach [14] extracts function parallelism from C-
code. This approach creates a dependence graph
from the input program and groups the strongly
connected components from the graph according
to a load balancing heuristic. This approach is fo-
cused on the outer loop of loop-nests in which mul-
tiple operations are performed. The groups distin-
guished in the dependence graph can be run in par-
allel and the dependences are such that the groups
form a pipeline. The communication of data be-
tween groups is performed via a synchronization
array [16], to make sure that data is produced be-
fore it is consumed. The synchronization array is
a list in which the production of data is registered.
Data can be read and written using a PRODUCE
and WRITE command.

The DSWP approach is targeted at an architec-
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ture with multiple processors and a central shared
memory. It exploits function parallelism. The ap-
proach does not implement a method for hiding
the communication latency when a group is read-
ing from the central memory. They propose the
use of caches for partial hiding the communication
latency. Predictability and composability are not
considered in this approach.

The Phideo tool flow [12] is a high-level hardware
synthesis design methodology, targeted at the de-
sign of high performance real-time systems. The
considered target jobs contain many loop-nests.
Phideo accepts a job represented as a signal flow
graph described in the programming language SIL.
In the signal flow graph the nodes are one or
more operations and the arcs are the dependen-
cies. Based on the signal flow graph the producer
and the consumers of data can be identified, they
are grouped into a data stream. According to the
dependencies, so when the data is produced and
consumed, this data stream can be scheduled and
made into a data path. Scheduling means that for
each consumer the starting time and the period is
determined, such that when the consumer is run-
ning the data required has been already produced
by the producer of the stream. An Integer Lin-
ear Problem (ILP) formulation is used to solve the
scheduling problem [20], respecting dependencies
and optimizing the memory usage. Each data path
is connected to one or more memories, to consume
and produce data. The addresses at which the data
produced by a data path needs to be written in a
memory is controlled by an address generator. A
central controller is used to synchronize the address
generator and the data path.

The Phideo tool flow performs synthesis on a job
considering real-time constraints, thus creating a
predictable system. By creating data paths for the
node in the signal flow graph, it reveals function
level parallelism in the jobs. Phideo has no rea-
son to hide communication latency, since each data
path is connected to its own memory. The system is
focused at the synthesis of one job into application
specific hardware, thus it has no need to consider
composability.

A reduction of the synchronization, as forced by
the central controller, in a Phideo system is pro-
posed by [10]. It proposes to replace the synchro-
nized address generation, by sending the address of
the available data via a FIFO buffer. In this sit-

uation the consumer of data can only start when
an address is available in the FIFO buffer. The
producer writes data in the memory, till no more
addresses can be stored in the FIFO buffer that
communicates the addresses to the consumer.

The M4 design flow developed by IMEC, com-
posed out of multiple tools, accepts C-code as input
and delivers a software mapping on a target plat-
form or a hardware description. In the first phase
of the design flow, the MHLA tool [7] processes C-
code. The target of the tool is to prefetch data
structures as much as possible in a local memory
using a DMA, while increasing performance and re-
ducing energy consumption. MHLA uses a heuris-
tic to determine the best execution order of the
data transfers in the memory hierarchy of the con-
sidered target architecture. The result is C-code
that is extended with instructions to program the
DMA to copy the data structures between the var-
ious memory layers. The target architecture is a
multi processor system with shared on chip and off
chip memories, connected via a bus. The method
to determine an order for the prefetching is simi-
lar to the method earlier proposed by Vermat et
al. [21], where an exact solution in the form of an
ILP is used to find the optimal order to copy the
data structures between the memory layers. The
target architecture considered by Vermat et al. is
an MPSoC that may include caches and includes
SPMs.

In the second phase of the M4 design flow the
Sprint tool [5] identifies function parallelism in the
annotated C-code. Sprint tries to optimize the
communication between the tasks to reduce the
power consumption, increase the performance and
possibly use a heterogeneous architecture. The
parallelization requires user directives to point out
the boundaries of the tasks in the C-code. The
tasks can communicate via a FIFO buffer or via a
shared data channel. The FIFO buffer is only used
for simple communication patterns, when data is
read multiple times or out-of-order reading occurs
a shared data channel is used. The result of the
tool is a SystemC model, that has to be verified for
correctness by simulation.

The M4 design flow is optimizing the through-
put for the whole job, not considering predictabil-
ity or composability. They apply receiver initiated
precommunication at a data structure granularity.
The possible target architecture is a multi proces-
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sor system with shared on chip and off chip mem-
ories, connected via a bus. They consider a sys-
tem with distributed shared memories with non-
uniform communication latencies, since the access
latency can differ per memory. The communication
latency can only be hidden when all data structures
fit completely in the local memory.

