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Abstract

In this paper we describe the application of the theory of graph transformations to the
practise of language design. We have defined the semantics of a small but realistic object-
oriented language (called TAAL) by mapping the language constructs to graphs and their
operational semantics to graph transformation rules. In the process we establish a mapping
between UML models and graphs.

TAAL was developed for the purpose of this paper, as an extensive case study in engineer-
ing object-oriented language semantics using graph transformation. It incorporates the basic
aspects of many commonly used object-oriented programming languages: apart from essen-
tial imperative programming constructs, it includes inheritance, object creation and method
overriding. The language specification is based on a number of meta-models written in UML.
Both the static and dynamic semantics are defined using graph rewriting rules.

In the course of the case study, we have built an Eclipse plug-in that automatically trans-
forms arbitrary TAAL programs into graphs, in a graph format readable by another tool. This
second tool is called Groove, and it is able to execute graph transformations. By combining
both tools we are able to visually simulate the execution of any TAAL program.

5



6



1 Introduction

A widely recognized proposal for combating the maintenance and evolution problems faced in
software engineering is the ‘model driven approach’, brought to the worlds attention by the OMGs
Model Driven Architecture (MDA) framework [28, 22, 17, 26]. MDA builds upon and greatly
extends UML; its cornerstones are meta-modelling and model transformation.

In an MDA model transformation, a source model written in some language (the source lan-
guage) is translated into a target model written in the same or another language (the target
language). Preferably, the intended meaning of the source model remains in the target model.
This means that the semantics of the source language must be mapped onto the semantics of the
target language. If both semantics are expressed in the same manner, this mapping can be made
far more easily.

A commonly used mechanism to define semantics for (object-oriented) languages could facili-
tate the adaptation of MDA as a software building technique. Our research explores the usefulness
of graphs and graph transformations as common mechanism for defining language semantics. In
our view using graph transformations for this purpose is an obvious choice. The concept of object
as an independent unit that may, or may not have links to other units, already suggests that the
state of an object-oriented program could easily be represented as a graph, where objects form the
nodes, and the links between the objects from the edges. State changes are naturally represented
as graph transformations.

In this report we show the feasibility of this approach by defining the semantics of a small
language called TAAL (short for ‘The Arend and Anneke Language’, and also the Dutch word for
language). In Sect. 2 our approach is explained in detail. Sect. 3, Sect. 4 and Sect. 5 explain the
concrete and abstract syntax of TAAL, respectively. Sect. 6 explains the construction of a control
flow graph from a TAAL program. In Sect. 7 the simulation of a TAAL program is explained.
Sect. 8 gives some noteworthy details on the tools that support TAAL. Finally, Sect. 9 gives our
conclusions and references to related work.

In this report several UML diagrams are shown. In these diagrams, whenever an association
is directed, and the non-navigable side (i.e. the side without arrowhead) is an aggregate, the
multiplicity on the aggregate side is considered to be irrelevant. Sometimes multiplicity 0..1 is
shown in the diagrams, sometimes not. This was not an explicit choice, but was caused by the
inadequacies of the UML diagramming tool used.
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2 Approach

In this work we model object-oriented programs as graphs and specify their semantics using graph
grammars. The approach we have taken is to define a series of transformations that will transform
any TAAL program into a simulation of its execution. The transformations are depicted in Figure
1. The figure also shows how these transformations are currently implemented: on the left hand
side this is done on the basis of an Eclipse plug-in [18, 31, 10] whereas on the right hand side
transformations are carried out in the Groove tool set [30], which supports the execution and
simulation of graph transformations. Implementation details are given in Sect. 8.

2.1 The Transformations

The first two transformations are similar to the first steps in a compiler [3]. The text is parsed and
transformed into a Concrete Syntax Tree (CST) or parse tree. Next, a static analysis is performed
that transforms the CST into a true graph, i.e. a structure where a node can have more than
one incoming edge: the Abstract Syntax Graph (ASG). For instance, type references are resolved
and changed into direct references to the node that represents the type. This ASG contains some
aspects that are not present in traditional graphs, like nodes that represent sets or ordered lists.
Therefore, this form of ASG is called Rich Abstract Syntax Graph (Rich ASG). Details on both
transformations can be found in Sect. 3 and Sect. 4.

The Rich ASG is transformed into an XML based format that fits as input to the Groove tool
set. The input format for Groove will be called Flat Abstract Syntax Graph (Flat ASG) in the
following. The transformation from Rich ASG to Flat ASG is also implemented in the TAAL
Eclipse plug-in. Details on this transformation can be found in section 4.3.

In the next step, called flow graph construction, a set of graph production rules is applied to
the Flat ASG. These rules add edges to the Flat ASG that represent the flow of control in the
program. For instance, to each statement an edge is added that represents the next element to
be executed. The result of this transformation is called the Program Graph (PG). A PG thus
consists of two interconnected parts: the Flat ASG and the Control Flow Graph (CFG). This step
is implemented in Groove. Details can be found in Sect. 6.

Finally, the PG is entered into the Groove Simulator where, using a second graph transfor-
mation system called simulation, the program is “executed”, resulting in a sequence of Execution
Graphs (EGs). During the simulation extra nodes are created that represent instances of the
types defined in the program. These nodes are called Value nodes. For each attribute defined in
its type, the Value node will have outgoing edges to other nodes representing a place holder for the
value of that attribute. The sub-graph containing the Values is called the Value Graph (VG). The
VG represents the objects with their instance variables and data values. In compiler terminology,
the VG corresponds to the heap. The VG has outgoing edges to the Flat ASG, reflecting type
information.

To represent the execution of an operation or constructor, the execution graph contains so
called Frame nodes. Each Frame node has outgoing edges to nodes representing local variables,
and an outgoing edge to the next element in the PG to be executed. The sub-graph consisting
of Frame nodes and their edges is called the Frame Graph (FG). The frame graph directs the
execution of the program. In compiler terminology, the frame graph models the stack during
program execution. There can be outgoing edges to the program and value graphs. These edges
represent the link with the executable statement in the program from which the frame node has
been derived. Details on the simulation step are to be found in Sect. 7.

Together, the VG and FG form an EG. The horizontal line in Fig. 2.1 indicates that graph(s)
before the simulation, and during and after the simulation are on a completely different level. The
PG is a single graph representing the TAAL program, whereas during simulation the dynamics
of the program execution are represented by a series of EGs, each of which represents the system
state at a certain point in time. Note that after the simulation has finished the FG has stops to
exist, but the VG remains. The final VG represents the effect of the execution of the program.

9
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Figure 2.1: Overview of the transformations from program to simulations.

2.2 Definitions

Above we have introduced a large number of concepts that will be used throughout this report.
Here we give definitions of each concept.

Definition 2.1 (Concrete Syntax Tree) A Concrete Syntax Tree is a graph representing a
TAAL program that contains the results of the parsing phase, also known as parse tree. (See
Sect. 3)

Definition 2.2 (Rich Abstract Syntax Graph) A Rich Abstract Syntax Graph is a graph
representing a TAAL program in which each node represents a concept in the TAAL language.
(See Sect. 4)

Definition 2.3 (Flat Abstract Syntax Graph) A Flat Abstract Syntax Graph is a Rich Ab-
stract Syntax Graph in an XML format that can be understood by the Groove tool set. (See Sect. 5)

Definition 2.4 (Control Flow Graph) A Control Flow Graph is a graph representing the in-
tended flow of control of a TAAL program. (See Sect. 6)

Definition 2.5 (Program Graph) A Program Graph is an extension of the Rich Abstract Syn-
tax Graph, that also contains the Control Flow Graph for the represented TAAL program. (See
Sect. 6)

Definition 2.6 (Value Graph) A Value Graph is a graph representing a state of an executing
(or executed) TAAL program, a model of the program heap. (See Sect. 7)
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Definition 2.7 (Frame Graph) A Frame Graph is a graph representing the state of the execut-
ing elements of a TAAL program, a model of the program stack. (See Sect. 7)

Definition 2.8 (Execution Graph) An Execution Graph is a graph representing an executing
(or executed) TAAL program, which consists of three interconnected sub-graphs: the Program
Graph, the Value Graph and the Frame Graph. (See Sect. 7)

2.3 How the Transformations Determine the Semantics

Each of the transformations in Fig. 2.1 determines part of the semantics of the program. The
static analysis determines whether the program is statically correct according to certain rules. For
instance, each reference to a type must reference a type that is defined somewhere in the program,
and each variable must have a type. The static analysis produces the “compile time” errors, if
any, in the program.

The flattening determines how a TAAL program can be represented as a traditional graph.
For instance, the name of each element in the program is represented as an edge to and from the
same node, labelled with the name of the element.

The flow graph construction determines how the control elements in the TAAL program,
like while-loops and if-statements, are represented in the program graph. The control language
constructs are present in the program from the start. This step determines their exact meaning.

The simulation determines how instances, and how the execution of operations are represented.
In other words, the last transformation determines exactly what happens when the program is
executed. Note that each execution step in the simulation, i.e. each state change, is given by a
graph transformation rule. Note also that the division between the transformations is arbitrary.
For instance, the flow graph construction could also have been part of the static analysis.
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3 Concrete Syntax Trees

The mini language TAAL incorporates the basic aspects of many commonly used object-oriented
programming languages. For instance, the notions of class, attribute, operation, and inheritance
are all present. TAAL does not support more complex constructs like packages, or threads, but
the language is easily extensible with such notions. The intuition behind the semantics of the
language is that a TAAL program has the same meaning as a corresponding Java program.

Most keywords in TAAL are the same as the keywords in Java (e.g. class, extends, super). The
keyword self is used to indicate the current object, instead of the Java keyword this. Operations
may have local variables, these are listed after the keyword locals. Listing 1 contains an example
of a TAAL program. The BNF definition of the concrete syntax of TAAL can be found in
Appendix A.

program vase

{ new Vase().changeFlower(new Rose()) }

5 class Vase
myFlower: Flower;
height: Integer := 20;

changeFlower(newFlower: Flower)
10 locals tempVase: Vase := new Vase();

{
tempVase.myFlower := se l f.myFlower;
while newFlower.length.largerThan( height.plus(15) ) do

newFlower.cut();
15 endwhile

se l f.myFlower := newFlower;
}

getColor(): String {
20 return myFlower.getColor();

}
endclass

class Flower
25 color: String := ’yellow’;

length: Integer := 50;

getColor(): String {
return color;

30 }

cut() {
length := 35;

}
35 endclass

class Rose extends Flower
myColor: String := ’red’;

40 getColor(): String {
color := myColor;
return super.getColor();

}

45 cut() {

13



length := length.minus(5);
}

endclass

50 endprogram

Listing 1: An example TAAL program.

3.1 Meta-model

The concrete syntax of TAAL is described in a UML metamodel. The mapping of the BNF rules
to the meta-classes is simple. The names of the non-terminals in the BNF rules directly correspond
to the names of the meta-classes. For instance, the rule for ParsedProgram is:

This rule states that a ParsedProgram has a name, a ParsedExpression, and a number of
ParsedTypeDecl’s. The metamodel in Fig. 3.1 shows that the meta-class ParsedProgramhas an
attribute name, an association with meta-class ParsedExpressionwith multiplicity one, and an as-
sociation with meta-class ParsedTypeDeclwith multiplicity many, marked ‘ordered’. The mapping
between the BNF rule and the metamodel is such that name is set as value of the name attribute
of the ParsedProgram, the ParsedExpression is set as the startExp, and the ParsedTypeDecl’s are set
as the types of the ParsedProgram. Note that the ParsedTypeDecl’s are added to the types in the
order in which they appear in the input. This rule holds for all elements in the metamodel marked
‘ordered’.

The metamodel can be divided into three parts: the types, the statements, and the expressions,
each of which will be explained the following.

3.1.1 Types

The types in the concrete syntax metamodel can be found in Fig. 3.1.

ParsedOperDecl The class ParsedOperDecl represents a user defined operation. It may have a
number of formal parameters, and a number of local variables, each of which are ParsedVarDecl
instances. The body of the operation is represented by one of the statement types, the
ParsedBlockStat. The return type of the operation is represented by a ParsedTypeRef instance.

ParsedProgram The class ParsedProgram represents a complete program. The fact that a program
needs to start somewhere, is represented in TAAL by a single start-expression for every program.
(In Java this has been resolved by requiring that the class to be executed must have a main-
method.) The only sensible expression to start a program is one that creates an object and calls
a method on this object. In the metamodel this is represented by the association called startExp
to the meta-class ParsedExpStat. Next to the start expression each program contains a number of
user defined types, represented in the metamodel by the association called typesto ParsedTypeDecl.

ParsedTypeDecl The class ParsedTypeDeclrepresents a user defined type. It may have a reference
to a supertype, represented in the metamodel by the association called superType to ParsedTypeRef.
Furthermore, a ParsedTypeDecl can have operations and attributes, represented by the associations
called operations and attributes, respectively.

ParsedTypeRef The class ParsedTypeRef represents a reference to a type. Its only attribute is
the name of the type to which it is a reference. During static analysis this reference needs to be
resolved.

ParsedVarDecl The class ParsedVarDecl represents a declaration of a variable. This variable may
be used as attribute, as formal parameter, or as local variable. Any variable has a type, represented
by a ParsedTypeRef, and it may have an expression that represents its initial value.

14



Figure 3.1: The types in the CST meta-model.

3.1.2 Statements

The statements in the concrete syntax meta-model can be found in Fig. 3.2.

ParsedAssignStat The class ParsedAssignStat represents an assignment. It holds references to the
expressions that represent respectively the left hand side of the assignment and the right hand
side of the assignment.

ParsedBlockStat The class ParsedBlockStat represents an ordered list of statements. The body
of an operation implementation, as well as the body of a while-statement, the then-part and the
else-part of an if-statement usually are block-statements.

ParsedConditionalStat The class ParsedConditionalStat represents a conditional statement or if-
statement. It holds a condition, a reference to an expression, and one or two references to state-
ments representing the then-branch and the else-branch.

ParsedExpStat The class ParsedExpStat represents a statement that consists of a single expression.

ParsedReturnStat The class ParsedReturnStat represents a return statement. It holds a reference
to the expression that represents the value to be returned, called value.

ParsedStatement The class ParsedStatement represents a statement in the program. It is an
abstract class, which is indicated in the diagram by the fact that its name is in italics.

ParsedWhileStat The class ParsedWhileStat represent a while loop. It holds a condition and a
body. The condition is a reference to an expression, the body is a reference to a statement.

3.1.3 Expressions

The expressions in the concrete syntax meta-model can be found in Fig. 3.3.

