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partial differential equations. First, we consider the shallow water equations, where
topography leads to nonconservative products, in which the known, possibly dis-
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more intrinsic nonconservative products.
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1 Introduction

Systems of equations containing nonconservative products cannot be trans-
formed into divergence form, i.e., equations of the form ∂tu + g(u)∂xu = 0
cannot be written as ∂tu+∂xf(u) = 0. This causes problems once the solution
becomes discontinuous, because the weak solution in the classical sense of dis-
tributions then does not exist. Consequently, no classical Rankine-Hugoniot
shock conditions can be defined. To overcome these problems we use the theory
of Dal Maso, LeFloch and Murat (DLM) [3] for nonconservative products. In
this theory a definition is given for nonconservative products g(u)∂xu, where
g : R

m → R
m is a smooth function, but u :]a, b[→ R

m may admit discon-
tinuities. Using this theory, a notion of a weak solution can be given to the
Riemann problem for nonconservative hyperbolic partial differential equations.
A problem with this theory is, however, the introduction of a path in phase
space connecting the left and right state across a discontinuity. It is possible
to derive an expression for this the path by constructing entropy solutions
to the hyperbolic equations (see LeFloch [9]), but that construction can be a
very difficult as well as costly job. In this article we will investigate therefore
also the influence of this path in phase space and propose a new discontinu-
ous Galerkin finite element method (DGFEM) suitable for hyperbolic partial
differential equations in nonconservative form.

We are particularly interested in solving dispersed two-phase two-fluid mod-
els. The use of a DG method for these problems is of interest because it
can deal efficiently with unstructured and deforming grids, local mesh re-
finement (h-adaptation), adjustment of the polynomial order in each element
(p-refinement), and parallel computation. These benefits stem from the very
compact stencil used in DG methods. Dispersed two-phase two-fluid models
contain, however, nonconservative products which are introduced in the gov-
erning equations in the modeling procedure [4,5]. This poses serious problems
and at present there is no literature available how to deal with nonconserva-
tive products in a DGFEM context, which motivated the research discussed
in this article.

Over the years several authors have been developing numerical methods suit-
able for nonconservative hyperbolic partial differential equations with non-
smooth solutions. Toumi [15] introduced a generalized Roe solver based on the
DLM theory, which was later applied by Toumi and Kumbaro [16] to shock
tube problems and two-fluid problems. The work by Toumi [15] was also used
by Parés [10], Castro, Gallardo and Parés [2] and Parés and Castro [11] to de-
velop numerical schemes in the finite volume context. An alternative approach
is followed by Saurel and Abgrall [13] in which the DLM theory is not used.
They apply the criterium in multi-fluid flows, where the phases are separated
by well-defined interfaces, that if pressure and velocity are uniform in both

2



fluids, these variables must remain uniform during their temporal evolution
(in the absence of surface tension). Using this criterium they construct a Go-
dunov scheme for the conservative part of the system. The nonconservative
part is then adjusted to meet the criterium above. They also use this criterium
for dispersed two phase flows, where the interfaces are not well-defined; in this
case their approach therefore seems less valid.

Here we will use the DLM theory in a DGFEM context. This work differs
from the previously mentioned work in that we do not formulate a weak for-
mulation based on generalized Roe solvers. Instead, we present and use a new
numerical flux in the context of the DLM theory.

The outline of this article is as follows. We first summarize the main theory
of weak solutions for partial differential equations in nonconservative form as
proposed by Dal Maso, LeFloch and Murat [3] in Section 2, but in space-time.
Using this theory we derive the space-time DGFEM formulation in Section 3
and state the space DGFEM formulation as a special case in Appendix A.
In DGFEM methods, the numerical flux plays an essential role. In Section 4
we derive therefore the numerical flux for systems with nonconservative prod-
ucts (NCP flux) which can also be applied to moving grids. In Section 5 we
apply DGFEM to two nonconservative hyperbolic systems and show numer-
ical results using a linear path in phase space. The effect of different paths
in phase space on the numerical solution is investigated in Section 6. Finally,
conclusions are drawn in Section 7.

2 Nonconservative hyperbolic partial differential equations

The main topic of this article is the derivation of a formulation for DGFEM
suitable for nonlinear hyperbolic partial differential equations in nonconserva-
tive form and the numerical investigation of these systems. We use the DLM
theory to overcome the absence of a weak solution in the classical sense of
distributions for these types of equations. In an article by Dal Maso, LeFloch
and Murat [3], a definition was given for nonconservative products of the form
g(u)∂xu, where g : R

m → R
m is a smooth function, but u :]a, b[→ R

m may
admit discontinuities. They assumed u to be a function of bounded variation
(BV), viz. a Lebesgue integrable function whose first derivative is a bounded
Borel measure, and the product g(u)∂xu is defined as a Borel measure on
]a, b[. Such a definition is necessary when g is not the differential of a smooth
function f , i.e., there is no f such that g(u)∂xu admits a conservative form
∂xf . The following example, given by LeFloch [9], illustrates the DLM theory.

Consider the function u(x) composed of two constant vectors uL and uR in

3



R
m with uL 6= uR:

u(x) = uL +H(x− xd)(uR − uL), x ∈]a, b[, (1)

where xd ∈]a, b[ and H : R → R is the Heaviside function with H(x) = 0 if
x < 0 and H(x) = 1 if x > 0. Consider any smooth function g : R

m → R
m. We

see immediately that g(u)∂xu is not defined at x = xd since here |∂xu| → ∞.
Dal Maso, LeFloch and Murat [3] introduce therefore a smooth regularization
uε of the discontinuous function u. They show that in this particular case, if
the total variation of uε remains uniformly bounded with respect to ε:

g(u)
du

dx
≡ lim

ε→0
g
(
uε
)duε

dx

gives a sense to the nonconservative product as a bounded measure. This limit,
however, depends on how we choose uε. Introduce a Lipschitz continuous path
φ : [0, 1] → R

m, satisfying φ(0) = uL and φ(1) = uR, connecting uL and uR in
R

m. The following regularization uε for u then emerges:

uε(x) =





uL, if x ∈]a, xd − ε[

φ(x−xd+ε
2ε

), if x ∈]xd − ε, xd + ε[ ε > 0.

uR, if x ∈]xd + ε, b[

(2)

Using this regularization, LeFloch [9] states that when ε tends to zero, then:

g(uε)
duε

dx
→ Cδxd

,

vaguely in the sense of measures on ]a, b[, where δxd
is the Dirac measure at

xd and the scalar C is given by:

C =
∫ 1

0
g(φ(τ))

dφ

dτ
(τ) dτ.

We see that the limit of g(uε)∂xu
ε depends on φ. There is one exception,

namely if an f : R
m → R exists with g = ∂uf . In this case:

C = f(uR) − f(uL).

We are, however, interested in the case when such a function f does not
exist. We see then that the definition of the nonconservative product g(u)∂xu
must depend on the path φ chosen in the regularization. In Section 6, we will
investigate the effect of different paths φ on the numerical solution. For now,
assume that the path φ is given. In Dal Maso, LeFloch and Murat [3] it is
assumed that the path belongs to a fixed family of paths in R

m. These paths
are Lipschitz continuous maps φ : [0, 1] × R

m × R
m → R

m which satisfy the
following properties:
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(H1) φ(0; uL, uR) = uL, φ(1; uL, uR) = uR,
(H2) φ(τ ; uL, uL) = uL,

(H3)
∣∣∣∂φ
∂τ

(τ ; uL, uR)
∣∣∣ ≤ K|uL − uR|.

Dal Maso, LeFloch and Murat [3] consider functions u :]a, b[→ R
m of bounded

variation, viz. u ∈ BV (]a, b[,Rm). These are functions of L1(]a, b[,Rm) whose
first order derivative is a bounded Borel measure on the interval ]a, b[. Since u
is BV, u admits a countable set of discontinuity points and at each such point
xd, a left trace uL = limε↓0 u(xd−ε) and a right trace uR = limε↓0 u(xd +ε) ex-
ist. For more on Borel measures, BV functions and related topics, see, e.g., [19].

Based on the family of paths satisfying (H1)-(H3), the following theorem is
given by Dal Maso, LeFloch and Murat [3]:

Theorem 1 Let u :]a, b[→ R
m be a function of bounded variation and g :

R
m → R

m be a continuous function. Then, there exists a unique real-valued
bounded Borel measure µ on ]a, b[ characterized by the two following properties:

(1) If u is continuous on a Borel set B ⊂]a, b[, then:

µ(B) =
∫

B
g(u)

du

dx
dλ,

where λ is the Borel measure.
(2) If u is discontinuous at a point xd of ]a, b[, then:

µ({xd}) =
∫ 1

0
g(φ(τ ; uL, uR))

∂φ

∂τ
(τ ; uL, uR) dτ.

By definition, this measure µ is the nonconservative product of g(u) by ∂xu
and is denoted by:

µ =

[
g(u)

du

dx

]

φ

.

