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Abstract

Replacing associated consistency in Hamiache’s axiom system by dual similar asso-
ciated consistency, we axiomatize the Shapley value as the unique value verifying the
inessential game property, continuity and dual similar associated consistency. Continuing
the matrix analysis for Hamiache’s axiomatization of the Shapley value, we construct the
dual similar associated game and introduce the dual similar associated transformation
matrix MDSh

λ as well. In the game theoretic framework we show that the dual game of
the dual similar associated game is Hamiache’s associated game of the dual game. For
the purpose of matrix analysis, we derive the similarity relationship MDSh

λ = QMλQ−1

between the dual similar associated transformation matrix MDSh
λ and associated trans-

formation matrix Mλ for Hamiache’s associated game, where the transformation matrix
Q represents the duality operator on games. This similarity of matrices transfers associ-
ated consistency into dual similar associated consistency, and also implies the inessential
property for the limit game of the convergent sequence of repeated dual similar associated
games. We conclude this paper with three tables summarizing all matrix results.

Key Words: Shapley value, Shapley standard matrix, dual game, dual matrix, dual
similar associated consistency.
2000 Mathematics Subject Classifications: Primary 91A12, Secondary 15A18

1 Introduction

A cooperative game with transferable utility (TU) is a pair 〈N, v〉, where N is a nonempty,
finite set and v : 2N → R is a characteristic function, defined on the power set of N , satisfying
v(∅) = 0. An element of N (notation: i ∈ N) and a subset S of N (notation: S ⊆ N or
S ∈ 2N with S 6= ∅) are called a player and coalition respectively, and the associated real

∗The research for this paper was done during a three months stay (February 14, 2006 till May 10, 2006) of
the first author at the EEMCS, University of Twente, Enschede, The Netherlands.
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number v(S) is called the worth of coalition S. The size of coalition S is denoted by s.
Particularly, n denotes the size of the player set N . We denote by G the universal game space
consisting of all these TU-games. In this paper, a TU-game 〈N, v〉 is always denoted by its
column vector of worths of all coalitions S ⊆ N in the traditional order (one-person coalitions
are at the top, etc.), i.e. ~v = (v(S))S⊆N,S 6=∅. If no confusion arises, we write v instead of ~v.
A game 〈N, v〉 is said to be inessential if for all coalitions S ⊆ N , v(S) =

∑
i∈S v({i}).

The solution part of cooperative game theory deals with the allocation problem of how to
divide the overall earnings the amount of v(N) among the players in the TU-game. There
is associated a single allocation called the value of the TU-game. Formally, a value on G
is a function Φ that assigns a single payoff vector Φ(N, v) = (Φi(N, v))i∈N ∈ Rn to every
TU-game 〈N, v〉 ∈ G. The so-called value Φi(N, v) of player i in the game 〈N, v〉 represents
an assessment by i of his gains from participating in the game.

Without going into details, let us recall the well-known Shapley value Sh(N, v) as follows
([4, 6]):

Shi(N, v) =
∑

S⊆N,S3i

(s− 1)!(n− s)!
n!

[
v(S)− v(S \ {i})

]
for all i ∈ N.

The eldest axiomatization of the Shapley value is stated by Shapley himself ([6]) by referring
to four properties called efficiency, symmetry, linearity, and dummy player property. In the
framework of values for TU-games, firstly let us review several essential properties treated in
former axiomatizations of the Shapley value. A value Φ on the universal game space G is said
to be efficient, if

∑
i∈N Φi(N, v) = v(N) for all games 〈N, v〉; symmetric, if Φπ(i)(N, πv) =

Φi(N, v) for all games 〈N, v〉, all i ∈ N , and every permutation π on N ; linear, if Φ(N, α · v +
β ·w) = α ·Φ(N, v) + β ·Φ(N, w) for all games 〈N, v〉, 〈N, w〉, and all α, β ∈ R; inessential, if
Φi(N, v) = v({i}) for all inessential games 〈N, v〉, all i ∈ N ; continuous, if for all (pointwise)
convergent sequences of games {〈N, vk〉}∞k=0, say the limit of which is the game 〈N, v̄〉, the
corresponding sequences of values {Φ(N, vk)}∞k=0 converge to the value Φ(N, v̄).

