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Abstract

Networks of Erlang loss queues naturally arise when modelling �nite communication systems
without delays, among which, most notably

(i) classical circuit switch telephone networks (loss networks) and

(ii) present-day wireless mobile networks.

Performance measures of interest such as loss probabilities or throughputs can be obtained
from the steady state distribution. However, while this steady state distribution has a closed
product form expression in the �rst case (loss networks), it has not in the second case due to
blocked (and lost) handovers. Product form approximations are therefore suggested. These
approximations are obtained by a combined modi�cation of both the state space (by a hyper
cubic expansion) and the transition rates (by extra redial rates). It will be shown that these
product form approximations lead to

� secure upper bounds for loss probabilities and
� analytic error bounds for the accuracy of the approximation for various performance mea-
sures.

The proofs of these results rely upon both monotonicity results and an analytic error bound
method as based on Markov reward theory. This combination and its technicalities are of
interest by themselves. The technical conditions are worked out and veri�ed for two speci�c
applications:

� pure loss networks as under (i)
� GSM-networks with �xed channel allocation as under (ii).

The results are of practical interest for computational simpli�cations and, particularly, to
guarantee blocking probabilities not to exceed a given threshold such as for network dimension-
ing.

Keywords: network of Erlang loss queues, blocking probabilities, error bounds.
AMS Subject Classi�cation: Primary 90B22. Secondary: 60K25.
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1 Introduction

1.1 Background

The classical Erlang loss model, inintially developed for a single telephone switch, is probably the
most commonly known queueing model. The loss network is its generalisation to more complex
circuit switched systems with multiple links, multiple switches, and multiple types of calls (see [11]
for an overview). The loss network is widely used for telephone system dimensioning. The common
feature of these networks is that a call arriving to the system either obtains a number of circuits from
source to destination and occupies these circuits for its entire duration, or that the call is blocked
and cleared when the required circuits for that call are not all available. The corresponding blocking
probabilities are among the key performance measures in circuit switched telephone systems. Due
to the simple structure of loss networks, their equilibrium distribution has the appealing so-called
product form. This product form can be seen as a truncated multidimensional Poisson distribution,
where the dimensionality is determined by the number of call-types, the parameter of the Poisson
distribution is determined by the load o¤ered by all call-types, and the truncation is determined
by the capacity constraints of the circuits:

�loss(n) = G
�1

NY
k=1

�nkk
nk!

; n 2 S; G =
X
n2S

NY
k=1

�nkk
nk!

; S = fn = (n1; : : : ; nN ) : An � sg ; (1)

where G is a normalising constant, A a d�N matrix, s is a d-vector, d the number of constraints
on the capacity of the circuits, �k = �k=�k, with �k the arrival rate and 1=�k the mean holding
time of type k calls, k = 1; :::; N , with N the number of call-types, see [11].

A loss network can also be seen as a network of Erlang loss queues with common capacity
restrictions. An additional appealing property of the equilibrium distribution �loss is that it is
insensitive to the distribution of the call length apart from its mean. As blocking probabilities can
readily be expressed in this equilibrium distribution, the insensitivity property obviously carries over
to these blocking probabilities. Although these blocking probabilies are available in closed form,
numerical evaluation requires evaluation of the normalising constant G�1. The size of the state
space considerably complicates this evaluation. To this end, various e¢ cient numerical evaluation
and approximation schemes have been developed, including Monte-Carlo summation, and Erlang
�xed points methods, see [11], [20].

In mobile communications networks, a call may transfer from one cell to another during its
call. As a consequence, next to fresh call blocking of a newly arriving call, also handover blocking
for a call which attempts to route to another cell but which �nds all circuits available for this
cell occupied becomes of practical interest. In that case, the blocked handover is cleared and
lost. A network of Erlang loss queues with routing and common capacity restrictions is a natural
representation of this network.

