
RBAC Administration in Distributed Systems

M.A.C. Dekker1,3, J. Crampton2, and S. Etalle3

1 Security Group, TNO ICT, The Netherlands,
2 Information Security Group, Royal Holloway, University of London, UK,

3 Distributed and Embedded Systems Group, University of Twente, The Netherlands

Abstract. Despite a large body of literature on the administration of
RBAC policies in centralized systems, the problem of the administration
of a distributed system has hardly been addressed. We present a formal
system for modelling a distributed RBAC system and its administration.
We define two basic requirements for distributed RBAC systems, based
on safety and availability. We present a transition-system modelling the
actual implementation of administrative commands and we show that it
preserves those requirements. We also indicate how the system can be
used as a basis for a practical implementation.

1 Introduction

Role-based access control (RBAC) [1, 5, 11] is the de-facto access control
standard. RBAC simplifies the assignment of access rights to users, by
grouping users in a relative small number of roles, which are ordered
in a role-hierarchy. Nevertheless, in practice RBAC policies can be very
large, and the administration of the RBAC policy can be a complex task.
For example, in companies or hospitals an RBAC policy may involve
thousands of roles and assignments [5], involving multiple systems across
the organization.

The RBAC standard defines a basic set of administrative functions
and controls [1]. Several lines of research extend these administrative
functions. In the ARBAC administrative model [10], administrative priv-
ileges are defined using ranges of roles that can be changed. Crampton and
Loizou [3] take a different approach by defining the administrative scope
of a role. A role can only have administrative privileges over the roles in
its administrative scope. In a similar approach, Wang and Osborn [12] di-
vide the role-graph (a type of RBAC policy) into administrative domains.
Each administrative domain has an administrator, who has privileges on
the roles in that domain.

Although there is a large body of literature about many aspects of
the delegation of administrative authority and administrative policies [3–
5, 10, 12], there is no literature that deals with the implementation of



2

administrative policies in a distributed system (see Related work). To
see why this is not trivial consider that a distributed system consists of
different subsystems which in turn protect different sets of objects. (Think
for instance of an organization with several departments, using a number
of different databases and file systems.) The administration mechanism
for the distributed system must fulfil a number of desiderata. First, each
subsystem should store only the parts of the RBAC policy concerning
the objects that it protects. Indeed, it is good engineering practice to see
that the subsystems do not store excessive policy information; this helps
to reduce the chances of inconsistencies. Second, when a policy change
is made, updates to affected subsystem should be timely and efficient.
In this phase, re-sending the whole RBAC policy to every subsystem
is undesirable, because of efficiency reasons. On the other hand, simply
making the policy change at each individual subsystem is not possible,
since the peripheral subsystems do not store the whole RBAC policy,
and they do not have enough information to carry out the policy change
correctly.

In this paper, we propose a model for the administration of a dis-
tributed RBAC system. Our approach is based on a formal transition
system. We formalize the desiderata (soundness, completeness and lean-
ness), and we define the update process using an abstract form of message-
passing progression between an administrative reference monitor and the
periphery subsystems in the distributed system. Using this model, we de-
fine a transition function modelling the administration of a distributed
RBAC system, showing that it preserves the desiderata, whilst keeping to
a minimum the amount of policy information that is sent to the different
subsystems in the distributed system. Finally, we show how our transition
function can be translated into procedures for the administrative and the
non-administrative reference monitors in a practical implementation of a
distributed RBAC system.

The rest of this paper is structured as follows: In the following pre-
liminary section we give the basic definitions for the RBAC model we use
throughout this paper. In Section 3 we introduce administrative policies,
and a basic model for an administrative reference monitor. In Section 4
we extend this basic model to the setting of a distributed system. We
define basic requirements for the distributed system, based on safety and
availability, and we implement the execution of administrative commands
in such a way that the basic requirements are preserved and in the ap-
pendix we demonstrate a practical implementation of an administration
point. Sections 6 and 7 contain related work and our conclusions.



3

2 Preliminaries

We first introduce the General Hierarchical RBAC model, as defined in
the ANSI RBAC standard, because it is the most commonly used RBAC
model [1, 5].

The goal of an RBAC policy is to specify which users are permitted
to perform which actions on which objects. We denote the sets of users,
roles, actions, and objects, by U , R, A, and O. Permissions for performing
actions on objects are called user privileges, forming a set P ⊆ A×O,

An RBAC policy assigns users to roles, roles to user privileges, and it
defines an order on the roles; the role-hierarchy4.

Definition 1 (Non-administrative Policies). Let U , R, and P , be
sets of users, roles, and user privileges, a non-administrative RBAC policy
φ is a tuple

φ = (UA,RH ,PA),

where UA ⊆ U × R is a set of user assignments, RH ⊆ R × R a role-
hierarchy, and PA ⊆ R× P a set of privilege assignments.