15



Figure 3.2: The statements in the CST meta-model.

Figure 3.3: The expressions in the CST meta-model.

ParsedCreateExp The class ParsedCreateExp represents an expression whose value is a newly cre-
ated object.

ParsedExpression The class ParsedExpression represents any expression in the program. It is an
abstract class, which is indicated in the diagram by the fact that its name is in italics.

ParsedLitExp The class ParsedLitExp represents a literal expression. It is an abstract class.

ParsedNullLitExp The class ParsedNullLitExp represents the ‘null literal expression.

ParsedOperCallExp The class ParsedOperCallExp represents a call to an operation. It holds a list
of expressions that are the actual parameters to this call.

ParsedPrimLitExp The class ParsedPrimLitExp represents any literal expression except ‘null. If the
expression is a string, the link called type will hold a reference to the standard library type ‘String.
If the expression is numeric, the link called type will hold a reference to the standard library type

16



‘Real. It holds a reference to a LiteralVal instance that holds the actual value. Note that LiteralVal
is a meta-class that is part of the ASG meta-model (see Sect. 4).

ParsedPropCallExp The class ParsedPropCallExp represents either an operation call or a reference
to a variable. Instances may be part of a compound expression. According to the BNF rules an
expression may consist on the one hand of an expression, and on the other hand of a dot and a
variable name or operation call. The part after the dot is represented by an instance of this class,
or rather, because this class is abstract, by instance of one of its subclasses. The name attribute
holds the name of the called variable or operation.

ParsedVarCallExp The class ParsedVarCallExp represents a call to a variable.

3.1.4 Auxiliary Elements

In the metamodel for the CST two extra meta-classes are present.

LiteralVal The class LiteralVal is part of the value graph meta-model. It represents a literal value
in the program, like ‘10, or ‘myString. It is used in the CST meta-model because the exact literal
value must be used throughout the series of transformations up and until it is part of the Execution
Graph.

ParsedElement The class ParsedElement represents any element that is recognized during parsing.
ParsedElement has three attributes (line, column, and filename) that hold information on where
the element is found in the input text. Each element of the CST meta-model inherits from the
class ParsedElement. It is an abstract class.
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4 Rich Abstract Syntax Graphs

As explained earlier, the abstract syntax for TAAL comes in two flavours: the rich and the flat
abstract syntax. In this section we will explain the first of these two.

4.1 Meta-model

Fig. 4.1 to Fig. 4.3 contain the UML meta-model for the Rich Abstract Syntax Graph. Like the
Concrete Syntax Tree meta-model, this meta-model can be split into parts: the types, the state-
ments, the expressions. Additional is the part that represents the build-in types and operations:
the standard library. In the following, each element in the meta model, together with its context,
will be explained.

4.1.1 Types

The different types that are supported by TAAL, together with their relationships, are shown in
Fig. 4.1.

NullType Class NullType represents the type of a special value: the null value. This type has only
one instance and conforms to any other type. This class is a singleton class [19].

ObjectType Class ObjectType is a specialization of class Type. It enables the programmer to define
new types in the program. Class ObjectType has a superType-relationship with itself modelling
inheritance-relationships between instances of this class. Class ObjectType has a relationship called
attributes with class VarDecl representing the instance variables.

OperDecl Operations that are declared for objects are captured by the class OperDecl. It ex-
plicitly refers to the Type-class it belongs to by means of a relationship called owner. Every
operation may require multiple parameters in order to be executed. This is modelled by the
parameters-relationship with the class VarDecl. An operation may also have local declared vari-
ables. Therefore, the localVars-relationship has been introduced. In order to track the referred
operation implementation at run-time it is needed to assign a signature to every operation. This
will be explained in more detail in Sect. 6(TBC).

OperImpl The meta-model explicitly distinguishes between abstract and concrete operations.
Abstract operations, i.e. operations that do not have an implementation, are instances of the
OperDecl class. Concrete operations are instances of the OperImpl class. The OperImpl class
therefore has a relationship with Statement called body. See Section 4.2 from more information
on the difference between the OperDecl and OperImpl classes.

PrimitiveType TAAL includes a number of elementary data-types that are represented by the
class PrimitiveType (e.g. String, Integer and Real). (See also Section 4.3.)

Program The class Program represents the whole program. In a program multiple data-structures
can be declared and referred to. The data-structures being declared are the types of the program
represented by the types-relationship with the class Type. When a program has multiple types,
these types are ordered reflecting the order in which they appear in the code. As mentioned before,
the fact that a program needs to start somewhere, requires every program to have a single start-
expression. Therefore, the class Program has a relationship with class ExpStat (which is explained
in section 4.1.2).
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Figure 4.1: The types in the ASG meta-model.

Signature The class Signature stores the elements that uniquely identify the operations, i.e. the
types of the parameters (this is an ordered ‘list), the return type, and the name of the operation.
In Sect. 7, it will be made clear that method signatures play a crucial role in the dynamic method
lookup process.

Type Typing is a very important concept in object-oriented languages. The purpose of class Type
is to model typing at a generic level. The class Type has three subclasses, namely ObjectType,
PrimitiveType and NullType, classifying the kind of type being referred to at a certain point in the
program. The Type class has a relationship with class OperDecl called operations representing a
(possibly empty) set of operations. It is abstract, which is indicated in the diagram by the fact
that its name is in italics.

VarDecl Class VarDecl represents the declaration of a variable, which can be either an instance
variable, a local method variable, or a formal method parameter. The type of the variable is
captured by the type-relationship with class Type. Furthermore, this class has a relationship with
class ObjectType called owner representing that every instance variable belongs to at most one
object. The relationship initExp with class Expression represents the initialization of the instance
variable at declaration. Note that this relationship is not optional (see Section 4.2).
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4.1.2 Statements

TAAL supports the use of a variety of statements. The different kinds of statements and their
relationships at meta-level will be explained in this section. Fig. 4.2 gives an overview of the
different supported statements.

AssignStat The class AssignStat represents the statements in which a particular value will be
assigned to some variable. The value that will be assigned is represented by the relationship with
class Expression called source. The variable that will be assigned is referred to by the relationship
with class VarDecl called assignedVar.

BlockStat The class BlockStat has a relationship with its own superclass Statement called
subStats. This relationship represents the embedding of all kinds of statements within a single
block.

ConditionalStat The class ConditionalStat represents the well-known if-then or if-then-else con-
struction in programming languages. It consists of two required, and one optional element. The
first required element is the condition which determines where to continue the program. This
is modelled by the condition-relationship with class Expression. The second required element is
a statement representing the then-part which will be executed when the conditional-expression
evaluates to true. This is modelled by the thenPart-relationship with class Statement. There is
another relationship with this class called elsePart, which may or may not exist for a particular
conditional statement.

ExpStat The class ExpStat, represents an expression used as a statement, i.e. in such a way that
its value is discarded. Typical examples are object creation and method invocation.

ReturnStat The class ReturnStat has a single relationship with class Expression called value, rep-
resenting that a return-statement should return a value of an expression of a specific type.

Statement The class Statement is the super class of all specific statements that can occur in a
TAAL-program. It has six subclasses, namely ConditionalStat, ExpStat, ReturnStat, BlockStat,
WhileStat and AssignStat. It is abstract, which is indicated in the diagram by the fact that its
name is in italics.

WhileStat The class WhileStat represents a while-statement. It holds a reference to an instance
of class Expression by the condition-relation that figures as the condition, as well as a reference to
an instance of Statement that figures as the body to be executed in case the condition returns
true.

4.1.3 Expressions

The different expressions that are supported by TAAL, together with their relationships, are shown
in Fig. 4.3.

CreateExp The class CreateExp represents a new object expression. It has a link with the
ObjectType of which the newly created object should be an instance.

Expression The class Expression represent an expression in a TAAL program. It is abstract, which
is indicated in the diagram by the fact that its name is in italics.

LiteralExp Instances of the class LiteralExp represent literal expressions. It is abstract, which is
indicated in the diagram by the fact that its name is in italics.
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Figure 4.2: The statements in the ASG meta-model.

Figure 4.3: The expressions in the ASG meta-model.
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NullLitExp The class NullLitExp represents the literal expression ‘null’. This literal expression has
as type the NullType instance. NullLitExp is a singleton class.

OperCallExp The class OperCallExp represents a reference to an operation of a type. Each
OperCallExp instance may have actual parameters. This is represented by the relationship be-
tween OperCallExp and Expression called actualPars. An OperCallExp instance also holds a relation
to the Signature of the operation of which it is an invocation. Note that an OperCallExp does not
reference an OperDecl or OperImpl, because of the dynamic method lookup that supports inheri-
tance in TAAL. The class OperCallExp is abstract, which is indicated in the diagram by the fact
that its name is in italics.

OperSuperCallExp The class OperSuperCallExp represents the explicit calling of an operation de-
clared in one of the super classes of the current class. It is created when the input contains
operation calls like “super.xxx()”.

OperVirtualCallExp The class OperVirtualCallExp represents a reference to an operation. It rep-
resents the ‘normal’ operation call, in contrast with the explicit calling of an operation of the
supertype.

PrimLitExp PrimLitExp is the meta-class for all literal expressions that have as type a
PrimitiveType.

SelfExp The class SelfExp stands for the expression that consists of the keyword self.

VarCallExp The class VarCallExp represents a reference to a variable. Each VarCallExp instance
holds a relationship with the attribute, local variable, or formal parameter of an operation. In the
metamodel this is indicated by the association with class VarDecl called referredVar.

4.1.4 Auxiliary Elements

In the metamodel for the ASG one extra meta-class is present, which does not appear in Fig. 4.1
- 4.3, but is shown in Fig. 4.4.

AbstractSyntaxElement The class AbstractSyntaxElement represents any element in the ASG. It
is the abstract superclass of all classes in the ASG metamodel. AbstractSyntaxElement has three
attributes (line, column, and filename) that hold information on where the element is found in the
input text. This information is used for error messages.

4.2 Differences between CST and ASG Meta-models

There are notable differences between the meta-models of the concrete syntax tree and the rich
abstract syntax graph. These differences are explained in the following list.

• There are no counterparts for the NullType and PrimitiveType in the CST meta-model. The
reason is that these types may not be defined by a user of TAAL. All instances of both
classes are part of the standard library, which will be explained in Section 4.3.

• The ASG meta-model does not contain a counterpart for the class ParsedTypeRef. Instances
of this class are resolved and replaced by references to, i.e. associations with, the type itself.

• The association from VarDecl to Expression called initExp is not optional, whereas the corre-
sponding relationship in the CST is optional. If there is no initExp to a ParsedVarDecl, then
the static analysis will create a VarDecl with the NullLitExp instance as initial expression. If
the type of the declared variable is one of the predefined types Real and Integer, its initial
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Figure 4.4: The link between CST and ASG meta-models.

value will be set to 0. In the case the variable is of type Boolean, which is also a predefined
type, its initial value is ‘false.

• The return type of an operation is treated similarly. If the return type is not present in the
CST then the return type in the ASG will be set to the NullType.

• In the CST there can only be ParsedOperDecl’s present. In the ASG the ParsedOperDecl
may be represented by either an OperImpl or an OperDecl instance. If the ParsedOperDecl
has a ParsedBlockStat without any sub-statements, then an OperDecl instance is created,
else an OperImpl instance is created. Note that this means that the user cannot overwrite
an operation with an empty one. The BNF rules would need to be extended in order to
differentiate between an operation without a body, and an operation with an empty body.

• Signature’s are completely missing from the CST. These instances are created during the
static analysis based on the information in the ParsedOperDecl’s.

• The left hand side of a ParsedAssignStat is a ParsedExpression. During static analysis this
expression is analyzed. If it represents a variable, then in the ASG it is replaced by link to
a source expression, representing the source of the variable, and a link, called assignedVar,
to the variable itself.

• An Expression in the ASG always has a Type associated. This resultType is determined during
static analysis based on the different subclasses of Expression. For instance, the resultType of
a CreateExpis always equal to its type, the resultType of an OperCallExp is equal to the return
type of the referred Signature, and the resultType of a PrimLitExp depends on its value.

• The class ParsedPropCallExp has no ASG counterpart. It is used to simplify parsing only.
• Instances of the class ParsedOperCallExp are resolved to be instances of either subclass of

OperCallExp. The class OperCallExp thus remains abstract.

4.3 The Standard Library and Type Conformance

Most languages have a number of predefined types, and TAAL is no exception. TAALs predefined
types are gathered into a set called the standard library. The standard library is implemented
as a single class that holds four instances of PrimitiveType, called String, Boolean, Integer, and
Real. A very small number of operations are available on these types. For the String type the
operation equals is defined. The operations plus and minus are defined for both Integer and Real.
There is no infix notation for calling these operations. For instance, the expression 10.minus(3) is
the syntax for calling the minus operation.

In every typed language, type conformance is an issue. In TAAL, type conformance is deter-
mined by a single (meta)operation in the class Type. It implements a number of very simple rules.
First, all types conform to the NullType, and NullType conforms to all other types. Second, if
both types are equal they conform to each other. Third, a subclass conforms to any of its super-
classes. Fourth, the type Integer from the standard library conforms to the type Real, also from
the standard library.

4.4 Static Analysis

During the static analysis, a Rich Abstract Syntax Graph is created from the Concrete Syntax
Tree. This is done by traversing the concrete syntax tree a number of times, i.e. it is a multi-pass
analysis. Each traversal is implemented in a separate class that implements a visitor over the
Concrete Syntax Tree. Many of the passes could be combined if there was a need for efficiency.
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Pass 1 For each element in the Concrete Syntax Tree that has a direct abstract syntax counter-
part, this abstract syntax counterpart is created. The ASG element is temporarily stored in the
Concrete Syntax Tree element. Therefore the class ParsedElement has an association with class
AbstractSyntaxElement, called myAsElem, as shown in Figure 9. Parsed elements that do not
have a direct ASG counterpart, like ParsedTypeRef and ParsedPropCallExp, are simply skipped.
To be able to give meaningful error messages the ASG element gets the information on the line,
column, and file from its parsed element. If the parsed element has a name, the name of its ASG
element will be set to the same value.

ParsedTypeDecl instances are always transformed into ObjectType instances. Users may not
define PrimitiveType instances, these are hold by a dedicated class called StandardLib. If a
ParsedPrimLitExp has as value the string self, a SelfExp instance is created instead of a PrimLit-
Exp instance. Each ParsedOperDecl is checked whether it contains a body. If the body is present
the ASG element will be of type OperImpl, otherwise it will be of type OperDecl. For both a
Signature instance is created and stored in the signature role of the OperDecl meta-class. The
name of the Signature instance is set. In this pass the signature is not yet added to the owner of
the operation. The value of each NullLitExp will be set to a LiteralVal instance with symbol null.
There is just one such LiteralVal instance in the complete system.