In this article we will derive a space-time DGFEM weak formulation for non-
linear hyperbolic systems of partial differential equations in nonconservative
form in multi-dimensions:

Ui,0 +GikrUr,k = 0, x̄ ∈ R
q, t > 0, (3)

with U ∈ R
m, G ∈ R

m×R
q×R

m; we use the comma notation to denote partial
differentiation and the summation convention on repeated indices. Here, (·),0

denotes partial differentiation with respect to time and (·),k (k = 1, . . . , q)
partial differentiation with respect to the spatial coordinates. In a space-time
context, space and time variables are, however, not explicitly distinguished. A
point at time t = x0 with position x̄ = (x1, x2, ..., xq) has Cartesian coordinates
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x = (x0, x̄) ∈ R
q+1. We can write (3) then as:

TikrUr,k = 0, x ∈ R
q+1, x0 > 0, (4)

with U ∈ R
m and T ∈ R

m × R
q+1 × R

m given by:

Tikr =




δir, if k = 0,

Gikr, otherwise,
(5)

where δ represents the Kronecker delta symbol. Dal Maso, LeFloch and Mu-
rat [3] give a similar theorem to Theorem 1 for the nonconservative term
TikrUr,k in multi-dimensions. As before, assume a given family of Lipschitz
continuous paths φ : [0, 1]×R

m ×R
m → R

m that satisfy, for some K > 0 and
for all UL, UR ∈ R

m and τ ∈ [0, 1], the properties:

(H1) φr(0;UL, UR) = UL
r , φr(1;UL, UR) = UR

r ,
(H2) φr(τ ;U

L, UL) = UL
r ,

(H3)
∣∣∣∂φr

∂τ
(τ ;UL, UR)

∣∣∣ ≤ K|UL
r − UR

r |,
(H4) φr(τ ;U

L, UR) = φr(1 − τ ;UR, UL).

Note that we have added an extra property, H4, that does not have to be
satisfied in the one dimensional case. Let Ω ⊂ R

q+1 with Ω = Ωu ∪ Su ∪ Iu
where Ωu is the set of points of approximate continuity, Su the set of points
of approximate jump and Iu contains the irregular points. The DLM theorem
then states:

Theorem 2 Let U : Ω → R
m be a bounded function of bounded variation

defined on an open subset Ω of R
q+1 and T : R

m → R
m be a locally bounded

Borel function. Then there exists a unique family of real-valued bounded Borel
measures µi on Ω, i = 1, 2, ..., m such that

(1) if B is a Borel subset of Ωu, then:

µi(B) =
∫

B
TikrUr,k dλ, (6)

where λ is the Borel measure;
(2) if B is a Borel subset of Su, then:

µi(B) =
∫

B∩Su

∫ 1

0
Tikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ nL

k dH
q, (7)

with UL and UR the left and right traces at the discontinuity, where Hq

denotes the q-dimensional Hausdorff measure and where we choose nL

the outward normal with respect to the left state;
(3) if B is a Borel subset of Iu, then:

µi(B) = 0. (8)
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The measure µi is the nonconservative product of Tikr by Ur,k and is denoted
by:

µi =
[
TikrUr,k

]

φ
. (9)

In particular, a piecewise C1 function U is a weak solution of (4) if and only
if the following two conditions are satisfied [2]:

(1) U is a classical solution in the domains where it is C1.
(2) Along a discontinuity U satisfies the generalized Rankine-Hugoniot jump

condition:

−σ(UR
i − UL

i ) +
∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = 0, (10)

where σ is the speed of propagation of the discontinuity, UL and UR are
the left and right limits of the solution at the discontinuity and n̄L is the
space component of the space-time normal nL (see e.g. LeFloch [9]).

Note that when G(U) is the Jacobian of some flux function F (U) the jump
condition (10) is independent of the family of paths and reduces to the usual
Rankine-Hugoniot condition:

Fik(U
R)n̄L

k − Fik(U
L)n̄L

k = σ(UR
i − UL

i ). (11)

3 Space-time DGFEM discretization

In this section we will introduce the formulation for space-time DGFEM for
systems of hyperbolic partial differential equations containing nonconservative
products. We will start by introducing space-time elements, function spaces,
trace operators and basis functions, after which we derive the space-time DG
formulation. In Appendix A we also give the formulation for space DGFEM.

3.1 Space-time elements

In the space-time DGFEM method, the space and time variables are not dis-
tinguished. A point at time t = x0 with position vector x̄ = (x1, x2, ..., xq) has
Cartesian coordinates (x0, x̄) in the open domain E ⊂ R

q+1. At time t, the
flow domain Ω(t) is defined as:

Ω(t) := {x̄ ∈ R
q : (t, x̄) ∈ E}.
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By taking t0 and T as the initial and final time of the evolution of the space-
time flow domain, the space-time domain boundary ∂E consists of the hyper-
surfaces:

Ω(t0) := {x ∈ E : x0 = t0},
Ω(T ) := {x ∈ E : x0 = T},

Q := {x ∈ ∂E : t0 < x0 < T}.

The time interval [t0, T ] is partitioned using the time levels t0 < t1 < ... < T ,
where the n-th time interval is defined as In = (tn, tn+1) with length ∆tn =
tn+1 − tn. The space-time domain E is then divided into Nt space-time slabs
En = E ∩ In. Each space-time slab En is bounded by Ω(tn), Ω(tn+1) and
Qn = ∂En/(Ω(tn) ∪ Ω(tn+1)).

The flow domain Ω(tn) is approximated by Ωh(tn), where Ωh(t) → Ω(t)
as h → 0, with h the radius of the smallest sphere completely containing
the largest space-time element. The domain Ωh(tn) is divided into Nn non-
overlapping spatial elements Kj(tn). Similarly, Ω(tn+1) is approximated by
Ωh(tn+1). We can relate each element Kn

j = Kj(tn) to a master element

K̂ ⊂ R
q through the mapping F n

K :

F n
K : K̂ → Kn

j : ξ̄ 7→ x̄ =
∑

i

xi(K
n
j )χi(ξ̄)

with xi the spatial coordinates of the vertices of the spatial element Kn
j and

χi the standard Lagrangian shape functions defined on element K̂. The space-
time elements Kn

j are constructed by connecting Kn
j with Kn+1

j using linear
interpolation in time, resulting in the mapping Gn

K from the master element
K̂ ⊂ R

q+1 to the space-time element Kn:

Gn
K : K̂ → Kn : ξ 7→ (t, x̄) =

(
1
2
(tn+1 + tn) + 1

2
(tn+1 − tn)ξ0,

1
2
(1 − ξ0)F

n
K(ξ̄) + 1

2
(1 + ξ0)F

n+1
K (ξ̄)

)
.

The tessellation T n
h of the space-time slab En

h consists of all space-time ele-
ments Kn

j ; thus the tessellation Th of the discrete flow domain Eh := ∪Nt−1
n=0 En

h

then is defined as Th := ∪Nt−1
n=0 T n

h .

The element boundary ∂Kn
j , which is the union of open faces of Kn

j , consists
of three parts: Kj(t

+
n ) = limǫ↓0Kj(tn + ǫ), Kj(t

−
n+1) = limǫ↓0Kj(tn+1 − ǫ) and

Qn
j = ∂Kn

j /(Kj(t
+
n )∪Kj(t

−
n+1)). Define the grid velocity v ∈ R

q as v = ∆x̄/∆t.
The outward space-time normal vector at an element boundary point on ∂Kn

j

is given by:

n =





(1, 0̄) at Kj(t
−
n+1),

(−1, 0̄) at Kj(t
+
n ),

(−vkn̄k, n̄) at Qn
j ,

(12)
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where 0̄ ∈ R
q. Note that since the space-time normal vector n has length

one, the space component of the space-time normal n̄ has a length |n̄| =
1/
√

1 + v · v. It can be convenient to split the element boundaries into separate
faces. In addition to the faces Kj(t

+
n ) and Kj(t

−
n+1), we also define therefore

interior and boundary faces. An interior face is shared by two neighboring
elements Kn

i and Kn
j , such that Sn

ij = Qn
i ∩Qn

j , and a boundary face is defined
as Sn

Bj = ∂En ∩Qn
j . The set of interior faces in time slab In is denoted by Sn

I

and the set of all boundary faces by Sn
B. The total set of faces is denoted by

Sn
I,B = Sn

I ∪ Sn
B.

3.2 Function spaces and trace operators

We consider approximations of U(x, t) and functions V (x, t) in the finite ele-
ment space Vh, which is defined as:

Vh =
{
V ∈ (L2(Eh))

m : V |K ◦GK ∈ (P p(K̂))m, ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh and P p(K̂) de-
notes the space of polynomials of degree at most p on the reference element
K̂. Here m denotes the dimension of U .

We now introduce some operators as defined in Klaij et al. [8]. The trace
of a function f ∈ Vh at the element boundary ∂KL is defined as:

fL = lim
ǫ↓0

f(x− ǫnL),

with nL the unit outward space-time normal at ∂KL. When only the space
components of the outward normal vector are considered we will use the no-
tation n̄L. A function f ∈ Vh has a double valued trace at element boundaries
∂K. The traces of a function f at an internal face S = K̄L ∩ K̄R are denoted
by fL and fR. The jump of f at an internal face S ∈ Sn

I in the direction k of
a Cartesian coordinate system is defined as:

[[f ]]k = fLn̄L
k + fRn̄R

k ,

with n̄R
k = −n̄L

k . The average of f at S ∈ Sn
I is defined as:

{{f}} = 1
2
(fL + fR).

The jump operator satisfies the following product rule at S ∈ Sn
I for ∀g ∈ Vh

and ∀f ∈ Vh, which can be proven by direct verification:

[[gifik]]k = {{gi}}[[fik]]k + [[gi]]k{{fik}}. (13)
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Consequently, we can relate element boundary integrals to face integrals:

∑

K∈T n
h

∫

Q
gL

i f
L
ikn̄

L
k dQ =

∑

S∈Sn
I

∫

S
[[gifik]]k dS +

∑

S∈Sn
B

∫

S
gL

i f
L
ikn̄

L
k dS. (14)

3.3 Basis functions

Polynomial approximations for the trial function U and the test functions V
in each element K ∈ T n

h are introduced as:

U(t, x̄)|K = Ûmψm(t, x̄) and V (t, x̄)|K = V̂lψl(t, x̄),

with ψm the basis functions, x̄ ∈ R
q, and expansion coefficients Ûm and V̂l, re-

spectively, for m, l = 0, 1, 2, ..., N , where N depends on the polynomial degree
of the basis functions in Vh and the space dimension q. The basis functions
are defined such that the test and trial functions can be split into an element
mean at time tn+1 and a fluctuating part. The basis functions ψm are given
by:

ψm =





1, for m = 0

ϕm(t, x̄) − 1
|Kj(t

−

n+1
)|

∫
Kj(t

−

n+1
) ϕm(t, x̄) dK for m = 1, 2, ..., N

where the functions ϕm(x) in element K are related to the basis functions
ϕ̂m(ξ), with ϕ̂m(ξ) ∈ P p(K̂) and ξ the local coordinates in the master element
K̂, through the mapping GK:

ϕm = ϕ̂m ◦G−1
K .