The set of RBAC policies is denoted ΦU,R,P . To simplify our exposition
we treat a policy φ as a directed graph, defined by the set of directed
edges UA ∪ RH ∪ PA. If there is a path from one vertex v to another v′

we write v →∗
φ v′.

The RBAC reference monitor uses the policy φ as follows. Any user
u can start a session. The reference monitor allows the user to activate
a role r in a session iff u →∗

φ r. In that case the privileges of the session
are all privileges p such that r →∗

φ p. In other words, a user u, in a role
r, can perform an action a on an object o, iff u →∗

φ r and r →∗
φ (a, o).

We abbreviate this by u →∗
φ r →∗

φ (a, o). Sessions are an important safety
mechanism, allowing users to apply the principle of least privilege [1].
Here we do not go into details about the session mechanism.

Example 2 (Basic RBAC). Consider a system s protecting files. The
RBAC policy of the system s is defined by

UA = {(alice, prof )},
RH = {(prof , stud)},
PA = {(prof , (write, foo)), (stud , (read , foo))}.

4 In the RBAC standard the relation RH is defined to be acyclic, reflexive and transi-
tive, i.e. it is defined as a partial order. On the other hand, Li et al. showed that this
definition causes problems when changes are made to the role-hierarchy [7]. Here,
for the sake of generality we do not assume that RH is a partial order.



4

Alice starts a session at system s. Now, if Alice activates the role prof,
then the system s allows her to perform the actions write and read on
the object foo. If, on the other hand, Alice activates only the role stud,
then the system allows only the latter action.

In the sequel we will use the following notation: Given a policy φ, the
upper closure of a role r, is the set

(↑φ r) = {(v, v′) : (v, v′) ∈ φ, v′ →∗
φ r}.

Notice that the upper closure of a policy is again a policy.

3 Administration of Centralized RBAC

In this section we present a simple model for the administration of a
centralized RBAC system. This will serve as a basis for the distributed
systems we will introduce in the next section.

The RBAC standard specifies a number of administrative functions
and controls, which can be used by administrative users to make policy
changes [1]. In this paper we use administrative privileges to model which
users (or roles) can make which policy changes and we assign administra-
tive privileges to roles just like the user privileges are assigned to roles in
standard RBAC. This approach is also advocated in the literature [3, 12]
and the intuition behind it is that the RBAC policy can also be used to
specify who can change the RBAC policy. We model privileges that allow
users to make changes to the sets UA, RH or PA. We do not model the
changes to the sets U , R or P as we can safely assume that these sets are
large and fixed. For example the set of user names can be chosen as the
set of all lower-case strings starting with uid.

Definition 3 (Administrative Privileges). Given the sets U , R, and
P , administrative privileges form a set

P ◦ ⊆ A◦ ×O◦,

where A◦ = {assign, revoke}, and O◦ = (U ×R) ∪ (R×R) ∪ (R× P ).

For example the administrative privilege (assign, (r, r′)) allows the addi-
tion of an edge from role r to role r′.

The definition of RBAC policies is extended accordingly.

Definition 4 (Administrative Policies). Let U , R, P by sets of users,
roles and user privileges, an administrative RBAC policy φ is a tuple

φ = (UA, RH , PA ∪ PA◦),



5

where UA ⊆ U × R is a set of user assignments, RH ⊆ R × R a role-
hierarchy, PA ⊆ R×P are the assignments to user privileges and PA◦ ⊆
R× P ◦ are the assignments to administrative privileges.

The set of administrative policies is denoted by Φ◦U,R,P , which is a superset
of the policy set ΦU,R,P defined in the RBAC standard.

We can now model the administrative reference monitor. Administra-
tive policies allows users in roles with administrative privileges to make
changes to the policy of the reference monitor. We model the adminis-
trative reference monitor by a queue of administrative commands, and
an (administrative) policy. The reason for using a command queue will
become clear in the next section.

Definition 5 (Administrative Commands). Let U , R, A, O be sets
of users, roles and user privileges, an administrative command is a term

cmd(u, r, a, e),

where u ∈ U , r ∈ R, a ∈ A◦ and e ∈ O◦. A command queue is a list of ad-
ministrative commands, denoted cq = cmd(u, r, a, e) : cmd(u′, r′, a′, e′)...,
where : denotes the list constructor.

The set of command queues is denoted CQ . The empty command queue
is denoted ε. When a user makes an administrative command, it is placed
at the end (the right hand side) of the queue.