The equilibrium distribution for a network of Erlang loss queues with handover blocking is,
unfortunately, no longer available in closed form. Various approximations have therefore been
suggested in literature. The most appealing among these approximations is the redial rate approxi-
mation introduced in [5]. Under the redial rate approximation, an extra arrival rate of calls in cells
surrounding a blocked cell is introduced. This redial rate mimics the behaviour of calls that are
lost when transferring to the blocked cell. This approximation retains the call blocking structure
of the original model. Under maximal redial rates, when all blocked calls attempt to redial, the
equilibrium distribution is of product form, similar to that for the loss network. Moreover, the
equilibrium distribution and blocking probabilities inherit the appealing insensitivity property. As
the equilibrium distribution under the redial rate approximation has also a truncated multidimen-
sional Poisson distribution, computational techniques developed for loss networks can be carried
over to numerically evaluate fresh call and handover blocking probabilities.
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1.2 Results

The redial rate approximation of blocking probabilities introduces an approximation error. How-
ever, as of yet no formal support for the accuracy of this approximation or other approximations
appears to be available in literature. For practical purposes, at least an upper bound for blocking
probabilities would be of most interest as blocking probabilities are mainly used for dimension-
ing. In addition, an error bound on the accuracy of this bound would substantially enlarge its
applicability. This paper therefore aims to establish both

� secure upper bounds for blocking probabilities, and

� analytical error bounds on the approximation error for speci�c performance measures as based
on Erlang loss queue approximations.

The �rst result (a monotonicity result) may seem intuitively obvious, since the redial rate
approximation introduces an extra arrival rate of fresh calls on circuits surrounding a blocked
circuit. However, as shown by an example, see Section 4.4, the result is not trivial, and does not
apply in general. The monotonicity results are not only of interest to establish the secure bounds,
but are also required for obtaining the error bounds.

The approximation error is shown to be roughly of the order of magnitude of the blocking
probabilities. For dimensioning of networks with an increasing o¤ered load this is appealing, since
dimensioning based on the upper bound guarantees blocking probabilities not to exceed a given
threshold. For example, with approximate loss probabilities in the order of up to 0.5%, it would
secure a actual loss probabilities in the order of 1%.

As both a system and state space modi�cation are involved, the bounds and the approximation
errors need to be obtained in two steps. These steps have not been used before in literature
and appear to become rather technical. First, we will obain a bound and an error bound due
to increasing the state space to a hyper cube Shc = fn : 0 � ni � Nig, Ni = max fni : n 2 Sg,
i = 1; : : : ; N , that contains the original state space S. The equilibrium distribution of both the
original process and the process at this hyper cube are not available in closed form. Next, we
show that increasing the redial rates for the process at the hyper cube space increases blocking
probabilities. In addition, an error bound is established for the accuracy under increasing redial
rates. In particular, under maximal redial rates, when all calls that have lost their connection
attempt to redial, the equilibrium distribution has a truncated multivariate Poissonian form, which
leads to a closed form expression for the blocking probabilities.

The monotonicity and error bound results cover performance measures which are increasing in
all components of the state. This includes fresh call and handover blocking probabilities as well as
throughputs. With A0 the performance measure for the original process, and Ahc;r for the process
at hyper cube under redial rates, the main result states that

Ahc;r � (� + �r0) � A0 � Ahc;r � A0 + (� + �r0)
where the parameter � characterises the approximation error due to the state space modi�cation
from S to Shc, and the parameter �r0 characterises the error due to the redial rate approximation
at the hyper cube state space. The parametes are determined by the arrival and service rates, and
the equilibrium distribution at the hyper cube that under maximal redial rates is of product form:

�hc;r(n) =

NY
i=1

24�nii
ni!

,
NiX
j=0

�ji
j!