Pass 2 In the next pass the simpler associations in the ASG are set. All values are set to the ASG
element of the corresponding association in the CST. For instance, the value of myAsElem.startExp
in a ParsedProgram will be set to startExp.myAsElem. The values of the following associations
are set:

• BlockStat.subStats
• ConditionalStat.elsePart
• ConditionalStat.thenPart
• OperDecl.locals
• OperDecl.params
• OperImpl.body
• PrimLitExp.value
• Program.startExp
• Program.types
• Type.attributes
• Type.operations
• WhileStat.body

Pass 3 In pass 3 type references are analyzed, and the standard library is initialized. Each
reference to a ParsedTypeReference instance is replaced by a reference to the correct type. First
the types in the program are searched, if the reference cannot be found, the standard library is
searched. The resultType of OperCallExp and VarCallExp instances is not set in this pass. This
pass sets the values of the following associations:

• CreateExp.resultType (equal to CreateExp.type)
• CreateExp.type
• CreateExp.type
• NullLitExp.resultType
• ObjectType.conformsTo (for user defined types this equals ObjectType.super)
• ObjectType.super
• OperDecl.signature.returnType
• PrimLitExp.resultType (the difference between Real and Integer is analyzed here)
• VarDecl.type
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Pass 4 The signature of each operation is completed in pass 4. If an operation has a signature
that equals a signature that already exists in the program, the operation will refer to the existing
signature. Thus all operations with the same signature will refer to the same signature object,
i.e. node in the flat abstract syntax graph. Signatures are considered to be equal when their
names are equals and their list of parameter types are equal. Both the elements, and the order
of the elements in the list of parameter types must be equal. Note that the VarDecl instances
that constitute the parameters obtain their type in pass 3. Therefore the parameter types in the
Signature instances can only be set after pass 3. The value of the following association is set in
this pass:

• OperDecl.signature.paramTypes

The value of the following association may be changed, if the found signature is equal to an
existing signature:

• OperDecl.signature

Pass 5 Pass 5 analyses to which Signature an OperCallExp instance refers, and to which VarDecl
a VarCallExp instance refers. In order to find the first, the enclosing TypeDecl is searched for
signatures, if no matching signature is found its supertypes are searched recursively. Before search-
ing for a matching signature, the actual parameters are tested for the occurrence of operation or
variable calls. If found, they will be analyzed first. In the concrete syntax the keyword super may
precede an operation call. When this is the case, the OperCallExp instance is transformed into
an OperSuperCallInstance. The search for a matching signature will in this case start from the
supertype of the enclosing type.

In order to find the VarDecl instance to which a VarCallExp refers, first the enclosing OperDecl,
if present, is searched for formal parameters and local variable declarations, next the enclosing
TypeDecl is searched for attributes.

If the ParsedPropCallExp from which analysis is started, has an appliedProperty, then this
property is analyzed as well. In this case the TypeDecl instance being searched is the type of
the ParsedPropCallExp from which analysis started, i.e. the source of the appliedProperty. If
an OperCallExp does not have a source, a new SelfExp is created that acts as source to these
expressions. The same holds for VarCallExps that refer to an attribute.

This pass sets the values of the following associations:

• OperCallExp.actualPars
• OperCallExp.referredSig
• OperCallExp.resultType
• SelfExp.resultType
• VarCallExp.referredVar
• VarCallExp.resultType

Pass 6 The source of every OperCallExp or VarCallExp is set in pass 6. Furthermore, every link
to an expression is set. In most abstract syntax trees the top node of an expression is the rightmost
element of the expression. For instance, in the expression aa.bb().cc the VarCallExp that refers
to cc is the top of the subtree representing the total expression. The OperCallExp that refers
to bb() is its child, and the VarCallExp that refers to aa is again a child of this OperCallExp.
However, the Concrete Syntax Tree is build the other way around. The same example expression
has a ParsedVarCall with name aa as its top. This pass solves the reversal by setting each
expression to the ASG counterpart of the last applied property: lastAppliedProp().getMyAsElem.

Finally, the last link of each AssignStat instance is set: assignedVar. Note that this can only
be done after pass 5, when the referred variable of every VarCallExp has been set. The value of
the following associations is set in this pass:

• AssignStat.assignedVar
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• AssignStat.source
• AssignStat.rightHandSide
• ConditionalStat.condition
• ExpStat.expression
• PropCallExp.source
• ReturnStat.value
• VarDecl.initExp
• WhileStat.condition

Pass 7 In the last pass, no changes are made to the ASG. The pass merely performs a check on
the created ASG. Any errors found are reported. The following questions are answered:

• Are all obligatory associations present?

• Is the number of signatures in a type equal to the number of operations?

• Does the number of parameter types in an operations signature equal the number of param-
eters in the operation?

• Is the resultType of a NullLitExp indeed equal to the singleton instance of class NullType?

• Is the value of a NullLitExp indeed equal to the unique instance of class LiteralVal that
represent a null value?

• Is the expression in an ExpStat executable? I.e. it must not be a VarCallExp, a LitExp, or
a SelfExp.
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5 Flat Abstract Syntax Graphs

In this section we discuss the “flattening” process of Fig. 2.1. This is of special interest because it
is the only transformation that crosses the boundary between modelling languages: whereas the
(meta)models discussed so far were all formulated in UML and lie on the left hand side of Fig. 2.1,
and the subsequent sections only deal with graphs and lie on the right hand side of the figure, in
the flattening we have to bridge the gap between the two.

As we argue in more detail below (Sect. 5.3), there is a limit to the degree in which the flatten-
ing step can be made precise formally, essentially because, where the flattened graphs are already
mathematical objects, the models that are flattened into them are only available as run-time
data structures. It is outside the scope of this report to formulate (and validate) the appropriate
corresponding mathematical model for the run-time data structures and to formalize the relation-
ship with the graphs. What we can (and do) do, however, is to formalize the relationship between
graphs and (UML) meta-models, both of which can be captured mathematically. This is described
at some length in Sections 5.1–5.2.

5.1 UML models versus graphs

In this study we bring together the worlds of modeling and of graphs. The UML, a relevant part
of the modeling world, does a great job in visualizing models and meta-models. On the other
hand, graphs are very good in visualizing instances and their relationships. Whereas the power
of the UML lies on the level of types, graphs are stronger on the level of instances. In OMG
terminology, UML rules the levels M1, M2 and M3, but graphs rule the level M0. To specify the
semantics of TAAL by means of graph transformations, we have to link the TAAL metamodel
(most naturally thought of as residing on level M2) to graphs, which, depending on the context,
represent structures on level M1 or M0.

In fact, because UML is good at capturing structural aspects of models, in the subsequent
sections we will continue to use it on the type level to extend the TAAL abstract syntax meta-
model of Figures 4.1, 4.2 and 4.3, even though the corresponding instances will now be graphs.
We prefer this to using the (comparable) concept of a type graph (see, e.g., [24]) since those do not
provide the same capabilities. For instance, type graphs do not include multiplicities or inheritance
(at least in the standard theory; see, however, [4, 9, 33] for some proposals for extension).

This implies, however, that it has to be be clear what it means for a graph to be an instance
of a UML model. We clarify this below by providing formal definitions, both for graphs (which is
straightforward) and for the fragment of UML we use in this report. In both cases this results in
a mathematical structure (formally: an algebra) consisting of sets and operations on them. We
then define a class of mappings, called typings, from graph structures to UML structures, and we
say that a graph is (or, more properly, can be regarded as) an instance of a UML model if a typing
exists between their respective mathematical structures.

5.1.1 Graphs

In the research reported here we use graphs of a particularly straightforward kind, consisting of
nodes (which typically represent particular instances of some concept, such as a statement, a class,
an object or a data value) and edges (which typically represent relations between the nodes). Each
edge has a label, which indicates the kind of relation it represents.

This gives rise to the following mathematical structure:

Definition 5.1 (graph) A graph G is a tuple 〈Lab,Nod ,Edg〉 where

• Lab is a finite set of labels;

• Nod is a finite set of nodes;

• Edg ⊆ Nod × Lab ×Nod is a (finite) set of edges.
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It follows from the definition that, formally, an edge is a triple consisting of a node, a label, and
another node. The first node is called the source and the second the target node of the edge. To
manipulate and reason about graphs, we often use the following auxiliary functions, which project
edges onto their constituent parts:

• The label function lab:Edg → Lab;

• The source function src:Edg →Nod ;

• The target function tgt :Edg →Nod .

This gives rise to another view, also frequently encountered, namely to regard a graph as a special
kind of many-sorted algebra with signature 〈S, F 〉, where S = {Lab,Nod ,Edg} is the set of carrier
types and F = {lab, src, tgt} is the set of operations (all of which are unary). We mention this
here especially because this signature (and indeed any many-sorted signature with only unary
operations) can itself be seen as a graph, with nodes S and edges F . This “signature graph,”
which in MDA terms would be called the meta-model of graphs, is depicted in Fig. 5.1 (left hand
side).

As this example shows, it is convenient to represent graphs pictorially (as usual) by drawing
nodes as boxes and edges as arrows between the boxes. Since a graph, in its above definition, does
not contain any layout information, or (in other words) the layout is not considered to be part of
the graph, in a pictorial representation we are free to layout a graph in any way convenient for
the application at hand.

In addition to these representation choices we also use labels written inside nodes to stand for
labels of self-edges, i.e., edges with that node as both their source and target. (Note that this does
not give rise to confusion since such inscribed labels are not used for any other purpose.)

5.1.2 UML models

The formalization of UML class diagrams proceeds along the same lines as that of graphs; however,
the richer structure of class diagrams is reflected in its formalization. We start by providing some
notation for multiplicities: the set of natural numbers will be denoted Nat , and Nat∗ denotes Nat
together with the special symbol ∗, which stands for “arbitrarily many” — formally, this can be
treated as infinity. Indeed, we pose i < ∗ for any i ∈ Nat . We use Mult = [i, j] ∈ Nat ×Nat∗i ≤ j
as the set of multiplicities; that is, all pairs of numbers from Nat and Nat∗ of which the second is
no smaller than the first.

The following definition covers all the aspects of class diagrams that we use.

Definition 5.2 (UML model) A class diagram CD is a tuple 〈Id ,Cls,Dat ,Ass,Att ,Ext ,name〉
where

• Id is a finite set of identifiers;

• Cls is a finite set of classes;

graph signature class diagram signature

Figure 5.1: The signatures of graphs and class diagrams, depicted as graphs.
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• Dat is a finite set of data types, disjoint from Cls such that each T ∈ Dat is a disjoint set
of values;

• Ass: (Cls × Id) ⇀ (Mult × Bool × Cls) is a partial association mapping;

• Att : (Cls × Id) ⇀ Dat is a partial attribute mapping, with a domain of definition disjoint
from that of Ass;

• Ext ⊆ Cls × Cls is an acyclic extension relation, with reflexive and transitive closure Ext∗;

• name: (Cls ∪Dat)→ Id is an injective naming function.

The association and attribute mappings might need some clarification. Both are partial functions
from Cls × Id , meaning that for any combination of class and (association/attribute) name, they
may either yield a value (explained below) or be undefined — namely, if there is no association,
respectively attribute, with that name in that class. Where defined, Ass yield a triple of multi-
plicity, ordering indication and target class of the association, whereas Att yields the type of the
attribute. The constraint on the disjointness of the domains of definition of Ass and Att means
that there cannot be an association and an attribute with the same name in the same class.

Just as with graphs, there is an alternative (and equivalent) algebraic view on these structures.
To understand this, it should be clear first that any function (total or partial) can be seen as a set
of pairs of values from its domain and codomain: each such pair represents the fact that the first
component is mapped by the function to the second. If the domain or codomain are themselves
Cartesian products, as in the case of Ass and Att , we can also flatten the resulting pairs of tuples
into one bigger tuple. Thus, for instance, Ass and Att can both be viewed as sets, of 5-tuples and
triples, respectively. From these sets we can define auxiliary functions that project the tuples to
their constituent components, much like lab, src and tgt for graphs. This gives rise to the following
auxiliary functions:

• src: (Ass ∪Att) → Cls, projecting each association or attribute tuple to its first (source)
component;

• name: (Ass ∪Att)→ Id , projecting each association or attribute tuple to its second (name)
component;

• mult :Ass →Mult , projecting each association tuple to its third (multiplicity) component;

• ord :Ass → Bool , projecting each association tuple to the fourth (orderedness) component;

• tgt :Ass → Cls, projecting each association tuple to the fifth (target) component;

• typ:Att →Dat , projecting each attribute tuple to its third (type) component;

• sub:Ext → Cls, returning the subclass (specialized) type of an extension pair;

• super :Ext → Cls, returning the superclass (generalized) type of an extension pair.

Like in the case of graphs, the resulting signature can itself be depicted in the form of a graph;
this is also given in Fig. 5.1 (right hand side).

5.2 Pre-typings and typings

We will now define what it means for a graph to be an instance of a class diagram. This hinges
on the existence of a mapping map from the graph to the class diagram that

• maps the nodes of the graph to the classes of the class diagram, in such a way that the image
of this mapping for any one node can be considered as the type of the node, and

• maps the edges of the graph to associations and attributes, and in some case also classes, of
the class diagram.

Formally, map is given by a pair of functions

map.Nod : G.Nod → CD.Cls
map.Edg : G.Edg → CD.Ass ∪ CD.Att ∪ CD.Cls
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but since no confusion can arise (due to the fact that the domains of definition are disjoint) we
will denote both of these by map.

5.2.1 Pre-typings

We will call any such mapping map (without further constraints) a pre-typing from G to CD. In
the remainder of this sub-section we discuss constraints under which a pre-typing is considered to
be a typing — which in turn will be the evidence we will use to justify the claim that the graph
G is an instance of the class diagram CD.

Some further terminology first. Given a pre-typing map from G to CD, we recognize the
following five categories of edges in G. Let e = (v, a, w) ∈ G.Edg in the explanation below.

1. Association edges, which are instances of some association in CD defined between general-
izations of the classes of the edge’s source and target. Formally, e is an association edge if
map(e) ∈ CD.Ass such that

• (map(v), src(map(e))) ∈ Ext∗, meaning that the source of the association generalizes
the type of the source of e;

• (map(w), tgt(map(e))) ∈ Ext∗, meaning that the target of the association generalizes
the type of the target of e;

• name(map(e)) = a, meaning that the name of the association coincides with the name
of the edge.