Definition 6 (Local Administration). Let cq ∈ CQ be a command
queue, and φ ∈ Φ◦ an administrative policy, local administration is a
transition function ⇒: CQ × Φ◦ → CQ × Φ◦ where,

〈cmd(u, r, assign, e) : cq , φ〉 ⇒ 〈cq , φ ∪ e〉, if u →∗
φ r →∗

φ (assign, e).

〈cmd(u, r, revoke, e) : cq , φ〉 ⇒ 〈cq , φ \ e〉, if u →∗
φ r →∗

φ (revoke, e).

〈cmd(. . .) : cq , φ〉 ⇒ 〈cq , φ〉, otherwise.

A user u can place any administrative command at the end of the queue,
but the administrative system executes the command only if it is allowed
by the policy φ. If an administrative command is not allowed, then the
command is removed from the queue, without changing the policy φ. A
set of consecutive transitions, corresponding to repetitive executions of
commands on the queue, is called a run. Below a run is denoted by ⇒∗.



6

4 Administration of Decentralized RBAC

Having specified a basic model for the adminstration of centralized RBAC,
we can now address the issue of administration of decentralized RBAC.
Consider the setting of a large distributed system composed of databases,
file systems etc. In such a setting it is impossible to use a central reference
monitor to decide about all the actions. Each action would involve con-
tacting the central reference monitor, resulting in a bottleneck. On the
other hand, if we allow each subsystem to have its own reference monitor,
and its own RBAC policy, we need to manage these policies in an efficient
and consistent way. This is the problem we tackle in this section.

We use a set of names S for the different subsystems in the distributed
system. The subsystems S are non-administrative reference monitors,
which decide about whether or not to allow users to perform actions on
the objects they protect. Note that the subsystems in S do not execute
administrative commands. To allow changes to be made to the RBAC
policies of these reference monitor, we assume the presence of a single
administrative reference monitor. Here and in the sequel we use the fixed
sets U , R, P to denote users, roles, and user privileges across the dis-
tributed system. The model for the distributed system is as follows.

Definition 7 (Distributed System). A distributed system is a tuple

(S, sm, φ, ψ ),

where sm : S → P(P ) is a function that maps each subsystem to a set
of user privileges, φ ∈ Φ◦U,R,P is an administrative policy, and ψ : S →
ΦU,R,P is a function that maps each subsystem to a non-administrative
policy.

The set of distributed systems (S, sm, φ, ψ ) is denoted DS . The service
mapping sm defines which subsystems protect which objects. If a user
privilege (a, o) ∈ sm(s), then we say that the subsystem s protects object
o. For the sake of generality, we do not assume that sm(s) and sm(s′)
are disjoint for different subsystems s and s′, so in principal one object
could be protected by multiple subsystems. The set of privileges sm(s) are
referred to as the relevant user privileges for the subsystem s. The admin-
istrative policy φ is the policy of the administrative reference monitor. It
is referred to as the administrative policy of the distributed system. The
function ψ is the distribution of policies across the subsystems S, so ψ(s)
is the the policy of the RBAC reference monitor of subsystem s. In the



7

rest of this section we implement the execution of administrative com-
mands that change ψ and φ. Let us first give a simple practical example
of the mapping sm.

Example 8 (Relevant User Privileges). A university department has a
network consisting of a database named Sqil , a fast computer Qalc and
a printer Inq . The mapping sm : S → P is as follows.

sm(Sqil) = {(gradetable, view), (gradetable, insert)}
sm(Qalc) = {(job, halt), (job, start)}
sm(Inq) = {(black , print), (color , print)}

The administrative policy φ is depicted in the upper circle of Figure 1.
Each subsystem has a different RBAC policy specifying which users can
access which objects or resources. They are depicted in the lower three
circles in Figure 1. These policies constitute the policy distribution ψ. For
the sake of simplicity, the user assignments to roles are not shown in the
figure.

We proceed as follows. We define two basic requirements for the dis-
tribution ψ with respect to the administrative policy φ. The two require-
ments are motivated by the principles of safety and availability.

Definition 9 (Soundness and Completeness). Given a distributed
system (S, sm, φ, ψ), the distribution ψ is sound with respect to the central
policy φ, iff ⋃

s∈S

ψ(s) ⊆ φ.

The distribution ψ is complete with respect to the central policy φ iff for
every subsystem s ∈ S,

if p ∈ sm(s) then (↑φ p) ⊆ ψ(s)

where (↑φ p) denotes the upper closure of p in φ (cf. Preliminaries).

Soundness is important from the viewpoint of safety. Soundness ensures
that subsystems allow access only when it is allowed by the administrative
policy φ, allowing safety analysis (of policy changes): It implies that if
u →∗

ψ(s)
r →∗

ψ(s)
p then u →∗

φ r →∗
φ p.