3.4 Weak formulation

In this section we derive a space-time DGFEM weak formulation for equa-
tions containing nonconservative products. Before discussing the space-time
DGFEM weak formulation for equations containing nonconservative products,
we first introduce as a reference the space-time DGFEM weak formulation for
equations in conservative form (see, e.g., van der Vegt and van der Ven [18]).

Consider partial differential equations in conservative form:

Ui,0 + Fik,k = 0, x̄ ∈ R
q, x0 > 0, (15)

where U ∈ R
m and F ∈ R

m × R
q. Using the approach discussed in van der

Vegt and van der Ven [18], the space-time DG formulation for (15) can be
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stated as:
Find a U ∈ Vh such that for all V ∈ Vh:

0 = −
∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,kFik

)
dK

+
∑

K∈T n
h

(∫

K(t−
n+1

)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
L
i dK

)

+
∑

S∈Sn
I

∫

S
[[Vi]]k{{Fik − vkUi}} dS +

∑

S∈Sn
B

∫

S
V L

i

(
FL

ik − vkU
L
i

)
n̄L

k dS.

(16)

Note that at this point no numerical fluxes have been introduced yet into the
DG formulation. We continue now with equations containing nonconservative
products. Let U ∈ Vh. We know that the numerical solution is continuous on
an element and discontinuous across a face, so, using Theorem 2, U is a weak
solution to (4) if:

0 =
∫

Eh

Vi dµi (17a)

=
∑

K∈Th

∫

K
Vi

(
Ui,0 +GikrUr,k

)
dK

+
∑

K∈Th

( ∫

K(t−
n+1

)
V̂i

(∫ 1

0
δir
∂φr

∂τ
(τ ;UL, UR) dτ nL

0

)
dK

+
∫

K(t+n )
V̂i

( ∫ 1

0
δir
∂φr

∂τ
(τ ;UL, UR) dτ nL

0

)
dK

)

+
∑

S∈SI

∫

S
V̂i

( ∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

+
∫ 1

0

∂φi

∂τ
(τ ;UL, UR) dτ nL

0

)
dS

(17b)

=
∑

K∈Th

∫

K
Vi

(
Ui,0 +GikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−
n+1

)
V̂i(U

R
i − UL

i )nL
0 dK +

∫

K(t+n )
V̂i(U

R
i − UL

i )nL
0 dK

)

+
∑

S∈SI

∫

S
V̂i

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

− vkδir

∫ 1

0

∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

(17c)
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=
∑

K∈Th

∫

K
Vi

(
Ui,0 +GikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−
n+1

)
V̂i(U

R
i − UL

i ) dK −
∫

K(t+n )
V̂i(U

R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S
V̂i

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

+
∑

S∈SI

∫

S
V̂i[[vkUi]]k dS,

(17d)

where V ∈ Vh is an arbitrary test function. Furthermore, V̂ is the value (nu-
merical flux) of the test function V on a face S and δ represents the Kronecker
delta symbol. In (17d) we used the definition of nL

0 as given in (12). The cru-
cial point in obtaining the DG formulation is the choice of the numerical flux
for the test function V . We choose the numerical flux for V such that if there
exists an F , with Gikr = ∂Fik/∂Ur, then the DG formulation for the system
containing nonconservative products reduces to the conservative space-time
DGFEM weak formulation given by (16).

Theorem 3 If the numerical flux V̂ for the test function V in (17d) is defined
as:

V̂ =





{{V }} at S ∈ SI ,

0 at K(tn) ⊂ Ωh(tn) ∀n,
(18)

then the DG formulation (17d) will reduce to the conservative space-time
DGFEM formulation (16) when there exists an F such that Gikr = ∂Fik/∂Ur.

Proof Assume there is an F , such that Gikr = ∂Fik/∂Ur. We immediately see
that: ∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = −[[Fik]]k. (19)

Integrating by parts the volume integral in (17d) and using (19) we obtain:

0 = −
∑

K∈Th

∫

K

(
Vi,0Ui + Vi,kFik

)
dK +

∑

K∈Th

∫

∂K
V L

i (UL
i n

L
0 + FL

ikn̄
L
k )d(∂K)

+
∑

K∈Th

(∫

K(t−n+1
)
V̂i(U

R
i − UL

i ) dK −
∫

K(t+n )
V̂i(U

R
i − UL

i ) dK

)

−
∑

S∈SI

∫

S
V̂i[[Fik − vkUi]]k dS.

(20)

Using the definition of the normal vector (12), the element boundary integral
in (20) becomes:

∑

K∈Th

∫

∂K
V L

i (UL
i n

L
0 + FL

ikn̄
L
k )d(∂K) =

∑

K∈Kh

∫

Q
V L

i

(
FL

ik − vkU
L
i

)
n̄L

k dQ

+
∑

K∈Th

( ∫

K(t−n+1
)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
L
i dK

)
. (21)

12



We will now use relations (13) and (14) to write the element boundary integrals
as face integrals:

∑

K∈Th

∫

Q
V L

i

(
FL

ik − vkU
L
i

)
n̄L

k dQ =

∑

S∈SI

∫

S
[[Vi(Fik − vkUi)]]k dS +

∑

S∈SB

∫

S
V L

i (FL
ik − vkU

L
i )n̄L

k dS

=
∑

S∈SI

∫

S

(
{{Vi}}[[Fik − vkUi]]k + [[Vi]]k{{Fik − vkUi}}

)
dS

+
∑

S∈SB

∫

S
V L

i (FL
ik − vkU

L
i )n̄L

k dS.

(22)

Combining (20), (21) and (22) we obtain:

0 = −
∑

K∈Th

∫

K

(
Vi,0Ui + Vi,kFik

)
dK

+
∑

K∈Th

(∫

K(t−
n+1

)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
L
i dK

)

+
∑

K∈Th

( ∫

K(t−
n+1

)
V̂i(U

R
i − UL

i ) dK −
∫

K(t+n )
V̂i(U

R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S

(
{{Vi}}[[Fik − vkUi]] + [[Vi]]k{{Fik − vkUi}}

)
dS

−
∑

S∈SI

∫

S
V̂i[[Fik − vkUi]]k dS +

∑

S∈SB

∫

S
V L

i (FL
ik − vkU

L
i )n̄L

k dS.

(23)

The term {{Vi}}[[Fik − vkUi]]k is set to zero in the space-time DG formulation
for conservative systems by arguing that the formulation must be conserva-
tive. For a general nonconservative system we can not use this argument.
Instead, we note that by taking V̂ = {{V }} on the faces S ∈ SI , the contribu-
tion

∫
S{{Vi}}[[Fik−vkUi]]k dS cancels with − ∫S V̂i[[Fik−vkUi]]k dS. Furthermore,

taking V̂ = 0 on the time faces K(tn) ⊂ Ωh(tn) ∀n, we obtain the space-time
DGFEM weak formulation for conservative systems given by (16). 2

Theorem 3 allows us to finalize the derivation of the DGFEM formulation for
hyperbolic nonconservative partial differential equations. First, we start with

13



the volume integral of (17d) and integrate by parts in time only, to obtain:

0 =
∑

K∈Th

∫

K

(
− Vi,0Ui + ViGikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−n+1
)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
L
i dK

)

+
∑

K∈Th

(∫

K(t−
n+1

)
V̂i(U

R
i − UL

i ) dK −
∫

K(t+n )
V̂i(U

R
i − UL

i ) dK

)

−
∑

S∈SI

∫

S

(
{{Vi}}[[vkUi]]k + [[Vi]]k{{vkUi}}

)
dS −

∑

S∈SB

∫

S
V L

i vkU
L
i n̄

L
k dS

+
∑

S∈SI

∫

S
V̂i

( ∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

+
∑

S∈SI

∫

S
V̂i[[vkUi]]k dS,

(24)

where we used relation (12) for the time component of the space-time normal
vector and relations (13) and (14) to write the element boundary integrals as
face integrals. For the numerical flux for the test function V in (24) we use
(18), and thus obtain:

0 =
∑

K∈Th

∫

K

(
− Vi,0Ui + ViGikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−
n+1

)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
L
i dK

)

−
∑

S∈SI

∫

S
[[Vi]]k{{vkUi}} dS −

∑

S∈SB

∫

S
V L

i

(
vkU

L
i

)
n̄L

k dS

+
∑

S∈SI

∫

S
{{Vi}}

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS.