2. Attribute edges, which are self-edges modelling instances of some attribute in CD defined in
a class that generalizes the type of the edge’s source. Formally, e is an attribute edge if

• v = w, meaning that e is a self-edge (and in our figures the label will be written on the
node);

• map(e) ∈ CD.Att and (map(v), src(map(e))) ∈ Ext∗, meaning that e is mapped to an
attribute defined in a class that generalizes the type of the source of e;

• a = “name(map(e)) = A” for some data value A ∈ typ(map(e)), meaning that the
label of the edge is a string consisting of the name of the attribute, the equals sign, and
some data value in the type of the attribute.

This encoding of attributes is quite different from that of associations, since we are not
relying on the graph structure here: instead the attribute name and the instance value are
both encoded in the edge label. This means that we cannot manipulate attribute values in
any way. Although this is satisfactory in the context of this paper, and avoids the somewhat
messy issue of graph attribution, it sharply limits the generality of the flattening.

3. Type edges, which are self-edges bearing the name of one of the super-classes of the node
type. Formally, e is a type name edge if

• v = w, meaning that e is a self-edge (and in our figures the label will be written on the
node);

• map(e) = C ∈ CD.Cls such that (map(v), C) ∈ Ext∗ and name(C) = a, meaning that
e is mapped to a supertype of v’s type, and the name of that type coincides with the
label of e.

We use type edges as a kind of “poor man’s type annotation:” in this way, we can formulate
the graph transformation rules on the proper level of type abstraction. A richer graph model,
with node labels or explicit typing, would obviate the need for type edges.

4. Head edges, which are edges pointing to the first target element of some ordered association
instance. Formally, e is a head edge if

• a = orderFirst , meaning that e has a special label indicating its role;
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• map(e) ∈ CD.Ass such that ord(map(e)), meaning that e corresponds to an ordered
association;

• there is a unique association edge e′ = (v,name(map(e)), w) ∈ G.Edg such that
map(e′) = map(e), meaning that e uniquely identifies one of the instances of that
ordered association.

5. Successor edges, which are edges between two successive target elements of some ordered
association instance. Formally, e is a successor edge if

• a = orderNext , meaning that e has a special label indicating its role;
• map(e) ∈ CD.Ass such that ord(map(e)), meaning that e corresponds to an ordered

association;
• there are association edges e′ = (v′,name(map(e)), v), e′′ = (v′,name(map(e)), w) ∈

G.Edg such that map(e′) = map(e′′) = map(e), meaning that e connects the targets of
two instances of that ordered association.

The successor edges are actually the trickiest part of the flattening, since the identity of the
association instance source (v′ above) cannot be derived from the edge e. For that reason,
our encoding of ordered associations is only good enough if no ordered association targets are
shared in the instance models. In the context of our paper this is ensured by the fact that we
only use ordered aggregations: absence of sharing is one of the characteristics of aggregates.
In a definition of graph instances for arbitrary class diagrams, the encoding of the ordering
relationship needs to be more elaborate, involving for instance special list nodes.

An example can be found in Fig. 5.2.
Summarizing, there are five types of edge in the graph, roughly corresponding to, respectively,

the associations of the class diagram, the attributes, the subtyping relation imposed by inheritance,
and (for the last two) the ordering of ordered multiple associations. Multiplicities are only modelled
in the instance graph through further constraints on the edges.

5.2.2 Typings

To formulate the remaining constraints, which hammer down the details of the subtyping, ordering
and multiplicities, we introduce the concept of the value set of a given association, say A ∈ CD.Ass,
for a given node, say v ∈ G.Nod :

map.Val(v,A) = {tgt(e) | e ∈ G.Edg , src(e) = v,map(e) = A} .

Definition 5.3 (typing) Let G be a graph and let CD be a class diagram. A pre-typing map from
G to CD is called a typing if the following constraints are satisfied for all v ∈ G.Nod:

1. Association multiplicity. For all A ∈ CD.Ass such that (map(v), src(A)) ∈ CD.Ext∗, if
mult(A) = [i, j] then i ≤ |map.Val(v,A)| ≤ j (meaning that the number of A-values for v is
between i and j);

2. Attribute completeness. For all A ∈ CD.Att such that (map(v), src(A)) ∈ CD.Ext∗,
|map.Val(v,A)| = 1 (meaning that v has a value for A);

3. Subtyping. For all C ∈ CD.Cls such that (map(v), C) ∈ CD.Ext∗, there is a type edge e ∈
G.Edg with src(e) = v and map(e) = C (meaning that v has type edges for all generalizations
of its actual type);

4. Association ordering. For all A ∈ CD.Ass such that ord(A) and (map(v), src(A)) ∈ CD.Ext∗,
if |map.Val(v,A)| > 0 then there is exactly one head edge e ∈ G.Edg with src(e) = v
and map(e) = A, and furthermore, map.Val(v,A) is totally ordered by the successor edges
{e′ ∈ G.Edg | src(e′) = v,map(e′) = A}, with least (i.e., first) element tgt(e).
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example class diagram example instance graph

Figure 5.2: An example flattening.

This finally gives rise to the notion of instances we were after.

Definition 5.4 A a graph G is called an instance of a class diagram CD if there exists a typing
map from G to CD.

For instance, the graph on the right hand side of Fig. 5.2 is an instance of the class diagram of
the left hand side of the figure. Fig. 5.3 shows a fragment of the flat abstract syntax graph of our
example program.

5.2.3 Discussion

Note that Definition 5.4 does not require that the typing is explicitly given, merely that it exists.
This is motivated by the chosen graph transformation tool, GROOVE (see Sect. 8), which does
not support explicit typing. On the other hand, for our purpose it is not desirable that the typing
is ambiguous: if a graph is an instance of a class diagram, we want to be able to derive beyond
a doubt what class a given node has, and what association a given edge is an instance of. Under
Definition 5.4, this is not possible for arbitrary graph instances and class diagrams. For instance,
if an attribute or association is overloaded in a subclass, then it is not necessarily clear from an
edge label which of the associations the edge should be mapped to. Another possible source of
ambiguity is the encoding of association ordering, especially when the ordered nodes occur as
targets of different associations.

However, if we rule out the possible sources of ambiguity, by restricting the graphs to those
where ordered nodes are unshared and the class diagrams to those where attributes and associ-
ations are not overloaded, and imposing some further (weak) restrictions on the uniqueness of
names of associations and attributes, then we can prove the following result, which states the
uniqueness of typings.

Theorem 5.5 Let G be a graph and CD a class diagram. If the following conditions are met, then
there is at most one typing map from G to CD.

1. CD contains no classes, attributes or associations named orderFirst or orderNext;

2. CD contains no class C and association A such that name(C) = name(A);

3. CD contains no two distinct attributes or associations A1, A2 with name(A1) = name(A2)
and (src(A1), src(A2)) ∈ Ext∗;

4. G contains no two distinct pairs of edges (v1, orderFirst , w),(v2, orderFirst , w) or
(v, orderNext , w1),(v, orderNext , w2) or (v1, orderNext , w),(v2, orderNext , w).

Proof sketch. The node mapping part of map is unambiguous because name is injective on Cls
and therefore the target class of any node can be derived from its type edges. Regarding the edges,
we have to argue that the category of any edge (association edge, attribute edge etc.) is uniquely

34



Figure 5.3: Fragment of the flat ASG for the vase program.

determined, and that for each edge from any of these categories, the image under the edge part
of map is unambiguous.

Regarding the uniqueness of the categorization of the edges, conditions 1 and 2 in the theorem
ensure that the label of an edge uniquely determines its category. The non-ambiguity within each
of the categories can be argued as follows:

1. Association edges. Follows from Condition 3 of the theorem;

2. Attribute edges. Follows from Condition 3 of the theorem;

3. Type edges. Follows from the injectivity of name on Cls;

4. Head edges. Follows from Condition 4 of the theorem;

5. Successor edges. Follows from Condition 4 of the theorem. 2

It is interesting, but for our study of no further relevance, to observe that here we encounter a
conceptual clash between the worlds of MDA-type modelling and graphs. In the OMG terminology,
class diagrams would be considered as M1-level models, and so the graphs that instantiate them
are instance-level and belong to M0. In particular, this is true of any concrete flat abstract syntax
graph that is an instance of the combined class diagrams in Sect. 4. Yet we will see in the remainder
of this report (Sect. 7) that the simulation of a program is defined in terms of so-called execution
graphs, which are conceptually a meta-level lower still. (One way to resolve this terminology clash
is to point out that, in the context of this work, the abstract syntax class diagram actually plays
the role of a meta-model and so really belongs to M2.)

5.3 Flattening

We have set up the theory above to support the notion of flattening. However, the flattening
process itself transforms an instance of a class diagram into a Flat ASG, where the notion of
instance is that of the Java programming language. In our transformation process (Fig. 2.1), such
instances are not available in diagrammatic or mathematical form but as run-time data structures
in the plug-in developed for the purpose of this work (see Sect. 8). Yet we believe that by using
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the graph encoding discussed above as a guideline, flattening is in principle well-defined. Our
implementation of this step is in fact fully model-driven: it does not only work for the abstract
syntax graph model but for arbitrary class diagrams.

In the context of this report we do not see an advantage in providing a mathematical model for
the Java data structures used in the plug-in, let alone for the flattening transformation itself. (In
fact, the status of such models would be disputable in any case: first of all, it should be somehow
established that the data structure model really captures the semantics of Java, and second, even
when formalized, the flattening transformation would still have to be implemented, with again the
discrepancy between the mathematical and programming worlds.)

5.4 Graph Transformation

In the next two sections we will describe how the Flat ASG is used in specifying the semantics of the
program being modelled by it. For this purpose we apply graph transformations, specified by so-
called graph production rules. Here we briefly discuss the principles behind graph transformation,
in the form implemented in the GROOVE tool set (see Sect. 8.2).

5.4.1 Graph Production Rules

Traditionally, graph production rules consist of a left hand side (LHS) and a right hand side
(RHS). Applying a graph production rule, say r : LHS → RHS, transforms a source graph G
into a target graph H by matching LHS in G, which comes down to finding an image in G of the
structure described by LHS, and replacing this LHS-image by RHS. The replacement, however, is
not complete: wherever LHS and RHS overlap the structure is preserved.

In this paper, production rules are extended by negative application conditions (NACs, see
[20]), which are extensions of LHS that serve to limit the applicability of a rule: r will only be
applied to a source graph G, for a given image of LHS in G, if that image cannot be extended to
a matching of any of r’s NACs.

Rather than giving LHS, RHS and the NAC’s of a rule as separate (overlapping) graphs,
GROOVE offers a representation of all these elements in a single graph, where the roles of the
different elements are distinguished by a color and shape coding. Four different types of elements
can occur in such rule graphs, namely:1

• reader -elements, being the elements that occur in both LHS and RHS. Reader-elements are
represented by solid black arrows and rectangles.

• eraser -elements, being the elements that only occur in LHS. Eraser-elements are represented
by dashed blue arrows and rectangles.

• creator -elements, being the elements that only occur in RHS. Creator-elements are repre-
sented by solid green arrows and rectangles.

• embargo-elements, making up the NACs. These elements prohibit the application of r when
they exist at the prospective matching in G. Embargo-elements are represented by dashed
red arrows and rectangles.

Fig. 5.4 (i) shows an example modelling a circular buffer and Fig. 5.4 (ii) shows a graph production
rule that puts an element into such a buffer. The rule requires an empty slot. After applying this
rule, this first empty slot will be assigned an object and will become the last non-empty slot of
the buffer.

A graph production system, finally, is a set of graph production rules, each of which describes
a step of a more complex transformation. To distinguish between the rules in a graph production
system, we assume all the rules to be uniquely named; we use Nr to refer to the name of a rule r.

1Obviously the colours do not show up in a black-and-white presentation: there the red and green are, respec-
tively, dark and slightly lighter gray, whereas the blue is almost indistinguishable from black.
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Get element from the bufferEmpty buffer Put element in the buffer

Figure 5.4: Initial graph and production rules for a circular buffer.

5.4.2 Graph Transition Systems

When a production rule is applied to a graph, obviously this results in another graph. We write
G −r,m−−→ H to denote that graph G has been transformed into graph H by applying production
rule r; the component m stands for the matching that identifies the occurrence of r’s LHS in G.
We refer to the literature on graph transformation (e.g., [13]) to give the formal definition of H’s
construction from G using r and m.

Given a graph production system R and a start graph G, by recursively applying all rules in
all possible ways, we obtain a set of derived graphs: formally, the smallest set S such that

• G ∈ S, i.e., the start graph is there;

• If H1 ∈ S and H1 −r,m−−→ H2 for some rule r ∈ R and matching m of r’s LHS in H1, then there
is a H3 ∈ S that is isomorphic to H2.

The set S together with the indexed relation −→ gives rise to what we call a graph transition system.
We will display graph transition systems as graphs themselves by taking the elements of S as nodes,
and adding an edge (H1, Nr,H2) whenever H1 −r,m−−→ H3 for some m and some H3 isomorphic to
H2. An example is given in Fig. 5.5 which shows the graph transition system resulting from the
initial graph and the rules in Fig. 5.4. That is, the initial graph corresponds to the node marked
“start” in Fig. 5.5, and the other nodes in the figure represent graphs in which respectively 1, 2,
3 and 4 cell nodes of the buffer contain a val-edge to an Object-node. Two of those states are also
shown explicitly in the picture. The transitions correspond to applications of the rules in Fig. 5.4.
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Figure 5.5: A graph transformation system, with some example states.
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6 Program Graphs

A program graph is the start point for correctly simulating the execution of the system. Therefore,
as described in Sect. 2, a program graph contains the following information:

• the flat abstract syntax graph, described in Sect. 5, modelling the required elements of the
concrete syntax in terms of nodes and edges representing abstract syntax elements;

• flow graphs, modelling the sequential execution relation between executable statements.

Given the Flat ASG, we construct the corresponding Program Graph by applying graph pro-
duction rules which add control flow information to the Flat ASG. In this section we will firstly
define the concept of flow graphs and then discuss their structure as they appear in this report.
Next, the general principles underlying flow graph construction will be discussed. Then a number
of graph production rules concerning flow graph construction are shown and explained. The last
part of this section demonstrates what the flow graph construction process results in, by applying
the rules on the Flat ASG of a small part of the example program from Sect. 3.

6.1 Flow Graphs

We will start with a definition of what we call flow graph in this report.