Completeness, on the other hand, is important from the viewpoint of
availability. Completeness ensures that the subsystem protecting object o
allows access to the object o, iff it is allowed by the administrative policy:
It implies that, for any p ∈ sm(s), if u →∗

φ r →∗
φ p then u →∗

ψ(s)
r →∗

ψ(s)
p.



8

Remark 10 (Trivial Distribution). A trivial distribution ψ that meets
the soundness and completeness requirements is the distribution where
ψ(s) = φ for all s ∈ S. Here, all the subsystems have the same policy.
However, this distribution would not follow the basic engineering principle
that a component should only store what is strictly necessary. Moreover,
each policy change would require updating all the different subsystems,
which is inefficient.

Example 11 (Practical Policy Distribution). Let us continue our previous

csstud

dbusr

(gradetable,insert)

(gradetable,view)

csstaff mathstaff

qalcadmin

qalcusr

mathstud

(job,halt)

(job,start)

(print,color)(print,black)

φ 

ψ(Inq)

csstud

csstaff

(print,color)(print,black)
csstaff

mathstaff

qalcadmin

qalcusr

(job,halt)

(job,start)

dbusr

(gradetable,insert)

(gradetable,view)

mathstaff

mathstud

ψ(Qalc)

ψ(Sqil)

(assign,(., csstud))

(assign,(., mathstud))

(assign,(mathstud, qalcusr))

Fig. 1. Sound and complete RBAC policy distribution.

example (cf. Example 8). According to the mapping sm (cf. Example 8),
the distribution ψ is sound and complete. Take for example the complete-



9

ness requirement regarding the RBAC policy of the subsystem Inq . The
printer Inq does not protect database tables of Sqil , nor the processing
resources of Qalc. Completeness requires only that the policy of Inq con-
tains the upper closure of the printing privileges. The other parts of φ
are in practice irrelevant for Inq . Notice that also that the administrative
privileges are irrelevant for all subsystems (cf. Example 8), because the
subsystems can not be used for administrative operations.

Now we come to the execution of administrative commands in our
distributed system model. In a distributed system, the administrative ref-
erence monitor may need to update the subsystems about policy changes:
We model this by changing the command queue defined earlier to include
message commands. Message commands propagate parts of the central
policy φ to update the subsystems about policy changes.

Definition 12 (Distributed Administrative Commands). Given a
distributed system (S, sm, φ, ψ), the set of distributed administrative com-
mands is

{cmd(u, r, a, o), msg(S′, add , δ), msg(S′, remove, δ)},

where u ∈ U , r ∈ R, a ∈ A◦, o ∈ O◦, S′ ⊆ S, and δ ⊆ φ. The command
queue in the distributed setting is a list of distributed administrative com-
mands.

The administrative command cmd(u, r, a, o) changes the policy φ as de-
fined in the previous section. The command msg(S′, add , δ) adds δ to ψ(s)
for s ∈ S′, while the command msg(S′, remove, δ) removes δ from ψ(s).
The new set of command queues is denoted CQD, which is a superset of
CQ . We can now define a transition function for our distributed system
model.

Definition 13 (Distributed Administration). Given a distributed sys-
tem (S, sm, φ, ψ), let cq ∈ CQD be a command queue. The distributed
administration transition is a function ⇒D: CQD ×DS → CQD ×DS,

〈cq , S, sm, φ, ψ〉 ⇒D 〈cq ′, S, sm, φ′, ψ′〉



10

where,

if cq = cmd(u, r, assign, (v, v′)) : cq ′′, and u →∗
φ r →∗

φ (assign, (v, v′)), then

cq ′ = msg(S′, add , (v, v′) ∪ (↑φ v)) : cq ′′,
where s ∈ S′ iff there is a privilege p ∈ sm(s) such that v′ →∗

φ p,

φ′ = φ ∪ (v, v′),

ψ
′ = ψ.

if cq = cmd(u, r, revoke, (v, v′)) : cq ′′, , and u →∗
φ r →∗

φ (assign, (v, v′)), then

cq ′ = msg(S, remove, (v, v′)) : cq ′′,
φ′ = φ \ (v, v′),

ψ
′ = ψ.

if cq = msg(S′, add , δ) : cq ′′,
cq ′ = cq ′′,
φ′ = φ,

ψ
′(s) = ψ(s) ∪ δ for s ∈ S′ else ψ

′(s) = ψ(s).

if cq = msg(S′, remove, δ) : cq ′′,
cq ′ = cq ′′,
φ′ = φ.

ψ
′(s) = ψ(s) \ δ for s ∈ S′ else ψ

′(s) = ψ(s).

if otherwise, and cq ′ = cq ′′, φ′ = φ and ψ
′ = ψ.