Hamiache’s axiomatization of the Shapley value states that the Shapley value is the unique
one-point solution verifying the following three axioms: inessential game property, continuity
and associated consistency (see [1]). In his paper, an associated game 〈N, vSh

λ 〉 is constructed.
And a sequence of games is also defined, where the term of order m, in this sequence, is the
associated game of the term of order m−1. He showed that this sequence of games converges
and that the limit game is inessential. The solution is obtained using the inessential game
property, the associated consistency and the continuity axioms. As a by-product, neither the
linearity nor the efficiency axioms are needed.

In [7], we developed a matrix approach for Hamiache’s axiomatization of the Shapley
value. A new type of matrix named row (resp. column)-coalitional matrix was introduced
in the framework of cooperative game theory. Particularly, both the Shapley value and
Hamiache’s associated game were represented algebraically by their coalitional matrices called
the Shapley standard matrix MSh and the associated transformation matrix Mλ, respectively.
The associated consistency for the Shapley value was formulated as the matrix equality MSh =
MSh ·Mλ. In addition, the procedure of diagonalization of Mλ and the inessential property
for coalitional matrices were extremely helpful to treat the continuity and inessential game
property. Matrix analysis was fully adopted throughout the mathematical developments and
the proofs as well. Now let us recall the notion of coalitional matrix.

Definition 1 (cf. [7]). A matrix M is called a row (resp. column)-coalitional matrix if
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its rows (resp. columns) are indexed by coalitions S ⊆ N in the traditional order (one-
person coalitions are at the top, etc.). And a row-coalitional matrix M = [−→mS ]S⊆N,S 6=∅ is
row-inessential if the row-vector of M indexed by coalition S verifies −→mS =

∑
i∈S

−→mi for all
S ⊆ N .

And we obtained the following basic properties of row-coalitional matrix in [7].

Lemma 1.1 (cf. [7]). Let M be a row-coalitional matrix and A be a matrix.

1. If M is row-inessential, then the row-coalitional matrix MA is row-inessential.

2. If A is invertible, then MA is row-inessential if and only if M is row-inessential.

3. For every game 〈N, v〉 ∈ G, if M is row-inessential, then the new game 〈N, M · v〉 is
inessential.

By matrix approach we can restate the Shapley value in terminology of the Shapley stan-
dard matrix as follows.

Definition 2 (cf. [7]). Given any game 〈N, v〉, the Shapley value Sh(N, v) can be represented
by the Shapley standard matrix MSh as:

Sh(N, v) = MShv,

where the matrix MSh =
[
MSh

]
i∈N,S⊆N,S 6=∅ is column-coalitional defined by

[
MSh

]
i,S

=





(s− 1)!(n− s)!
n!

, if i ∈ S;

−s!(n− s− 1)!
n!

, if i /∈ S.

And for column vectors of the Shapley standard matrix MSh, we have the following anti-
complementary property.

Proposition 1.2. Let
[
MSh

]
T

be the column vector of MSh indexed by any coalition T ⊆ N .
Then it holds

[
MSh

]
T

= −[
MSh

]
N\T .

Proof. For any coalition T ⊆ N , it is sufficient to show
[
MSh

]
T

+
[
MSh

]
N\T = ~0. For

each player i ∈ N , if i ∈ T then i /∈ N \ T , and vice versa. So only one case needs to be
checked, for instance i ∈ T . By the definition of the Shapley standard matrix MSh, we know[
MSh

]
i,T

+
[
MSh

]
i,N\T = (t−1)!(n−t)!

n! − (n−t)!(t−1)!
n! = 0. Therefore

[
MSh

]
T

= −[
MSh

]
N\T for

all coalitions T ⊆ N .

