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Abstract. Since testing is inherently incomplete, test selection has vital
importance. Coverage measures evaluate the quality of a test suite and
help the tester select test cases with maximal impact at minimum cost.
Existing coverage criteria for test suites are usually defined in terms of
syntactic characteristics of the implementation under test or its specifi-
cation. Typical black-box coverage metrics are state and transition cov-
erage of the specification. White-box testing often considers statement,
condition and path coverage. A disadvantage of this syntactic approach
is that different coverage figures are assigned to systems that are behav-
iorally equivalent, but syntactically different. Moreover, those coverage
metrics do not take into account that certain failures are more severe
than others, and that more testing effort should be devoted to uncover
the most important bugs, while less critical system parts can be tested
less thoroughly.

This paper introduces a semantic approach to black box test coverage.
Our starting point is a weighted fault model (or WFM), which augments
a specification by assigning a weight to each error that may occur in an
implementation. We define a framework to express coverage measures
that express how well a test suite covers such a specification, taking
into account the error weight. Since our notions are semantic, they are
insensitive to replacing a specification by one with equivalent behaviour.
We present several algorithms that, given a certain minimality criterion,
compute a minimal test suite with maximal coverage. These algorithms
work on a syntactic representation of WFMs as fault automata. They are
based on existing and novel optimization problems. Finally, we illustrate
our approach by analyzing and comparing a number of test suites for a
chat protocol.
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1 Introduction

After years of limited attention, the theory of testing has now become a widely
studied, academically respectable subject of research. In particular, the ap-
plication of formal methods in the area of model-driven testing has led to a
better understanding of the notion of conformance between an implementa-
tion and a specification. Automated generation methods for test suites from
specifications [Tre96,TB03,BB04,NH83] have been developed, which have lead
to a new generation of powerful test generation and execution tools such as
SpecExplorer[CGN+05], TorX[BFS04] and TGV[JJ05].

A clear advantage of a formal approach to testing is the provable soundness of
the generated test suites, i.e. the property that each generated test suite will only
reject implementations that do not conform to the given specification. In many
cases also a completeness or exhaustiveness result is obtained, i.e. the property
that for each non-conforming implementation a test case can be generated that
will expose its errors by rejecting it (cf. [Tre96]).

In practice, the above notion of exhaustiveness is usually problematic, since
exhaustive test suites will contain infinitely many tests. This raises the question
of test selection, i.e. the selection of well-chosen, finite test suites that can be
generated (and executed) within the available resources. Test case selection is
naturally related to a measure of coverage, indicating how much of the required
conformance is tested for by a given test selection. In this way, coverage measures
can assist the tester in choosing test cases with maximal impact against some
optimization criterion (i.e. number of tests, execution time, cost).

Typical coverage measures used in black-box testing are the number of states
and/or transitions of the specification that would be visited by executing a
test suite against it [Ura92,LY96,NVS+04]; white-box testing often considers the
number of statements, conditional branches, and paths through the implementa-
tion code that are touched by the test suite execution [Mye79,MSBT04,Bal04].
Although these measures do indeed help with the selection of tests and the ex-
posure of faults, they share two shortcomings:

1. The approaches are based on syntactic model features, i.e. coverage figures
are based on constructs of the specific model or program used as a reference.
As a consequence, we may get different coverage results when we replace the
model in question with a behaviorally equivalent, but syntactically different
one.

2. The approaches fail to account for the non-uniform gravity of failures, whereas
it would be natural to select test cases in such a way that the most critical
system parts are tested most thoroughly.

It is important to realize that the weight of a failure cannot be extracted
from a purely behavioral model, as it may depend in an essential way on the
particular application of the implementation under test (IUT). The importance
of the same bug may vary considerably between, say, its occurrence as part of
an electronic game, and that as part of the control of a nuclear power plant.
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Overview. This paper introduces a semantic approach for test coverage that
aims to overcome the two points mentioned above. Our point of departure is a
weighted fault model (WFM) that assigns a weight to each potential error in
an implementation. We define our coverage measures relative to these WFMs.
Since WFMs are augmented specifications, our coverage framework qualifies as
black box.

Since WFMs are infinite semantic objects, we need to represent them finitely
if we want to model them or use them in algorithms. We provide such represen-
tations by fault automata (Section 4). Fault automata are rooted in ioco test
theory [Tre96] (recapitulated in Section 3), but their principles apply to a much
wider setting.

We provide two ways of deriving WFMs from fault automata, namely the
finite depth WFMs (Section 4.1) and the discounted WFMs (Section 4.2). The
coverage measures obtained for these fault automata are invariant under behav-
ioral equivalence.

For both fault models, we provide algorithms that calculate and optimize
test coverage (Section 5). These can all be studied as optimization problems in
a linear algebraic setting. In particular, we compute the (total, absolute and
relative) coverage of a test suite with respect to a WFM. Also, given a test
length k, we present an algorithm that finds the test of length k with maximal
coverage and an algorithm that finds the shortest test with coverage exceeding a
given coverage bound. We apply our theory to the analysis and the comparison
of several test suites derived for a small chat protocol (Section 6). Related work
is discussed in Section 7 and we end by providing conclusions and suggestions
for further research (Section 8).

2 Coverage measures in weighted fault models

Preliminaries. Let L be any set. Then L∗ denotes the set of all finite sequences
over L, which we also call traces over L. The empty sequence is denoted by ε and
|σ| denotes the length of a trace σ ∈ L∗. We use L+ = L∗ \ {ε}. For σ, ρ ∈ L∗,
we say that σ is a prefix of ρ and write σ v ρ, if ρ = σσ′ for some σ′ ∈ L∗. If
σ is a prefix of ρ, then ρ is a suffix of σ. We call σ a proper prefix of ρ and ρ a
proper suffix of σ if σ v ρ, but σ 6= ρ.

We denote by P(L) the power set of L and for any function f : L → R, we
use the convention that

∑
x∈∅ f(x) = 0 and

∏
x∈∅ f(x) = 1.

2.1 Weighted fault models

A weighted fault model specifies the desired behavior of a system by not only
providing the correct system traces, but by also giving the severity of the erro-
neous traces. In this section, we work with a fixed action alphabet L.

Definition 1. A weighted fault model (WFM) over L is a function f : L∗ →
R≥0 such that

0 <
∑

σ∈L∗ f(σ) <∞.
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Thus, a WFM f assigns a non-negative error weight to each trace σ ∈ L∗.
If f(σ) = 0, then σ represents correct system behavior; if f(σ) > 0, then σ
represents incorrect behavior and f(σ) denotes the severity of the error. So, the
higher f(σ), the worse the error. We sometimes refer to traces σ ∈ L∗ with
f(σ) > 0 as error traces and traces with f(σ) = 0 as correct traces in f .

We require the total error weight
∑

σ∈L∗ f(σ) to be finite and non-zero, in
order to define coverage measures relative to the total error weight.

2.2 Coverage measures

This section abstracts from the exact shape of test cases and test suites. Given
a WFM f over action alphabet L, we only use that a test is a trace set, t ⊆ L∗;
and a test suite is a collection of trace sets, T ⊆ P (L∗). In this way we define the
absolute and relative coverage w.r.t. f of a test and for a test suite. Moreover,
our coverage measures apply in all settings where test cases can be characterized
as trace sets (in which case test suites can be characterized as collections of trace
sets). This is a.o. true for tests in TTCN [ETS03], ioco test theory [Tre96] and
FSM testing [Ura92,LY96].

Definition 2. Let f : L∗ → R≥0 be a WFM over L, let t ⊆ L∗ be a trace set
and let T ⊆ P(L∗) be a collection of trace sets. We define

• abscov(t, f) =
∑

σ∈t f(σ) and abscov(T, f) = abscov(∪t∈T t, f)
• totcov(f) = abscov(L∗, f)
• relcov(t, f) = abscov(t,f)

totcov(f) and relcov(T, f) = abscov(T,f)
totcov(f)

The coverage of a test suite T w.r.t. f measures the total weight of the errors
that can be detected by tests in T . The absolute coverage abscov(T, f) simply
accumulates the weights of all error traces in T . Note that the weight of each trace
is counted only once, since one test case is enough to detect the presence of an
error trace in an IUT. The relative coverage relcov(T, f) yields the error weight
in T as a fraction of the weight of all traces in L∗. Since absolute (coverage)
numbers have meaning only if they are put in perspective of a maximum or
average; we advocate that the relative coverage yields a good indication for the
quality of a test suite.

Completeness of a test suite can easily be expressed in terms of coverage.