The Compaan tool chain as described by [18] au-
tomatically derives a Process Network (PN) from
an NLP. The considered NLP has affine indices for
the used arrays and static control. An affine expres-
sion is defined as a constant value that is added to
(or subtracted from) a sum of variables, where the
variables can be multiplied with a constant value.
Static control means that the bounds of the loop-
nest and the conditions of if-statements in the loop-
body contain affine expressions of loop iterators
and parameters, their values do not change dur-
ing the execution of the loop-nest. In [17] this is
relaxed, by allowing if-statements to contain arbi-
trary expressions in their condition.

Compaan translates an NLP to a Single Assign-
ment Program (SAP), which can be translated in a
Polyhedral Reduced Dependency Graph (PRDG).
The PRDG show the precedence relations between
the operations in the SAP. This PRDG is converted
to a PN. The constructed PN is such that if an ar-
ray is written by multiple processes, the array is
split such that each process writes its own array.
The same is done if an array is read by multiple
processes, the array is split such that each process
receives its own array.

In a PN each array is communicated through
a FIFO buffer. When data will be read multiple
times, this is called multiplicity, a buffer is used in-
stead of a FIFO. The data is stored in the buffer
till it is read for the last time. In case the pro-
cess that is reading data from the FIFO reads it
in a different order as it is written, the data needs
to be reordered. This is solved by adding a re-
ordering memory and a controller at the receiving
process. Multiple techniques are proposed for ad-
dressing the data in the reordering memory, rang-
ing from a complex pseudo-polynomial expression
used for the address in combination with a general
Random Access Memory (RAM) to an exotic Con-
tent Addressable Memory (CAM) memory where
data is retrieved with special tokens.

The constructed PN can be translated to Java or
C++, such that the code can be mapped on a het-

erogeneous multi processor platform or directly to
VHDL. The considered heterogeneous multiproces-
sor platform contains processing units and shared
memories, that connect via a NoC.

In the Compaan tool chain functional parallelism
is exploited. The processes write their results in
FIFO buffers, realizing sender initiated communi-
cation at a word level granularity. This is different
from the functional parallelism extracted by the M4
tool flow, where receiver initiated communication is
performed at a data structure level granularity.

The Compaan solution partitions a job and ap-
plies sender initiated communication. It does not
consider predictability or composability. The re-
source constraints of a possible target MPSoC are
not considered while constructing the PN, since the
resulting PN can be used for mapping the job to
an MPSoC or for translation to a hardware de-
scription. If data is read out-of-order in the PN
a controller and reordering memory are required,
increasing the complexity of the receiver dramati-
cally.

3 The Omphale tool flow

The Omphale tool flow performs the first step in
mapping a job to an architecture instance that is
according to the template described in [1]. The
main goal of the tool flow is to reshape a job for
a target architecture, satisfying the architectural,
composability and predictability constraints.

Initially Omphale tries to locate the buffers, rep-
resented by the edges in the task graph of the job,
in the SPM of the consuming task. This results in
a solution with sender initiated communication. It
is possible that a task combined with its buffer re-
quires more memory in the SPM than available, in
this case two solutions are available. The first solu-
tion is to extract task level parallelism by splitting
the task in smaller parts. If task level parallelism
can be extracted, the task is replaced by n tasks
that communicate shared data structures via circu-
lar buffers. Deriving task level parallelism can re-
sult in tasks that have less private data to be stored.
The second solution is to locate a part of the buffer
in a memory tile. When the buffer is partly lo-
cated in a memory tile, the communication latency
between the memory tile and the consumer should
be hidden. In the memory tile a Communication
Assist (CA) is located, which precommunicates the
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information from the buffer in the memory tile to
the buffer in SPM of the consumer.

The result of Omphale should satisfy memory
size constraints, while the costs of the solution
should be minimized. The cost of computational
overhead in the tasks, caused by restructuring
the communication, is kept as small as possible.
Thus the addressing schemes used for memory ac-
cess should be relatively simple, meaning it should
match with the addressing used in a typical SPM.
Furthermore the amount of data transfered should
be minimized, to reduce the load on the NoC. The
additional hardware on the memory tile, called the
Communication Assist (CA), should be kept as sim-
ple as possible.

This section starts with defining a so called slid-
ing window used in a circular buffer, that is used
for inter-task communication. In subsection 3.2 the
inter-task communication patterns are discussed.
This explains the complex read or write patterns
in circular buffers that can be distinguished. Next
in subsection 3.3 the memory tile is introduced for
our template. Circular buffers can be partly stored
in a memory tile. Subsection 3.4 describes the tool
flow that tries to fit a job to its target architecture.
Circular buffers are inserted for the inter-task com-
munication in the job and if necessary a part of a
circular buffer is located in a memory tile or ad-
ditional parallelism is extracted from a task, such
that the memory constraints of the target architec-
ture are satisfied.

3.1 Sliding window

In our template Streaming Consistency [4] is sup-
ported for inter-task communication. This consis-
tency model enforces that a task acquires a block
of data in the memory, before it accesses it. Fur-
thermore, the accesses to the block of data by the
task should be finished before the block of data is
released. When a task has acquired a block of data
in the memory, other tasks are not allowed to access
it. A task may only access the memory using syn-
chronization sections, i.e. only acquired blocks in
the memory may be accessed. To other tasks, the
acquires and releases of a task on a buffer appear
in the order as they are performed.