Basically, in the execution of the administrative command, not only
the administrative policy φ of the administrative reference monitor changes,
but a message command is prepended to the command queue (contrary
to administrative commands which are appended). The message com-
mands model the updates in a practical implementation which are sent
by the administrative reference monitor to the subsystems. In the case
of assignment, the update is sent to the subsystems in S′, which are all
the subsystems with relevant privileges in the lower closure of the policy
change. The update contains the upward closure of the policy change.
Notice that the content of the message is smallest when the command is
a user assignment, since the upper closure of a user is always empty. In
practice this is also the most frequently used administrative command [5].

While updates following an assignment are sent only to those sub-
systems that are ‘affected’ by it, revocations are broadcast to all the



11

subsystems to ensure soundness of ψ. In some cases a basic expiration
mechanism can be used to reduce the number of revocations [9]. Although
we do not go into details about time or expiration here, we would like to
mention that an expiration mechanism can be implemented straightfor-
wardly in our model: The administrative command for assignment should
also specify an expiration date for the edge that is being added. The def-
inition of policies can be extended straightforwardly to allow edges to
carry expiration dates. The administrative system, and the subsystems
in S should have a way to check if edges have expired. It is important
to note that the transition system defined above can remain exactly the
same. Soundness and completeness are preserved when edges expire. Prac-
tical considerations determine which expiration dates should be used for
which assignments. For example, inside an organization where employees
go away frequently and unexpectedly, it would be appropriate to make
only user assignments that expire quickly.

Let us give a practical example of the distributed administration tran-
sition.

Example 14 (Updates in practice). We continue using the setting de-
scribed in the previous examples. Consider the administrative privileges
depicted in the administrative policy φ in Figure 1. Bob, who is a member
of mathstaff, wants to allow all members of mathstud the possibility to
use the fast computer Qalc, say for mathematical modelling. We describe
the transitions step by step: The first command in the queue is

cmd(Bob,mathstaff , assign, (mathstud , qalcusr)).

After executing this command, the new policy φ′ contains the new edge
(mathstud , qalcusr) and the command on the queue is replaced by the
command

msg(Qalc, add , (mathstud , qalcusr) ∪ (↑φ mathstud)).

The message command is executed, updating the policy of Qalc. The new
policy for Qalc includes the upper closure of mathstud, i.e. the new edge
(mathstud , qalcusr), as well as the members of mathstud.

Note that Bob’s administrative command changes the policies φ and
ψ(Qalc), but it does not affect the policies of Inq or Sqil . These subsys-
tems do not receive updates. The policy changes corresponding to Bob’s
action are depicted in Figure 2 by dashed edges.

The administration mechanism defined above preserves the safety and
availability requirements for the policy distribution ψ (without sending to



12

csstud

dbusr

(gradetable,insert)

(gradetable,view)

csstaff mathstaff

qalcadmin

qalcusr

mathstud

(job,halt)

(job,start)

(print,color)

φ 

(assign,(., csstud))

(assign,(., mathstud))

(assign,(mathstud, qalcusr))
csstaff

mathstaff

qalcadmin

qalcusr

(job,halt)

(job,start)

ψ(Qalc)

mathstud

Fig. 2. An update, and its effect on the policy of subsystem Qalc.

subsystems parts of φ that are irrelevant for them). As before, we define a
run as the consecutive execution of commands on the queue. A run in the
distributed system is denoted by ⇒∗

D. It can be shown that a run from a
queue with administrative commands, cq ∈ CQ , preserves soundness and
completeness.

Theorem 15. Given a distributed RBAC system (S, sm, φ, ψ ), let
cq ∈ CQ be a command queue. If

〈cq , S, sm, φ, ψ 〉 ⇒∗
D 〈ε, S, sm, φ′, ψ

′ 〉,

holds, then the following statements hold:

1. 〈cq , φ 〉 ⇒∗ 〈ε, φ′ 〉.
2. If ψ is sound wrt. φ, then also ψ

′ is sound wrt φ′.
3. If ψ is complete wrt. φ, then also ψ

′ is complete wrt φ′.

We refer the interested reader to the appendix for a sketch of the proof
of this theorem.

Leanness The mapping sm determining which privileges are relevant for
which subsystems, can also be used to define the smallest policy distri-
bution that satisfies soundness and completeness.