Definition 3. A test suite T ⊆ P(L∗) is complete w.r.t. a WFM f : L∗ → R≥0

if relcov(T, f) = 1.

The following proposition characterizes the complete test suites. Its proof
follows immediately from the definitions.

Proposition 1. Let f be a WFM over L and let T ⊆ P(L∗) be a test suite.
Then T is complete for f if and only if for all σ ∈ L∗ with f(σ) > 0, there exists
t ∈ T such that σ ∈ t.
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3 Test cases in labeled input-output transition systems

This section recalls some basic theory about test derivation from labeled input-
output transition systems, following ioco testing theory [Tre96]. It prepares for
the next section that treats an automaton-based formalism for specifying WFMs.

3.1 Labeled input-output transition systems

Definition 4. A labeled input-output transition system (LTS) A is a tuple
〈S, s0, L, ∆〉, where

• S is a finite set of states
• s0 ∈ S is the initial state
• L is a finite action alphabet. We assume that L = LI ∪LO is partitioned

(i.e. LI ∩ LO = ∅) into a set LI of input labels (also called input actions
or inputs) and a set LO of output labels LO (also called output actions or
outputs). We denote elements of LI by a? and elements of LO by a!
• ∆ ⊆ S × L× S is the transition relation. We require ∆ to be deterministic,

i.e. if (s, a, s′), (s, a, s′′) ∈ ∆, then s′ = s′′. The input transition relation ∆I

is the restriction of ∆ to S×LI×S and the output transition relation ∆O is
the restriction of ∆ to S×LO ×S. We write ∆(s) = {(a, s′) | (s, a, s′) ∈ ∆}
and similarly for ∆I(s) and ∆O(s). We denote by outdeg(s) = |∆(s)| the
out-degree of state s, i.e. the number of transitions leaving s

We denote the components of A by SA, s0
A, LA, and ∆A. We omit the subscript

A if it is clear from the context.

We have required A to be deterministic only for technical simplicity. This is
not a real restriction, since we can always determinize A. We can also incorporate
quiescence (i.e. the absence of outputs), by adding a self loop s

δ−→s labeled with
a special label δ to each quiescent state s, i.e. each s with ∆O(s) = ∅ and
considering δ as an output action. But, since quiescence is not preserved under
determinization, we must first determinize and then add quiescence.

Example 1. Figure 1 presents a LTS of a MP3 player: if the user pushes the play-
button, a song should be played. In b), we see the extension with quiescence.
Since δ is not enabled in state s1, we explicitly forbid the absence of outputs in
s1, i.e. a song must be played. The double circles represent the initial state.

We introduce the usual language theoretic concepts for LTSs.

Definition 5. Let A be a LTS, then

• A path in A is a finite sequence π = s0a1s1 . . . sn such that s0 = s0 and, for
all 1 ≤ i ≤ n, we have (si−1, ai, si) ∈ ∆. We denote by pathsA the set of all
paths in A. Moreover, we define by last(π) = sn the last state of π and by
|π| = n + 1 the amount of states of π.

• The trace of a path π, trace(π), is the sequence a1a2 . . . an of actions occur-
ring in π. We write tracesA = {trace(π)|π ∈ pathsA} for the set of all traces
in A.
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a)

s0

j

play?

s1

Y

song!

i play?

b)

s0

j

play?

i δ s1

Y

song!

i play?

Fig. 1. A label input-output transition system specification of a MP3 player and its
extension with quiescence

• Let σ ∈ L∗ be any trace, not necessarily one from A. We write reachk
A(σ)

for the set of states that can be reached in A in exactly k steps by following
σ, i.e. s′ ∈ reachk

A(σ) if |σ| = k and there is a path π ∈ pathsA such that
trace(π) = σ and last(π) = s′. We write reachA(σ) for the set of states
that can be reached via trace σ in any number of steps, i.e. reachA(σ) =
∪k∈N reachk

A(σ); we write reachk
A for the set of states that can be reached in

k number of steps, by following any trace, i.e. reachk
A = ∪σ∈L∗ reachk

A(σ);
and reachA = ∪σ∈L∗ reachA(σ) for the set of all reachable states in A.

As before, we leave out the subscript A if it is clear from the context.

Definition 6. Let A be a LTS and s ∈ S be a state in A, then A[s] denotes the
LTS 〈S, s, L, ∆〉.

Thus, A[s] is the same as A, but with s as initial state. This notation allows
us to speak of paths, traces, etc, in A starting from a state that is not the initial
state. For instance, pathsA[s] denotes the set of paths starting from state s.

3.2 Test cases

Test cases for LTSs are based on ioco test theory [Tre96]. As in TTCN, ioco
test cases are adaptive. That is, the next action to be performed (observe the
IUT, stimulate the IUT or stop the test) may depend on the test history, that
is, the trace observed so far. If, after a trace σ, the tester decides to stimulate
the IUT with an input a?, then the new test history becomes σa?; in case of
an observation, the test accounts for all possible continuations σb! with b! ∈ LO

an output action. Ioco theory requires that tests are ”fail fast”, i.e. stop after
the discovery of the first failure, and never fail immediately after an input. If
σ ∈ tracesA, but σa? /∈ traceA, then the behavior after σa? is not specified in s,
leaving room for implementation freedom. Formally, a test case consists of the
set of all possible test histories obtained in this way.

Definition 7. • A test case (or test) t for a LTS A is a finite, prefix-closed
subset of L∗A such that
− if σa? ∈ t, then σb /∈ t for any b ∈ L with a? 6= b
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− if σa! ∈ t, then σb! ∈ t for all b! ∈ LO

− if σ /∈ tracesA, then no proper suffix of σ is contained in t
We denote the set of all tests for A by T (A).

• The length |t| of test t is the length of the longest trace in t, i.e. |t| =
maxσ∈t |σ|. We denote by T k(A) the set of all tests for A with length k.

Example 2. Figure 2 shows two test cases for the MP3 player from Figure 1,
represented as trees and augmented with verdicts pass and fail. The prefix closed
trace set is obtained by taking all traces in these trees.

t1

?

play?

ª

δ

R

song!

fail

?

play?

ª

δ

R

song!

fail pass

t2

ª

song!

R

δ

fail

?

play?

ª

δ

R

song!

fail

?

play?

pass

Fig. 2. Two test cases for the LTS from Figure 1, augmented with verdicts pass and
fail

Since each test of A is a set of traces, we can apply Definition 2 and speak of
(absolute, total and relative) coverage of a test case (or a test suite) of A, w.r.t
to a WFM f . However, not all WFMs are consistent with the interpretation that
traces of A represent correct system behavior, and that tests are ”fail fast” and
do not fail after an input.

Definition 8. Let A be a LTS and let f : L∗ → R≥0 be a WFM. Then f is
consistent with A if L = LA and for all σ ∈ L∗A we have

• If σ ∈ tracesA, then f(σ) = 0 (correct traces have weight 0).
• f(σa?) = 0 (no failure occurs after an input).
• If f(σ) > 0 then f(σρ) = 0 for all ρ ∈ L+

A (at most one failure per trace).

The following result states that the set containing all possible test cases has
complete coverage.
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Theorem 1. Let A be a LTS and f be a WFM consistent with A. Then, the
set T (A) of all test cases for A is complete w.r.t. f .

Proof. For all σ ∈ L with f(σ) > 0, we build a test t ∈ T (A) with σ ∈ t. Write
σ = a1a2 . . . an. For 1 ≤ i ≤ n, define a set Xi by

Xi =

{
{a1 . . . ai} if ai ∈ LI

{a1 . . . ai−1b | b ∈ LO} if ai ∈ LO

The set t is defined as t = ∪1≤i≤n Xi. Since f is consistent with A, the set t
is a test in T (A). Clearly, t contains σ. Now, Proposition 1 yields that T (A) is
complete for f . ut

4 Fault automata

Weighted fault models are infinite, semantic objects. This section introduces
fault automata, which provide a syntactic format for specifying WFMs. A fault
automaton is a LTS A augmented with a state weight function r. The LTS A
is the behavioral specification of the system, i.e. its traces represent the correct
system behaviors. Hence, these traces will be assigned error weight 0; traces not
in A are erroneous and get an error weight through r, as explained below.