Streaming consistency is applied because it al-
lows posted writes, only if the synchronization vari-
ables are located in the same memory as the buffer.

A posted write is a write operation that allows a
writing task to continue, without waiting for a con-
firmation of the completion of the write. A write
has completed when the data has been stored in the
memory. The communication latency is hidden for
a sending task when it uses posted writes, because
its processing is not stalled while waiting for the
confirmation. Note that more relaxed consistency
protocols do not allow posted writes and thus re-
quire stalling the processor till the confirmation of
a write is received.

Inter-task communication is realized via circular
buffers placed in a memory. The C-HEAP protocol
[13] is used for the buffer administration. No addi-
tional hardware or mutexes are required when using
this protocol. In this protocol the buffer adminis-
tration, consisting of a read and a write pointer,
are stored with the buffer in the memory. A task,
called the producer, can write at all addresses be-
tween the write and the read pointer. Similarly a
reading task, called the consumer, can read all ad-
dresses between the read and the write pointer. To
make the data at the address of the write pointer
available to the consumer, the producer increases
its write pointer. Only after the write pointer has
been updated, the consumer can read the added
data. Similar things can be done when the con-
sumer does not need the address at the read pointer
anymore. Hence, both the producer and the con-
sumer have exclusive access to their part of the
buffer. The pointers are not allowed to overtake
each other. Typically both pointers start at the
same location and the first pointer to be increased
is the write pointer. When a pointer reaches the
end of the circular buffer, it wraps around.

Omphale combines circular buffers with stream-
ing memory consistency. In addition to a read and
a write pointer in a circular buffer, the producer
has to acquire the block of addresses starting at
the write pointer, till at most the read pointer,
that it will write. The consumer has to acquire the
block of addresses starting from the read pointer,
till at most the write pointer, that it will read. The
block of addresses acquired by the producer will be
called the write window and the block of addresses
acquired by the consumer the read window. The
producer or consumer can perform an acquire that
extends their window with a consecutive address.
When they perform a release, the address at their
pointer is released and the pointer is increased. Re-
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leasing and acquiring an address makes that the
write and read window become sliding windows.

When the producer performs a release, the re-
leased address contains data for the consumer.
When the consumer releases an address, the con-
sumer can use it to store new data.

The window size of a read or write window is
defined as the maximum number of addresses that
will be acquired at a moment in time by the con-
sumer or the producer, respectively. When a con-
sumer performs an acquire but the address is still
acquired by the producer the consumer is blocked,
untill the address becomes available. The same oc-
curs when the producer wants to acquire an address
that is still acquired by the consumer. This results
in the so-called back pressure in the task graph.

It is possible to generalize a circular buffer, such
that multiple consumers can read from the circular
buffer at the same time without interfering. This
is possible because a read is not destructive, an ad-
dress can be read multiple times. This allows mul-
tiple overlapping read windows. The read windows
should be located between the read pointers and
the write pointer, where one of the read pointers is
increased when its corresponding consumer releases
an address.

3.2 Inter-task communication

A circular buffer, which is a generalization of a
FIFO buffer, is used for the buffering required by
an edge in the task graph. The pattern in which
the addresses will be accessed can be found in the
NLPs of the two tasks connected by one edge. The
NLPs contain loop-nests, the body of the loop-nest
reads from the shared data structure or writes into
the circular buffers.

A loop-nest consists of several loops that are
nested. An example of a loop-nest is given in fig-
ure 2. A loop k has an iterator jk, which is a vari-
able that is increased by the loop. Furthermore
loop k has two bound expressions Bl

k and Bu
k , ex-

pressing the minimum and the maximum value of
jk, respectively. The difference between two con-
secutive iterator values of a loop k is called the
stride sk, with sk ∈ Z. A loop k has the same sub-
script k assigned to all its variables and expressions,
for example the outermost loop has subscript 0 for
its iterator j0, bounds Bl

0
, Bu

0
and stride s0. The

subscript is assigned consecutive, starting at k = 0

for the outermost loop, increasing the k, with one,
for every loop in this loop. In the body of the loop-
nest a data structure is written or read, using an
affine index expression E to determine the address
in the data structure.

for j0 : Bl
0

: s0 : Bu
0

for j1 : Bl
1

: s1 : Bu
1

for j2 : Bl
2

: s2 : Bu
2

Y = X[E]

Figure 2: Example of a nested loop

The simplest communication pattern is when
both the producing and consuming loop-nests start
at the first address in the shared data structure,
that is for example an array, and they consecutively
proceed till the last address. In this case they write
to and read from the array in the consecutive order
as it is stored in the memory and use an address
only once. Note that in this case the information
could even be communicated through a FIFO. How-
ever, in general different read and write patterns
will occur. For communication patterns two spe-
cial types of behavior are distinguished that should
be supported in the applied buffer solution, namely
out-of-order communication and multiplicity.