13

Definition 16 (Leanness). Given a distributed system (S, sm, φ, ψ ),
the distribution ψ is called lean iff for every subsystem s ∈ S,

ψ(s) =
⋃

p∈sm(s)

(↑φ p)

A lean policy distribution has the advantage that components of the dis-
tributed system only have parts of the RBAC policy which are needed
to decide correctly about allowing or denying user actions. This means
that the decision procedure implemented at the reference monitor is not
slowed down by evaluating irrelevant policy definitions. It can be shown
that a lean distribution is the smallest policy distribution that satis-
fies both soundness and completeness. It is straightforward to see that
a run starting with a command queue containing no revocations pre-
serves leanness. If revocations are performed, leanness may not be pre-
served. Consider for example Figure 2. Suppose that Bob, after realizing
a mistake, revokes the edge (mathstud , qalcusr) by giving the command
cmd(Bob,mathstaf , (mathstud , qalcusr)). The transition system will re-
move this edge from ψ(Qalc), however, the members of mathstud are
not removed from ψ(Qalc) (which are now superfluous for the subsys-
tem Qalc). This means that ψ(Qalc) is no longer lean. It can be shown
that in order to preserve leanness it is sufficient to add to our transition
system a new transition (independently from the message commands),
which takes care of removing irrelevant parts of the subsystem’s policy.
This step can be carried out independently of the administrative refer-
ence monitor. This corresponds to the intuition that each subsystem can
decide for itself to remove the irrelevant bits of its policy, for example
after edges have been revoked, or when edges expire. The procedure for
a subsystem s is as follows. For each edge (v, v′) in the policy the system
checks whether or not v′ →∗ p for a relevant privilege p ∈ sm(s). If not,
then the edge can be discarded.

5 Related Work

In this paper we have focussed on the issue of administration of RBAC
in a distributed system. This issue has hardly been addressed in existing
RBAC literature.

Most closely related to our work is a paper by Bhamidipati and
Sandhu which discusses how RBAC can be used in a number of dif-
ferent architectures with multiple servers in a network [2]. They focus



14

however on the capabilities of the servers (whether or not RBAC is sup-
ported), while treating the role-hierarchy, without privilege assignments,
as a central service. We do not make this distinction, instead we use the
definition of privileges in the RBAC standard (and safety and availability
considerations) to determine how to distribute the RBAC policy across
the distributed system.

dRBAC is a decentralized trust management and access control mech-
anism for systems that span multiple administrative domains [6]. It is
targeted at settings where independent organizations form dynamic coali-
tions (This setting is also addressed by the TM models discussed below. )
In dRBAC, local RBAC policies in one administrative domain can be used
in another domain, by using trust statements about the remote domain.
In this paper, on the other hand, we focus on the setting of a distributed
system within a single organization, and on how to implement adminis-
tration within a single administrative domain.

There are several lines of research about administrative RBAC policies
(aiming to extend the RBAC standard with delegation of administrative
authority to multiple users). It is not clear how these administrative mod-
els can be used in a distributed system. We mention one of the proposals.
Wang and Osborn introduce administrative domains for role graphs, a
class of RBAC policies with a single lowest and single highest role, ,
called minrole and maxrole respectively. Each administrative domain is
defined by one role, and it contains all the roles below it, except minrole.
Administrative domains can not overlap, unless one domain includes the
other completely. Wang and Osborn justify this restriction by arguing
that it should not be allowed for different domain administrators to make
changes to the same roles. On the other hand they also stress that this
is a disadvantage of their model, arguing that in practice one would like
to have overlapping domains, for example when one resource is shared
by different departments (see Figure 1). In the administrative domains
model, calcadmin can only be managed by the highest domain adminis-
trator, which manages also mathstaff and csstaff. Although we agree that
there may be practical settings where such administrative models can be
used, we do not adopt a particular model in this paper.

Role-based Trust Management (TM) [8] and distributed certificate
systems [9], such as SDSI [9], are somewhat related lines of research. In
these systems, a number of agents exchange security statements, and they
may create hierarchies similar to those used in RBAC. In TM it is as-
sumed that users are free to utter security statements, while the focus
is on whether to trust such statements (which involves some trust calcu-



15

lation by the receiver of such statements). In RBAC this assumption is
inappropriate, because statements changing the RBAC policy are explic-
itly guarded by administrative privileges. The central issue of this paper,
that is, to ensure that users can perform the actions they are allowed
to, without necessarily broadcasting the entire security policy, has also
been researched in trust management models: Administrative actions in
RBAC correspond to issuing TM credentials. In some TM models the
user is expected to collect the credentials needed for access, in others
credential chain discovery algorithms are used, which are procedures to
retrieve missing credentials from remote locations.

6 Conclusion

Although there is a large body of literature on the different aspects of
specification of administrative RBAC policies [3–5, 10, 12] there is no lit-
erature about how to use administrative RBAC policies in a distributed
system. We believe that RBAC, and efficient administrative mechanisms,
can be very useful in a distributed system, as in practice distributed sys-
tems may have a large number of users and objects.