Definition 6.1 (flow graph) A flow graph is a directed graph consisting of three types of nodes
(also called flow elements), namely procedure, predicate and context nodes, connected by differ-
ent types of successor-edges. Procedure and predicate nodes represent executable statements, the
context nodes represent the start and end point of each flow graph; the successor-edges represent
the sequential relation between between statements. For every flow graph the following properties
hold:

• a flow graph has exactly one context node which has one outgoing and one incoming successor-
edge;

• every procedure node has exactly one outgoing successor-edge;
• every predicate node has exactly two outgoing successor-edges.

A flow graph can best be understood in relation to a locus of control, which is a node of the
execution graph (discussed in detail in the Sect. 7) standing for a thread of execution. Control is
said to be at a node of the flow graph. The successor-edges indicate where control should go after
it leaves the current flow graph node.

The structure of flow graphs, as they will eventually appear in Program Graphs, is shown in
Fig. 6.1. Flow graphs are built up from flow elements that are connected by successor-edges. Flow
elements represent either executable statements or abstract syntax elements that manage control
flow. From this figure it also becomes clear what kind of successor-edges can appear between
different flow elements. Successor-edges have one of the labels flowNext, flowTrue or flowFalse.
The FlowTmp-node with its outgoing flowIn-edge will be discussed in Sect. 6.2.

Flow graphs, traditionally [16], have two special distinct nodes: the start node and the end
node. In our approach we collapse these two nodes in the context node of a single flow graph.
This means that every context node represents the start node of a flow graph as well as its end
node. Using this approach, every flow graph is cyclic. This cyclic property will be discussed in
more detail in Sect. 7.

In the next paragraphs we will discuss the three different types of flow elements in more detail.
In Sect. 6.2 we will say more about the structure of flow graphs during the construction process.

Procedure Nodes. Procedure nodes represent statements after which it is deterministic which
statement to execute next: control flow does not depend on the evaluation of a condition. The
syntax elements that can serve as a procedure node are shown in Fig. 6.2 (i). One element that
seems a bit out of place here is the VarDecl-element since it is neither a Statement nor an Expression.
When discussing the ContextNode it will become clear why we model it as a procedure node.
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Figure 6.1: Flow graph meta-model.

Predicate Nodes. Statements that are represented by predicate nodes are related to a condi-
tion, which will be evaluated to either true or false. The actual value of the condition determines
which branch will be taken. In this paper we only consider predicate nodes with two outgoing
successor-edges: one for the case the condition is evaluated to true and one for the case the con-
dition is false. As Fig. 6.2 (ii) shows, in TAAL there are only two kinds of statements for which a
conditional expression needs to be evaluated: the WhileStat and the ConditionalStat (if-then and
if-then-else).

Context Nodes. Flow graphs, in this report, appear in three different contexts, namely:

• Program context. Program flow graphs control the startup of the program being modelled. In
TAAL, program startup is modelled by the execution of the initial expression of the program.
This expression may require other kinds of statements to be executed. A program’s initial
expression will typically be build up from an expression which instantiates an object from
which a method will then be called (this is the case in the example shown in Sect. 4). The
Program flow graph will therefore be quite small in most cases. A program graph always
contains exactly one flow graph at Program context.

• ObjectType context. ObjectType flow graphs are traversed when an object is instantiated.
Object creation will be discussed in detail in Sect. 7. Now it becomes clear why the VarDecl-
element is a subclass of ProcedureNode: instantiating an object means that its instance
variables need to be created and assigned their initial value. Instance variables declarations
are represented by VarDecl-elements and therefore VarDecl-elements are part of ObjectType
flow graphs. A program graph contains a ObjectType flow graph for each ObjectType being
specified in the original program.

• OperImpl context. OperImpl flow graphs control the execution of the body of operations.
The execution of an operation can be split up into a number of phases: (1) evaluating
the parameters, (2) calling the operation, (3) dynamically looking up the corresponding
implementation, (4) passing the actual parameters, (5) instantiating the local variables and
(6) executing the body. An OperImpl flow graph only takes care of the last two phases. The
first and second phase are part of another flow graph in which the operation is called. The
third and fourth phase will be discussed in detail in Sect. 7.4.2. A program graph contains a
OperImpl flow graph for each operation that has been implemented in the original program,
including the operation implemented in the standard library.

Context nodes are important when discussing the flow graphs in the different contexts men-
tioned before. Fig. 6.2 (iii) shows what types of nodes can appear as context nodes. In special
cases, such as an ObjectType without attributes, a flow graph can exist of only the context node.
In those cases, the context node still has a successor-edge, which in this case points back to the
context node, making the cyclic property even clearer.
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(i) Procedure nodes

(ii) Predicate nodes (iii) Context nodes

Figure 6.2: Flow elements and their subclasses.

Although you would expect that program execution is modelled by one single flow graph, a
program graph contains several flow graphs at the different contexts. The different flow graphs are
not directly connected to each other. Fig. 6.3 gives an impression of the occurrences of different
flow graphs not being connected to each other. Each highlighted cycle represents a single flow
graph at a specific context. The different flow graphs are ‘connected’ to each other when simulating
the program. The Program flow graph is connected to an ObjectType flow graph by executing a
CreateExp element. The Program flow graph will also be connected to an OperImpl flow graph,
when a specific operation of the instantiated ObjectType is called. OperImpl flow graphs can also
be connected to each other, when one OperImpl flow graph contains an OperCallExp element calling
another operation.
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In the rest of this section we will refer to the nodes of flow graphs by writing ‘procedure
node(s)’, ‘predicate node(s)’ or ‘context node(s)’ in case there is a difference. When discussing
properties that hold for all three types of nodes we write ‘flow element(s)’.

6.2 Flow Graph Construction

The flow graph is implicit in the abstract syntax graph; it can be derived from the abstract syntax
graph by appropriately interpreting the various kinds of statements and expressions. It follows
that some of the statements originally in a program do not give rise to flow graph nodes at all; in
particular, this is true for block statements. There are a number of general principles underlying
the generation of flow graphs.

To extract the flow information from the abstract syntax graph, we apply a graph production
system that traverses the syntax graph in a top-down fashion. The general approach is that for
every type of statement we specify a graph production rule. Those various transformation rules
have a lot in common. Each of these rules contains a node representing the statement type involved.
These nodes may or may not have subparts being statements or expressions. If a statement has
subparts, the relation with its subparts has one of the following characteristics:

• containment-relation. In this case, the statement itself does not affect the program state,
but its subparts do. This means that the execution of such a statement is defined in terms
of the execution of its subparts. An example of such a statement is the block statement: a
block statement itself can not be executed, but its substatements can.

• dependence-relation. In case of a dependence-relation, the result of the execution of the main
statement depends on the results of its subparts. This means that the substatements need
to be executed before the main statement. An example of such a statement is expression
statement representing a method call with a number of parameters. The result of such
a method call depends on the values of the parameters that will be passed to that called
method.

During flow graph construction, four types of flow edges occur, namely flowIn, flowNext,
flowTrue and flowFalse. Eventually, the last three types of flow edges, together with their source
and target nodes, represent flow graphs. The flowIn-edges are temporary edges that direct flow
graph construction. The flow graph construction process starts by creating a flowIn-edge from a
ContextNode to its ‘sub flow element’ and a flowNext-edge backwards as shown in Fig. 6.4 (i). The
label <relation> in this figure can be one of the three labels startExp, attributes or body. The
graph production rules for each of the abstract syntax elements then specify how and which flow
elements must be created and how to pass on the flowIn-edge to its subelements (if there are any).
If a flowIn-edge points to the first element of an ordered list (e.g. the Statement’s contained in
a BlockStator the Expression’s serving as parameters for an OperCallExp), the flowNext-edge will
be propagated along the ordered list as shown in Fig. 6.4 (ii). This rule contains a number of
negative application conditions. These are needed because propagation of the flowNext-edge along
an ordered list is only allowed if the element that has both an outgoing flowNext-edge and an out-
going orderNext-edge is not a ContextNode. Otherwise this rule would also apply on the ordered
relationship of ObjectType’s being declared in a Program or on the ordered list of OperImpl’s of an
ObjectType. Another restriction is that that the next FlowElement of the ordered list may not yet
have an outgoing successor-edge, otherwise this rule will be applicable infinite many times.

In some cases we need an additional flow element type in order to construct correct flow graphs.
This node will be called FlowTmp. The reason for this is that sometimes it is not at forehand
known what FlowElement will eventually be the next to execute, because we still need to construct
the sub flow graph of that particular FlowElement. A FlowTmp element can have three different
types of incoming edges, namely flowNext, flowTrue and flowFalse. When a FlowTmp element is
created it has an outgoing flowIn-edge which enables other graph production rules. Eventually,
the flowIn-edge will be replaced by a flowNext-edge. At that time you know what FlowElement
succeeds the FlowTmp and therefore the FlowTmp element can then be deleted. This deletion must
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init ordered−next

Figure 6.4: Flow graph construction for subparts.

be properly specified since in special situation, the FlowTmp element can have multiple incoming
edges which, after deletion, all need to point to the FlowTmp’s successive FlowElement. This proper
deletion is specified by Fig. 6.5. Basically, the FlowTmp element and its successive FlowElement
will be merged. Merging two nodes is specified as follows:

• all incoming edges of the first node will be incoming edges of the new node, including self-
edges of the first node

• all outgoing edges of the second node will be outgoing edges of the new node, including
self-edges of the second node

• all edges between both nodes will be self-edges of the new node

Since the FlowTmp-label (of the self-edge of the FlowTmp element) and the flowNext-label (of
the edge between the two successive elements) may not be preserved they are deleted explicitly.
The FlowTmp element will be used in the flow graph construction rules of the WhileStat, the
ConditionalStat and the OperImpl.

6.2.1 Constraints.

At this point we have discussed all the elements from the flow graph meta-model from Fig. 6.1.
There are still some additional constraints.

1. a FlowElement cannot have multiple incoming flowNext-edges together with one or more
incoming flowTrue-edges. The reason for this is because if a FlowElement has an incoming
flowTrue-edge this means that this FlowElement is part of a BlockStat which will only be
executed if a particular condition evaluated to true. In such a case, control can never reach
the first executable substatement or expression through a flowNext-edge;

2. a FlowTmp element has either a single outgoing flowIn-edge or a single outgoing flowNext-
edge.

6.3 Graph Production Rules

In this section we will discuss a number of graph production rules that give a good impression of
how flow graphs are constructed.

Program. The graph production rule that triggers the creation of the flow graph in Program
context, as described in Sect. 6.2, is shown in Fig. 6.6. In this figure the node labelled Program
is the root of the program. From this node, we can access the initial expression of the program
pointed to by an edge labelled startExp. Generating the flow graph at program level is done
by creating a flowIn-edge pointing to the node representing the initial expression and creating
a flowNext-edge pointing back to the Program-node indicating that the Program-node is the end
node of this flow graph. This rule is only applicable if the process for generating the flow graph
for this Program-node has not yet started (i.e. the flowIn-edge is not present) or finished (i.e. the
flowNext-edge is not present).
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Figure 6.5: Graph production rule removing the FlowTmp element.

ObjectType. Flow graph construction for ObjectType elements is twofold. We need to check
whether the object has attributes or not. The left hand side rule of Fig. 6.6 shows what to do in
the former case; the right hand side rule specifies flow graph construction for the latter case.

OperImpl. Flow graph generation at operation-level is also twofold: an operation may or may not
have local variables. In the former case, control must first be passed along the declarations of the
local variables before entering the body of the operation; in the latter case, control can directly
be passed on to the first statement in the body. Fig. 6.6 shows how we take care of operations
that do have locally declared variables. The rule on the left hand side of the figure shows that
a new element called FlowTmp is created which controls the sequencing of the two flow graphs.
Eventually, the rule on right hand side will remove this element again.

WhileStat. The flow graph of a WhileStat element contains a loop: after each time the body of
the WhileStat is executed the condition must be evaluated. The outgoing successor-edges of a
WhileStat will be labelled flowTrue and flowFalse. The rules for creating the flow graph of the
body of the WhileStat, however, require a flowIn-edge. This contradiction is solved by creating the
flowTrue-edge pointing to a FlowTmp element which will eventually (i.e. when it has an outgoing
flowNext-edge) be removed like shown in Fig. 6.5. Fig. 6.7 shows how to construct the flow graph
for a WhileStat properly. In order for this rule to be applicable there must already be a flowNext-
edge pointing from the WhileStat element to the flow element to which control must flow in case
the condition evaluates to false. This flowNext-edge can then be replaced by a flowFalse-edge.
Evaluation of the condition will be performed when the WhileStat is reached for the first time,
but also when the body of the WhileStat has been executed. This means that control flows to
the conditional expression from two distinct FlowElement’s. Construction of the flow graph of
the conditional expression requires only a single flowIn-edge. Therefore we also create a FlowTmp
element at this point which has two incoming flowNext-edges and one outgoing flowIn-edge. This
flowIn-edge will eventually turn into a flowNext-edge which makes the rule shown in Fig. 6.5
applicable for properly removing the FlowTmp element.

ConditionalStat. When construction the flow graph for a ConditionalStat we encounter similar
problems as for the WhileStat. Fig. 6.7 shows how to construct the flow graph for a ConditionalStat
having both a thenPart and an elsePart. This rule also requires a flowNext-edge to exists between
the ConditionalStat and the FlowElement that will be reached after executing either the thenPart
or the elsePart.

BlockStat. The flow graph of the BlockStat element is generated by generating subsequently
generating the flow graphs of all its substatements. This is done by passing on the flowIn-edge to
its first substatement (if it has any), as shown in Fig. 6.8. The rules shown in Fig. 6.4 (ii) then
take care of adding all other substatements to the flow graph in the right order. The BlockStat
element itself cannot be executed and therefore it can be stepped over. This is specified by the
rule by replacing the outgoing flowNext-edge from the BlockStat element by a flowNext-edge from
its substatements pointing to the same next FlowElement.
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Program

ObjectType−no−attributesObjectType

OperImpl

Figure 6.6: Flow graph construction rules (I).

WhileStat

ConditionalStat

Figure 6.7: Flow graph construction rules (II).

OperCallExp. The rule shown in Fig. 6.8 specifies how to generate flow graph elements for a call
to an operation given a number of parameters. The source of the operation needs first to be
created, then the values for the parameters must be evaluated and eventually the operation can
be called.