Out-of-order reading or writing is defined as not
consecutively reading all addresses from the shared
data structure, starting from the first address. An
example for out-of-order reading is shown in fig-
ure 3, where the loop-nest starts with reading ad-
dress 1, followed by address 0 and so on.

for j0 : 1 : 1 : 4
for j1 : 0 : 1 : 1
∼ = X[2*j0 − j1 − 1]

Figure 3: Out-of-order reading with a nested loop

Read multiplicity is defined as a single address
from the shared data structure that is read more
than once. It is possible that between the multiple
reads of an address other addresses are read. Write
multiplicity cannot occur, since we require the loop-
nest to be a Single Assignment Program (SAP),
which constrains a variable to be written at most
once.

The bounds and index expressions in the loop-
nest do not have to be static. When they are static
the complete communication pattern between two
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loop-nests can be determined at compile-time. In
case a parameter is used in the bounds and the in-
dex expressions, where the value of the parameter
is not yet known at compile time but is known when
the loop-nest is started, it might be possible to de-
rive a parametrized communication pattern from
the loop-nests. It is also possible that the bound
and index expressions depend upon values in the
shared data structure, these are called input data
dependent expressions.

3.3 Memory tile

To allow the storage of large data structures, a
memory tile is introduced in our template. The
memory tile will contain circular buffers and should
support streaming consistency. In order to hide
the communication latency from the memory tile
to the processing tile of the consumer, the memory
tile should perform sender-initiated communication
in combination with posted writes. When the pro-
ducing processing tile performs posted writes, the
memory tile must store the synchronization vari-
ables for the circular buffer.

The memory tile, shown in figure 4, contains a
Communication Assist (CA), an arbiter, a network
interface and a memory. The memory is for exam-
ple a fast on-chip SRAM or a DDR memory. Data
combined with its address can be written directly
in the memory from the network interface, allow-
ing a producer to perform posted writes. The CA
is a small controller, that can read from the mem-
ory and post the data on the NoC, such that it
is sent to an SPM of a consuming processing tile.
As in the processing tile, the arbiter regulates the
memory accesses from the CA and the NI.

The CA hides the communication latency for the
processor tiles that require data from a circular
buffer in the memory with sender initiated commu-
nication. The CA is located near the memory, such
that it communicates directly with the memory and
not via the NoC. The CA reads the data from the
memory, so for the circular buffer in the memory it
acts as a consumer. In order to keep the hardware
of the CA simple, it will read the data written by
the producer in the circular buffer in the memory,
consecutively. When the producer slides its write
window, the CA slides its read window. The CA
has a copy of the read and write pointer from the
circular buffer in the SPM of the consumer. When

Processing tile

NI

Memory tile

NI

NoC

SPM

Processor

CA ArbiterArbiter

Memory
Memory controller

Figure 4: MPSoC template, with a processing and
a memory tile

the write pointer is smaller than the read pointer,
the CA acquires a location in the circular buffer
in the SPM at the consumer. This is followed by
precommunicating the data to the circular buffer,
using a posted write. If the CA cannot immedi-
ately acquire a location in the circular buffer, it
has to wait till the read pointer is increased. As
proposed by [13] checking the read pointer can be
implemented by the CA polling the SPM for it or
by the consumer sending an interrupt to the CA
when the read pointer is changed.

3.4 The tool flow

The Omphale tool flow is shown in figure 5. The
core part of the tool flow derives a CSDF model
that shows the communication pattern between the
tasks in the task graph, determines the location of
the buffers in the resulting task graph and examines
if additional parallelism is required given the mem-
ory sizes of the target architecture. Techniques as
used in for example the Compaan [11] and PN [19]
tool can be applied to extract additional task level
parallelism. Four operations can be distinguished
that the Omphale tool flow has to perform: derive
a CSDF graph from a task-graph, derive additional
task level parallelism and add it to the task-graph,
insert tasks that represent the copying action of a
CA in the task-graph and expand the tasks with
acquires and releases to use the circular buffers.

The input of Omphale is the task-graph of a job.
The code of the tasks should be in the form of a
NLP, such that the communication pattern that is
required for sender initiated communication can be
automatically recognized. The resource constraints
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Mapping to target architecture

Task graph
of a job

Tasks assigned to tiles, buffer sizes,

in architecture
Parallelization

(optional)

scheduler settings, connections via NoC

task graph

task graph

constraints
Temporal

description
Architecture

− Extended task graph
− CSDF model of task graph

Fit task graph

Figure 5: The Omphale tool flow, delivering a task
graph and a corresponding CSDF model, satisfying
the available memory sizes

required by Omphale are the sizes of the different
memories available in the MPSoC.