Definition 9. A fault automaton (FA) F is a pair 〈A, r〉, where A = 〈S, s0, L, ∆〉
is a LTS and r : S × LO → R≥0. We require that, if r(s, a!) > 0, then there is
no a!-successor of s in F , i.e. there is no s′ ∈ S such that (s, a!, s′) ∈ ∆. We
extend r to a function r : S × L→ R≥0 by putting r(s, a?) = 0 for a? ∈ LI and
define r : S → R≥0 as r(s) =

∑
a∈LO(s) r(s, a). Thus, r̄ accumulates the weight

of all the erroneous outputs in a state. We denote the components of F by AF
and rF and leave out the subscripts F if it is clear from the context. We lift all
concepts and notations (e.g. traces, paths, etcetera) that have been defined for
LTSs to FAs.

Example 3. Figure 3 presents an FA for our MP3 example. We give error weight
10 if in state s0 a song is played; and weight 5 if in state s1 no song occurs.

We wish to construct a WFM f from the FA F , using r to assign weights to
traces not in A. If there is no outgoing a!-transition in s, then the idea is that,
for a trace σ ending in s, the (incorrect) trace σa! gets weight r(s, a!). Doing so,
however, could cause the total error weight totcov(f) to be infinite.

We consider two solutions to this problem. First, finite depth WFMs (Sec-
tion 4.1) consider, for a given k ∈ N, only faults in traces of length k or smaller.
Second, discounted WFMs (Section 4.2) obtain finite total coverage through dis-
counting, while considering error weight in all traces. The solutions presented
here are only two potential solutions, there are many other ways to derive a
WFM from a fault automaton.
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s0
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i δ

?
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10

s1
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song!

i play?

?

δ

5

Fig. 3. A FA for the MP3 player

4.1 Finite depth weighted fault models

As said before, the finite depth model derives a WFM from an FA F , for a given
k ∈ N, by ignoring all traces of length longer than k, i.e. by putting their error
weight to 0. For all other traces, the weight is obtained via the function r. If σ
is a trace of F ending in s, but σa! is not a trace in F , then σa! gets weight
r(s, a!).

Definition 10. Given an FA F , and a number k ∈ N, we define the function
fk
F : L∗ → R≥0 by

fk
F (ε) = 0 fk

F (σa) =

{
r(s, a) if s ∈ reach l

F (σ) ∧ a ∈ LO ∧ l ≤ k

0 otherwise

Note that this function is uniquely defined because F is deterministic, so
that there is at most one s with s ∈ reachk

F (σ). Also, if fk
F (σa) = r(s, a) > 0,

then σ ∈ tracesF , but σa /∈ tracesF .
The following proposition states that fk

F is a WFM consistent with F , pro-
vided that F contains as most one state with a positive accumulated weight and
that is reachable within k steps.

Proposition 2. Let F be an FA, and k ∈ N. If there is an i ≤ k and a state
s ∈ reachi

F with r(s) > 0, then fk
F is a WFM consistent with F .

Example 4. Given the FA F from Figure 3 , Figure 4 shows the function fk
F for

k = 3. Using the tests t1 and t2 presented in Figure 2, we obtain abscov(t1, fk
F ) =

5 and abscov(t2, fk
F ) = 15. Moreover, if T = {t1, t2} then abscov(T, fk

F ) = 20.

4.2 Discounted weighted fault models

While finite depth WFMs achieve finite total coverage by considering finitely
many traces, discounted WFMs take into account the error weights of all traces.
To do so, only finitely many traces may have weight greater than ε, for any ε > 0.
One way to do this is by discounting: lowering the weight of a trace proportional
to its length. The rationale behind this is that errors in the near future are worse
than errors in the far future, and hence, the latter should have lower weights.
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Fig. 4. Function fk
F , with k = 3, consistent with F from Figure 3

In its basic form, a discounted WFM f for an FA F sets the weight of a trace
σa! to α|σ|r(s, a!), for some discount factor α ∈ (0, 1). If we take α small enough,
then one can easily show that

∑
σ∈L∗ f(σ) <∞. To be precise, we take α < 1

d ,
where d is the branching degree of F (i.e. d = maxs∈S outdeg(s)). Indeed, let
αd < 1 and M = maxs r(s, a)/α. Then f(σ) ≤ α|σ|M . Since there are at most
dk traces of length k in F , it follows that

∑

σ∈L∗
f(σ) =

∑

k∈N

∑

σ∈Lk

αkM ≤
∑

k∈N
dkαkM =

M

1− dα
<∞

To obtain more flexibility, we allow the discount to vary per transition. That
is, we work with a discount function α : S×L×S → R≥0 that assigns a positive
weight to each transition of F . Then we discount the trace a1 . . . ak obtained
from the path s0a1s1 . . . sk by α(s0, a1, s1)α(s1, a2, s2) · · ·α(sk−1, ak, sk). The
requirement that α is small enough now becomes:

∑

a∈L,s′∈S

α(s, a, s′) < 1

for each s. We can even be more flexible and, in the sum above, do not range
over states in which all paths are finite, as in these states we have finite total
coverage anyway. Thus, if InfF is the set of all states in F with at least one
outgoing infinite path, we require for all states s:

∑
a∈L,s′∈Inf F

α(s, a, s′) < 1.

Definition 11. Let F be an FA. The set Inf F ⊆ SF of states with at least one
infinite path is defined as Inf F = {s ∈ SF | ∃π ∈ pathsF [s] : |π| > |SF |}.

The following proposition states that the set Inf F is closed under taking the
predecessors of a state.

Proposition 3. Let F be an FA. If (s, a, s′) ∈ ∆ and s′ ∈ Inf F , then s ∈ Inf F .
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Definition 12. Let F be an FA. Then a discount function for F is a function
α : SF × LF × SF → R≥0 such that

• For all s, s′ ∈ SF , and a ∈ LF we have α(s, a, s′) = 0 iff (s, a, s′) /∈ ∆F .
• For all s ∈ SF , we have:

∑
a∈LF ,s′∈Inf F

α(s, a, s′) < 1.

Definition 13. Let α be a discount function for the FA F . Given a path π =
s0a1 . . . sn in F , we define α(π) as

∏n
i=1 α(si−1, ai, si).

Definition 14. Let F be an FA, s ∈ S, and α a discount function for F . We
define the function fα

F : L∗ → R≥0 by

fα
F (ε) = 0

fα
F (σa) =

{
α(π) · r(s, a) if s ∈ reachF (σ) ∧ a ∈ LO ∧ trace(π) = σ

0 otherwise

Since F is deterministic, there is at most one π with trace(π) = σ and at most
one s ∈ reach(σ). Hence, the function above is uniquely defined.

The following proposition states that fα
F is a WFM consistent with F , pro-

vided that F contains as most one reachable state with a positive accumulated
weight.

Proposition 4. Let F be an FA and α a discount function for F . If there is a
state s ∈ reachF with r(s) > 0, then fα

F is a WFM consistent with F .

Example 5. Figure 5 presents function fα
F for F from Figure 3 and α(s, a, s′) = γ

for every transition (s, a, s′) ∈ ∆. Using the tests t1 and t2 presented in Figure 2,
we obtain abscov(t1, fα

F ) = γ5 and abscov(t2, fα
F ) = 10 + γ25. Moreover, if

T = {t1, t2} then abscov(T, fα
F ) = 10 + γ5 + γ25.

4.3 Properties

Calibration of the discount function. Discounting weighs errors in short
traces more than in long traces. Thus, if we discount too much, we may obtain
very high test coverage just with a few short test cases. The calibration result
(Theorem 2) presented in this section shows that, for any FA F , any given k
and u > 0, there exists a discount function α such that the relative coverage of
all test cases of length k or shorter is less than u. This means that by choosing
the right α we can always make the contribution of short tests (i.e. smaller than
the given k) arbitrarily small (i.e. < u).

For technical reasons, the weight assignment function of an FA have to be
fair, i.e. all states in Inf must be able to reach some state with a positive weight.

Definition 15. A FA F has fair weight assignment if for all s ∈ Inf F , there
exists state s′ ∈ reachF [s] with r(s′) > 0.
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Fig. 5. Function fα
F for F from Figure 3 with α(s, a, s′) = γ

Theorem 2. Let F be an FA with fair weight assignment. Then there exists a
family of discount functions {αu}u∈(0,1) for F such that for all k ∈ N

lim
u↓0

relcov(T k(fαu

F ), fαu

F ) = 0

The proof of this result is given in the Appendix, page 24. Here, we only
mention that the family of discount functions αu : S × L × S → (0, 1) with
u ∈ (0, 1) is given by

αu(s, a, s′) =





1−u
|OutInf (s)| if (s, a, s′) ∈ ∆ and s′ ∈ Inf F
> 0 if (s, a, s′) ∈ ∆ and s′ ∈ S\Inf F
0 otherwise

where OutInf (s) = {(a, s′) ∈ ∆(s) | s′ ∈ Inf F}.