35 ; n 2 Shc:

The result states that the approximation Ahc;r is an upper bound on A0, and that this upper bound
di¤ers no more than � + �r0 from A0. In applications, � + �r0 is often in the order of magnitude
of Ahc;r, so that the bound is applicable for dimensioning: dimensioning the system based on a
guaranteed upper bound implies that the actual system performs better than the target values.
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Outline of proofs

The proofs are obtained in two steps. First monotonicity is demonstrated for the state space
modi�cation, where the original process is shown to be stochastically dominated by the process
with the same transition structure at a larger state space, e.g. at the hyper cube Shc � S. Then,
monotonicity is demonstrated in the redial rates of the process at the hyper cube. For the maximal
value of the redial rates the process has a product form equilibrium distribution. Due to the hyper
cube state space, this enables us to obtain blocking probabilities directly from the Erlang loss
formula.

For the second result (the error bound) �rst a general error bound result will be presented
that expresses the error in the equilibrium distribution of the approximating model. Next, as a
special case, a simple analytical bound is provided for the redial rate approximation at the hyper
cube . The proof of the error bound result requires both the monotonicity results and results by
the Markov reward approach. In the Markov reward approach, rewards are associated with the
performance measures. For example, for a blocking probability the proces incurs a reward rate 1
per unit time spent in a state in which blocking would take place. Based upon the combination
of the special reward in order and structural properties of the transtion structure, monotonicity
properties and error bounds for that speci�c performance measure can then be concluded.

1.3 Literature

The results of this paper are based on monotonicity and error bounds that relate performance
measures to their approximation by a product form network. The equilibrium distribution of the
product form network coincides with that of an Erlang loss network. Product form approximations
for networks of Erlang loss queues with routing have been discussed by various authors, see e.g.
[5, 8, 18]. The redial rate approximation was introduced in [5], and generalised to networks with
general call lengths in [4], that also investigates insensitivity. Perfomance measures for networks
of Erlang loss queues with routing have been analysed in a variety of papers, see e.g. [7, 18, 19].
Performance measures and their numerical evaluation and approximation for loss networks have
been addressed in a series of papers, see [11], and [20] for an overview and further references.

For the estimation of blocking probabilities, in this paper we have a twofold interest: to prove
an upper bound and to establish an error bound for its accuracy. To prove bounds, the stochastic
monotonicity approach by sample path comparison is widely used in literature, see [12, 13, 14, 15,
16, 17, 28, 30, 10, 10, 31, 2]. However, while this approach is straightforward for unrestricted (or
in�nite) queueing systems (e.g. [16, 17, 30, 22, 2]) it is not for �nite systems. For �nite queueing
systems a proof of stochastic monotonicity leads to complications as �taking over�might take place
so that interchangeability arguments are to be used based on exponentiality assumptions [1, 28].
However, this does no longer apply to mobile networks as also exponential calls are no longer
indistighuishable due to their location (also see [14]). In order to establish an error bound, in
this paper therefore we will use a combined approach based on both monotonicity results and the
Markov reward technique, see e.g. [25] for a survey of this technique.

1.4 Organisation

The organisation of this paper is as follows. Section 2 contains the model, the performance measures
of interest, and the product form modi�cations. In particular, a network with unlimited capacity is
used to introduce the o¤ered load that characterises the equilibrium distribution under the redial
rate approximation that is described in Section 2.3. Section 3 contains the main monotonicity and
error bound results. The technical proofs of these results are concentrated in Section 5 along with
additional comments. Section 4 provides two of special applications which include

� a computational simpli�cation for loss networks
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� and an explicit error bound for GSM networks with �xed channel allocation.

2 Model

2.1 Markov chain

Consider a communication network consisting of N cells, labelled i = 1; 2; : : : ; N . Calls arrive to
cell i according to a Poisson process with rate �i (fresh calls). A successfully completed call has
a negative exponentially distributed call length with mean 1=�. Calls may move around in the
network. A call may move from cell i to neighbouring cell k at exponential rate �ik (handover),
provided the new state is feasible, i; k = 1; : : : ; N . A fresh call or handover leading to an infeasible
state is blocked and cleared. This is referred to as fresh call blocking and handover blocking. The
network can thus be represented by an exponential queueing network, with

�i arrival rate to cell i;
�i = �+

P
k �ik holding time parameter in cell i;

pij = �ij=�i handover probability from cell i to cell j, and;
pi0 = �=�i the succesful call completion probability in cell i:

(2)

A state of this network is a vector n = (n1; n2; : : : ; nN ), where ni is the number of calls in progress
in cell i, i = 1; 2; : : : ; N . Due to interference constraints or resource sharing, the states are limited
to a set of feasible states

S = fn : An � sg ; (3)

where A is a d � N matrix, s is a d-vector, and d is the number of constraints, see [7]. A state
space of this form also arises in a loss network, see [11].