Omphale delivers a task-graph and a correspond-
ing Cyclo Static Data Flow (CSDF) model [3]. The
resulting task graph may contain additional tasks,
due to the inclusion of memory tiles or additional
tasks found by the extraction of task level paral-
lelism. The code of the tasks is extended with ac-
quires and releases enabling sender initiated com-
munication via circular buffers. The CSDF graph
is a model of the task-graph. The phases of the ac-
tors show the communication pattern of each actor.
These phases show how many memory addresses
the task, corresponding to the actor, requires and
can be used to derive buffer capacities.

3.4.1 Additional task level parallelism

In some cases for a task in a job additional task
level parallelism can be extracted. The task level
parallelism can be derived from an NLP, since all
data dependencies in an NLP can be derived at
design time. Omphale could for example use tech-
niques similar to the ones in the Compaan and PN
tools.

The Compaan [11] and PN [19] tools extract a
PRDG from an NLP. This is done by first extract-
ing a Single Assignment Program (SAP) from the
NLP with their MathParser tool. In a SAP, a
variable is assigned only once. From this SAP a
Polyhedral Reduced Dependency Graph (PRDG)

is derived with their DgParser tool. The nodes in
this PRDG have input port domains and output
port domains, these are polyhedral spaces that are
shaped according to the nested-loop in the code of
the node. The edges connect the output port do-
mains to input port domains, their combinations
show the communication patterns for the shared
data structures.

The nodes in the PRDG represent loop-nests in
the SAP, so they show task level parallelism. The
edges show the communication of data between the
ports of the nodes. Therefore a task graph can be
derived from the PRDG, with probably more tasks
than the input task graph of a job.

3.4.2 Fitting the task graph to the target

architecture

Omphale should fit the task graph of a job to a tar-
get architecture, such that tasks and their buffers
do not require more memory than available. To
realize this the communication patterns of data be-
tween the tasks needs to be analyzed and reorga-
nized at compile time. If possible a single circular
buffer in the SPM of the consumer is used. When a
single buffer would exceed the capacity of the SPM
of the consumer, a combination of two buffers can
be used, one in the SPM of the consumer and one
in a memory tile.

Every edge in the task graph represents a cir-
cular buffer, with a read and a write window. In
order to realize a simple acquire/release scheme in
the tasks, at most a single address is acquired at
the beginning of an iteration of the loop-nest and
released at the end. Thus the window is sliding
through the circular buffer at the pace of the state-
ments in the inner loop of the loop-nest. The read
and write window start at the first address of the
shared data structure.

In order to have the window sliding through the
circular buffer at the pace of the statements in the
inner loop of the loop-nest, it should be verified
that the address that is read or written is in the
window. For example, if a consumer is reading
consecutive addresses starting at address 0 of the
shared data structure, a window of size 1 would
suffice. Every iteration this consumer performs an
acquire, reads the data and releases the address.
A different example is shown in figure 3, where
the consumer starts with reading address 1 and
consecutively reads address 0. In this example an
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acquire should be performed before the loop-nest
starts. Now in the first iteration of the loop-nest
address 1 is acquired, the address that also has to
be read. Furthermore the data at the read pointer
cannot be released in the first iteration of the loop,
because address 0 is read in the second iteration.
This means the releasing should be delayed till the
second iteration of the loop-nest.

The number of acquires that have to be per-
formed before the loop-nest is started is called the
lead-in. The number of iterations after which re-
leases can be performed, is called the lead-out. The
window size can be determined as the sum of the
lead-in, the lead-out plus one. The Omphale tool
determines the size of the windows such that out-of
order reading and writing and read multiplicity are
covered, for every NLP that has affine loop bounds
and an affine index expression. Note that para-
metric loop-bounds and parametric index expres-
sion can make it difficult to determine the window
size. An even broader and more challenging exten-
sions would be to allow an input data dependent
index expression and input data dependent bound
expressions.

With the lead-in and lead-out, the CSDF model
can be derived from the task graph. The actors in
a CSDF model operate in a periodic fashion, where
the period consists of a number of phases. The
edges of an actor are annotated with the number of
tokens produced or consumed for each phase. The
number of produced and consumed tokens for an
actor can differ per phase. During the first phase
the number of tokens for the lead-in are consumed
and in the last phase the last tokens for the lead-out
are released.

When the read and the write windows are smaller
than the shared data structure it is not necessary
to have a circular buffer with the size of the shared
data structure. It is possible to use the addresses of
the data structure modulo the size of the circular
buffer. When the circular buffer is one word smaller
than the read and the write window, it is known
that the windows can slide through the buffer.

The Omphale tool flow tries to locate the circular
buffer in the SPM of the consuming processing tile,
such that it can perform reads with a low commu-
nication latency. In case it is not possible to fit a
circular buffer with the read and the write window
in the SPM, the read and write window are located
in two separate circular buffers. A circular buffer

with the write window is located in a memory tile
and a circular buffer with the read window is lo-
cated in the SPM of the consumer. Now the CA
from the memory tile is reading the in-order data
from its circular buffer and posting this data to the
circular buffer in the SPM of the consumer. Be-
cause the producer releases the data in-order, the
CA can always read the data in-order from its cir-
cular buffer and writes it in-order in the SPM, thus
its read window in the memory tile and its write
window in the SPM have a size of 1. This keeps
the hardware of the CA simple.