The aim of this paper is to develop the matrix approach for the Shapley value. The organi-
zation of the paper is as follows. In Section 2, continuing the matrix analysis for Hamiache’s
axiomatization of the Shapley value in [7], we construct the dual similar associated game
and introduce the dual similar associated transformation matrix MDSh

λ as well. In the game
theoretic framework we show that the dual game of the dual similar associated game is Hami-
ache’s associated game of the dual game. For the purpose of matrix analysis, we derive the
similarity relationship MDSh

λ = QMλQ−1 between the dual similar associated transformation
matrix MDSh

λ and associated transformation matrix Mλ, where the transformation matrix
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Q represents the duality operator on games. It yields the inessential property for the limit
game of the convergent sequence of repeated dual similar associated games. In Section 3, this
similarity of matrices also transfers associated consistency into dual similar associated consis-
tency. Actually, we axiomatize the Shapley value as the unique value verifying the inessential
game property, continuity and dual similar associated consistency. The concluding Section 4
provides a summary of three tables about our matrix analysis.

2 The dual similar associated game

Given any game 〈N, v〉 and λ ∈ R, Hamiache defined its associated game 〈N, vSh
λ 〉 in [1] as

follows:

vSh
λ (S) := v(S) + λ

∑

j∈N\S

[
v(S ∪ {j})− v(S)− v({j})

]
for all S ⊆ N (2.1)

or equivalently,

vSh
λ (S) =

[
1− (n− s)λ

]
v(S) + λ

∑

j∈N\S
v(S ∪ {j})− λ

∑

j∈N\S
v({j}). (2.2)

The worth vSh
λ (S) of coalition S in the associated game differs from the initial worth v(S) by

taking into account the possible (weighted) net benefits v(S ∪ {j}) − v(S) − v({j}) arising
from mutual cooperation among the coalition S itself and any of each isolated non-members
j ∈ N \ S. In other words, for coalition S, the net benefits per non-member measures
the surplus of the coalitional marginal contribution ∇v(S, j) = v(S ∪ {j}) − v(S) over the
individual worth ∇v(∅, j) = v({j}) of the non-member j ∈ N \ S.

In [7], we introduced a coalitional matrix Mλ =
[
Mλ

]
S,T⊆N
S,T 6=∅

named the associated trans-

formation matrix for Hamiache’s associated game as:

[
Mλ

]
S,T

=





1− (n− s)λ, if T = S;
λ, if T = S ∪ {j} and j ∈ N \ S;
−λ, if T = {j} and j ∈ N \ S;
0, otherwise.

Then we restated the associated game and the sequence of repeated associated games as
follows.

Definition 3 (cf. [7]). Given any game 〈N, v〉 and λ ∈ R, the associated game 〈N, vSh
λ 〉 can

be represented as:
vSh
λ = Mλ · v.

And its sequence of repeated associated games {〈N, vm∗Sh
λ 〉}∞m=0 is defined as:

vm∗Sh
λ = Mλ · v(m−1)∗Sh

λ for all m ≥ 1, where v0∗Sh
λ = v.

Now, we consider a new associated game by revaluing the worth of coalition S. Its new
worth differs from the initial worth v(S) by taking into account the possible (weighted) net
benefits

(
v(N)− v(N \ {j}))− (

v(S)− v(S \ {j})). Here for coalition S, the net benefits per
member measures the loss of the overall marginal contribution ∇v(N, j) = v(N)− v(N \ {j})
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over the coalitional marginal contribution ∇v(S, j) = v(S)− v(S \ {j}) of the member j ∈ S.
We call it dual similar associated game.

Given any game 〈N, v〉 and λ ∈ R, define its dual similar associated game 〈N, vDSh
λ 〉 as

follows:

vDSh
λ (S) := v(S) + λ

∑

j∈S

[(
v(N)− v(N \ {j}))− (

v(S)− v(S \ {j}))
]

for all S ⊆ N. (2.3)

Notice that vDSh
λ (∅) = 0, vDSh

λ (N) = v(N) and moreover, vDSh
λ = v for all inessential games

〈N, v〉. We do not care about the trivial case λ = 0. Similarly, for all S ⊆ N, S 6= ∅ we can
express the worth vDSh

λ (S) as:

vDSh
λ (S) =

(
1− sλ

)
v(S) + sλv(N)− λ

∑

j∈S

v(N \ {j}) + λ
∑

j∈S

v(S \ {j}). (2.4)

By matrix approach, we can define the dual similar associated game and the sequence of
repeated dual similar associated games as follows.