(25)

Theorem 3 states that the weak formulation given by (25) can be reduced
to the space-time DGFEM formulation (16), when an F exists such that
Gikr = ∂Fik/∂Ur. However, this formulation is generally numerically unstable.
Problematic in the conservative space-time DGFEM formulation are the inte-
rior [[Vi]]k{{Fik − vkUi}} and boundary V L

i

(
FL

ik − vkU
L
i

)
n̄L

k flux terms, see (16).
Generally, a stabilizing term is added to these flux terms, together forming
an upwind numerical flux. Furthermore, the following upwind flux is intro-
duced in the conservative space-time DGFEM formulation at the time faces,
a formulation naturally ensuring causality in time:

Û =




UL at K(t−n+1)

UR at K(t+n )
. (26)
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It replaces the traces of U taken from the interior of K ∈ T n
h . In (25), we also

introduce the upwind flux (26) at the time faces. We also need a stabilizing
term in (25). To understand how we add our stabilizing term, consider again
the conservative space-time formulation. As mentioned above, a stabilizing
term is added to [[Vi]]k{{Fik − vkUi}}. Denote this stabilizing term as F stab,
then {{Fik − vkUi}} + F stab

ik = {{Fik}}+ F̃ik = F̂ik, where F̃ = {{−vkUi}} + F stab
ik

and F̂ik is the space-time numerical flux. In the nonconservative space-time
formulation (25) we do not have a counterpart for {{Fik}}. This term is hid-
den in the second and last term of (25), as shown in the proof of Theorem 3.
We do have {{−vkUi}}. We can add a stabilizing term to {{−vkUi}} such that
{{−vkUi}} + Hstab

ik = H̃nc. By introducing a ghost value UR at the boundary,
we can use the same expressions also at a boundary face. An expression for
H̃nc(UL, UR, v, n̄L) is derived in Section 4, such that it reduces to the devia-
tion of the numerical flux from the central flux in the conservative case, F̃ik.
Finally, the space-time DGFEM weak formulation for nonconservative partial
differential equations (3) is:
Find a U ∈ Vh such that for all V ∈ Vh:

0 =
∑

K∈T n
h

∫

K

(
− Vi,0Ui + ViGikrUr,k

)
dK

+
∑

K∈T n
h

(∫

K(t−n+1
)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
R
i dK

)

+
∑

S∈Sn

∫

S
[[Vi]]kH̃

nc
ik dS

+
∑

S∈Sn

∫

S
{{Vi}}

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS.

(27)

Note that due to the introduction of the upwind flux at the time faces, each
space-time slab only depends on the previous space-time slab so that the
summation over all space-time slabs could be dropped.

4 The NCP numerical flux

In Section 3 we derived a weak formulation for space-time DGFEM for systems
of equations containing a nonconservative product. To obtain an expression
for the flux H̃nc

ik (UL, UR, v, n̄L) in (27), we first discuss the numerical flux Û ,
and then derive this numerical NCP flux for NonConservative Products.

Consider the following nonconservative hyperbolic system:

∂tU +G(U)∂xU = 0, (28)

15



(U = U ∗)

(U = UR)

(U = U ∗)

xL xR

x
0

Ω4

(U = UL)

Ω1

Ω2 Ω3

SL

t
v SR

T

Fig. 1. Wave pattern of the solution for the Riemann problem. Here SL and SR are
the fastest left and right moving signal velocities and v is the velocity of the element
boundary point.

where U ∈ R
m, with m the number of components of U , similarly G(U) ∈

R
m×m and x ∈ R is along the normal of the face. To approximate the Riemann

solution of (28) we consider only the fastest left and right moving waves of the
system with velocities SL and SR and the grid velocity. In the star region (see
Figure 1), which is the domain enclosed by the waves SL and SR, the averaged
exact solution Ū∗ is defined as:

Ū∗ =
1

T (SR − SL)

∫ TSR

TSL

U(x, T ) dx. (29)

In what follows we obtain a relation for Ū∗ from the weak formulation of (28).
Integration by parts with respect to t over the control volume Ω1 ∪Ω2 yields:

∫ SLT

xL

UL dx+
∫ vT

SLT
U(x, T ) dx =

∫ 0

xL

U(x, 0) dx−
∫

Ω2

G(U)∂xU dx dt

−
∫ T

0

∫ 1

0
G(φLL∗(τ ;UL, U

∗
L))

∂φLL∗

∂τ
(τ ;UL, U

∗
L) dτ dt, (30)

where U∗
L = lims↓SL

U∗(st, t) is the trace of U∗ taken from the interior of Ω2,
which is constant along the wave SL due to the self similarity of the solution
in the star region. Replace the exact integrand in the second integral on the
left hand side of (30) with the approximate solution Ū∗. Furthermore, using

16



τ

φ̄(τ )

UL

UR

U ∗
R

U ∗
L

1
3

2
3 10

Fig. 2. Combining the paths to form φ̄LR(τ ;UL, UR) = φLL∗ ∩ φL∗v ∩ φvR∗ ∩ φR∗R.

the self similarity of the solution in the star region [3], we obtain:

∫

Ω2

G(U)∂xU dxdt =
∫ T

t=0

∫ vt

x=SLt
G(U)∂xU dxdt

=
∫ T

t=0

∫ v

SL

G(U∗)∂sU
∗∂xs |J | dsdt

= T
∫ v

SL

G(U∗)∂sU
∗ ds,

(31)

where we used the coordinate transformation x = st, t = t, which has a
Jacobian |J | = t. Introduce the trace of U∗ taken from the interior of Ω2 along
the line x = vt as: U∗

Lv = lims↑v U
∗(st, t) and the path φL∗v : [0, 1]×R

m×R
m →

R
m with:

φL∗v(τ ;U
∗
L, U

∗
Lv) = U∗(s), if SL < s < v.

By connecting these two paths into the path φLv : [0, 1]×R
m×R

m → R
m, such

that φLv(τ ;UL, U
∗
Lv) = φLL∗ ∪ φL∗v, redefining τ and using (31), the integral

contributions on the righthand side of (30) can be combined, resulting in:

SLUL + (v − SL)Ū∗ = −
∫ 1

0
G(φLv(τ ;UL, U

∗
Lv))

∂φLv

∂τ
(τ ;UL, U

∗
Lv) dτ (32)

(see Figure 2). Similarly, integration by parts with respect to t for the control
volume Ω3 ∪ Ω4 yields:

∫ SRT

vT
U(x, T ) dx+

∫ xR

SRT
UR dx =

∫ xR

0
U(x, 0) dx−

∫

Ω3

G(U)∂xU dx dt
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−
∫ T

0

∫ 1

0
G(φR∗R(τ ;U∗

R, UR))
∂φR∗R

∂τ
(τ ;U∗

R, UR) dτ dt, (33)

where U∗
R = lims↑SR

U∗(st, t) is the trace of U∗ taken from the interior of Ω3,
which is constant along the wave SR. Furthermore, denote the trace of U∗

taken from the interior of Ω3 along the line x = vt as: U∗
Rv = lims↓v U

∗(st, t).
Replace the exact integrand in the second integral on the left hand side of
(33) with the average of the exact solution Ū∗. Introduce the path φvR∗ :
[0, 1] × R

m × R
m → R

m with:

φvR∗(τ ;U∗
Rv, U

∗
R) = U∗(s), if v < s < SR,

and the path φvR : [0, 1] × R
m × R

m → R
m such that φvR(τ ;U∗

Rv, UR) =
φR∗R ∪ φvR∗ after redefining τ . Using the self similarity of the solution in the
star region Ω3, similar to (31), the integral contributions on the righthand side
of (33) can be combined, resulting in:

(SR − v)Ū∗ − SRUR = −
∫ 1

0
G(φvR(τ ;U∗

Rv, UR))
∂φvR

∂τ
(τ ;U∗

Rv, UR) dτ. (34)

Note that U∗
Lv = U∗

Rv since the solution U is smooth across ∂Ω2 ∩ ∂Ω3, where
Ω2 and Ω3 are the closures of Ω2 and Ω3. Now, introduce the path φ̄ : [0, 1]×
R

m × R
m → R

m and redefine τ such that φ̄(τ ;UL, UR) = φLv ∪ φvR then, by
adding (32) and (34) and rearranging terms, we obtain:

Ū∗ =
SRUR − SLUL

SR − SL

− 1

SR − SL

∫ 1

0
G(φ̄(τ ;UL, UR))

∂φ̄

∂τ
(τ ;UL, UR) dτ. (35)

This equation is still exact if we would know the path φ̄. Note from Figure 1
that outside the star region the solution is still at its initial values at t = 0
denoted by UL and UR. Within the star region bounded by the slowest and
fastest signal speed SL and SR, respectively, an averaged star state solution
Ū∗ is assumed. We define the numerical flux for U as:

Û =






UL, if v ≤ SL,

Ū∗, if SL < v < SR,

UR, if v ≥ SR,

(36)

where the averaged star state solution Ū∗ is given by (35) and v is the velocity
of the element boundary point.