When a CA is inserted between a producer and
a consumer this should be shown in the task graph
and the CSDF graph. Therefore Omphale replaces
the original edge with an actor that represents the
CA in the CSDF graph that has an edge to both the
producing and the consuming actor. In a similar
way the edge in the task graph is replaced by a
task representing the CA that is connected to the
producer and the consumer.

Using the architecture constraints Omphale ex-
amines if the memory requirements of the tasks
do not exceed the available SPM in the process-
ing tiles. If a task exceeds the amount of avail-
able memory, Omphale uses a Compaan like tool
flow (subsection 3.4.1) to examine if additional task
level parallelism can be extracted. If it can be ex-
tracted, the single task in the original task graph is
replaced by multiple tasks that are connected with
edges. In the CSDF graph the corresponding ac-
tor is replaced by multiple actors. When task level
parallelism is extracted the size of the private data
per task or the size of the shared data structures
over an edge are reduced. For the new edges in
the tasks graph, Omphale derives the read and the
write window and the phases for the corresponding
edges in the CSDF model once more.

When the CSDF graph is derived for a job and
the phases for the actors are determined, the code
in the corresponding tasks should be extended to
use the circular buffers. The acquire and release
statements are inserted in the code of the actors,
using the phases found for the CSDF graph.

The combination of a task graph with circular
buffers naturally results in a pipelined implementa-
tion, if at least the minimum buffer sizes are met.
In [22] a method is described to derive the mini-
mum buffer sizes from a CSDF model, given the
end-to-end throughput and latency constraints of
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T1 T2

for i0:1:1:4 for j0:1:1:6
for i1:0:1:2 for j1:0:1:1
X[3i0 − i1] = ∼ ∼ = X[2j0 − j1]

(Iteration 1,2,3,4. . .,12)
ap = [3,2,1,6. . .,10]

(Iteration 1,2,3,4. . .,12)
ac = [2,1,4,3. . .,11]

Figure 6: Task-graph with a producing task T1 and
a consuming task T2

a job. Starting from the minimum circular buffer
size, the mapping tool can assign more memory
to increase the amount of pipelining. A job has a
maximum amount of memory that can be assigned,
after which the throughput will not increase any-
more. The trade-off between the total amount, the
type of memory assigned and the achieved through-
put determines the cost of the solution.

4 Window solution

This section shows how Omphale derives a CSDF
model from a task-graph, where the lead-in and
lead-out are used to annotate the CSDF model.
Furthermore it shows how the code in the task-
graph is extended with acquires and releases.

From the nested-loop of the consuming task T2,
in figure 6, an address list ac can be derived, con-
taining the addresses in the order that they are
read. The first element in the address list ac is 1,
the last element in the list is ah

c , which equals the
number of reads that are performed. In the address
list ac of the nested-loop it can be seen that at it-
eration 3 the address ac[3] = 4 is read. In a similar
way an address list ap with ah

p items can be derived
for the producer.

The circular buffer in the SPM may be smaller
than the shared data structure and the acquires not
necessarily start at the first location of the buffer.
Furthermore the circular buffer is probably not lo-
cated at the first location in the memory. Therefore
the address of data in the shared data structure
needs to be translated to the address in the buffer
in the SPM.

The address the consumer has to read in the
shared data structure is called r. A function t can
be defined that gives the location of address r in the

SPM. This functions contains three variables, the
variable l is the location of the buffer in the SPM, q

the location in the buffer where the acquires started
and z the size of the buffer.

Definition 4.1. An address r in the shared data
structure can be translated to the physical address
t(r) in the SPM with the function:

t(r) = (r + l + q)%z

In the buffer at the consumer a lead-in d1 is
needed to cover addresses that have to be acquired
in advance, so to make sure that for the ith read the
address ac[i] is acquired even if ac[i] > i. For exam-
ple, in the first iteration of task T2, from figure 6,
address 2 should be acquired, so ac[1] = 2 > 1.

A graphical method to find the lead-in is shown
in figure 7, for the consumer from figure 6. The
producer releases consecutive addresses in the SPM
and the consumer reads them in a different order.
The lead-in d1 is determined by shifting the list
with read addresses to the right in relation to the
list with acquired addresses such that the addresses
are acquired earlier or at least at the same moment
as they are read. In the figure address 1 needs to
be acquired before address 2 can be acquired and
read, the same occurs for the addresses 4 and 6.
Thus a d1 of 1 is needed such that the addresses
are acquired before they are read.

Lemma 4.1. A lead-in of d1 = maxi(ac[i]− i) ac-
quires, with 1 ≤ i ≤ ah

c , ensures that every address
is acquired before or when it is read.