Invariance under bisimilarity. It is not difficult to see that our coverage no-
tions are truly semantic in that they are invariant under r-preserving bisimilarity,
and α-preserving bisimilarity.

Definition 16. Let F be an FA and let R ⊆ S × S be an equivalence relation
on the state space of F . Then R is a r-preserving bisimulation on F if for all
(s, s′) ∈ R, a ∈ L, we have

• ∀ b ∈ LO : r(s, b) = r(s′, b)
• if s

a−→s1 then there is a transition s′ a−→s′1 with (s1, s
′
1) ∈ R.

Theorem 3. Let F be an FA, R be a r-preserving bisimulation on F and
(s, s′) ∈ R. Then fk

F [s] = fk
F [s′] for all k.
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Proof.
We prove that fk

F [s](σ ·b) = fk
F [s′](σ ·b).

Let fk
F [s](σ·b) = r(s1, b) then by definition we know that s1 ∈ reachfk

F[s]
(σ) ∧

b ∈ LO then because R is an r-preserving bisimulation on F then ∃ s′1 ∈
reachfk

F[s′]
(σ) such that (s1, s

′
1) ∈ R and moreover for b ∈ LO we have fk

F [s′](σ ·
b) = r(s′1, b). Now, again because (s1, s

′
1) ∈ R we know that r(s1, b) = r(s′1, b).

So, fk
F [s](σ ·b) = fk

F [s′](σ ·b).

Definition 17. Let F be an FA and let R ⊆ S × S be an equivalence relation
on the state space of F . Then R is a α-preserving bisimulation on F if for all
(s, s′) ∈ R, a ∈ L, we have

• ∀ b ∈ LO : α(s, a, s1) = α(s′, a, s′1)
• if s

a−→s1 then there is a transition s′ a−→s′1 with (s1, s
′
1) ∈ R.

Theorem 4. Let F be an FA, R be a r-preserving bisimulation and α-preserving
bisimulation on F . Then, if (s, s′) ∈ R. Then fα

F [s] = fα
F [s′].

Proof.
We prove that fα

F [s](σ ·b) = fα
F [s′](σ ·b).

Let fα
F [s](σ·b) = α(π)·r(s1, b) then by definition we know that s1 ∈ reachfα

F[s]
(σ)

∧ b ∈ LO ∧ σ(π) = σ then because R is an r-preserving bisimulation on F then
∃ s′1 ∈ reachfα

F[s′]
(σ) ∧ ∃ π′ : σ(π) = σ′ such that (s1, s

′
1) ∈ R and more-

over for b ∈ LO we have fα
F [s′](σ · b) = α(π′) · r(s′1, b). Now, again because

(s1, s
′
1) ∈ R using that R is α-preserving bisimulation on F then α(π) = α(π′).

So, fα
F [s](σ ·b) = fα

F [s′](σ ·b).

More weighted fault models from fault automata. We like to stress that
the finite depth and discounted models are just two examples for deriving WFMs
from fault automata, but there are many more possibilities. For instance, one
may combine the two and do not discount the weights of traces of length less
than some k, and only discount traces longer than k. Alternatively, one may let
the discount factor depend on the length of the trace, etcetera. We claim that
the methods and algorithms we present in this paper can easily be adapted for
WFMs with such variations.

5 Algorithms

This section presents various algorithms for computing and optimizing coverage
for a given FA, interpreted under the finite depth or discounted weighted fault
model. In particular, Section 5.1 presents algorithms to calculate the absolute
coverage in a test suite of a given FA. In Section 5.2 we give algorithms that
yield the total coverage in a weighted fault model derived from a FA. Section 5.4
provides three optimization algorithms for tests with length k. The first one finds
a test case with maximal coverage; the second one finds the n test cases with
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maximal coverage; and the third one finds a test suite with n test cases with
maximal coverage (i.e. the best n test cases with minimum overlap).

We use the following notation. Recall that F [s] denotes the FA that is the
same as F , but with s as initial state. When F is clear from the context, we
write respectively fk

s and fα
s for the weighted fault models fk

F [s] and fα
F [s] derived

from F . Moreover, given an FA F = 〈A, r〉, we write AF for the multi-adjacency
matrix of A. That is, AF contains at position (s, s′) the number of edges between
s and s′, i.e. (AF )ss′ =

∑
a:(s,a,s′)∈∆ 1. If α is a discount function for F , then

Aα
F is a weighted version of AF , i.e. (Aα

F )ss′ =
∑

a∈L α(s, a, s′). We omit the
subscript F if it is clear from the context.

5.1 Absolute coverage in a test suite

Given test suite T , an FA F , and either a discounting function α for F or a
number k, we desire to compute

abscov(T, f) = abscov( ∪
t∈T

t, f)

where f = fk
F or fα

F . Given two tests t and t′ and an action a, we write at for
{aσ | σ ∈ t} and t + t′ for the union t∪ t′. We call a super-test the union of any
number of tests.

Now, we can write each test as t = ε; or t = at1 in case a is an input; or
t = b1t1 + · · ·+ bntn when b1, · · · , bn are all output actions of F . Each super-test
can be written as a1t

′
1 + · · · + akt′k + b1t

′′
1 + · · · + bnt′′n where ai are inputs and

bi are all outputs and t′i, t
′′
j are super-tests.

To compute the union ∪t∈T t, we recursively merge all tests in T into a super-
test using the infix operator ], Then we add the error weights of all traces in
∪t∈T t via the function ac defined below.

Merging of tests. Let t′ = a1t
′
1 + · · ·+ akt′k + b1t

′′
1 + · · ·+ bnt′′n be a super-test

and t be a test. Then t = ε or t = at1 or t = b1t
′
1 + · · ·+ bnt′n. Then we define

t′ ] t =



a1t
′
1 + · ·+aj(t′j ] t1) + · ·+akt′k + b1t

′′
1 + · ·+bnt′′n if t = at1 ∧ a = aj

a1t
′
1 + · ·+akt′k + b1(t′′1 ] t1) + · ·+bn(t′′n ] tn) if t = b1t

′
1 + · ·+bnt′n

t′ + t otherwise

Absolute coverage in a super-test. Given a super-test t of F and a state s
on F , then

ac(ε, s) = 0
ac(t, s) =

∑n
i=1aux (aiti, s)

where

aux (aiti, s) =
{

α(s, ai, δ(s, ai)) · ac(ti, δ(s, ai)) ai ∈ δ(s)
r(ai, s) otherwise

The correctness of this algorithm is stated in the following theorem.
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Theorem 5. Given an FA F , a state s ∈ V , a number k ∈ N, a function
α : S × L× S → [0, 1] and T a test suite, then

• If α is a discount function for F , then abscov(T, fα
s ) = ac(]T, s)

• If k ≥ maxt∈T |t| and α(s, a, s′) = 1 for all transitions (s, a, s′) in F , then
abscov(T, fk

s ) = ac(]T, s).

We write ]{t1, t2, . . . tn} for t1 ] t2 ] . . . tn.

5.2 Total coverage

Total coverage in discounted FA. Given an FA F , a state s ∈ S and a
discounting function α for F , we desire to calculate totcov(fα

s ) =
∑

σ∈L∗ fα
s (σ).

We assume that from each state in F we can reach at least one error state
(i.e. ∀s ∈ S : ∃s′ ∈ reachF [s] : r(s) > 0). In this way, fα

s is a WFM for every s.
The basic idea behind the computation method is that the function tc : S →

[0, 1] (“total coverage”) given by s 7→ totcov(fα
s ) satisfies the following set of

equations.

tc(s) = r(s) +
∑

a∈L,s′∈S

α(s, a, s′) · tc(s′) = r(s) +
∑

s′∈S

Aα
ss′ · tc(s′) (*)

These equations express that the total coverage in state s equals the weight
r(s) of all immediate errors in s, plus the weights in all successors s′ in s,
discounted by

∑
a∈L α(s, a, s′). Their correctness is shown in Proposition 9 in

the Appendix. Using matrix-vector notation, we obtain

tc = r + Aα · tc
Proposition 10 on page 27 of the Appendix states that the matrix I − Aα is
invertible. Thus, we obtain the following result; in particular, tc is the unique
solution of the equations (*) above.