We now continue to derive an expression for Hnc(UL, UR, v, n̄
L). Define

∫ τ

0
G(φ̄(τ̃ ;U1, U2))

∂φ̄

∂τ̃
(τ̃ ;U1, U2) dτ̃ ≡

∫ τ

0
dG(φ̄(τ ;U1, U2))

so that: ∫ 1

0
G(φ̄(τ̃ ;U1, U2))

∂φ̄

∂τ̃
(τ̃ ;U1, U2) dτ̃ = G(U2) − G(U1),
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using conditions H1-H4. Denote G(Uk) = Gk and introduce G̃k = Gk − {{G}},
for k = 1, 2 with {{G}} = (G1 + G2)/2. Note that G2 − G1 = G̃2 − G̃1. From
(32) and (34), the definition of the paths, conditions H1-H4 and assuming
U∗

Lv = U∗
Rv = Ū∗, we then obtain:

SLUL + (v − SL)Ū∗ = −G̃∗ + G̃L, (37)

and:

(SR − v)Ū∗ − SRUR = −G̃R + G̃∗, (38)

where GL = G(UL), GR = G(UR) and G∗ = G(Ū∗). Subtracting (38) from (37)
and rearranging the terms, we obtain:

G̃∗ = {{G̃}} + 1
2

(
(SR − v)Ū∗ + (SL − v)Ū∗ − SLUL − SRUR

)
(39)

with {{G̃}} ≡ (G̃L + G̃R)/2 = 0. Similarly, by adding (37) and (38) together and
rearranging terms, we obtain:

G̃L =1
2

∫ 1

0
G(φ̄(τ ;UR, UL))

∂φ

∂τ
(τ ;UR, UL) dτ (40)

and:

G̃R =1
2

∫ 1

0
G(φ̄(τ ;UL, UR))

∂φ

∂τ
(τ ;UL, UR) dτ (41)

The NCP numerical flux H̃(UL, UR, v, n̄
L) is thus given by:

H̃nc
ik (UL, UR, v, n̄

L) =





1
2

∫ 1
0 Gikr(φ̄(τ ;UR, UL))∂φ̄r

∂τ
(τ ;UR, UL) dτ if SL > v,

1
2

(
(SR − v)Ū∗

i + (SL − v)Ū∗
i − SLU

L
i − SRU

R
i )n̄k

if SL < v < SR,
1
2

∫ 1
0 Gikr(φ̄(τ ;UL, UR))∂φ̄r

∂τ
(τ ;UL, UR) dτ if SR < v.

(42)
Note that if G is the Jacobian of some flux function F , then H̃nc(UL, UR, v, n̄

L)
is exactly the HLL version, minus the central flux (FL+FR)/2, of the numerical
flux derived for moving grids in van der Vegt and van der Ven [18]. Take, e.g.,
the case SL > v in (42). In the conservative case, this reduces readily to
(FL − FR)/2 which does equal FL − (FL + FR)/2.
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5 Test cases

5.1 The shallow water equations with topography

We consider the non-dimensional form of the shallow water system with to-
pography. The system reads:

Ui,0 +GijUj,1 = 0, for i, j = 1, 2, 3 (43)

with:

U =




b

h

hu



, and G(U) =




0 0 0

0 0 1

F−2h F−2h− u2 2u



. (44)

Here b is the topography, h the water depth, u the flow velocity and F the
Froude number defined as F = u∗0/

√
g∗h∗0, where the starred values denote

reference values. The eigenvalues of G(U) are given by:

λ1 = u−
√
F−2h, λ2 = 0, λ3 = u+

√
F−2h. (45)

In the numerical flux, as derived in Section 4, we take:

SL = min(uL −
√
F−2hL, uR −

√
F−2hR) and

SR = max(uL +
√
F−2hL, uR +

√
F−2hR).

Test cases 1 and 2: rest flow

For test cases 1 and 2 we only consider the solution determined with space-
DGFEM calculations using the linear path φ = UL + τ(UR − UL). Consider
flow at rest over a discontinuous topography with initial conditions:

• Test case 1:

b(x) =





1 for x < 10

0 for x > 10
, h(x) + b(x) = 2, h(x)u(x) = 0.

• Test case 2:

b(x) =





0 for x < 10

1 for x > 10
, h(x) + b(x) = 2, h(x)u(x) = 0.

In Figures 3 and 4 we show the initial condition and the solution at t = 200,
calculated using a time step ∆t = 0.01 on a grid with 80 cells. The solution
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(b) Solution at t = 200.

Fig. 3. Test case 1: flow at rest over a discontinuous topography. F = 0.2, 80 cells,
∆t = 0.01.
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(b) Solution at t = 200.

Fig. 4. Test case 2: flow at rest over a discontinuous topography. F = 0.2, 80 cells,
∆t = 0.01.

does not change from t = 0 to 200. Note that the small over- and undershoots
in the topography are a result of the first time step in which the discontinuous
topography is forced to become continuous while the flow remains at rest. At
t = 200 the absolute differences in the nodes between the numerical solution
of h+ b with the exact solution are less than 10−10. The absolute values of the
error in the velocities (not shown here) is less than 10−8.

We can also prove this theoretically when using linear basis functions and
taking the path φ = UL + τ(UR − UL). Consider the one dimensional version
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of the space DGFEM weak formulation (A.9) for the shallow water equations:

0 =
∑

k

∫

Kk

Vi(Ui,0 +GijUj,1) dK

+
∑

S∈SI

∫

S
{{Vi}}

(∫ 1

0
Gij(φ(τ ;UL, UR))

∂φ

∂τ
(τ ;UL, UR) dτ

)
n̄L dS

+
∑

S∈SI

∫

S
[[Vi]]H̃

nc
i dS.

We only consider cell Kk where the contributions satisfy:

0 =
∫

Kk

Vi(Ui,0 +GijUj,1) dK

+
∫

Sk+1

1
2
V L

i

( ∫ 1

0
Gij(φ(τ ;UL, UR))

∂φ

∂τ
(τ ;UL, UR) dτ

)
n̄L + V L

i H̃
nc
i dS

+
∫

Sk

1
2
V R

i

(∫ 1

0
Gij(φ(τ ;UL, UR))

∂φ

∂τ
(τ ;UL, UR) dτ

)
n̄L − V R

i H̃
nc
i dS.

(46)

For the numerical flux we take the star-state solution given by (35). For rest
flow, using φ = UL + τ(UR −UL) and hL + bL = hR + bR the star-state solution
is given by:

Ū∗ =
1

SR − SL




SRbR − SLbL

SRhR − SLhL

0



, (47)

so that the numerical flux H̃nc = 1
2
(SL(Ū∗ − UL) + SR(Ū∗ − UR)) is given by:

H̃nc =
SLSR

SR − SL




bR − bL

hR − hL

0



. (48)

Also, using φ = UL + τ(UR − UL) and hL + bL = hR + bR we can show that:

∫ 1

0
Gij(φ(τ ;UL, UR))

∂φ

∂τ
(τ ;UL, UR) dτ = [0 0 0]T .

We can write (46) now as:

0 =
∫

Kk

Vi(Ui,0 +GijUj,1) dK +
∫

Sk+1

V L
i H̃

nc
i dS −

∫

Sk

V R
i H̃

nc
i dS. (49)

Using linear basis functions we can evaluate the integrals as follows:

∫

Kk

ViUi,0 dK = ∆xV i|Kk
∂tU i|Kk

+
∆x

3
V̂i|Kk

∂tÛi|Kk
, (50a)
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∫

Kk

ViGijUj,1 dK =
∫ 1

−1
(V i|Kk

+ V̂i|Kk
ξ)G(U i|Kk

+ Ûi|Kk
ξ)Ûi|Kk

dξ = 0, (50b)

∫

Sk+1

V LH̃nc dS = (V |Kk
+ V̂ |Kk

)
SL

k+1S
R
k+1

SR
k+1 − SL

k+1




bRk+1 − bLk+1

hR
k+1 − hL

k+1

0



, (50c)

∫

Sk

V RH̃nc dS = (V |Kk
− V̂ |Kk

)
SL

k S
R
k

SR
k − SL

k




bRk − bLk

hR
k − hL

k

0



, (50d)

where (·) and (̂·) are the means and slopes, respectively, of the approximation
for U and V . The second integral (50b) is zero using hL + bL = hR + bR and
the fact that the slope of h+b = 0 (so Û |Kk

= (−ĥk, ĥk, 0)). Note that in (50c)
and (50d) we have bRk+1 − bLk+1 + hR

k+1 − hL
k+1 = 0 and bRk − bLk + hR

k − hL
k = 0,

respectively so that:

∂t(h̄k + b̄k) = 0, ∂t(ĥk + b̂k) = 0, ∂thuk = 0, ∂tĥuk = 0,

meaning that for rest flow h+ b remains constant.

Test case 3: Subcritical flow over a bump

We now consider subcritical flow with a Froude number of F = 0.2 over a
bump. The topography reads:

b(x) =





a
(
b− (x− xp)

)(
b+ (x− xp)

)
b−2 for |x− xp| ≤ b,

0 otherwise.
(51)

We use xp = 10, a = 0.5 and b = 2 as in [14]. The exact steady state solution
for this test case is found by solving the following third order equation in
u [6,14]:

F 2u3/2 + (b+ F 2/2 − 1)u+ 1 = 0 with hu = 1. (52)

The domain x ∈ [0, 20] is divided into 40, 80, 160 and 320 cells. We consider
DGFEM and STDGFEM calculations using the linear path φ = UL + τ(UR −
UL). The final solution for the DGFEM calculations is considered at time
t = 300. Time steps of ∆t = 0.01 are made, except for the solutions on a grid
with 320 cells where ∆t = 0.005. For STDGFEM calculations we consider the
solution after one physical time step of ∆t = 1021. We can do this because we
want to consider the steady state solution. We solve the system of non-linear
equations using a pseudo time stepping integration method (see van der Vegt
and van der Ven. [18]). As stopping criterium in the pseudo time-stepping
calculation we take that the maximum residual must be smaller than 10−8. A
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Fig. 5. Test case 3: steady-state solution calculated using space DGFEM, F = 0.2,
320 cells.

pseudo time stepping CFL number of CFLpseudo = 0.8 is used.

The initial condition is h + b = 1 and hu = 1. To implement the bound-
ary we force the mean of hu to be 1 in the first cell and the slope of hu to be
0; and in the last cell we force the mean of h+ b to be 1 and the slopes of h+ b
to be 0. The steady state solution is given in Figure 5. The order convergence
is determined by looking at the L2 and the Lmax norm of the numerical error
in h+ b and hu with respect to the exact solution:

||(h+ b)num − (h + b)exact||2 =
(

Ncells∑

k=1

∫

Kk

(
(h+ b)num

Kk
− (h+ b)exact

Kk

)2
)1/2

, (53)

and:

||(h+ b)num − (h + b)exact||max =

max{|(h+ b)i
num − (h+ b)i

exact| : 1 ≤ i ≤ Ncells}. (54)

The order of convergence using DGFEM and STDGFEM is given in Table 1.
For both the space-DGFEM calculations and the space-time DGFEM calcu-
lations second order convergence is found.