Proof: The proof is by construction. In an it-
eration j address ac[j] is read, so at least ac[j]
addresses should be acquired in the buffer. Each
iteration performs 1 acquire, so initially at least
ac[j]−j acquires should have been performed, when
ac[j] ≥ j. To make sure that in each iteration
of the loop-nest the read address is acquired, the
maximum number of required initial acquires d1 is
found by maxi(ac[i] − i), with 1 ≤ i ≤ ah

c . �

When we want to reuse space in the buffer a lead-
out d2 is needed before starting to release addresses
that are acquired, to make sure that the address at
which data is stored is not released before it is read
for the last time. The lead-out is the number of
reads after which the consumer can start releasing
addresses in the buffer. For the example in figure 6,
address ac[1] = 2 is acquired after ac[2] = 1, but
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Figure 7: The lead-in guarantees that the used data
has been written in the circular buffer
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Figure 8: The lead-out guarantees that the data
still is in the circular buffer till it is used

read earlier. The read from address ac[1] = 2 can-
not be followed by a release, because than address
1 is released before it is read.

In figure 8 the d2, for the consumer in figure 6,
is graphically determined. The list with released
addresses is shifted right such that data is read ear-
lier or at least at the same moment as it is released.
Note that the order of the acquires is also the order
in which the addresses are released.

Lemma 4.2. A lead-out d2 = maxi(i−ac[i]), with
1 ≤ i ≤ ah

c , is the number of reads after which reads
can be combined with releases, making sure that the
released data has been read for its last time.

Proof: The proof is by construction. In an it-
eration j, at least the address ac[j] should still be
acquired in the buffer. After an initial number of it-
erations each iteration releases 1 address. To make
sure that address ac[j] is still acquired in iteration
j, at least the first j−ac[j] iterations should release
no address, when j ≥ ac[j]. To make sure that in
each iteration the read address is still acquired, the
first maxi(i − ac[i]) iterations, with 1 ≤ i ≤ ah

c , of
the loop-nest should not release an address. �

Figure 9 shows a circular buffer containing a win-
dow. The window is build up from a lead-in d1 and
a lead-out d2 and a location for the current address,
making the window size w = d1 + d2 + 1. In case
of read multiplicity it is possible that d1 + d2 + 1
is larger than the number of data items produced.
In this situation the window size is chosen as the
number of data items produced, w = ah

p . With the
found d1 and d2 for the consumer from figure 6, a
read window with size 3 would be required.

Theorem 1. When a window size w = d1 + d2 +

1 ≤ ah
p is used, the data that will be read by the

consumer is always in the window. So i − d2 ≤
ac[i] ≤ i + d1

Proof: The lemmas 4.1 and 4.2 contain the proof
that shows that for each of them individually the
buffer will always contain the address to be read.
Lemma 4.1 shows that the lead-in is determined in
such a way that ac[i] ≤ i + d1. Lemma 4.2 shows
that the lead-out is determined such that i − d2 ≤
ac[i]. Therefore the combination of both ensures
that the address is always in the window. �

It is possible to derive the write window for a
producer, in a similar way as the read window for
the consumer. In this case d1 denotes the number
of addresses that should be acquired such that the
address that has to be written is always in the win-
dow. The d2 denotes the number of iterations the
loop-nest should wait with releasing addresses in
the circular buffer, such that the address contains
valid data. The producing task T1 from figure 6,
has a d1 = 2 and a d2 = 2, so a write window with
the size 5 is required.

Figure 10 shows a combination of figure 7 and 8,
including when acquires, reads and releases should
be performed. This information can be used to
derive the CSDF actor and to extend the code of
the task with acquires and releases.

Figure 11 shows the CSDF graph that corre-
sponds to the task graph from figure 6. The actor
A1 corresponds to task T1 and actor A2 to task T2

from figure 6. The number besides the black dot
on the edge in the CSDF graph denotes the initial
number of tokens. In this example there are 7 initial
tokens, 3 for the read window plus 5 for the write
window minus one. Every actor has an implicit
self edge with one initial token, to make sure that
the actor is finished before it is started again. In its
first phase actor A2 consumes 2 tokens and releases
none. In its second phase A2 consumes a third to-
ken and at the end of this phase a token is released

Window size

Lead-in(d1)Lead-out(d2)

Buffer size

Figure 9: A circular buffer containing a window,
build up by a lead-in, a lead-out and the current
address
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Figure 10: The lead-in and the lead-out and the
pattern of acquires and releases

{0,0,8x1,1,3}

{3,1,8x1,0,0}

{2,10x1,0}

{0,10x1,2}
7

A1 A2

Figure 11: The CSDF model derived from the task
graph in figure 6

again. In each of the following 9 phases a token
is acquired and released. In the task graph this
corresponds to task T2 starting with acquiring two
containers in the circular buffer after which the first
read from the body of the loop-nest is performed,
a third container is acquired for the second read,
after which the first container is released, followed
by 9 iterations that acquire and release a container.
The scheme of producing and consuming tokens in
the CSDF model shows the sender-initiated com-
munication at a word level granularity, that is used
to hide the communication latency. Furthermore
the minimum buffer capacity for the producer con-
sumer pair in isolation is shown by the number of
initial available tokens. In a CSDF model that con-
tains cycles, it is possible that more initial tokens
are required on an edge. This requires an analysis
considering the whole CSDF model, as shown in
[22].