In this paper we have presented a formal model for a distributed
RBAC system. We have formalized a number of desiderata, motivated
by safety and availability, about the policy distribution across the sub-
system of the distributed system. We have defined how administrative
commands can be executed in a distributed system, using an abstract
form of message-passing progression between the administrative system
and peripheral subsystems. We have shown that our mechanism preserves
the desiderata mentioned. Our administration mechanism is efficient in
the sense that it updates subsystems only about the relevant parts of
the RBAC policy. Finally we have shown an easy translation of our ad-
ministration mechanism into procedures for the administrative reference
monitor and the reference monitors of the subsystems in the distributed
system.

For the sake of simplicity we have restricted our model to the setting
of a single administrative reference monitor. The soundness and com-
pleteness requirements can also be applied in the more general setting of
multiple distinct administrative reference monitors. We believe that this
is an interesting possibility for future research, for example to address
settings where one can not designate a single administrative system.



16

References

1. RBAC Standard, ANSI INCITS 359-2004, 2004.
2. V. Bhamidipati and R. Sandhu. Push architectures for user role assignment.
3. J. Crampton and G. Loizou. Administrative scope: A foundation for role-based

administrative models. Transactions on Information System Security (TISSEC),
6(2):201–231, 2003.

4. M.A.C. Dekker, J. Cederquist, J. Crampton, and S. Etalle. Extended privilege
inheritance in RBAC. In Proc. of the Symp. on Information, Computer and Com-
munications Security (ASIACCS), page to be published. ACM Press, 2007.

5. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-based Access Control.
Computer Security Series. Artech House, 2003.

6. E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC: Dis-
tributed role-based access control for dynamic coalition environments. In Int. Conf.
on Distributed Computing Systems (ICDCS). IEEE Computer Society Press, 2002.

7. N. Li, J. Byun, and E. Bertino. A critique of the ANSI standard on role based
access control. IEEE Security and Privacy, page in press.

8. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discov-
ery in trust management: extended abstract. In P. Samarati, editor, Proc. of the
Conf. on Computer and Communications Security (CCS), pages 156–165. ACM
Press, 2001.

9. R. L. Rivest and B. Lampson. SDSI – A simple distributed security infrastructure.
Presented at CRYPTO’96 Rump session, 1996.

10. R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-
based administration of roles. Transactions on Information and System Security
(TISSEC), 2(1):105–135, 1999.

11. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

12. H. Wang and S. L. Osborn. An administrative model for role graphs. In Proc. of
the IFIP TC-11 WG 11.3 Annual Working Conference on Data and Application
Security (DBSec), pages 302–315. Kluwer, 2003.

Here we sketch the proof of the theorem that our administration mech-
anism preserves soundness and completeness of the policy distribution.

A Soundness and completeness of the administration
mechanism

Theorem 16 (Sound and complete administration) Given a distributed
RBAC system (S, sm, φ, ψ ), let cq ∈ CQ be a command queue. If

〈cq , S, sm, φ, ψ 〉 ⇒∗
D 〈ε, S, sm, φ′, ψ

′ 〉,

holds, then the following statements hold:

1. 〈cq , φ 〉 ⇒∗ 〈ε, φ′ 〉.
2. If ψ is sound wrt. φ, then also ψ

′ is sound wrt φ′.



17

3. If ψ is complete wrt. φ, then also ψ
′ is complete wrt φ′.

Proof. (Sketch) We sketch the proof for a command queue with a single
command. Multiple commands follow by induction.

The first statements states that the changes to the administrative
policy are the same as in the centralized setting. This holds since both
commands cmd(u, r, assign, (v, v′)) and cmd(u, r, revoke, (v, v′)) change the
administrative policy of the distributed system in the same way as in the
centralized setting (cf. Section 3), and the message commands that are
added to the queue do not change the administrative policy.

The second statement says that soundness is preserved. We can as-
sume that ψ is sound wrt φ. Let us distinguish according to the first com-
mand in the queue. In the case the command is cmd(u, rassign, (v, v′)), it is
replaced with the message command msg(S′, (v, v′)∪(↑φ v)) on the queue,
and the administrative policy is changed to φ′ = φ∪e (cf. the first item in
Definition 13). After this message command has been processed, we’ll have
that the policy of a subsystem s ∈ S′ is changed to ψ(s)∪ (v, v′)∪ (↑φ v).
Since (v, v′) ∪ (↑φ v) ∈ φ′ and ψ is sound, also