Test case 4: Supercritical flow over a bump

Next, we consider supercritical flow with a Froude number of F = 1.9 over
a bump. We use the same topography (51) and the exact solution can be
found by solving (52). The domain x ∈ [0, 20] is again divided into 40, 80, 160
and 320 cells and we consider DGFEM and STDGFEM calculations using the
linear path φ = UL + τ(UR − UL). The final solution for the space-DGFEM
calculations is considered at time t = 300. Time steps of ∆t = 0.01 are made,
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DGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.1195 · 10−2 - 0.6702 · 10−2 - 0.7448 · 10−3 - 0.2281 · 10−2 -

80 0.3240 · 10−3 1.9 0.2408 · 10−2 1.5 0.1534 · 10−3 2.3 0.8437 · 10−3 1.4

160 0.8422 · 10−4 1.9 0.7009 · 10−3 1.8 0.2344 · 10−4 2.7 0.1463 · 10−3 2.5

320 0.2055 · 10−4 2.0 0.1786 · 10−3 2.0 0.7622 · 10−5 1.6 0.3307 · 10−4 2.1

STDGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.1202 · 10−2 - 0.6750 · 10−2 - 0.7380 · 10−3 - 0.2263 · 10−2 -

80 0.3246 · 10−3 1.9 0.2412 · 10−2 1.5 0.1530 · 10−3 2.3 0.8481 · 10−3 1.4

160 0.8425 · 10−4 1.9 0.7021 · 10−3 1.8 0.2327 · 10−4 2.7 0.1413 · 10−3 2.6

320 0.2127 · 10−4 2.0 0.1851 · 10−3 1.9 0.3313 · 10−5 2.8 0.2744 · 10−4 2.4

Table 1
L2 and Lmax error for h + b and hu using DGFEM and STDGFEM for test case 3.
Convergence rates are shown for F = 0.2.

except for the solutions on a grid with 320 cells where ∆t = 0.005.
For the STDGFEM calculation we consider again the solution after one phys-
ical time step of ∆t = 1021. The same stopping criteria are used as in the
subcritical flow case. The initial condition is h + b = 1 and hu = 1. To im-
plement the boundary condition on the left we force the mean of hu to be 1
and the slope of hu to be 0 in the first cell. At the right boundary x = 20,
we set the right trace of all the variables equal to the left trace and we let
the numerical flux decide what to do with this information. The steady-state
solution is given in Figure 6. The order convergence is again determined by
computing the L2 and the Lmax norm of the numerical error in h + b and hu
with respect to the exact solution as defined in (53) and (54). The order of
convergence using DGFEM and STDGFEM is given in Table 2.

We see that the space- and space-time DGFEM calculations results in sec-
ond order convergence for h + b. We do not show the order of convergence
for hu because the error for hu is of the order of machine precision on all
meshes for the space DGFEM calculations and stabilizes around 10−8 for the
space-time DGFEM calculations.
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Fig. 6. Test case 4: steady-state solution calculated using space DGFEM, F = 1.9,
320 cells.

DGFEM h + b STDGFEM h + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.7562 · 10−2 - 0.4630 · 10−1 - 0.7562 · 10−2 - 0.4630 · 10−1 -

80 0.1281 · 10−2 2.6 0.9410 · 10−2 2.3 0.1281 · 10−2 2.6 0.9410 · 10−2 2.3

160 0.3188 · 10−3 2.0 0.2615 · 10−2 1.8 0.3188 · 10−3 2.0 0.2615 · 10−2 1.8

320 0.7914 · 10−4 2.0 0.6883 · 10−3 1.9 0.7914 · 10−4 2.0 0.6883 · 10−3 1.9

Table 2
L2 and Lmax error for h + b using DGFEM and STDGFEM for test case 4. Con-
vergence rates are shown for F = 1.9.

Conclusions

For the shallow water equations with topography we showed numerical results
of four test cases calculated using the space- and space-time DGFEM dis-
cretizations we developed for nonconservative hyperbolic partial differential
equations. For all test cases we obtained good results. For test cases 1 and 2
we showed that rest flow remained unchanged despite having discontinuities
in the topography. We do not need any special tricks to deal with these dis-
continuities. In test cases 3 and 4 we solved subcritical and supercritical flow
over a bump. We demonstrated that the scheme is second order accurate. We
were also able to solve transcritical flow over a bump leading to more complex
flow, but we do not show results here. See Houghton and Kasahara [6] for the
analysis of these test cases.
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5.2 The depth averaged two-fluid model

In this section we consider two fluid models (also known as Eulerian models) in
which the particle phase is treated as a continuum by averaging over individ-
ual particles. Two systems of frequently used governing equations that follow
the Eulerian approach, are the systems derived by Anderson and Jackson [1],
and the systems derived by Drew and Lahey [4] and Enwald et al. [5]. Apart
from their derivation, the difference between these systems of equations is
how the fluid-phase shear stress (if included) is multiplied by the solid volume
fraction in the momentum equations (see also van Wachem et al. [17]). In the
limiting case that pressure is the only fluid stress, both formulations are equal.

We will consider a simplification of these sets of equations, namely the depth-
averaged two fluid model as derived by Pitman and Le [12]. They start with the
system derived by Anderson and Jackson [1] and use the shallow flow assump-
tion, H/L ≪ 1, to obtain, in a similar way as the shallow water equations
are derived from the Navier-Stokes equations, the depth averaged two-fluid
model. Since the pressure is the only fluid stress, the same depth-averaged
two fluid model also follows from the system derived by Drew and Lahey [4]
and Enwald et al. [5].

The dimensionless depth-averaged two fluid model as derived by Pitman and
Le [12], but ignoring source terms for simplicity, can be written as:

Ui,0 +GijUj,1 = 0, for i, j = 1, 2, 3, 4, (55)

where:

U =
[
h(1 − α), hα, hu(1 − α), hαv, b

]T

G(U) =




0 0 1 0 0

0 0 0 1 0

u2(1 − α) − 2u2 + 2c2h(1 − α) u2(1 − α) + 2c2h(1 − α) (2 + α)u −u(1 − α) (1 − α)hc5

(c1 + c3)hα c1(1 + α)h + c3hα − v2 0 2v hαc4

0 0 0 0 0




.

(56)

Here, we have defined the following variables:

c1 = 1
2
ε(1 − ρf/ρs)αxxg

z, c2 = 1
2
εgz, c3 = εgzρf/ρs,

c4 = (1 − ρf/ρs)εαxxg
z + εgzρf/ρs, c5 = εgz,

Again we have taken the topography as an unknown. The meaning of the dif-
ferent symbols is:

h(x, t) : depth of the flow,
v(x, t) : velocity of the solid phase,
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u(x, t) : velocity of the fluid phase,
α(x, t): volume fraction of the solid phase,
b(x): topography term,
ε: = H/L, where H is the characteristic length in the z-direction and
L the characteristic length in the y-direction,
ρf : the fluid density,
ρs: the solid density,
αxx: = kap, where kap is the Earth pressure coefficient,
gz: z-component of the scaled gravity.

Note that in the limit α → 0, this model reduces to the shallow water equa-
tions:

∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + 1

2
εgzh2) = −εgzh∂xb.

(57)

In the limit α→ 1, the depth-averaged two-fluid model model reduces to:

∂th + ∂x(hv) = 0,

∂t(hv) + ∂x(hv
2 + 1

2
εkapg

zh2) = −εkapg
zh∂xb,

(58)

which is the Savage-Hutter model without source terms, a model that simu-
lates avalanches of dry granular matter [7].

In our simulations, we set the Earth pressure coefficient to be αxx = 1 and
take ǫ = 1. For notational convenience, we set ρf/ρs = ρ and gz = g. To
compute the eigenvalues of G(U), we use the LAPACK package. The biggest
eigenvalue is used for SR and the smallest eigenvalue is used for SL in the
NCP numerical flux.

Test case 5: Two-phase subcritical flow

As in the case of the shallow water equations with topography, also for the
two-phase flow model we consider the steady state solution for subcritical flow
over a bump. We consider the same topography as given in (51). The reference
solution for this problem is found by solving the following ODE:

∂xU = A−1S, (59)
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where U , A and S are given by:

U =
[
h(1 − α), hα

]T
, S =



−(1 − α)hg∂xb

−ghα∂xb




A =



u2(1 − α) − 2u2 + gh(1 − α) u2(1 − α) + gh(1 − α)

1
2
(1 + ρ)ghα 1

2
(1 − ρ)g(1 + α)h+ gρhα− v2


 ,

(60)

with the topography derivative a known function and steady state discharges:

hu(1 − α) = q1, hvα = q2, (61)

with q1 and q2 integration constants. For this test case we take q1 = 0.2,
q2 = 0.1, g = 1 and ρ = 0.5. As initial condition we take h(1 − α) = 1,
hα = 0.6, hu(1−α) = 0.2 and hvα = 0.1. We use the STDGFEM formulation
to calculate the solution. We consider one physical time step of ∆t = 1021

and use a pseudo time stepping integration method to solve the system of
non-linear equations. We determine the solution on a domain x ∈ [0, 20] di-
vided into 40, 80, 160 and 320 cells. As stopping criterium in the pseudo time-
stepping method we take that the maximum residual must be smaller that
10−8. A pseudo time stepping CFL number of CFLpseudo = 0.1 is used. At the
boundaries, we define the exterior trace to be the same as the initial condition.
The numerical flux decides then what to do with this information. The steady
state solution is given in Figure 7. The order convergence is determined by
computing the L2 and the Lmax norm of the error, similar as to what is done
in (53) and (54). The order of convergence is given in Table 3. We clearly see
second order convergence as is expected.