In figure 12 the tasks are extended with acquires
and releases, according to the found pattern in the
CSDF graph. Both tasks start with acquiring an
initial number of d1 locations in the circular buffer
CB1 and than acquiring one location in each iter-
ation untill all locations of the data structure have
been acquired. Both loop-nests are extended with
a counter to count the iterations. The releases are
started after d2 iterations. At the end of the loop-
nest the d2 locations that are still acquired in the
circular buffer are released. To access the correct

T1 T2

int tp = 0 int tc = 0
q = writepointer(CB1) q = readpointer(CB1)
acquire(2,CB1) acquire(1,CB1)
for i0:1:1:4 for j0:1:1:6

for i1:0:1:2{ for j1:0:1:1 {
if(tp < 11) if(tc < 12)

acquire(1,CB1) acquire(1,CB1)
write(CB1, ∼ = read(CB1,
(3i0 − i1+l+q)%8,∼) (2j0 − j1+l+q)%8)
if(tp > 2) if(tc > 1)

release(1,CB1) release(1,CB1)
tp++ tc++

} }
release(2,CB1) release(1,CB1)

Figure 12: Task-graph with tasks that are extended
with acquires and releases

{0,0,8x1,1,3}

{3,1,8x1,0,0}
35

{1}

{1}{1}

{1} {2,10x1,0}

{0,10x1,2}

A1 CA A2

Figure 13: The CSDF model from figure 11 ex-
tended with a CA actor

location in the shared data structure, the read and
write addresses of the tasks are translated, accord-
ing to definition 4.1. Note that the parameter l, the
location of the buffer in the SPM, is determined
by the compiler. The parameter q, the location
where the first address of the shared data structure
is stored in the buffer, is the write pointer of the
producing actor before it performs the initial ac-
quires, which is similar to the read pointer before
the initial acquires of the consumer.

The addresses released from the write window
are acquired in the same order by the read win-
dow, allowing the write and the read window to be
separated. Figure 13 shows a CSDF graph where a
CA is inserted, such that the producer and the con-
sumer have separate circular buffers, with a smaller
buffer in the SPM of the consumer. When an ad-
dress is released from the write window, the CA
copies the data to the corresponding address in the
circular buffer of the consumer and releases the ad-
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dress there. To keep the CSDF graph similar to the
task graph, the task graph should also be extended
with a CA. The code of the CA task, represents the
copy operation the CA performs.

5 Conclusion and Future work

The previous sections have discussed and shown the
Omphale tool flow. The tool flow performs the first
steps in mapping a job to a target architecture. The
tool delivers a task graph where the communication
is organized via circular buffers and a CSDF model
that shows the communication pattern.

The NLPs of the tasks in the input job implic-
itly contain the patterns in which the shared data
structures are communicated between tasks. By
deriving the CSDF graph from a task graph, the
communication pattern of the shared data struc-
ture is made explicit. The phases of an CSDF ac-
tor are used to extend the corresponding task in
the task graph to use a sliding window in a cir-
cular buffer. The sliding window covers out-of-
order communication and read multiplicity. Fur-
thermore, by placing the circular buffer in the SPM
of the consuming task, sender initiated communica-
tion is performed such that communication latency
for the consumer is hidden. The communication
latency for the producer is hidden because it can
perform posted writes, due to the used streaming
consistency model.

When a task and its circular buffer require more
memory space than available in the SPM of the
consumer, Omphale reorganizes the task graph and
the CSDF model. Either the circular buffer is split
and a part of it is located in a memory tile, or
additional parallelism is derived from the task. If a
memory tile is used for the circular buffer, the task
graph is extended with a task and the CSDF model
with an actor for the memory tile. If additional
parallelism is derived, the single task and actor are
replaced by multiple tasks and actors in the task
graph and the CSDF model, respectively. Using the
resulting CSDF model and the task graph, other
tools in the mapping flow can map the job to the
target architecture by determining the buffer sizes,
scheduler setting and the connections via the NoC
and assigning the tasks to tiles.

An Integer Linear Problem formulation to deter-
mine the window size for two communicating tasks,
with their NLPs, is under development. This for-

mulation considers no parameters and input data
dependency, in the bound or index expressions. It is
possible to extend the formulation to allow param-
eters. The formulation can be further extended to
allow if-statements in the loop body. The trade-off
between a hardware and a software implementation
for the transformation of the index expression and
the acquire and release statements can be investi-
gated, in order to improve the performance of the
resulting mapping. An interesting optimization is
to change the pattern in which the data structure
is written and read, by changing the index expres-
sions, such that the write window becomes larger
and the read window smaller. This allows a solu-
tion in which less memory is used in the SPM and
more in the memory tile.
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