Definition 4. Given any game 〈N, v〉 and λ ∈ R, its dual similar associated game 〈N, vDSh
λ 〉

can be represented as:
vDSh
λ = MDSh

λ · v,

where the dual similar associated transformation matrix MDSh
λ =

[
MDSh

λ

]
S,T⊆N
S,T 6=∅

is both row-

coalitional and column-coalitional defined by

[
MDSh

λ

]
S,T

=





1− sλ, if T = S and S 6= N ;
sλ, if T = N and S 6= N ;
λ, if T = S \ {j}, j ∈ S and S 6= N ;
−λ, if T = N \ {j}, j ∈ S and S 6= N ;
1, if T = S = N ;
0, otherwise.

And its sequence of repeated dual similar associated games {〈N, vm∗DSh
λ 〉}∞m=0 is defined as:

vm∗DSh
λ = MDSh

λ · v(m−1)∗DSh
λ for all m ≥ 1, where v0∗DSh

λ = v.

Before showing the relationship between the associated game and the dual similar associ-
ated game, we should mention the concept of dual game in cooperative game theory. For a
given game 〈N, v〉, its dual game 〈N, v∗〉 is defined as

v∗(S) := v(N)− v(N \ S) for all S ⊆ N. (2.6)

By matrix approach, it can be restated as v∗ = Q · v, where the dual matrix Q =
[
Q

]
S,T⊆N
S,T 6=∅

is both row-coalitional and column-coalitional matrix defined by

[
Q

]
S,T

=




−1, if T = N \ S and S 6= N ;
1, if T = N ;
0, otherwise.

, or Q =




−1 1
−1 1

· · · ...
−1 1
0 0 · · · 0 1




.

We have the following properties for the dual game 〈N, v∗〉 and the dual matrix Q. Let I
be the identity matrix.
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Proposition 2.1. Let 〈N, v〉 be an inessential game. Then the game 〈N, v〉 is self-dual, i.e.
〈N, v∗〉 = 〈N, v〉.
Proof. Since 〈N, v〉 is inessential, for all coalitions S ⊆ N , it holds that v(N)− v(N \ S) =
v(S). By the definition of the dual game, the worth v∗(S) verifies

v∗(S) = v(N)− v(N \ S) = v(S).

Hence an inessential game 〈N, v〉 is self-dual.

Proposition 2.2. The dual matrix verifies the duality property Q · Q = I. That is to say,
for every game 〈N, v〉, the dual game 〈N, (v∗)∗〉 of its dual game 〈N, v∗〉 is 〈N, v〉 itself.

Proof. The duality property is easy to be checked.

Proposition 2.3. The dual matrix verifies MSh = MShQ. That is to say, the Shapley values
of the game 〈N, v〉 and its dual game 〈N, v∗〉 are equal.

Proof by Matrix Approach. For any coalition T ⊆ N , T 6= N , consider the column
vector

[
MShQ

]
T

indexed by T . By the definition of dual matrix Q and anti-complementary
property of Shapley standard matrix MSh in Proposition 1.2, it should be

[
MShQ

]
T

=
∑

S⊆N,S 6=∅

[
Q

]
S,T

[
MSh

]
S

= −[MSh
]
N\T =

[
MSh

]
T
,

where
[
MSh

]
S

is the column vector of MSh indexed by S. And if T = N , then
[
MShQ

]
N

=
∑

S⊆N,S 6=∅

[
Q

]
S,N

[
MSh

]
S

=
∑

S⊆N,S 6=∅

[
MSh

]
S

=
[
MSh

]
N

.

This completes the algebraic proof.

By far, we can conclude the following similarity relationship between the associated trans-
formation matrix Mλ and the dual similar associated transformation matrix MDSh

λ , We also
conclude the corresponding relationship for the dual and two types of associated games.

Lemma 2.4. MDSh
λ = QMλQ, or equivalently QMDSh

λ = MλQ. In the game theoretic
context, the dual game of the dual similar associated game is the associated game of the dual
game, i.e. 〈N, (vDSh

λ )∗〉 = 〈N, (v∗)Sh
λ 〉.