VarDecl. The graph production rule that specifies what graph elements to generate for variable
declarations is shown in Fig. 6.8. We already discussed that, at this point, every VarDecl has an
initial expression. If the variable declaration in the original program does not specify its initial
value, we assign the null-value to it in case of a reference type and in case of a primitive type we
assign the default value of the corresponding primitive type. Before being able to assign that value
to the variable, we still have to evaluate that initial value since it can also be a more complex
expression which reads other variables or calls specific operations. Therefore, control is first passed
on to the initial expression after which control flows to the VarDecl element itself.
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PrimLitExp. An expression that is of primitive type simply holds a specific value of that type.
It does not depend on or contain other statements. In those cases, the flowIn-edge can simply be
replaced by a flowNext-edge like specified by the rule shown in Fig. 6.8. This figure shows the
graph production rule for a LiteralExp but since the rules for PrimLitExp and NullLitExp this has
been abstracted one level up by specifying the rule for their common superclass LiteralExp. An
analogue rule also applies for CreateExp, NullLitExp and SelfExp elements.

The discussed graph production rules together with the remaining ones are shown in Ap-
pendix B.1 in alphabetical order.

6.4 Example: From Flat ASG to Program Graph

In this section we will give a short impression of how the flow graph construction rules transform
a Flat ASG into the corresponding Program Graph by applying them on a small example. We
will show the result of the flow graph construction process. We will focus on the construction of
a flow graph in an ObjectType context. The figures will only show those elements that are part
of that single flow graph since showing the entire Flat ASG and Program Graph would not make
any sense.

Listing 1 specifies that for every flower in the vase we store the flower’s color and length; the
color-attribute being of type String and having an initial value ‘yellow’, the length-attribute being
of type Integer assigned an initial value of 50.

program vase
...
class Flower
color: String := ’yellow’;

5 length: Integer := 50;
...

endclass
...
endprogram

Listing 2: Part of a TAAL-program specifying the data-structure of type Flower.

In Fig. 6.9 the elements of the Flat ASG concerning the data-type Flower are shown. You can
easily recognize the two attributes and their ordered relationship. Starting from this graph, the
labelled transition system (see Sect. 5.4.2) in Fig. 6.10 shows which graph production rules are
applied in sequence to construct the corresponding Program Graph.

Fig. 6.11 again shows the elements of the Flat ASG concerning the data-structure of type
Flower, but also the successor-edges that are added during the flow graph construction process,
shown as fat, red arrows. In this figure it becomes clear that for every instance variable, control
first reaches its initial expression and then the node representing its declaration.
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Figure 6.8: Flow graph construction rules - III.

Figure 6.9: Flat ASG of the data-structure of type Flower.
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Figure 6.10: Transition steps from Flat ASG to Program Graph.

Figure 6.11: Flat ASG of the data-structure of type Flower added with
successor-edges that direct control when this type is instantiated.
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7 Execution Graphs

An execution graph essentially represents a snapshot of the state of the system, together with static
context information about the program itself. Concretely, as discussed in Sect. 2, an execution
graph combines three kinds of information:

• The program graph described in Sect. 6, which provides the required static context informa-
tion;

• A value graph, modelling the data part of the current state. In compiler terms, this roughly
corresponds to the heap;

• A frame graph, modelling the process part of the current state. In compiler terms, this
corresponds to the stack.

It is important to realize that a given program gives rise not to a single execution graph but to
a sequence of consecutive graphs, each representing the next state during execution. We use graph
transformations to generate this sequence; they constitute the simulation referred to in Fig. 2.1.

In this section we first present meta-models of the value and frame graphs, and subsequently
give an overview of the simulation rules.

7.1 Value Graphs

A value graph contains elements representing the objects that will be created and referred to
during executing the program. A meta-model for the value graph is shown in Fig. 7.1.

We briefly discuss the new concepts in this meta-model.

Value. This stands for a concrete value of an arbitrary type. The type of each value is fixed
and indicated by an instanceOf-edge leading from the Value-node to the corresponding Type-node
(already introduced in Sect. 4). Note that this refers to primitive values as well as the null-value
and object-instances; in fact the instanceOf-edge could be specialized to lead from ObjectVal to
ObjectType, etcetera. This class is abstract.

ObjectVal. This is a specialization of Value used to model values of ObjectType. An object
value may have attributes, which are modelled by VarSlot nodes referenced through the attributes-
association. Each ObjectVal-node has precisely one VarSlot (see below) for each attribute of its
ObjectType (which are given by the attributes-association of the ObjectType). In other words,
for each ObjectVal-node there is a one-to-one correspondence between the VarSlots appearing as
attributes-targets, and the VarDecl-nodes appearing as attributes-targets of the the corresponding
ObjectType.

NullLitVal. This stands for the one and only null value, i.e., the unique value of the NullType. In
other words, there will always be precisely one instance in the execution graph.

PrimLitVal. This stands for all the values of the primitive types. Conceptually there are infinitely
many of them. Of course we cannot represent all those; instead, an execution graph will contain
precisely those primitive values that actually occur as values anywhere in the current state.

Slot. This stands for a container of a value, occurring anywhere in the state snapshot. There are
two kinds of slots: VarSlots, which correspond to variables declared in the program, and AuxSlots,
which are temporary slots used to store intermediate values during evaluation of an expression.
This class is abstract.
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Figure 7.1: Value graph meta-model.

VarSlot. This is a specialization of Slot, viz. a container corresponding to a variable in the
program. Above we have already seen that objects have corresponding VarSlot-instances for all
their attributes. Similarly, in the frame graph we will see that formal parameters and local
variables also give rise to VarSlot-instances. For each instance of these kinds of VarSlot, there is a
corresponding VarDecl.

AuxSlot. This is a specialization of Slot, viz. a container holding a temporary value during eval-
uation of an expression. These traditionally correspond to stack locations. AuxSlots have no
corresponding VarDecl; instead, each AuxSlot refers to the sub-expressions for which it holds a
value, via an at-edge.

An example value graph is given in Fig. 7.2. This shows three objects with attributes, one
of static type Flower and dynamic type Rose and two of (static and dynamic) type Vase. One of
the Vases holds a reference to the Rose in its myFlower attribute. The example does not contain
PrimLitVals or AuxSlots; see, however, Fig. 7.4 below.

7.2 Frame Graphs

The frame graph meta-model is shown in Fig. 7.3. It essentially introduces only one type of new
node: the Frame. This stands for a dynamically created instance of a ContextNode (see Fig. 6.1),
with a pointer to the current FlowElement. In fact, for each sub-type of ContextNode there is one
Frame sub-type.

Frame. This is the main type for execution frame nodes. In general, a Frame controls the exe-
cution of the code at a particular ContextNode. In terms of the program graph, that code can be
found as the control flow graph appended to the relevant ContextNode (depending on the kind of
ContextNode, it can represent the program’s initial expression, the initialization code for objects
of a particular class, or the body of an operation). Each Frame has an executes-reference to the
corresponding ContextNode.

A Frame controls the execution of the corresponding code by maintaining a pc-edge (where pc
stands for “program counter”) to the current FlowElement in the flow graph of the ContextNode.
The pc-edge is moved to a successor in the flow graph at every execution step. When a method
is called or a new object is constructed, a new, “nested” frame is created for it and the pc-edge
is (temporarily) removed, indicating that the calling frame is passive while the nested frame is
running.
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Figure 7.2: Fragment of the value graph reached after executing the vase program
(see Listing 1).

Figure 7.3: Frame graph meta-model.

In fact, each frame that does not correspond to a Program has a calling frame, referenced by a
caller-edge. Moreover, where the caller gives the semantic calling context, there is also a syntactic
calling context, viz. the location in the flow graph of the caller where its pc-edge was pointing
when the current Frame was invoked. This syntactic context is stored in a calledFrom-reference.
When the nested frame has finished, it is deleted and a pc-edge is re-created in the calling frame,
using the calledFrom-reference to determine the correct location.

A further important aspect of Frame-instances is that they can have local and auxiliary vari-
ables. The former are instances of the node type VarSlot, discussed above as part of the value
graph; they are referenced through a one-to-many locals-association. (Actually, the current ver-
sion of TAAL has been defined such that not all types of Frame have local variables — in fact,
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only OperFrames do — but we regard this as a coincidence.) Auxiliary variables are instances of
AuxSlot, also discussed above. A frame may have a self-edge to the value that is the context of
the operation being executed. This is usually an ObjectVal, but for built-in operations it may be
a primitive value; hence the type is Value. (Again, in TAAL self-edges only occur for OperFrames
and ConstrFrames.)

Finally, there is an auxiliary edge actualPar that is used for the purpose of passing parameters
at operation calls; see Sect. 7.4.2 below.

ProgramFrame. This is the sub-type of Frame modelling the execution of the entire program.
To denote that fact, every instance has an executes-edge to the (unique) Program-node. A
ProgramFrame is only active when the program starts; the initial statement usually creates an
object and invokes a method upon it. When control returns to the ProgramFrame, the program
stops.

OperFrame. This is the sub-type of Frame modelling the execution of an operation. The signature
of the operation being executed is known at compile time for every operation; in this graph this
is indicated by a signature-edge. The actual operation implementation being executed (which is
looked up dynamically, see Sect. 7.4.2 below) is indicated by an executes-edge to the corresponding
OperImpl-instance. Furthermore, an OperFrame is always called from another frame, and hence
has a caller-edge to its calling frame. Furthermore, in order to be able to reconstruct the pc-edge
in the calling frame after this one terminates, the OperFrame also records the FlowElement from
which it was called, through a calledFrom-edge.

In addition, there are a number of auxiliary edges, which are used during the process of method
invocation; see Sect. 7.4.2 below.

• lookup, used to signal the phase of dynamic method lookup, from the start of the method
invocation until the appropriate method implementation has been found (see Sect. 7.4.2);

• init, used to signal the phase of parameter passing, which takes place after method lookup
but before the actual execution of the method body (see Sect. 7.4.2);

• param, which is used during the parameter passing phase to point at the formal parameter
being initialized (see Sect. 7.4.2). (The corresponding actual parameter is indicated by the
actualPar-edge at the calling frame; see above.)

There are several consistency requirements on the local graph structure of an OperFrame:

• all the VarSlot-instances reachable through locals have an instanceOf-edge pointing to a
VarDecl that is one of the localVars or params of the corresponding OperImpl;

• the FlowElement pointed to by calledFrom is reachable through a chain of flow-edges from
the ContextNode to which the caller-Frame has an instanceOf-edge.

ConstrFrame. This is the sub-type of Frame modelling the initialization of an object — or, in
Java terms, the execution of a constructor. It shares most of the characteristics of an OperFrame,
except that its executes-edge is not pointing to an OperImpl but to an ObjectType. This implies
that there are actually no locals-edges, since constructors in TAAL cannot have local variables or
formal parameters.

In addition, a ConstrFrame can also have an auxiliary init-edge, used at object creation time
— see Sect. 7.4.1 below.

7.3 Program simulation

The construction of execution graphs for a given program graph is done through another graph
transformation system that simulates the dynamic semantics of the programming language. This
essentially comes down to mimicking the effect of the individual statements and expressions of the
program in terms of the value and frame graph. For instance, object creation and assignment to
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Figure 7.4: Fragment of the frame graph reached during simulation of the
while-condition in changeFlower.

attributes are reflected in the value graph, whereas method invocation is reflected mainly in the
frame graph.

This means that, when we apply the resulting transformation system to the start graph of the
program, being the program graph resulting from the transformation described in the previous
section, each rule application corresponds to the execution of a small step in the program. The
GROOVE tool records those individual steps in the form of a transition systems — which is another
graph, where, however, the nodes now stand for state snapshots and the edges for transitions, i.e.,
small execution steps. For instance, the transition system resulting from the simulation of the
vase program of Listing 1 is shown in Fig. 7.5.

We divide the issues arising in simulation into the following categories, depending on the type
of node at which control currently resides, i.e., what the pc-edge is pointing to:

• Expression evaluation, which occurs if the pc-edge points to an Expression-node. Expression
evaluation typically involves the removal and creation of AuxSlot-nodes in a frame. We
discuss each of the expression types of TAAL in turn.

• Statement execution, which occurs if the pc-edge points to a Statement-node. Statement
execution typically has to do with control flow. We discuss each of the statement types of
TAAL in turn.

• Termination, which occurs if the pc-edge points to a ContextNode of the flow graph. We
discuss each of the context node types occurring in TAAL.

This section especially addresses those language elements whose simulation is more or less straight-
forward. Several more complicated issues are deferred to Sect. 7.4. Furthermore, we have decided
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Figure 7.5: The transition system resulting from the simulation of the vase program.

not to simulate computations on primitive values. We will elaborate on this choice first, before
continuing with the concrete rules.

7.3.1 Abstract interpretation for primitive values

Graph transformation is good for modelling references and their manipulation, but not primitive
values and their operations. Although there has been a certain amount of research on combining
the strengths of graph transformation and traditional algebra [11, 14], this has not yet led to
a commonly accepted model; and moreover, no support for primitive values and operations is
currently provided in GROOVE, the tool we have been using for formulating and executing the
graph transformation rules.

For these reasons, at this stage we have chosen a pragmatic way of dealing with primitive
values, namely to abstract their domain into a single default value. In fact, since we had already
chosen the NullType to conform to every other type (in the sense of Sect. 4.1), including primitive
types, we can use the unique NullLitVal for this purpose. Therefore, in the rules below, we will
use NullLitVal whenever a PrimLitVal of any kind is expected, and we will not simulate primitive
operations.

One interesting consequence is that we cannot simulate the effect of conditional statements
precisely (since the value of the boolean expression cannot be computed); therefore the simulation
becomes non-deterministic at this point. This will be demonstrated on an example below.
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7.3.2 Expression evaluation

Most of the business of simulation deals with more or less ordinary statements and expressions, the
effect of which is mainly local and uncontroversial. An important choice is to store intermediate
values, resulting from the evaluation of sub-expressions, in AuxSlot-instances; these are connected
on the one hand to the sub-expression in question (through an at-edge) and on the other hand
to the intermediate value (through a value-edge). Apart from this, whenever an expression is
evaluated, the pc-edge is moved to the next FlowElement in the control flow graph.

The description of the functionality is structured according to the FlowElement-instance that
the pc-edge is pointing to. The simpler rules are shown in Fig. 7.6; some more involved rules are
deferred.

CreateExp. This is described in detail in Sect. 7.4.1 below.

LiteralExp. Execution consists of creating a fresh AuxSlot for the expression and assigning the
value identified by the LiteralExp to it. However, as discussed above, in the current rule we do not
distinguish between primitive values, and instead always attach the NullLitVal. Furthermore, the
pc-pointer is moved forward.