Theorem 6. Let F be an FA such that for all s ∈ S there exists a state s′ ∈
reachF [s] with r(s′) > 0, and let α be a discount function for F . Then

tc = (I −Aα)−1 · r

Complexity. The time complexity of the method above is dominated by ma-
trix inversion, which can be computed in O(|S|3) with Gaussian elimination,
in O(|S|log27) with Strassen’s method or even faster with more sophisticated
techniques.

Example 6. Given our FA F from Figure 3 and a discount function α = {(s0, δ, s0,
1
5 ),

(s0,play?, s1,
1
3 ), (s1,play?, s1,

1
4 ), (s1, song!, s0,

1
2 )}. Then,

tc(s0) = r(s0) + α(s0, δ, s0) · tc(s0) + α(s0, play?, s1) · tc(s1)
tc(s1) = r(s1) + α(s1, song!, s0) · tc(s0) + α(s1, play?, s1) · tc(s1)

In matrix notation
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tc = r + (Aα · tc)
tc− (Aα · tc) = r
(I −Aα) · tc = r

tc = (I −Aα)−1 · r
Then, with matrix Aα, matrix I −Aα and (I −Aα)−1 equal to:

Aα =
[

1
5

1
3

1
2

1
4

]
, I −Aα =

[
4
5

−1
3−1

2
3
4

]
, (I −Aα)−1 =

[
45
26

10
13

15
26

24
13

]

and r as the one given in Figure 3: r = [10, 5], we obtain tc = 21.15384616.

Total coverage in finite depth FA. Given an FA F , a state s ∈ S and a
depth k ∈ N, we desire to compute totcov(fk

s ) =
∑

σ∈L∗ fk
s (σ). We assume that

from each state, there is at least one error reachable in k steps (i.e. ∀s ∈ S :
∃s′ ∈ reachk

F [s] : r(s′) > 0). This makes that fk
s is a weighted fault model for

any s.
The basic idea behind the computation method is that the function tck :

S → [0, 1] given by s 7→ totcov(fk
s ) satisfies the following recursive equations.

tc0(s) = 0

tck+1(s) = r(s) +
∑

(a,s′)∈∆(s)

tck(s′) = r(s) +
∑

a∈L,s′∈S

As,s′ · tck(s′)

The correctness of these equations follows from Proposition 12, stated on page
28 in the Appendix. In matrix-vector notation, we have

tc0 = 0 (**)
tck+1 = r + A · tck

Theorem 7. Let F be an FA, a state s ∈ S and k ∈ N. If ∀s ∈ S : ∃s′ ∈
reachk

F [s] : r(s′) > 0, then

tck =
∑k−1

i=0 Ai · r
Note that for a state s in an arbitrary F , there exists a state s′ ∈ reachk

F [s] with
r(s′) > 0 if and only if (

∑k−1
i=0 Ai · r)s > 0.

Complexity. Using Theorem 7 with sparse matrix multiplication, or iterating
the equations just above it, tck can be computed in time O(k · |∆|+ |S|).

Example 7. Given our FA F from Figure 3 and k = 2 the matrix A, becomes:

A =
[

1 1
1 1

]
and tck =

[
10
5

]
+

[
1 1
1 1

]
·
[

10
5

]

Then, we calculate tck = 25.
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Remark 1. A similar method to the one above can be used to compute the weight
of all tests of length k in the discounted weighted fault model, i.e. abscov(T k, fα

s ),
where T k is the set of all tests of length k in F .

Writing tcdk(s) = abscov(T k, fα
s ) (“total coverage discounted”), the recur-

sive equations become

tcd0(s) = 0

tcdk+1(s) = r(s) +
∑

a∈L,s′∈S

tcdk(s′) = r(s) +
∑

a∈L,s′∈S

Aα
ss′ · tcdk(s′)

and the analogon of Theorem 7 becomes

tcdk =
∑k−1

i=0 (Aα)i · r = (I −Aα)−1 · (I − (Aα)k) · r
The latter equality holds because I−Aα is invertible. Thus, the computing tcdk

requires one matrix inversion and, using the power method, log2(k) matrix mul-
tiplications, yielding time complexity in O(|S|log2 7 + |S|log2(k)) with Strassen’s
method.

If (I−Aα) can be put in diagonal form, the problem can be solved in O(|S|3+
log2 n). These tricks cannot be applied in the finite depth model, because I −A
is not invertible: Since A has row sum 1, we have for the vector 1 whose entries
are all equal to 1 that A1 = 1. Hence, 1 is in the kernel of I −A, so I −A is not
invertible.

Example 8. Given our FA F from Figure 3, k = 2, matrix Aα, matrix I − Aα,
(I −Aα)−1, and (Aα)k are equal to:

Aα =
[

1
5

1
3

1
2

1
4

]
, I −Aα =

[
4
5

−1
3−1

2
3
4

]
, (I −Aα)−1 =

[
45
26

10
13

15
26

24
13

]
, (Aα)k =

[
31
150

3
20

9
40

11
48

]

Here, we calculate tcdk = 13.66666667.

5.3 Relative coverage

Combining the algorithms for computing total and absolute coverage from the
previous sections, one easily computes relcov(T, f) = abscov(T,f)

totcov(f) for a test suite
T and f = fk

s or f = fα
s .

5.4 Optimization

Optimal coverage in a test case. Given an FA F and a length k, we compute
the best test case with length k (i.e. the one with highest coverage). We treat the
finite depth and discounted model at once by fixing, in the finite depth model
α(s, a, s′) = 1 if (s, a, s′) is a transition in ∆ and α(s, a, s′) = 0 otherwise. A
function α is call extended discount function if it is a discount function or it is
obtained from a finite depth model.

The optimization method is again based on recursive equations. We write
acoptk(s) = maxt∈T k{abscov(t, fα

s )} (“optimal absolute coverage”). To under-
stand the recursive characterization of acoptk, we consider two situations. First,
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consider a test case of length k +1 that in state s applies an input a? and in the
successor state s′ applies the optimal test of length k. The (absolute) coverage
of this test case is α(s, a?, s′) · acoptk(s′). The best coverage that we can obtain
by stimulating the IUT is given by max(a?,s′)∈∆I(s) α(s, a?, s′) · acoptk(s′).

Second, consider the test case of length k + 1 that in state s observes the
IUT and in each successor state s′ applies the optimal test of length k. The
coverage of this test case is r(s)+

∑
(b!,s′)∈∆O(s) α(s, b!, s′) · acoptk(s′). Now, the

optimal test acopt(s) of length k + 1 is obtained from acoptk by selecting from
these options (i.e. inputing an action a? or observing) the one with the highest
coverage. Thus, we obtain the following result, which follows from Proposition 13
on page 28.

Theorem 8. Let F be an FA, α be an extended discount function, and k ∈ N
test length. Then acoptk satisfies the following recursive equations.

acopt0(s) = 0

acoptk+1(s) =max
(
r(s) +

∑

(b!,s′)∈∆O(s)

α(s, b!, s′) · acoptk(s′),

max
(a?,s′)∈∆I(s)

α(s, a?, s′) · acoptk(s′)
)

Complexity. Based on Theorem 8, we can compute acoptk in time O(k(|S|+|∆|)).

Shortest test case with high coverage. We can use the above method not
only to compute the test case of a fixed length k with optimal coverage, but
also to derive the shortest test case with coverage higher than a given bound c.
We iterate the equations in Theorem 8 and stop as soon as we achieve coverage
higher than c, i.e. at the first n with acoptn(s) > c.

We have to take care that the bound c is not too high, i.e. higher than what
is achievable with a single test case. In the finite depth model, this is easy: if the
test length is the same as c then we can stop, since this is the longest test we
can have. In the discounted model, however, we have to ensure that c is strictly
smaller than the supremum of the coverage of all tests in single test case.

Let mw(s) = suppt∈T {abscov(t, s)}, i.e. the maximal absolute weight of a
single test case. Then mw is again characterized by a set of equations.

Theorem 9. Let F be an FA, and α be a discount function for F . Then mw is
the unique solution of the following set of equations.

mw(s) =

max


 max

(a?,s′)∈∆I(s)
α(s, a?, s′) ·mw(s′), r(s) +

∑

(b!,s′)∈∆O(s)

α(s, b!, s′) ·mw(s′)




The solution of these equations can be found by linear programming (LP).
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Theorem 10. Let F be an FA, and α be a discount function. Then mw is the
optimal solution of the following LP problem.

minimize
∑

s∈S

mw(s) subject to

mw(s) ≥ α(s, a?, s′) ·mw(s′) (a?, s′) ∈ ∆I(s)

mw(s) ≥ r(s) +
∑

(b!,s′)∈∆O(s)

α(s, b!, s′) ·mw(s′) s ∈ S

Complexity. The above LP problem contains |S| variables and |S|+|∆I | inequal-
ities. Thus, solving this problem is polynomial in |S|, |S|+ |∆I | and the length
of the binary encoding of the coefficients [Tar85]. In practice, the exponential
time simplex method outperforms existing polynomial time algorithms.