Proof. For any row-coalitional matrix M , let
[
M ]S−row denote the row vector of M indexed

by all coalitions S ⊆ N .
Since

[
Q

]
N−row

=
[
Mλ

]
N−row

=
[
MDSh

λ

]
N−row

= [0, · · · , 0, 1], it is easy to see that[
QMλQ

]
N−row

=
[
MDSh

λ

]
N−row

. By the definitions of Q, Mλ and MDSh
λ , for any coalition

S ⊆ N , S 6= N , we have
[
QMλQ

]
S−row

=
∑

T⊆N,T 6=∅

[
Q

]
S,T

[
MλQ

]
T−row

=
[
MλQ

]
N−row

− [
MλQ

]
N\S−row

=
∑

T⊆N,T 6=∅

[
Mλ

]
N,T

[
Q

]
T−row

−
∑

T⊆N,T 6=∅

[
Mλ

]
N\S,T

[
Q

]
T−row

=
[
Q

]
N−row

−
{

(1− sλ)
[
Q

]
N\S−row

+ λ
∑

j∈S

[
Q

]
(N\S)∪{j}−row

− λ
∑

j∈S

[
Q

]
{j}−row

}

$
[
MDSh

λ

]
S−row

.
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The latter S−row vector equality needs to be checked for each entry indexed by all coalitions
T ⊆ N . This completes the proof by matrix approach. An alternative proof based on the
definitions of the dual game and the associated game can be found in the appendix.

Due to the duality property Q ·Q = I, the above relationship can be recited as follows.

Corollary 2.5. Mλ = QMDSh
λ Q, or equivalently QMλ = MDSh

λ Q. In the game theoretic
context, the dual game of the associated game is the dual similar associated game of the dual
game, i.e. 〈N, (vSh

λ )∗〉 = 〈N, (v∗)DSh
λ 〉.

The next diagram illustrates the commutative relationship between the two types of asso-
ciated games in Lemma 2.4 and Corollary 2.5.

-

?

6

-

6

?

〈N, v〉 〈N, vDSh
λ 〉 = 〈N,

(
(v∗)Sh

λ

)∗〉

〈N, v∗〉 〈N, (v∗)Sh
λ 〉 = 〈N,

(
vDSh
λ

)∗〉

dual game dual game

dual similar

associated

associated game

game

Diagram 1: The commutative relationship between the two types of associated games.

Here we recall some properties of the associated transformation matrix Mλ and the conver-
gence property for the sequence of repeated associated games {〈N, vm∗Sh

λ 〉}∞m=0 in [7]. Similar
properties for the dual similar associated transformation matrix MDSh

λ and the sequence of
repeated dual similar associated games {〈N, vm∗DSh

λ 〉}∞m=0 can be derived.

Lemma 2.6 (cf. [7]). Let Mλ be the associated transformation matrix.

1. Mλ = PDλP−1, where Dλ = diag(1, · · · , 1︸ ︷︷ ︸
(n
1) times

, 1− 2λ, · · · , 1− 2λ,︸ ︷︷ ︸
(n
2) times

· · · , 1− nλ︸ ︷︷ ︸
(n

n) times

) and P

consists of eigenvectors of Mλ corresponding to eigenvalues 1, 1− kλ (2 ≤ k ≤ n).

2. If 0 < λ < 2
n , then lim

m→∞(Mλ)m = PDP−1, where D = diag(1, · · · , 1︸ ︷︷ ︸
n times

, 0, · · · , 0︸ ︷︷ ︸
2n−1−n times

).

3. The row-coalitional matrix PD equals PD = [
−→
x1,

−→
x2, · · · ,

−→
xn,~0, · · · ,~0] and PD is row-

inessential, where column vectors
−→
xi (i = 1, 2, · · ·n) are different eigenvectors of Mλ

corresponding to eigenvalue 1 and ~0 denotes a zero column vector.

Theorem 2.7 (cf. [7]). Let 0 < λ < 2
n , then the sequence of repeated associated games

{〈N, vm∗Sh
λ 〉}∞m=0 converges to the game 〈N, ṽ〉 , where ṽ = lim

m→∞(Mλ)m · v = PDP−1 · v.
Furthermore, the limit game 〈N, ṽ〉 is inessential.