Test case 6: Two-phase supercritical flow

We will now consider the steady state solution of two-phase supercritical flow
over a bump. We consider again the topography given in (51). The exact
solution is found by solving (59)-(61). For this test case we now take q1 = 4
and q2 = 2. Other constants remain the same as in test case 5. We again use
the same solution strategy as in test case 5. The steady state solution is given
in Figure 8 and the order convergence is given in Table 4. Again we clearly
see second order convergence for the variables h(1−α)+ b and hα+ b. We do
not see second order convergence for the variables hu(1−α) and hvα because
the error for these solutions stabilizes around 10−8.
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Fig. 7. Test case 5: steady-state solution for a subcritical two-phase flow calculated
with STDGFEM using 320 cells. Shown are the total flow height h + b, the flow
height due to the fluid phase h(1 − α), the flow height due to the solids phase hα

and the topography b.

STDGFEM

h(1 − α) + b hα + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.8171 · 10−3 - 0.2308 · 10−2 - 0.1404 · 10−2 - 0.4194 · 10−2 -

80 0.2025 · 10−3 2.0 0.5584 · 10−3 2.0 0.3537 · 10−3 2.0 0.9903 · 10−3 2.1

160 0.4871 · 10−4 2.1 0.1322 · 10−3 2.1 0.8511 · 10−4 2.1 0.2306 · 10−3 2.1

320 0.9789 · 10−5 2.3 0.2651 · 10−4 2.3 0.1712 · 10−4 2.3 0.4597 · 10−4 2.3

hu(1 − α) hv(α)

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.3672 · 10−4 - 0.1442 · 10−3 - 0.1212 · 10−4 - 0.3409 · 10−4 -

80 0.5911 · 10−5 2.6 0.3448 · 10−4 2.1 0.1791 · 10−5 2.8 0.8054 · 10−5 2.1

160 0.1049 · 10−5 2.5 0.8471 · 10−5 2.0 0.3807 · 10−6 2.2 0.2048 · 10−5 2.0

320 0.1723 · 10−6 2.6 0.2078 · 10−5 2.0 0.5115 · 10−7 2.9 0.4861 · 10−6 2.1

Table 3
L2 and Lmax error for h(1 − α) + b, hα + b, hu(1 − α) and hvα using STDGFEM
for test case 5.
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Fig. 8. Test case 6: steady-state solution for a supercritical two-phase flow calculated
using STDGFEM using 320 cells. Shown are the total flow height h + b, the flow
height due to the fluid phase h(1 − α), the flow height due to the solids phase hα

and the topography b.

STDGFEM

h(1 − α) + b hα + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.2400 · 10−2 - 0.5674 · 10−2 - 0.2359 · 10−2 - 0.5575 · 10−2 -

80 0.6060 · 10−3 2.0 0.1402 · 10−2 2.0 0.5958 · 10−3 2.0 0.1378 · 10−2 2.0

160 0.1459 · 10−3 2.1 0.3339 · 10−3 2.1 0.1434 · 10−3 2.1 0.3280 · 10−3 2.1

320 0.2933 · 10−4 2.3 0.6678 · 10−4 2.3 0.2884 · 10−4 2.3 0.6561 · 10−4 2.3

Table 4
L2 and Lmax error for h(1 − α) + b, hα + b, hu(1 − α) and hvα using STDGFEM
for test case 6.

Test case 7: A two-phase dam break problem

For the depth-averaged two-phase flow model we consider a dam break type
test case. Consider two mixtures separated by a membrane. The left mixture
has a solid volume fraction of α = 0.4 and the right mixture has a solid volume
fraction of α = 0.6. At time t = 0 we remove the membrane. We want to know
how the mixtures behave. We consider the solution on the domain [0, 1]. As
initial condition we take:

U(x, 0) =




UL, if x < 0.5,

UR, if x > 0.5,
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where:

UL =
[
1.8, 1.2, 0, 0, 0

]T
and UR =

[
1.2, 1.8, 0, 0, 0

]T
.

The constants in the computation are taken as g = 1 and ρ = 0.5. We compute
the solution on a domain with 16, 32, 64, 128, 256, 512 or 1024 elements. We
consider DGFEM calculations using the linear path φ = UL + τ(UR − UL).
The solution is determined at t = 0.175 using a time step of ∆t = 0.0001. To
be able to compute this test case we use slope limiters to deal with overshoots
and undershoots, otherwise the computation crashes. The solution in a cell is
given by:

Uk = Ūk + ψ(x)m(Ûk, Ūk+1 − Ūk, Ūk − Ūk−1), (62)

where the minmod function m is defined as:

m(a1, a2, a3) =




s min1≤n≤3 |an| if s = sign(a1) = sign(a2) = sign(a3)

0 otherwise.

(63)
The solutions of h(1−α), hα, b and h computed on a mesh with 1024 elements
are depicted in Figure 9a, the solutions of hu(1 − α) and hvα are depicted
in Figure 9b and the solution of α is depicted in Figure 9c. As expected, the
particles in the mixture with the larger solid volume fraction are moving to the
mixture with the lower solid volume fraction. In the middle of the domain an
average state is reached where the solid volume fraction stays approximately
0.5. Since we do not have an exact solution, we compute the order behavior
using the following approach:

||UN − U2N ||2
||U2N − U4N ||2

= 2p, (64)

where p is the order of convergence, UN the solution on a mesh consisting of
N cells, and || · ||2 is the L2 norm. The order behavior is shown in Table 5. Due
to the presence of shocks we cannot obtain second order accuracy. Instead we
obtain a convergence rate of approximately O(h1/2).

6 Effect of the path in phase space on numerical solution

6.1 Polynomial paths

In the numerical test cases discussed in the previous section a linear path was
taken: φ = UL + τ(UR − UL). In this section, we will investigate the effect
of different paths on our numerical results. To determine this effect we again
consider test case 7 in Section 5.2 for which we expect to find the biggest effect
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Fig. 9. Test case 7. The solution computed on a mesh with 1024 elements at time
t = 0.175 using DGFEM.

DGFEM

Ncells L2 of h(1 − α) p L2 of hα p L2 of hu(1 − α) p L2 of hvα p

32 0.1238 · 10−1 - 0.7030 · 10−2 - 0.1263 · 10−1 - 0.1384 · 10−1 -

64 0.1125 · 10−1 0.1 0.5780 · 10−2 0.3 0.1155 · 10−1 0.1 0.8164 · 10−2 0.8

128 0.6231 · 10−2 0.9 0.3391 · 10−2 0.8 0.7114 · 10−2 0.7 0.4465 · 10−2 0.9

256 0.4379 · 10−2 0.5 0.2751 · 10−2 0.3 0.4494 · 10−2 0.7 0.3828 · 10−2 0.2

512 0.3085 · 10−2 0.5 0.1875 · 10−2 0.6 0.3536 · 10−2 0.3 0.3275 · 10−2 0.2

Table 5
L2 error and convergence rate for h(1−α), hα, hu(1−α) and hvα using DGFEM
for test case 7. The convergence rates are shown for the solution at t = 0.175. With
L2 of U we mean ||UN − U2N ||2.

of the path due to the shock waves in the solution. We use the following paths
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shock wave.

Fig. 10. Solution of h(1− α), hα, b and h calculated on a mesh with 1024 elements
at time t = 0.175 using the paths defined in (65).

and note that in one dimension property (H4) can be neglected:

φ2v1 = UL + τ 2(UR − UL), φ2v2 = UR + (1 − τ)2(UL − UR),

φ5v1 = UL + τ 5(UR − UL), φ5v2 = UR + (1 − τ)5(UL − UR),

φ20v1 = UL + τ 20(UR − UL), φ20v2 = UR + (1 − τ)20(UL − UR).

(65)

In Figure 10, h(1 − α), hα, b and h are shown on the whole domain and also
zoomed in on the left shock wave. The deviations shown in these figures are
approximately also seen in the mass flow variables and the void fraction.

In these computations it is important to have a good numerical integration
scheme to approximate the path integral. Incorrectly approximating the path
integral results in solutions having incorrect faster or slower shock speeds. A
two-point Gauss integration scheme is sufficient when taking φ linear or when
using φ2v1 and φ2v2. For the other paths we split the domain [0, 1] into 8 nonin-
tersecting uniform intervals and within each interval we evaluate the integral
in the two Gauss points corresponding to that particular interval. To conclude
for this test case, when properly integrated any choice of paths in (65) leads
to the same numerical solution with only minor differences.

6.2 Toumi paths

In this section we will consider paths similar to those chosen in Toumi [15].
We will compare the solutions determined with the following five paths with
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Fig. 11. Solution of h(1− α), hα, b and h calculated on a mesh with 1024 elements
at time t = 0.175 using the paths defined in (66).

the solution determined with a linear path:

φT1(τ ; UL, UR) =
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(66)

In the implementation the integrals are computed using a two-point Gauss
integration rule. In Figure 11, h(1 − α), hα, b and h are shown on the whole
domain and also zoomed in on the left shock wave. The deviations shown in
these figures are approximately also seen in the mass flow variables and the
void fraction. We see that the final solution determined with the paths given
in (66) are all very similar. The choice of one of these paths does not have a
big effect on the final solution compared to the linear path.