Optimal coverage in n test cases. The first algorithm in this section for
computing the best test case of length k can be extended to a method for com-
puting the best n test cases with optimal coverage: the previous algorithm picks
the best test case with length k. To pick the second best test case, we apply the
same procedure, except that we exclude the first choice from all possible options;
for the third best choice, we exclude the previous two, etc.

Optimal coverage in a test suite (with n test cases). Differently from
the previous algorithm where the n chosen tests may overlap, we now present
an algorithm to compute the best coverage in a test suite with n tests. In this
test suite, we avoid test overlapping. Avoiding overlapping after we combine the
tests in a super-test we obtain the test suite with optimal coverage. The idea is
the following.

We write acoptnk (s) = maxn
t1,t2,...tn∈T k

{abscov(t, s)}, for the ordered list [l1, l2, . . . ln],

where li is the coverage of the ith best test of length k. We characterize acoptnk
recursively. To do this we start dividing our reasoning in two sets: a test suite
for inputs and a test suite for outputs, and later we combine them.

Assume the input actions are: a1, a2, . . . am. Let T be a test suite started
in state s such that: T = {a1T1, · · · , amTm}. To compute acoptnk (s) of the test
suite T we assume that exists the set of n best test cases that start on si :
acoptnk−1(si) for all 0 ≤ i ≤ m (where si is the state reachable from s after the
input action ai). Then, let acoptnk−1(si) be equal to [l′1, l

′
2, . . . l

′
n] where l′1 is the

optimal coverage of a test started in si, l′2 is the second optimal coverage of a
test started form si, etc. Then,

acoptnk−1(si) = [l′1, l
′
2, . . . l

′
n]

= [(acoptnk−1(si))1, · · · , (acoptnk−1(si))n]
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acoptnk (s) = maxn [α(s, a1, s1)(acoptnk−1(s1))1, · · · , α(s, a1, s1)(acoptnk−1(s1))n, · · ·
α(s, am, sm)(acoptnk−1(sm))1, · · · , α(s, am, sm)(acoptnk−1(sm))n]

= maxn [α(s, a, s′) · l | (a?, s′) ∈ ∆I(s) ∧ l← (acoptnk−1(s
′))j

∧ 0 ≤ j ≤ n]

For the case of outputs. Assume the outputs actions are: b1, b2, . . . bp. Let T
be a test suite started in state s such that T = {b1T1, · · · , bpTp}. To compute
acoptnk (s) of the test suite T ,again , we assume that exists the set of n best test
cases that start on si: acoptnk−1(si) for all 0 ≤ i ≤ m (where si is the state
reachable from s after an output action bi). Also, let acoptnk−1(si) be equal to
[l′1, l

′
2, . . . l

′
n] where l′1 is the optimal coverage of a test started in si, etc. Then,

acoptnk−1(si) = [l′1, l
′
2, . . . l

′
n]

[(acoptnk−1(si))1, · · · , (acoptnk−1(si))n]

acoptnk (s) = [r(s) + α(s, b1, s1)(acoptnk−1(s1))1 + · · ·+ α(s, bp, sp)(acoptnk−1(sn))n, · · ·
r(s) + α(s, b1, s1)(acoptnk−1(s1))n + · · ·+ α(s, bp, sp)(acoptnk−1(sp))n]

= r(s)⊕ [
∑

(b!,s′)∈∆O(s)

α(s, b, s′) · l | l← (acoptnk−1(s
′))j ∧ 0 ≤ j ≤ n]

Here, x ⊕ l adds the number x ∈ R to each element of the list l (i.e., x ⊕
[e1, e2, . . . en] = [e1 + x, e2 + x, . . . en + x]). Here maxn yields the n maximal
elements in a list. By keeping the lists sorted (largest element first) we can
efficiently implement the algorithm. To do so, it suffices that maxn returns a
sorted list.

Theorem 11. Let be given an FA F , a discount function α for F , a test length
k ∈ N, and a number n ∈ N. Then tck satisfies the following equations.

v0(s) =[0, 0, .., 0]

vk+1(s) =maxn{[α(s, a, s′) · v | (a?, s′) ∈ ∆I(s), v ← (vk(s′))j ∧ 0 ≤ j ≤ n
]

+ +r(s)⊕ [
∑

(b!,s′)∈∆O(s)

α(s, b, s′) · l | l← (vk(s′))j ∧ 0 ≤ j ≤ n]

Algorithm 18 (Variation on the theme) Rather than computing in algorithm
5.4 the best test case of a fixed length k, we can compute the best test case with
coverage c, for some c < mw(s). That is, we compute v0, v1, v2 . . . vk, until we
find vk(s) ≤ c.

6 Application: a chat protocol

This section applies our theory to a practical example, namely a chat protocol,
also used as a conference protocol [BFV+99]. This protocol provides a multi-cast
service to users engaged in a chat session. Each user can send messages to and
receive messages from all other partners participating in the same chat session.
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The chat participants are dynamic, as the chat service allows them to join and
leave the chat at any moment in time. Different chats can exist at the same time,
but each user can only participate in at most one chat at a time.

The protocol specifies the data units, the underlying service and the chat
service. The protocol data units describes the format of the data units that are
used by the protocol entities to communicate with peer entities, the underlying
service describes the service of the underlying communication medium through
which these data units have to be communicated between peer entities and the
behavior of the protocol entities. Details of all this services can be found in
[BFV+99]. The chat service is explained as follows. Each chat session has a
name. The chat service has the following service primitives (called CSPs), which
can be performed at the chat service access points (CSAPs):

• join: a user joins a named chat and defines its user title in this session; the
user title identifies a user in a chat;

• datareq: a user sends a message to all other users participating in its session;
• dataind: a user receives a message from another user participating in its

session;
• leave: a user leaves the chat; since a user can only participate in one chat at

a time, there is no need to identify the chat in this primitive.

The service primitives join and leave are used for chat control. The service
primitives datareq and dataind are used for data transfer. Initially, a user is
only allowed to perform a join to a chat. After joining, the user is allowed to
send messages, by performing datareq’s, or to receive messages, by performing
dataind’s. In order to stop its participation in the chat, a user issues a leave at
any time after it has issued a join.

Data transfer is multi-cast, which means that each datareq causes corre-
sponding dataind’s in all other participants in the chat. Data transfer in the
chat service is not reliable: messages may get lost, but they never get corrupted;
corrupted messages are discarded. Also, the sequence delivery of messages is not
guaranteed.

Figure 6 displays an LTS modeling the chat protocol. This model considers
two chat sessions and three users. We consider different weights values per error,
depending on the gravity of the error, their values can be found in Figure 7.

In the transition weight function r, we consider absence of required answers
as the worse errors with weight 10; inappropriate answers as less serious with
weight 7 and inappropriate joins or leaves as the least severe with weight 3. We
interpret F as a discounted WSM under different discount functions, α1, α2 and
α3. If θ = (s, a, s′) is a transition in F leaving from state s with out-degree d,
we use α1(θ) = 1

8 ; α2(θ) = 1
d − 1

100 ; and α3(θ) = 1
d − 1

10000 .
States error values, out-degree, and the different values of discount function

can be found in Figure 8.
Figure 9 gives the total coverage in F (table on the left) and the absolute

(table on the middle) and relative (table on the right) coverage of the test suites
containing all tests of length k, for k = 2, 4, 50 and α1, α2, α3. These results
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were obtained by applying the first (total coverage in discounted FA) from Sec-
tion 5.1 second algorithm from Section 5.2 and third algorithm (Remark 1) from
Section 5.3. We used Maple 9.5 to resolve the matrix equations in these algo-
rithms.

Figure 10 displays the relative coverage for test suites that have been gen-
erated automatically with TorX, using discount function α2. For test lengths
k = 30, 35, 40, 45, 50, TorX has generated a test suite T k, consisting of 10 tests
tk1 , . . . tk10 of length k. We used Algorithm 5.1 to calculate the relative coverage
of T k. Figure 10, also, lists the coverage of each individual test tki as well as for
the test suites T k.

The running times of all computations were very small, in the order of a few
seconds. Notice the influence of the discount factor and the test length on the
coverage numbers.