From Theorem 2.7 together with the relationship between the two types of associated
games, we obtain the next theorem.

Theorem 2.8. Let 0 < λ < 2
n , then the sequence of repeated dual similar associated games

{〈N, vm∗DSh
λ 〉}∞m=0 converges to the game 〈N, v̂〉 , where v̂ = QPDP−1Q · v. Furthermore,

the limit game 〈N, v̂〉 is inessential.
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Proof. By Lemma 2.4 and the duality property Q ·Q = I in Proposition 2.2, we know

vm∗DSh
λ = (MDSh

λ )m · v = (QMλQ)m · v = Q(Mλ)mQ · v.

From the convergence property in Theorem 2.7, it follows immediately that

lim
m→∞ vm∗DSh

λ = Q lim
m→∞(Mλ)mQ · v = QPDP−1Q · v = v̂.

By Lemma 2.6, PD is a row-inessential coalitional matrix. Together with Lemma 1.1 and
P−1Q is invertible, we derive that PDP−1Q is also a row-inessential coalitional matrix, that
is to say 〈N, PDP−1Q · v〉 is an inessential game. And 〈N, QPDP−1Q · v〉 is just the dual
game of this game. Hence by the self-duality property of the inessential game in Proposition
2.1, the limit game 〈N, v̂〉 is inessential. This completes the proof.

Remark 1. Notice that the limit game 〈N, v̂〉 of the sequence of repeated dual similar
associated games merely depends on the game 〈N, v〉 as v̂ = QPDP−1Q · v. The two limit
games 〈N, ṽ〉 and 〈N, v̂〉 inherit the commutative relationship between the two types of the
associated games in Diagram 1. And for any player i ∈ N , the limit worth v̂({i}) is just the
inner product of the i−th row vector of QPDP−1Q and the column vector v.

3 Dual similar associated consistency and the Shapley value

In this section, by the matrix theory results from the previous sections we show that the
Shapley value verifies a new consistency related to the dual similar associated game named
dual similar associated consistency. Then we axiomatize the Shapley value by three axioms.
Firstly, we present the system of axioms:

1. (Dual Similar Associated Consistency). For every game 〈N, v〉 and its dual similar
associated game 〈N, vDSh

λ 〉, the solution verifies Φ(N, v) = Φ(N, vDSh
λ ).

2. (Inessential Game Property). For every inessential game 〈N, v〉, the solution verifies
Φi(N, v) = v({i}) for all i ∈ N .

3. (Continuity). For every convergent sequence of games {〈N, vk〉}∞k=0 the limit of which is
the game 〈N, v̄〉, the sequence of solutions satisfies convergence too, that is lim

k→∞
Φ(N, vk)

= Φ(N, v̄) (The convergence of the sequence of games is point-wise).

In Hamiache’s axiomatization for the Shapley value, dual similar associated consistency is
replaced by associated consistency, i.e. Φ(N, v) = Φ(N, vSh

λ ).

Lemma 3.1 (cf. [7]). The Shapley value satisfies the associated consistency, or equivalently,
MSh = MShMλ.

The axiom of dual similar associated consistency means that any player receives the same
payments in the original game and in the dual similar associated game. In matrix theory, the
standard matrix MSh for the Shapley value is invariant under multiplication with the dual
similar associated transformation matrix MDSh

λ .

Lemma 3.2. The Shapley value satisfies the dual similar associated consistency, that is
MSh = MShMDSh

λ .
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Proof. Since Sh(N, v) = MShv and Sh(N, vDSh
λ ) = MSh(MDSh

λ · v), it is sufficient to
check the matrix equality MShMDSh

λ = MSh. By Lemma 2.4 and Proposition 2.3, we know
MDSh

λ = QMλQ and MSh = MShQ. Together with Lemma 3.1, it follows

MShMDSh
λ = MShQMλQ = MShMλQ = MShQ = MSh.

This completes the proof.

Theorem 3.3. The Shapley value is the unique solution verifying the inessential game prop-
erty, continuity and dual similar associated consistency for 0 < λ < 2

n .