The exponentiality assumptions imply that the state of the network can be represented as a
continuous-time Markov chain, X = (X (t) ; t � 0); that records the number of calls in the cells.
The Markov chain has transition rates, Q = (q (n;n0) ; n;n0 2 S), given by

q
�
n;n0

�
=

8>><>>:
�i1(n+ ei 2 S) n0 = n+ ei; fresh call;
ni�ipi0 n0 = n� ei; call completion;
ni�ipik1(n� ei + ek 2 S) n0 = n� ei + ek; handover;PN
k=1 ni�ipik1(n� ei + ek =2 S) n0 = n� ei; blocked handover;

(4)

where ei is the i-th unit vector with 1 in place i, 0 elsewhere, and 1(A) is the indicator function
of event A, that is 1 when A occurs, 0 otherwise. Note that the transition rates for a succesful
call completion or a blocked handover e¤ectively lead to the same transition and can be combined.
Nevertheless, we have listed these transition rates separately to distinghuish the two events, which
may have di¤erent consequences for the performance measure of interest, e.g. throughput or han-
dover blocking. This wireless network can thus be regarded as a network of Erlang loss queues with
additional state space restrictions in which customers arriving to a queue resulting in an unfeasible
state are blocked and cleared from the system. For a more detailed description of a wireless net-
work, its relation to a queueing network, and generalizations to general holding times, see [4, 5].
The equilibrium distribution, �, is the unique non-negative probability solution of the global balance
equations

�Q = 0:

Remark 2.1 (Product form?) We distinguish two cases of computational interest Without han-
dovers, i.e., pij = 0 for all i; j, the network is called a loss network. In this case, the equilibrium
distribution � is well-known to have a truncated multivariate Poisson distribution as represented
by (1), see [11]. This distribution is also referred to as product form distribution. Nevertheless,
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due to the state space restrictions its computation can still be numerically demanding. With han-
dovers, this appealing product form property will in general no longer apply due to the capacity
restrictions, except for special instances such as with reversible routing. Several modi�cations have
been suggested in the literature, e.g. [5, 18]. In this paper, we use the redial rate approximation
introduced in [5]. This approximation is based on a truncation of a network with unlimited capacity,
such that the transition rates resulting in blocked and cleared calls are preserved and compensated.
The redial rate approximation will be introduced in Section 2.3. In this paper, we will show that
this approximation leads to secure bounds for loss probabilities and we will derive an analytic error
bound on the error in the blocking probabilities. �

2.2 Performance measures

The fresh call blocking probability, Bi, that an additional call in cell i cannot be accepted, can be
expressed as summation of � over part of the boundary of the state space (see [3], or directly by
using PASTA):

Bi =

P
n2S �(n)�i1(n+ ei =2 S)P

n2S �(n)�i
=
X
n2Ti

�(n); Ti := fn : n 2 S; n+ ei 62 Sg:

The handover blocking probability, Bij , that a handover from cell i to cell j is blocked, is (see [3])

Bij =

P
n2S �(n)ni�ipij1(n� ei + ej =2 S)P

n2S �(n)ni�ipij
=

P
n2S �(n)ni1(n� ei + ej =2 S)P

n2S �(n)ni
:

The call dropping probability, Di, that a call terminates in cell i due to an unsucessfull handover,
is expressed by

Di =

P
n2S

P
j �(n)ni�ipij1(n� ei + ej =2 S)P

n2S
P
j �(n)ni�ipij1(n� ei + ej =2 S) +

P
n2S �(n)ni�ipi0

:

The throughput or number of successful call completions, Hi, is given by

Hi =
X
n2S

�(n)ni�ipi0;

that can be used to obtain the denominator of the handover blocking probabilities.