7 Related work

There is a vast literature on syntactic test coverage criteria. [Bal04]. Test cov-
erage and optimization are well studied for (extended) finite state machines
[Ura92,LY96]. Most works consider syntactic coverage measures and optimize
preset tests, i.e. find the shortest sequence of inputs to the IUT that achieves a
certain coverage.

Test optimization in the adaptive setting is also considered in [NVS+04].
Their specification models are Markov Decision Processes, i.e. the tester chooses
an input to the IUT and the IUT makes a probabilistic choice among all possible
outputs, and assigns a cost to each transition to be executed. This paper provides
optimization techniques for deriving test suites with maximal expected coverage
for (final) states and transitions at minimal expected cost. Thus, their coverage
criteria are syntactic.

The work [BdJV+] optimize the order in which a test suite is executed, such
that the impact (i.e. the probability that a certain error occurs times its weight)
is maximized against total duration, cost and produced quality.

8 Conclusions and future research

Semantic notions of test coverage have long been overdue, while they are much
needed in the selection, generation and optimization of test suites. In this paper,
we presented semantic coverage notions based on WFMs. We introduced fault
automata, FA, to syntactically represent (a subset of) WFMs and provided algo-
rithms to compute and optimize test coverage. This approach is purely seman-
tic since replacing an FA with a semantically equivalent one (i.e. r-preserving
bisimilar) leaves the coverage unchanged. Our experiments with the chat proto-
col indicate that our approach is feasible for small protocols. Larger case studies
should evaluate the applicability of this framework for more complex systems.

Our weighted fault models are based on (adaptive) ioco test theory. We
expect to be easy to adapt our approach to different settings, such as FSM testing
or on-the-fly testing. Furthermore, our optimization techniques use test length as
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an optimality criterion. To accommodate more complex resource constraints (e.g
time, costs, risks/probability) occurring in practice, it is relevant to extend our
techniques with these attributes. Since these fit naturally within our model and
optimization problems subject to costs, time and probability are well-studied,
we expect that such extensions are both feasible and useful.
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A Appendix

A.1 Calibration Theorem

This section is concerned with the proof of the Calibration result, stated in The-
orem 2. We first recall this result, as well as the notion of fair weight assignment.

Definition 19. An FA F has fair weight assignment if for all s ∈ Inf , there
exists state s′ ∈ reachF [s] with r(s′) > 0.

Theorem 12. Let F = 〈A, r〉 be an FA with fair weight assignment. Then there
exists a family of discount functions αu for F such that for all k ∈ N

lim
u↓0

relcov(Tk(fαu

F ), fαu

F ) = 0

Definition 20. Given an FA F and a number u ∈ (0, 1), we define a discount
function αu : S × L× S → (0, 1) by

αu(s, a, s′) =





(1−u)
|OutInf (s)| if (s, a, s′) ∈ ∆ and s′ ∈ Inf F
> 0 if (s, a, s′) ∈ ∆ and s′ ∈ S\Inf F
0 otherwise

Here OutInf (s) = {(a, s′) ∈ ∆(s) | s′ ∈ Inf F}. We usually write Au for the
matrix Aαu .

Definition 21. Given an FA F , we define the vector 1Inf indexed by s ∈ S by

1Inf (s) =

{
1 if s ∈ Inf F
0 otherwise

Proposition 5. 1Inf is an eigenvector of Au with eigenvalue 1− u, i.e.

Au · 1Inf = (1− u) · 1Inf

24



Proof. First, consider s ∈ Inf F .

(Au · 1Inf )s =
∑

s′∈S

(Au)ss′ · 1Inf (s′)

=
∑

s′∈Inf F

(Au)ss′

=
∑

s′∈Inf F

∑

a∈L

αu(s, a, s′)

=
∑

(a,s′)∈OutInf (s)

(1− u)
|OutInf (s)|

= |OutInf (s)| · (1− u)
|OutInf (s)|

= 1− u

For s ∈ S\Inf F we get, using Proposition 3,

(Au · 1Inf )s =
∑

s′∈S

(Au)ss′ · 1Inf (s′)

=
∑

s′∈Inf

(Au)ss′

=
∑

s′∈Inf

∑

a∈L

αu(s, a, s′)

=
∑

s′∈Inf

∑

a∈L

0

= 0

ut
Corollary 1. (Au)n · 1Inf = (1− u)n · 1Inf .

Proof. By induction on n. ut
Proposition 6. Let F = 〈A, r〉 be an FA with a fair weight assignment r. Then
(
∑|S|−1

i=0 Ai
u · r)s > 0 for every s ∈ Inf F .

Proof. Note that (Ai
u)ss′ > 0 implies that s′ can be reached from s in i transi-

tions. As F is based on an FA every state s is at most |S|−1 transitions removed
any of the states s′ that can be reached from it, so that there is an i < |S| with
(Ai

u)ss′ > 0. Hence (
∑|S|−1

i=0 Ai
u)ss′ > 0 for any pair of such s, s′ ∈ S. By the

definition of fair weight assignment all states s ∈ Inf F can reach an s′ ∈ S with
r(s′) > 0. Thus we get (

∑|S|−1
i=0 Ai

u · r)s =
∑

s′∈S

∑|S|−1
i=0 (Ai

u)ss′ · r(s′) > 0. ut
Now we are ready to show that the family of discounted functions {αu}u∈(0,1)

has the desired properties.
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Proposition 7. Let F = 〈A, r〉 be an FA with fair weight assignment. Then for
every s ∈ Inf F

lim
u↓0

relcov(Tk(fαu

F ), fαu

F ) = 0

Proof. Recall that

relcov(Tk(fαu

F ), fαu

F ) =
abscov(Tk(fαu

F ), fαu

F )
totcov(fαu

F )

As abscov(Tk(fαu

F ), fαu

F ) is always finite, it suffices to show that limu↓0 totcov(fαu

F ) =
∞. This can be shown as follows.

Define rmin = mins′∈Inf (
∑|S|−1

i=0 Ai
u · r)s′ . Then Proposition 6 yields that

rmin > 0. Moreover, we have for all s′ ∈ S that

(
|S|−1∑

i=0

Ai
u · r)s′ ≥ rmin · 1Inf (s′).

Therefore,

totcov(fαu

F ) =
( ∞∑

i=0

Ai
u · r

)
s

=
( ∞∑

j=0

Aj|S|
u ·

|S|−1∑

i=0

Ai
u · r

)
s

≥ rmin ·
( ∞∑

j=0

Aj|S|
u · 1Inf

)
s

= rmin ·
( ∞∑

j=0

(1− u)j|S| · 1Inf

)
s

=
rmin

(1− (1− u)|S|)

As rmin > 0 and 1−(1−u)|S| is of the order O(u), we get lim
u↓0

( ∑∞
i=0 Ai

u ·r
)
s

=∞.

ut
A.2 Correctness proofs of the algorithms

Total coverage in discounted model. The following proposition gives an
alternative recursive characterization of F .

Proposition 8. Let F be an FA and α a discount function for F . Then

fα
s (aσ) =





∑
s′∈S α(s, a, s′) · fα

s′(σ) if a ∈ ∆(s),
r(s, a) if a /∈ ∆(s), σ = ε,
0 otherwise

where a ∈ ∆(s) means that ∃ s′ : (a, s′) ∈ ∆(s).
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Proposition 9. Let F be an FA and α a discount function for F . Then the
function tc : S → [0, 1], s 7→ totcov(fα

s ) satisfies the following set of equations.

tc(s) = r(s) +
∑

a∈L,s′∈S

α(s, a, s′) · tc(s′)

Proof.

tc(s) =
∑

σ∈L∗
fα

s (σ)

= fα
s (ε) +

∑

a/∈∆(s)

fα
s (a) +

∑

a/∈∆(s),σ∈L+

fα
s (aσ) +

∑

a∈∆(s),σ∈L∗
fα

s (aσ)

(Proposition 8)

= 0 +
∑

a/∈∆(s)

r(s, a) + 0 +
∑

a∈∆(s),s′∈S,σ∈L∗
α(s, a, s′) · fα

s′(σ)

= r(s) +
∑

a∈L,s′∈S

α(s, a, s′) · tc(s′)

ut
Proposition 10. Let F be an FA such that for all states s ∈ S there is a state
s′ ∈ reachF [s] with r(s) > 0. Let α be a discount function for F . Then, the
matrix I −Aα is invertible.