OperCallExp. This is described in detail in Sect. 7.4.2 below.

VarCallExp. There are two cases: either the relevant variable is an instance variable (if there is
a source) or it is a local variable or parameter. In either case the referredVar identifies a unique
VarSlot; execution of the VarCallExp then consists of creating a fresh AuxSlot for the expression
and assigning the value of the referredVar to it. Furthermore, the pc-pointer is moved forward.

SelfExp. Execution consists of creating a fresh AuxSlot for the expression and assigning the
ObjectVal referenced by self to it. Furthermore, the pc-pointer is moved forward.

7.3.3 Statement execution

We now come to the pc-targets that model statements rather than expressions. Again, we discuss
them in alphabetical order, deferring those whose effect requires some more discussion to a later
section. The rules discussed here are shown in Fig. 7.7.

AssignStat. The effect of an AssignStat is to make a variable (modelled by a VarSlot) point to
a pre-computed value — the rightHandSide of the assignment. Just as for VarCallExp, we have
to distinguish the cases of local and instance variables. In either case, the assignedVar (possibly
together with the AuxSlot at the source-referenced Expression) uniquely identifies a VarSlot-instance;
this receives the value of the AuxSlot at the rightHandSide. The AuxSlot-instances involved are
subsequently discarded.

ExpStat. Execution consists of discarding the AuxSlot at the Expression pointed to by the
expression-edge, and moving the pc-pointer forward.

PredicateNode. On the level of the simulation, the effect of a ConditionalStat is indistinguishable
from that of a WhileStat, and can be captured by turning to the flow graph classification, recog-
nizing that both statements are instances of PredicateNode. The execution in principle consists of
inspecting the value of the AuxSlot at the condition, and moving the pc-edge to the FlowElement
referenced by either flowTrue or flowFalse. The AuxSlot is discarded. However, as discussed in
Sect. 7.3.1, here we do not model primitive values precisely, and hence there is no basis to decide
between flowTrue and flowFalse. Hence we model the statement by disregarding the condition and
non-deterministically choosing between the two branches — which in the simulation model comes
down to simulating both choices, as we will see below. Note the similarity with the rule for ExpStat.
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LiteralExp

VarCallExp−attribute VarCallExp−local

SelfExp

Figure 7.6: Expression simulation rules.

ExpStat

AssignStat−attribute AssignStat−local

PredicateNode−truePredicateNode−false

Figure 7.7: Some statement simulation rules.
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ReturnStat. Execution terminates the current frame — which actually is always an OperFrame.
(A ConstrFrame implicitly terminates upon the end of initialization, and a ProgramFrame upon
reaching the end of the program; both are signalled by the pc-edge reaching the corresponding
ContextNode, and not by an explicit ReturnStat.) We combine the detailed description with the
treatment of method invocation; see Sect. 7.4.2 below.

7.3.4 Handling of Structural Elements

We have treated expressions and statements; from Fig. 6.1 and Fig. 6.2 (i) it can be seen that the
only remaining FlowElement-nodes are VarDecls and ContextNodes. We discuss these now.

VarDecl. Essentially, when execution reaches a VarDecl, it means that a VarSlot-instance has to
be created and the value of an initial expression has to be assigned to it. Like with the VarCallExp
and AssignStat, we have to distinguish between instance variables and local variables. This can
be detected by investigating the context: if the VarDecl is among the localVars of the OperImpl
associated with this Frame, it is a local variable; otherwise it must be one of the attributes of the
ObjectType of the Value referenced by self. (Note that in either case there is guaranteed to be an
initial expression, which indeed has been evaluated before control reaches the VarDecl.) The rules
are shown in Fig. 7.8.

Program. When control reaches the Program-instance, this indicates that the program has ter-
minated. Nothing happens any more, and we need no transformation rule. Note that we have not
implemented any form of garbage collection. On the other hand, since the Program itself has no
local variables, and all auxiliary expression values have been consumed, the only execution graph
nodes are Value-nodes with, in the case of ObjectVals, VarSlot-attributes. See also Fig. 7.2.

OperImpl. The only case in which control (in the form of a pc-edge) can reach an OperImpl-node
is if the operation does not contain any explicit ReturnStat. This, in turn, is only possible if the
type of the operation is NullType; so we are safe in treating this situation as a kind of implicit
ReturnStat that returns NullLitVal. We show the rule in Sect. 7.4.2 below, where we discuss
operation invocation.

ObjectType. Control reaches an ObjectType-instance after a new object of that type has been
created and initialized; it signals the termination of a ConstrFrame. There are actually two cases:
the ObjectType in question may be the actual type of the ObjectVal just created, or it may be a
supertype. We discuss the details as part of the procedure of object creation; see Sect. 7.4.1 below.

7.4 Constructors and Methods

In the description above we have deferred two more complex issues that deserve a more exten-
sive discussion: object creation (which occurs as a result of constructor invocation) and method
invocation. We discuss these below.

7.4.1 Object Creation

Object creation is one important point where the execution of programs with and without in-
heritance differ. The following paragraphs discuss how we define the process of object creation.
Inheritance also influences the protocol for method lookup. This will be discussed in more detail
in Sect. 7.4.2.

Traditionally, in object-oriented languages, object construction is a two-pass affair: first, space
is allocated for the object and its instance variables (or in other words, the object and its variables
are created), and subsequently the instance variables are initialized. However, to avoid the need
for distinguishing the state of a variable in between its creation and initialization, it is usually
specified that at the time of its creation, an instance variable already receives a default value.
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VarDecl−attribute VarDecl−local

Figure 7.8: Creation and initialization of variables.

(Note that it is not decidable whether a variable is accessed before being explicitly initialized.)
In turn, the fact that variables receive default initial values turns their explicit (re-)initialization
from an absolute necessity into a practical convenience: it is, in principle, always possible to defer
initialization to an ordinary method. Indeed, the Java Language Specification [32] states that the
execution of a constructor body is internally implemented as a special < init > method.

In TAAL, on the other hand, we have taken a more simplistic approach, which avoids both
the need for default initial values and the need for two consecutive passes. All attributes have an
initializing expression; forward references to uninitialized variables are forbidden.2 In this setting,
we can at the same time construct locations for the variables and assign initial values to those
locations, provided we take care that this process starts at the top of the inheritance hierarchy.
This results in the following procedure:

Allocation. The actual object creation occurs when control reaches a CreateExp-instance. A
ConstrFrame and an ObjectVal are created straight away. The ObjectVal is referenced through self
from the ConstrFrame. Moreover, the fresh ConstrFrame has an init-pointer to the ObjectType, to
indicate the fact that we are initializing an instance of this type. This is shown as rule CreateExp
in Fig. 7.9.

Initialization. Initialization: A ConstrFrame-instance with an init-edge to an ObjectType is
treated in either of two ways, depending on whether the ObjectType has a super type. If it has a
super type, then a new ConstrFrame is created recursively for that, but with the same self. If it has
no super type, then execution is started, by replacing the init-edge with a pc-edge pointing to the
first FlowElement reachable from the ObjectType. The subsequent simulation rules will compute
initial values and assign them to newly instantiated AuxSlot-instances for the ObjectVal.

Termination. A ConstrFrame terminates when the pc-edge has arrived (back) at the ObjectType.
The frame is discarded and a pc-edge is (re)created at the caller frame. Just as for initialization,
there is a case distinction, depending on whether the current frame was called recursively from a
sub-type or directly from a CreateExp. Both cases are depicted in Fig. 7.9.

• If the current ConstrFrame was invoked recursively, there is a recursiveFrom-edge to the
ObjectType that models the sub-type from which it was called. This means that initialization
now proceeds back down the inheritance hierarchy to that sub-type, and the calling Frame
is also a ConstrFrame, which already has a self-edge to the underlying object. In this case
no return value is required. This is shown in rule ObjectType− descend.

• If the current ConstrFrame was called directly, there is a calledFrom-edge to a CreateExp.
This means that the underlying object, pointed to by self, should be returned to the caller,
in the same way as in a ReturnStat (see below). This is shown in rule ObjectType− return.

2Note that this is a constraint that is generally undecidable and hence cannot be enforced at compile time.
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ObjectType−descend

CreateExp ObjectType−ascend ObjectType−init

ObjectType−return

Figure 7.9: Rules for object creation and initialization.

7.4.2 Method Invocation and Return

Method calls are among the basic expressions of a program. Their effect is entirely within the
frame graph: the execution of a method call creates a new OperFrame-node, associates it with an
OperImpl-instance (which is part of the program graph), passes the actual to the formal parameters,
and finally turns over control to it.

Frame creation. The creation of the OperFrame itself is straightforward: the more difficult
parts follow only later. Once the frame is created, control is transferred to it, but not yet in the
form of a pc-edge; instead the corresponding method implementation has to be found (see below)
first. This phase is modelled by an outgoing lookup-edge to the class in which the method is
sought — with the assumption, checked at compile-time, that a suitable method implementation,
i.e., with the correct signature, actually exists either in the class or in one of its super-classes.

There are two versions of method invocation: virtual and super. In the first case the lookup
starts at the dynamic type of the target object; in the second case it starts at the super-type of
the type in which the current method is located. The two cases are shown in Fig. 7.10 (rules
OperVirtualCallExp and OperSuperCallExp, respectively).

The other rules in Fig. 7.10 deal with the case of primitive operations. As discussed above,
we abstract from primitive values by using only NullLitVal; consequently, for operations located in
a primitive type we do not have to look up the implementation but rather can insert the return
value immediately. However, we must take care that any actual parameters of the operation call
(present as AuxSlots in the value graph) are discarded first. This process is taken care of by rules
OperPrimCallExp−garbage and OperPrimCallExp.

Method lookup. The association of an OperImpl-instance with a freshly created OperFrame is
called method lookup. The protocol for method lookup is, as mentioned before, one important point
where the execution of programs with and without inheritance differ. Furthermore, we strongly
believe that it is also the only point where changes will have to be made in order to accommodate
aspect orientation.
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OperVirtualCallExp

OperPrimCallExpOperPrimCallExp−garbage

OperSuperCallExp

Figure 7.10: Rules for operation calls.

In programs without inheritance, method lookup is static. That is, the compiler is able to decide
which OperImpl is to be associated with a given method call, purely on the basis of the Signature.
Not so, however, in the presence of inheritance, where the dynamic type of the “target” (the object
asked to execute a method) is a factor in determining the relevant method implementation. All
the compiler is able to determine statically is the signature of the method to be executed (see
Sect. 4). This is complemented by a dynamic method lookup protocol whereby classes are queried
(as it were) in succession whether they have implemented a method with the given signature, in
which case that definition becomes the one to execute — if not, the query is passed on to the next
higher class in the inheritance hierarchy. (This part of the protocol could be optimized statically,
since each class can store a map from those method signatures implemented somewhere in their
super-classes to the “most concrete” implementation; this obviates the need for recursively passing
on queries.) The rules for method lookup propagation and resolution are shown in Fig. 7.11.

Parameter passing. Another complication is the need to pass the parameters from the calling
Frame to the called, newly created OperFrame. This essentially involves an assignment of all
actual parameter values (which are stored in AuxSlot-instances associated with auxiliaries-edges to
the calling frame) to the corresponding formal parameters (which are VarSlot-instances associated
with locals-edges to the called frame). The correspondence of actual to formal parameters is given
only through the ordering of the parameters. For that reason, the parameter passing phase is
modelled by four transformation rules, shown in Fig. 7.12: for starting, continuing and ending
the phase, as well as for the case where the number of parameters is zero. To keep track of the
current actual and formal parameters during propagation, we have introduced special actualPar-
and param-edges pointing to, respectively, the current actual parameter (an Expression) and the
current formal parameter (a VarDecl).
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OperCallExp−propagate OperCallExp−resolve

Figure 7.11: Rules for method lookup.

OperImpl−param−lastOperImpl−param−next

OperImpl−param−none OperImpl−param−first

Figure 7.12: Parameter passing rules.

Return Here we describe the execution of the ReturnStat, which we omitted from Sect. 7.3.3.
There are several steps involved

• The value of the AuxSlot attached to the value-referenced Expression is assigned to a new
AuxSlot at the calledFrom-referenced OperCallExp of the calling frame;

• The AuxSlot itself is discarded;

• All VarSlot-instances pointed to by locals are discarded;

• A pc-edge is created from the calling Frame to the next FlowElement with respect to the
calledFrom-referenced node;

• The current OperFrame-instance is discarded.

Since discarding the locals is a repetitive process, it requires a separate rule; the main rule is only
applicable if no more locals-edges exist. The two rules are shown in Fig. 7.13.

A special case, also shown in Fig. 7.13, occurs if the method has type NullType and no explicit
ReturnStat: then instead control eventually reaches the OperImpl-node. The actions necessary to
deal with this are analogous to those for the ReturnStat, except that this time the value to be
returned is not taken from some expression; instead, it is always NullLitVal.
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ReturnStat−garbage ReturnStat

OperImpl−garbage OperImpl

Figure 7.13: Rules for method return.
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8 Tool Support

The tool support that was developed during our research can clearly be divided into two products:
the TAAL Eclipse plug-in and the Groove tool set. This section covers some of the more interesting
facts of both tools.

8.1 The TAAL Eclipse Plug-in

The parsing and static analysis phases of TAAL are implemented in an Eclipse plug-in [18, 31,
10]. Eclipse is, according to the website, ‘an open extensible IDE for anything and nothing in
particular’, and is, therefore, very suitable to build a small IDE for a small language like TAAL.
Because of the particular support for Java, the plug-in was developed in that language.

The core of the plug-in is formed by the implementation of both the CST and the ASG meta-
models. Furthermore the plug-in contains a parser, and separate classes that each executes one
of the passes in the static analysis. For sake of clarity, each of the static analysis passes were
implemented separately in the TAAL plug-in, although this is not a very efficient implementation.

Next to the implementation of the bare functionality of parsing and analysis, the plug-in offers
an editor, and two actions that can be performed on a TAAL program. The first action shows a
model of the ASG in a separate window, the second action generates Groove input; a flat ASG.
The editor has simple syntax highlighting.

The effort of implementing this plug-in was kept minimal. Much of the Java code was generated.

1. The parser was generated using JavaCC [21], a parser generator for Java applications.

2. The implementation of the CST and ASG meta-models was generated by Octopus [Octopus],
including the visitor interfaces used in the static analysis.

3. The implementation of the Flattening was generated by an Octopus add-on.

4. The implementation of the static analysis was the only part that was done completely by
hand.

The TAAL Eclipse plug-in can be downloaded from www.klasse.nl/taal.