6.3 Refining the mesh

As a final check we further refine our mesh. We will calculate the solution
on a mesh with 10000 elements. We only do this for the linear path, φ20v1
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Fig. 12. Solution of h(1−α), hα, b and h calculated on a mesh with 10000 elements
at time t = 0.175 using the linear path, φ20v1 and φT1.

(see (65))and φT1 (see (66)) and compare these solutions with the numerical
solution determined with the linear path on a mesh with 1024 elements. In
Figure 12, h(1 − α), hα, b and h are shown on the whole domain and also
zoomed in on the left shock wave. The deviations shown in these figures are
approximately also seen in the mass flow variables and the void fraction. To
obtain these figures, the integral of the nonconservative product for each path
was evaluated differently. For the linear path a two point Gauss integration
scheme was used for the whole domain [0, 1]. For the path φ20v1 we divided
the domain [0, 1] into 16 nonintersecting uniform domains and within each
domain we used again a two point Gauss integration scheme. For the path
φT1 the domain [0, 1] was divided into 8 nonintersecting uniform domains
and within each domain we used a two point Gauss integration scheme. As
we see in these figures, the differences in the numerical solution for all the
paths are minimal. The slight differences in the shock speed are more likely
to be caused by the numerical integration scheme than the difference in the
path. If we were to determine the numerical solution using the path φ20v1

by dividing the domain [0, 1] into 8 nonintersecting uniform domains instead
of 16, the differences in shock speed in comparison to the other paths will
increase, so it is important to have a good approximation for the integral of
the nonconservative product. We conclude that it is important to have a good
numerical integration scheme to approximate the path integral. Using a linear
path, a two points Gauss integration scheme, without refinement, suffices. We
saw that it does not matter which path is chosen, but choosing the linear path,
due to the simple integration scheme, is by far the cheapest and easiest choice.
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7 Conclusions

In this article we have derived weak formulations for space- and space-time
DGFEM for nonconservative hyperbolic partial differential equations. We also
introduced the numerical flux for systems with nonconservative products (NCP
flux) suitable for DGFEM thereof.

As test cases we considered the shallow water equations with topography
and a simplified depth-averaged two-phase flow model. For the shallow water
equations we considered rest flow over discontinuous topography and showed,
both numerically and theoretically, that the rest flow is preserved. We also
considered subcritical and supercritical flow over a bump. For these test cases
we obtained second order accuracy in the L2 norm for linear basis functions.

For the simplified depth-averaged two-phase flow model we also considered
subcritical and supercritical flow over a bump and again obtained second or-
der accuracy using linear basis functions. We also considered a dam-break
type test case. This test case we further used to investigate the effect of the
path on the numerical solution. The effect of the path was very small in the
numerical solutions. Taking different paths did not lead to relevant changes
in the final solution. We did see, however, that for certain paths it is not
sufficient to simply use a two-point Gauss integration scheme over the whole
domain of integration for the path integral, but higher order integration rules
were required. This resulted in significantly larger computational cost which
is undesirable. We therefore concluded that the effect of the path on the nu-
merical solution is very small. In future computations, the simple linear path
therefore seems to suffice.

A Derivation of the weak formulation for space DGFEM

In this section we derive a space DGFEM weak formulation for hyperbolic
nonconservative partial differential equations. As opposed to the derivation
of the weak formulation for space-time DGFEM, we now only consider fixed
grids. We first introduce the function spaces and basis functions after which
we derive the weak formulation.

Let Ω ⊂ R
q be the bounded flow domain approximated by Ωh such that

Ωh → Ω as h → 0, with h the radius of the smallest sphere completely con-
taining the largest element Kj . Consider approximations of U(x, t) and the
test function V (x, t) in the finite element space defined as:

Wh =
{
V ∈ (L2(Ωh))

m : V |Kj
◦ FK ∈ (P p(K̂))m

}
, (A.1)
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where m denotes the dimension of U . Polynomial approximations for the trial
function U and the test function V in each element Kj are introduced:

U(t, x̄)|Kj
= Ûmψm(x̄), and V (t, x̄)|Kj

= V̂lψl(x̄)

for m, l = 0, 1, 2, ...,M , where M depends on the order of accuracy and the
space dimension, and where the basis functions ψ are given by:

ψm =





1 for m = 0

ϕm(x̄) − 1
|Kj|

∫
Kj
ϕm(x̄) dK for m = 1, 2, ...,M

where the functions ϕ in element Kj are related to the basis functions ϕ̂ on

the master element K̂ through the mapping F :

ϕm = ϕ̂m ◦ F−1
K

with ϕ̂m(ξ) ∈ P p(K̂) and ξ the local coordinates in the master element K̂.

The weak formulation for space DGFEM can be derived in a similar manner
as that for space-time DGFEM, except that now we consider fixed grids. Be-
fore discussing the space DGFEM weak formulation for equations containing
nonconservative products, we first introduce as a reference the space DGFEM
weak formulation for equations in conservative form (see e.g. Tassi, Bokhove
and Vionnet [14]).

Consider partial differential equations in conservative form:

Ui,0 + Fik,k = 0, x̄ ∈ R
q, t > 0, (A.2)

where U ∈ R
m and F ∈ R

m × R
q. Using the approach discussed in Tassi,

Bokhove and Vionnet [14], the space DG formulation for (A.2) can be stated
as:
Find a U ∈Wh such that for all V ∈Wh:

0 =
∑

j

∫

Kj

(
ViUi,0 − Vi,kFik

)
dK +

∑

S∈SI

∫

S
[[Vi]]k{{Fik}} dS

+
∑

S∈SB

∫

S
V L

i F
L
ikn̄

L
k dS. (A.3)

Note that at this point no numerical fluxes have been introduced yet into the
DG formulation. We now continue with equations containing nonconservative
products. Let U ∈ Wh (see (A.1)). We know that the numerical solution is
continuous on an element and discontinuous across a face, so, using Theorem 2,
U is a weak solution to (A.2) if:

0 =
∫

Ωh

ViUi,0 dK +
∫

Ωh

Vi dµ̄i (A.4a)
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=
∑

j

∫

Kj

Vi

(
Ui,0 +GikrUr,k

)
dK

+
∑

S∈SI

∫

S
V̂i

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS, (A.4b)

where V ∈ Wh is an arbitrary test function. Furthermore, V̂ is the value
(numerical flux) of the test function V on a face S. Note that Theorem 2
is applied to nonconservative products in space-time where space and time
variables are not explicitly distinguished. In space DGFEM this is the case
and we only need the space part of the measure in Theorem 2. This measure
is denoted in (A.4a) as µ̄i. The crucial point in obtaining the DG formulation
is the choice of the numerical flux for the test function V . We choose the
numerical flux for V such that if there exists an F such that Gikr = ∂Fik/∂Ur,
then the DG formulation for the system containing a nonconservative products
reduces to the conservative space DGFEM weak formulation given by (A.3).

Theorem 4 If the numerical flux V̂ for the test function V in (A.4b) is de-
fined as V̂ = {{V }}, then the weak formulation (A.4b) will reduce to the con-
servative space DGFEM formulation (A.3) when there exists an F such that
Gikr = ∂Fik/∂Ur.

Proof Assume there is an F such that Gikr = ∂Fik/∂Ur. We immediately see:

∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = −[[Fik]]k. (A.5)

Integrating by parts the volume integral in (A.4b) we obtain:

0 =
∑

k

∫

Kk

ViUi,0 − Vi,kFik dK +
∑

k

∫

∂Kk

V L
i F

L
ikn̄

L
k d(∂K)

−
∑

S∈SI

∫

S
V̂i[[Fik]]k dS. (A.6)

Use relations (13) and (14) to write the element boundary integrals as face
integrals:

∑

j

∫

∂Kj

V L
i F

L
ikn̄

L
k d(∂K) =

∑

S∈SI

∫

S
[[ViFik]]k dS +

∑

S∈SB

∫

S
V L

i F
L
ikn̄

L
k dS

=
∑

S∈SI

∫

S

(
{{Vi}}[[Fik]]k + [[Vi]]k{{Fik}}

)
dS

+
∑

S∈SB

∫

S
V L

i F
L
ikn̄

L
k dS.

(A.7)

Combining (A.6) and (A.7) we obtain:
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0 =
∑

j

∫

Kj

ViUi,0 − Vi,kFik dK +
∑

S∈SI

∫

S

(
{{Vi}}[[Fik]]k + [[Vi]]k{{Fik}}

)
dS

+
∑

S∈SB

∫

S
V L

i F
L
ikn̄

L
k dS −

∑

S∈SI

∫

S
V̂i[[Fik]]k dS. (A.8)

The term {{Vi}}[[Fik]]k is set to zero in the space DG formulation for conserva-
tive systems arguing that the formulation must be conservative. For a general
nonconservative system we can not use this argument. Instead, we note that
by taking V̂ = {{V }} on the faces S, the contribution

∫
S{{Vi}}[[Fik]]k dS cancels

with − ∫S V̂i[[Fik]]k dS. We now obtain the weak formulation given by (A.3). 2

Theorem 4 allows us to finalize the derivation of the DGFEM weak formula-
tion, similar to the space-time DG formulation, to:
Find a U ∈Wh such that for all V ∈Wh:

0 =
∑

j

∫

Kj

Vi

(
Ui,0 +GikrUr,k

)
dK +

∑

S

∫

S
[[Vi]]kH̃

nc
ik dS,

+
∑

S

∫

S
{{Vi}}

(∫ 1

0
Gikr(φr(τ ;U

L, UR))
∂φr

∂τ
(τ ;UL, UR) dτn̄L

k

)
dS. (A.9)

Note that we combined the fluxes at interior and boundary faces by using a
ghost value UR at the boundary.
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