Proof. By reordering the states we can obtain Inf F = {s1, . . . , sn1} and VF\Inf F =
{sn1+1, . . . , sn1+n2} with n1 +n2 = n = |VF |. Without loss of generality we may
therefore assume that Aα is of the form(

B C
0 D

)

with B the n1 × n1 matrix that is the restriction of Aα to Inf F , and D the
restriction of Aα to VF\Inf F . It follows that I(n) −Aα is invertible iff I(n1) −B
and I(n2) −D are invertible.

We first show that ‖Bv‖∞ < ‖v‖∞ for all v 6= 0, where ‖v‖∞ = maxi(vi)
denotes the supremum norm of v.

Assume v 6= 0 and consider the ith component (Bv)i of the vector Bv.

(Bv)i =
∑

j≤n1

Bijvj

≤
∑

j≤n1

Bij‖v‖∞

= ‖v‖∞ ·
∑

(j,a)∈OutInf(i)
α(i, a, j) (Def. of discount function)

< ‖v‖∞

27



Hence, ‖Bv‖∞ < ‖v‖∞. Therefore Bv 6= v, so (I − B)v 6= 0 for v 6= 0, which
yields that I −B is invertible.

Without loss of generality we can also assume that the states have been
numbered such that for i, j ∈ VF\Inf F (i, a, j) ∈ δF implies i < j. It follows
that Dij = 0 for all 1 < j ≤ i < n2, and that (I−D)ij = 0 for all 1 < j < i < n2

with (I −D)ii = 1 for all 1 < i < n2. We can conclude that det(I −D) = 1 6= 0,
and thus that I −D is invertible. ut

Total coverage in finite depth model. The following proposition gives an
alternative recursive characterization of fk

s ; it is the analogon in the finite depth
model of Proposition 8.

Proposition 11. Let F be an FA and k ∈ N be a number. Then

fk
s (aσ) =





∑
s′:(a,s′)∈∆(s) fk−1

s′ (σ) if a ∈ ∆(s), |σ| ≤ k,
r(s, a) if a /∈ ∆(s), σ = ε,
0 otherwise.

Proposition 12. Let F be an FA and α a discount function for F . Then the
function tck : S → [0, 1], s 7→ totcov(fk

s ) satisfies the following set of equations.

tck(s) = r(s) +
∑

(a,s′)∈∆(s)

tck−1(s′)

Proof. As the proof of Proposition 9.

Optimal coverage.

Proposition 13. Let F be an FA and let α be a discount function for F and
k ∈ N.

• Let s be a state, let (a?, s′) ∈ ∆I(s), and let t′ be a test case in states s′.
Write t for the test case t = {a?σ|σ ∈ t′}. Then

abscov(t, fα
s ) = α(s, a, s′) · abscov(t′, fα

s′)

abscov(t, fk
s ) = abscov(t′, fk−1

s′ ) if |t| ≤ k + 1

• Let s be a state and ∆O(s) = {(b1!, s1), (b2!, s2) . . . (bn!, sn)}, where the bi!’s
are all distinct. Also, write LO\{b1, . . . bn} = {c1, c2, . . . cm}. Let t1, t2, . . . tn
be test cases in states s1 . . . sn respectively. Write t for the test case t =
{bi!σ | σ ∈ ti}∪{c1, c2, . . . cm}. Then

abscov(t, fα
s ) = r(s) +

n∑

i=1

α(s, bi!, si) · abscov(ti, fα
si

)

abscov(t, fk
s ) = r(s) +

n∑

i=1

abscov(ti, fk
si

) if |t| ≤ k + 1
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Proof. We give the proof for fα
s ; the one for fk

s is similar.

•

abscov(t, fα
s ) =

∑
σ∈t

fα
s (σ)

=
∑

σ′∈t′
fα

s (aσ′) (Proposition 8)

=
∑

σ′∈t′
α(s, a, s′) · fα

s′(σ
′)

= α(s, a, s′) · abscov(t′, fα
s′)

•

abscov(t, fα
s ) =

∑
σ∈t

fα
s (σ)

=
∑

c6∈∆(s)

fα
s (c) +

n∑

i=1

∑

σ′∈ti

fα
s (biσ

′) (Proposition 8)

= r(s) +
n∑

i=1

∑

σ′∈ti

α(s, bi, si) · fα
si

(σ′)

= r(s) +
n∑

i=1

α(s, bi, si) · abscov(ti, fα
si

)
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Fig. 6. Chat Protocol with two chats. L = leave, J = join, D = data and W = answer

name of error value name of error value

join.A.1.PDU! 3 leave.A.to.C.2.PDU! 3
join.A.2.PDU! 3 leave.A.to.BC.1.PDU! 3
answer.B.1! 7 leave.A.to.BC.2.PDU! 3
answer.B.2! 7 dataind! 3
answer.C.1! 7 data.to.B.PDU! 3
answer.C.2! 7 data.to.C.PDU! 3
leave.A.to.B.1.PDU! 3 data.to.BC.PDU! 3
leave.A.to.B.2.PDU! 3 quiescent! 10
leave.A.to.C.1.PDU! 3

Fig. 7. Error names and errors values

30



state r d α1 α2 α3

s0 64 3 1/8 0.323 0.333
s1 71 1 1/8 0.990 0.999
s2 71 1 1/8 0.990 0.999
s3 71 1 1/8 0.990 0.999
s4 71 1 1/8 0.990 0.999
s5 71 1 1/8 0.990 0.999
s6 71 1 1/8 0.990 0.999
s7 64 9 1/8 0.101 0.111
s8 64 9 1/8 0.101 0.111
s9 67 1 1/8 0.990 0.999
s10 67 1 1/8 0.990 0.999
s11 67 1 1/8 0.990 0.999
s12 67 1 1/8 0.990 0.999
s13 71 1 1/8 0.990 0.999
s14 71 1 1/8 0.990 0.999
s15 71 1 1/8 0.990 0.999
s16 71 1 1/8 0.990 0.999
s17 71 1 1/8 0.990 0.999
s18 71 1 1/8 0.990 0.999
s19 64 8 1/8 0.115 0.124

state r d α1 α2 α3

s20 64 8 1/8 0.115 0.124
s21 71 1 1/8 0.990 0.999
s22 71 1 1/8 0.990 0.999
s23 71 1 1/8 0.990 0.999
s24 71 1 1/8 0.990 0.999
s25 64 8 1/8 0.115 0.124
s26 64 8 1/8 0.115 0.124
s27 71 1 1/8 0.990 0.999
s28 71 1 1/8 0.990 0.999
s29 67 1 1/8 0.990 0.999
s30 71 1 1/8 0.990 0.999
s31 67 1 1/8 0.990 0.999
s32 67 1 1/8 0.990 0.999
s33 64 6 1/8 0.156 0.166
s34 64 6 1/8 0.156 0.166
s35 71 1 1/8 0.990 0.999
s36 71 1 1/8 0.990 0.999
s37 67 1 1/8 0.990 0.999
s38 71 1 1/8 0.990 0.999
s39 71 1 1/8 0.990 0.999

Fig. 8. The accumulated weights of erroneous outputs (r), the out-degree (d) and the
different discounts α per state

tc

α1 99.134
α2 511.369
α3 743.432

ack k = 2 k = 4 k = 50

α1 89.750 97.171 99.134
α2 130.607 239.025 510.768
α3 132.652 249.320 733.540

rck k = 2 k = 4 k = 50

α1 91% 98% 100%
α2 25% 47% 100%
α3 18% 34% 99%

Fig. 9. Total coverage (tc) for different discount functions; absolute (ack) and relative
(rck) coverage of the test suite containing all tests of length k

test tk
1 test tk

2 test tk
3 test tk

4 test tk
5 test tk

6 test tk
7 test tk

8 test tk
9 test tk

10

k = 30 15.3% 4.6% 14.0% 5.3% 15.3% 4.6% 14.2% 8.5% 15.3% 4.9%
k = 35 14.1% 15.3% 15.3% 8.5% 8.6% 5.3% 15.3% 8.5% 8.5% 4.9%
k = 40 5.3% 14.0% 14.2% 15.3% 5.3% 14.1% 15.3% 5.3% 14.0% 15.3%
k = 45 5.0% 8.5% 14.0% 5.0% 8.5% 15.3% 4.9% 15.3% 4.5% 14.2%
k = 50 5.3% 14.2% 5.3% 4.9% 14.0% 5.3% 14.2% 5.3% 14.0% 15.3%

k = 30 k = 35 k = 40 k = 45 k = 50

test suite T k 63.1% 69.1% 72.8% 47.2% 54.2%

Fig. 10. Relative coverage, as a percentage, of tests generated by TorX and the test
suites of them, using α2
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