⋃
s∈S ψ

′(s) ⊆ φ′, i.e. ψ
′

is sound wrt φ′. In the case the command is cmd(u, r, revoke, (v, v′)), it is
replaced by the message command (S, remove, (v, v′)) on the queue, and
the administrative policy is changed to φ′ = φ\ (v, v′). After this message
command is executed the the edge (v, v′) is removed form all the policies
of the subsystems, which ensures that ∪s∈Sψ

′(s) ⊆ φ′, i.e. that ψ
′ is sound

wrt φ′.
The third statement says that completeness is preserved. We can as-

sume that ψ is complete wrt φ. We distinguish cases for the first command
in the queue. In case the first command is cmd(u, r, assign, (v, v′)), it is
replaced by the message command msg(S′, add , (v, v′) ∪ (↑φ v) on the
queue, and the administrative policy changes to φ′ = φ ∪ (v, v′). If the
message command is processed then the policy of a system in s ∈ S′

changes to ψ(s)∪ (v, v′)∪ (↑φ v), and the policies of the other subsystems
remain unchanged. Completeness requires that the policy of each sub-
system contains the upper closure of each relevant user privilege. Take
a subsystem s not in S′. None of the relevant privileges are below v′,
therefore the upper closures of its relevant privileges do not change. Now
take a subsystem s ∈ S′. There are relevant privileges below v, so the
upper closure of the relevant privileges now contains also (v, v′) ∪ (↑φ v).
Due to the message command, the new policy of s ∈ S′ also contains
(v, v′) ∪ (↑φ v). Hence the distribution ψ is complete. Finally in case the
first command is cmd(u, r, revoke, (v, v′)), it is replaced by the message



18

command (S, remove, (v, v′)) on the queue, and the administrative policy
is changed to φ′ = φ \ (v, v′). Processing the message command removes
the edge from the policies of the subsystems. The upper closure of any
vertex may change, but in that case it decreases in the subsystem’s policy
in the same way as in the administrative policy. ¤

B Implementation of distributed adminstration

Here we show how the distributed administration transition system can
be used in a straightforward way to define actual procedures for the ad-
ministrative system to execute the administrative commands. We do this
by specifying the procedures in pseudocode for the administrative refer-
ence monitor and for the non-administrative reference monitors of the
subsystems.

Definition 17 (Administrative Reference Monitor).

procedure(policy, cmd) if cmd = assign(user, role, v1, v2){
l1 = lower(policy,user);
l2 = lower(policy,role));
if role in second(l1) and "(assign,(v1,v2))" in second(l2) then {

l3 = upper(policy,v1);
l4 = lower(policy,v2);
for s in systems do {

if sm(s, second(l4)) then
msg(s,"add",l3+"(v1,v2)");

else nothing;}
return(policy + "(v1,v2)");}

else
return("command not allowed");}

if cmd = revoke(user, role, v1, v2){
l1 = lower(policy,user);
l2 = lower(policy,role));
if role in second(l1) and "(assign,(v1,v2))" in second(l2) then {

for s in systems do msg(s,"remove","((v1,v2)"));
return(policy - "(v1,v2)");}

else
return("command not allowed");}

Let us explain the procedure in detail. Vertices v1, v2,... (users,
roles, and privileges) are assumed to be strings, edges are bracketed pairs
of such strings (v1, v2), and policies are lists of edges. In the first step



19

the lower closure of the vertex user and that of the vertex role are
calculated. The function lower(a, b) returns a list of elements from the
policy a which are in the lower closure of b: i.e. (↓a b). In the second step
it is checked that the operation is allowed. The expression a in b is true
if an element a is in the list b, while the function second takes a list of
pairs, and returns a list of only the second element of each pair.

Now if the user in that role is allowed to perform the operation, then
the lower closure of v1 and the upper closure of v2 are calculated. The
lower closure of v2 is used to select systems that must receive an update
(denoted by msg). The function sm takes a list and a system name as input
and it returns true if the list contains relevant privileges for the system.
The upper closure of v1 is included in the update (cf. Definition 13). The
operators + and - denote appending an element to a list, and removing,
respectively. Finally, the procedure terminates by returning either the
new administrative policy, or if the operation was not allowed, an error
message.

The procedure for the non-administrative system is more simple. There
are two types of commands: A message commands from an administrative
system, or a user command, to perform an action on an object, denoted
by the command execute.

Definition 18 (Non-Administrative Reference Monitor).

procedure(policy, cmd) if cmd = msg(add, delta){
return(policy + delta);}

if cmd = msg(remove, delta){
return(policy - delta);}

if cmd = (user, role, action, object){
l1 = lower(policy,user);
l2 = lower(policy,role));
if role in second(l1) and "(action,object)" in second(l2) then {

execute(action, object);
else

return("command not allowed");}