8.1.1 The Implementation of the Meta-models

The implementation of the meta-models follows directly from the UML model. Each attribute
becomes a Java field, with get and set operations, and each operation becomes an operation.
Each navigable association-end becomes a Java field, with get and set operations, similar to the
attributes.

For every (meta)class in the meta-models three Java units were created. First, an interface is
created that captures the public structure and functionality. The name of the interface is always
the name of the meta-class prefixed with ‘I’. The set of all interfaces for the ASG is placed in
the package com.klasse.taal.rasg, and the set of all interfaces for the CST is placed in the package
com.klasse.taal.cst.

Second, a class is made that contains a complete implementation of this interface. Some
of the bodies of the operations are defined by OCL [35] expressions. If this is the case, this
implementation will contain the corresponding Java code generated by Octopus. Appendix B
contains the OCL expressions that were implemented in this manner, and a number of invariants
on the ASG meta-model. This Java class implements the corresponding interface, and it is abstract.
The name of this class is the name of the meta-class postfixed with ‘GEN’. The set of all GEN-
classes for a meta-model is placed in a sub-package of the package where the interfaces are placed:
com.klasse.taal.rasg.internal.generated, and com.klasse.taal.cst.internal.generated, respectively.

Third, because not all operation bodies could be defined using OCL expressions, a Java class is
created that contains some handcoded implementations of the operations defined in the interface.
This Java class inherits from the corresponding GEN-class. The name of this class is always equal
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to the name of the meta-class. Whenever instances of the meta-classes are created, either during
parsing or during static analysis, they are instances of a Java class from this category. The set
of all instantiable classes for a metamodel is placed in a subpackage of the package where the
interfaces are placed: com.klasse.taal.rasg.internal, and com.klasse.taal.cst.internal, respectively.

8.2 The Groove Tool Set

The Groove tool set [30] supports editing and displaying graphs and graph production rules, and
(especially) applying those rules to concrete graphs. It consists of a number of tools, the main
three being:

• The Editor: a graphical environment which enables you to specify graphs and graph trans-
formation.

• The Simulator: a graphical environment in which graph transformations can be performed
and tracked.

• The Imager: a tool which can be used to generate figures from graphs or graph transformation
rules as stored in graph production rule files (GPR-files) or graph state files (GST-files). It
supports exporting to PNG, JPEG and FSM extensions.

The tool set has been created especially for the generation and storage of state spaces, in the form
of graph transition systems as discussed in Sect. 5.4.2.

For this project we have specified two graph production systems: one for constructing control
flow graphs (described in Sect. 6) and another one for simulating the actual programs (Sect. 7).
Both graph transformation systems can be downloaded from the Groove project’s website [30].

To use these graph production systems, the output of the TAAL Eclipse Plug-in (i.e. the Flat
Abstract Syntax Graph) should be used as the start graph of the flow graph construction graph
transformation system. The final state of this GPS (i.e. the Program Graph) is the starting state
for simulating the program.

For more information about the Groove-project, we refer to the project’s website. From there
you can download the tool and some small example of graph transformation systems.
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9 Conclusion

The work described in this report shows a complete example of how programming languages can
be defined using graphs and graph transformation rules. The language definition of TAAL includes
all necessary parts of a language definition: concrete syntax, abstract syntax and semantics, which
all three have been defined using this single formalism. Although other work has been presented
that uses graphs and graph transformation rules (e.g., [7, 15]) for (parts of) language definitions,
none of this work reaches the same level of completeness.

We have defined the operational semantics of an imperative, object-oriented language. The use
of graph transformation rules to specify the semantic rules offers a number of advantages. First,
the visual representation of the graph transformation rules provides an intuitive understanding of
the semantics. Second, formal verification techniques become available.

Furthermore, the graph transformation rules offer the possibility to include in one mathematical
structure, the graph, information on both the run-time system and the program that is being
executed. Traditional approaches to operational semantics (e.g. [1, 36, 29, 5, 6, 2, 8]) often need
to revert to inclusion in the syntax definition of run-time concepts, e.g. inclusion of the concept
of location to indicate a value that may possibly change over time. This seems to be an artificial
manner of integrating parts of the language definition, i.e. of the abstract syntax and the semantic
domain, that can be avoided using graph transformation rules. Finally, in graph transformation
rules, context information can be included more naturally and uniformly than for example when
using SOS-rules [36].

The example language that we have chosen comprises some of the fundamental aspects of
object-oriented programming languages, like inheritance, including dynamic method look-up, and
object creation. The structure of our solution makes us confident that the approach can be
extended to real-life software languages in the object-oriented paradigm:

• All the transformation steps (parsing, static analysis, flow generation and simulation) are
structured according to the concepts in the abstract syntax. This lends a modularity to the
definitions that is independent of the language being defined.

• The structure of the Flow and Execution Graphs is generic, in the sense that the elements
therein are not specific to TAAL; rather, they capture the essential aspects of imperative,
object-oriented languages.

As mentioned above, work that is closely related to ours is by Corradini et al. [7]. They use graph
transformations to formalize the semantics of a realistic programming language: they address a
fairly large fragment of Java. Technically, the difference is that they interpret method invocation
unfolding — meaning that the program graph changes dynamically. This obviates the need for
the frame graph, at the price of having program-dependent rules (namely, one per method imple-
mentation). Another difference is that they provide no tool support, and in that sense theirs is a
more theoretical exercise.

Another, less directly related source of research is on defining dynamic semantics of (UML-
type) design models, where also the idea of using graph transformations has been proposed, e.g.
in [15, 25, 34]. Furthermore, in Engels et al. [15] ideas are presented on how to use collaboration
diagrams, interpreted as graph transformation rules, for defining SL semantics.

In this work, graph transformation rules were used for defining the semantic mapping of a
language, but not for the mapping of the concrete to abstract syntax (the syntax mapping). We
are convinced that graph transformations can also be used for the syntax mapping.

A separate contribution of this work is that we define a mapping from a UML class diagram to a
graph. The mapping is not a general one, i.e. it cannot map any UML model to a graph. Still,
it is good enough to do the work for not only the metamodel of TAAL, but for any UML model
that adheres to the given restrictions. These restrictions are:

• all associations are one-way, directed;

• all association multiplicities are either 1, 0..1, 1..n, or 0..n;
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• all association ends that are navigable, have role names;

• only ordered is allowed as constraint to an association end, and only when the other end is
an aggregation.

A final aspect of the work reported here is that we have not only developed the TAAL language
definition but supporting tools as well. This means that we can actually compile and simulate any
TAAL-program and store the resulting transition system so, for instance, all the ingredients for
verification are there. Both tool sets as well as the full sets of transformation rules defining the
flow generation and simulation phases are available for downloading [23, 30].
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A Concrete Syntax Grammar in BNF

ParsedProgram ::=
<PROGRAM_START> <STRING>
<CURLY_OPEN> ParsedExpression <CURLY_CLOSE>
( ParsedTypeDecl )*

5 <PROGRAM_END>

ParsedTypeDecl ::=
<TYPE_START> <STRING> [ <EXTENDS> ParsedTypeRef ]
( ParsedVarDecl <SEMICOLON> | ParsedOperDecl )*

10 <TYPE_END>

ParsedVarDecl ::=
<STRING> <COLON> ParsedTypeRef [ <ASSIGN> ParsedExpression ]

15 ParsedOperDecl ::=
<STRING>
<BRACKET_OPEN> [ ParsedVarDecl ] ( <COMMA> ParsedVarDecl )* <BRACKET_CLOSE>
[ <COLON> ParsedTypeRef ]
[ <LOCALS> ( ParsedVarDecl <SEMICOLON> )* ]

20 [ <CURLY_OPEN> ( ParsedStatement )* <CURLY_CLOSE> ]

ParsedBlockStat ::=
<CURLY_OPEN> ( ParsedStatement )* <CURLY_CLOSE>

25 ParsedStatement ::=
ParsedExpression [ <ASSIGN> ParsedExpression ] <SEMICOLON>
| ParsedReturnStat <SEMICOLON>
| ParsedConditionalStat
| ParsedWhileStat

30 | ParsedBlockStat

ParsedExpression ::=
( ParsedLitExp | ParsedCreateExp | ParsedPropCallExp )
( <DOT> ParsedPropCallExp )*

35

ParsedConditionalStat ::=
<IF> condition = ParsedExpression
<THEN> thenParParsedStatement
[ <ELSE> elseParParsedStatement ]

40 <ENDIF>

ParsedWhileStat ::=
<WHILE> ParsedExpression <DO>
( ParsedStatement )*

45 <ENDWHILE>

ParsedReturnStat ::=
<RETURN> ParsedExpression

50 ParsedCreateExp ::=
<NEW> ParsedTypeRef <BRACKET_OPEN> <BRACKET_CLOSE>

ParsedTypeRef ::=
<STRING>

55

ParsedPropCallExp ::=
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<STRING>
<BRACKET_OPEN>
[ ParsedExpression ] ( <COMMA> actual = ParsedExpression )*

60 <BRACKET_CLOSE>
| <STRING>

ParsedLitExp ::=
<STRINGLITERAL>

65 | <NUMBERLITERAL>
| <TRUE>
| <FALSE>
| <NULLLITERAL>

Listing 3: The BNF concrete syntax specification of TAAL - the non-terminals.

PROGRAM_START ::= "program"
PROGRAM_END ::= "endprogram"
TYPE_START ::= "class"
TYPE_END ::= "endclass"

5 EXTENDS ::= "extends"
NEW ::= "new"
ACTION ::= "action"
LOCALS ::= "locals"
IF ::= "if"

10 THEN ::= "then"
ELSE ::= "else"
ENDIF ::= "endif"
TRUE ::= "true" | "TRUE"
FALSE ::= "false" | "FALSE"

15 BRACKET_OPEN ::= "("
BRACKET_CLOSE ::= ")"
CURLY_OPEN ::= "{"
CURLY_CLOSE ::= "}"
COLON ::= ":"

20 SEMICOLON ::= ";"
COMMA ::= ","
DOT ::= "."
WHILE ::= "while"
DO ::= "do"

25 ENDWHILE ::= "endwhile"
RETURN ::= "return"
ASSIGN ::= ":="
NULLLITERAL ::= "null"
STRING ::=

30 ["a"-"z", "A"-"Z", "_"]
( ["a"-"z", "A"-"Z", "0"-"9", "_" ] )*

NUMBERLITERAL ::=
["0"-"9"] (["0"-"9"])*
( "." ["0"-"9"] (["0"-"9"])* )?

35 ( ("e" | "E") ( "+" | "-" )?
["0"-"9"] (["0"-"9"])* )?

STRINGLITERAL ::=
// from Java 1.1 grammar
"\’"

40 (
(˜["\’","\\","\n","\r"])

|
("\\"
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( ["n","t","b","r","f","\\","’","\""]
45 | ["0"-"7"] ( ["0"-"7"] (["0"-"7"])?

)?
)

)
)*

50 "\’"

Listing 4: The BNF concrete syntax specification of TAAL - the terminals.
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B Graph Production Rules

In this appendix we list all the graph production rules in alphabetical order, including the ones
that have already been discussed in the paper. We will first list all the rules concerning the flow
graph construction and then the rules that define the semantics.

B.1 Flow Graph Construction

Figure B.1: AssignStat-attribute.gpr

Figure B.2: AssignStat-local.gpr

Figure B.3: BlockStat.gpr (see Sect. 6.3)
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Figure B.4: BlockStat-empty.gpr

Figure B.5: BlockStat-empty.gpr

Figure B.6: ConditionalStat-ifthen.gpr

Figure B.7: ConditionalStat-ifthenelse.gpr (see Sect. 6.3)
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Figure B.8: CreateExp.gpr

Figure B.9: ContextNode.gpr

Figure B.10: ExpStat.gpr

Figure B.11: FlowTmp-merge.gpr (see Sect. 6.2)

Figure B.12: LiteralExp.gpr (see Sect. 6.3)
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Figure B.13: ObjectType.gpr (see Sect. 6.3)

Figure B.14: ObjectType-no-attributes.gpr (see Sect. 6.3)

Figure B.15: OperCallExp.gpr (see Sect. 6.3)

Figure B.16: OperCallExp-no-actualPars.gpr
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Figure B.17: OperImpl.gpr (see Sect. 6.3)

Figure B.18: OperImpl-no-localVars.gpr
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Figure B.19: ordered-next.gpr (see Sect. 6.2)

Figure B.20: PredicateNode.gpr

Figure B.21: ProcedureNode.gpr
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Figure B.22: Program.gpr (see Sect. 6.3)

Figure B.23: ReturnStat.gpr

Figure B.24: SelfExp.gpr

Figure B.25: VarCallExp-attribute.gpr

Figure B.26: VarCallExp-local.gpr
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Figure B.27: VarDecl.gpr (see Sect. 6.3)

Figure B.28: WhileStat.gpr (see Sect. 6.3)
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B.2 Simulation

Figure B.29: AssignStat-attribute.gpr

Figure B.30: AssignStat-local.gpr
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Figure B.31: CreateExp.gpr

Figure B.32: ExpStat.gpr

Figure B.33: LiteralExp.gpr

Figure B.34: NullType-init.gpr
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Figure B.35: ObjectType-ascend.gpr

Figure B.36: ObjectType-descend.gpr

Figure B.37: ObjectType-init.gpr

Figure B.38: ObjectType-return.gpr
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Figure B.39: OperCallExp-propagate.gpr

Figure B.40: OperCallExp-resolve.gpr

Figure B.41: OperImpl.gpr

Figure B.42: OperImpl-garbage.gpr
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Figure B.43: OperImpl-param-first.gpr

Figure B.44: OperImpl-param-last.gpr

Figure B.45: OperImpl-param-next.gpr
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Figure B.46: OperImpl-param-none.gpr
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Figure B.47: OperPrimCallExp.gpr

Figure B.48: OperPrimCallExp-garbage.gpr
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Figure B.49: OperSuperCallExp.gpr

Figure B.50: OperVirtualCallExp.gpr

Figure B.51: PredicateNode-false.gpr
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Figure B.52: PredicateNode-true.gpr

Figure B.53: Program.gpr

Figure B.54: ReturnStat.gpr

Figure B.55: ReturnStat-garbage.gpr
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Figure B.56: SelfExp.gpr

Figure B.57: VarCallExp-attribute.gpr

Figure B.58: VarCallExp-local.gpr
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Figure B.59: VarDecl-attribute.gpr

Figure B.60: VarDecl-local.gpr
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