Proof. Obviously, the Shapley value satisfies the inessential game and the continuity ax-
ioms, and by Lemma 3.2 we know that the Shapley value verifies the dual similar associated
consistency.

So, let us now turn to the unicity proof. Consider a value Φ satisfying three listed axioms.
Fix the game 〈N, v〉. We show that Φ(N, v) = Sh(N, v). By both the dual similar associated
consistency and continuity, it holds

Φ(N, v) = Φ(N, v̂), where v̂ = QPDP−1Q · v for any game 〈N, v〉.
Since the limit game 〈N, v̂〉 is inessential by Theorem 2.8, the inessential game property for
Φ yields Φi(N, v̂) = v̂({i}) for all i ∈ N . In summary, Φ(N, v) = (v̂({i}))i∈N .

From the proof of Theorem 3.2 in [7], we have Sh(N, v) = Sh(N, ṽ), i.e. MSh =
MShPDP−1. Together with Proposition 2.3, MSh = MShQ. It follows that

MSh = MShPDP−1 ⇐⇒ MShQ = MShPDP−1Q ⇐⇒ MSh = MShQPDP−1Q

That is Sh(N, v) = Sh(N, v̂). Since the game 〈N, v̂〉 is inessential, we conclude that Sh(N, v) =
Sh(N, v̂) = (v̂({i}))i∈N . Hence Φ(N, v) = Sh(N, v).

4 Conclusions about matrix analysis

Concerning the matrix approach for the dual similar associated consistency of the Shapley
value, the next three tables summarize the relevant matrices and their mutual relationships.

Matrix Name of matrix Value/Game Definition

Q dual v∗ = Q · v Definition

MSh Shapley standard Sh(N, v) = MShv Definition 2

Mλ associated transformation vSh
λ = Mλ · v Definition 3

MDSh
λ dual similar associated transformation vDSh

λ = MDSh
λ · v Definition 4

Sequence Limit Matrix Representation Property of Game Statement

{〈N, vm∗Sh
λ 〉}∞m=0 〈N, ṽ〉 ṽ = PDP−1 · v inessential game Theorem 2.7

{〈N, vm∗DSh
λ 〉}∞m=0 〈N, v̂〉 v̂ = QPDP−1Q · v inessential game Theorem 2.8
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Property Hamiache Xu-Driessen Statement

Duality (D) MSh = MShQ Proposition 2.3

Similarity (S) MDSh
λ = QMλQ Lemma 2.4

Mλ = QMDSh
λ Q Corollary 2.5

associated consistency Sh(N, v) = Sh(N, vSh
λ ) MSh = MShMλ Lemma 3.1

DS-ass. consistency MSh = MShMDSh
λ Lemma 3.2

According to the proof of Lemma 3.2, the dual similar associated consistency of the Shapley
value has been derived from Hamiache’s associated consistency. We conclude the paper with
the proof of the converse statement. From the duality and similarity in the third table, we
obtain that our dual similar associated consistency MSh = MShMDSh

λ yields Hamiache’s
associated consistency as:

MShMλ = MShQMDSh
λ Q = MShMDSh

λ Q = MShQ = MSh.

So, the two types of associated consistency are equivalent.
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Appendix: The Alternative Proof of Lemma 2.4.

For any coalition S ⊆ N , by the definitions of the dual game and the associated game, we
have
(
(v∗)Sh

λ

)∗
(S) = (v∗)Sh

λ (N)− (v∗)Sh
λ (N \ S)

= v∗(N)−
{[

1− (n− (n− s))λ
]
v∗(N \ S) + λ

∑

j∈S

v∗((N \ S) ∪ {j})− λ
∑

j∈S

v∗({j})
}

= v(N)− (1− sλ)
(
v(N)− v(S)

)− λ
∑

j∈S

[
v(N)− v(S \ {j})] + λ

∑

j∈S

[
v(N)− v(N \ {j})]

=
(
1− sλ

)
v(S) + sλv(N)− λ

∑

j∈S

v(N \ {j}) + λ
∑

j∈S

v(S \ {j})

= vDSh
λ (S).

This completes the proof.
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