2.3 Product form modi�cation

This section presents two modi�cations to obtain an amenable product form distribution. The �rst
one is the system with unlimited capacity. This system has a natural interpretation of the tra¢ c
equations and their solution, the o¤ered load, that characterise product forms. The second one
is the redial rate approximation that we will use as product form approximation throughout this
paper.

2.3.1 Unlimited capacity

For the system with unlimited capacity, the state space is unlimited, that is S1 = fn : n � 0g,
and the equilibrium distribution also exhibits the factorizing multidimensional Poisson form (1)
but with G =

Q
k e

�k , and f�igNi=1 the unique solution of the tra¢ c equations

�i�i = �j +
NX
j=1

�j�jpji; i = 1; : : : ; N: (5)
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Remark 2.2 (Tra¢ c equations; o¤ered load) The tra¢ c equations (5) determine the average
load of the cells in the case of in�nite capacities: �i can be interpreted as the load o¤ered per time
unit to cell i, which consists of the arrival rate of fresh calls, �i, and the arrival rate, �j�jpji, due
to handovers from other cells j = 1; : : : ; N . To this end, observe that in the network with in�nite
capacity calls move independently among the cells of the network, so that the mean �ow of calls
from cell k to cell i is X

n�0
�1(n)nk�kpki = �k�kpki:

�

2.3.2 Redial rates

For networks with �nite capacities, closed form solutions for the equilibrium distribution or blocking
probabilities are generally not available. In [5], it is shown that the introduction of redial rates re-
establishes a product form or truncated multidimensional Poisson equilibrium distribution. Such
distributions are well-known for studying circuit switched or wireless communications networks,
most notably loss networks. Various computational methods for e¢ ciently computing performance
measures have therefore been studied, see e.g. [20] for Monte-Carlo methods, and [6] for an e¢ cient
asymptotic approximation method.

Under the redial rate approximation from [5], the state space S is allowed to have the general
form (3). The Markov chain Xr = (Xr (t) ; t > 0) now has transition rates Qr = (qr (n;n0) ;n;n0 2
S) given by

qr
�
n;n0

�
=

8>>>><>>>>:
�i1(n+ ei 2 S) n0 = n+ ei fresh call;
ni�ipi0 n0 = n� ei call completion;
ni�ipik1(n� ei + ek 2 S) n0 = n� ei + ek handover;PN
k=1 ni�ipik1(n� ei + ek =2 S) n0 = n� ei blocked handover;PN
k=1 rki1(n+ ei 2 S; n+ ek =2 S) n0 = n+ ei 2 S redial attempt;

(6)

where rki is the redial rate in cell i when the neighbouring cell k is blocked. The following result
is obtained in [5].

Theorem 2.3 Let f�igNi=1 be the (unique) solution of the tra¢ c equations (5), and assume that
the redial rates are such that

rki = �k�kpki; k; i = 1; : : : ; N: (7)

Then the equilibrium distribution �r of Xr is a truncated multivariate Poisson distribution

�r(n) = G
�1

NY
k=1

�nkk
nk!

; n 2 S; G =
X
n2S

NY
k=1

�nkk
nk!

: (8)

Remark 2.4 (Notation) Note that the original process is obtained by setting rkj = 0 for all k; j.
Therefore, we formulate our results under an arbitrary redial rate modi�cation, with the original
process as special case. �

Remark 2.5 (Interpretation of the redial rates; maximal redial rates) The redial rate rki
represents the subscribers that have lost their connection while entering cell k (either as fresh call
or as handover). These subscribers try to re-establish their connection by entering cell i. This will
occur only when cell k is blocked, and cell i can still accept extra calls, which explains the addition
n+ ei 2 S; n+ ek =2 S. As the mean �ow of subscribers with their call blocked that is moving from
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cell k to cell i cannot exceed the mean �ow of calls in the o¤ered load model, it is natural to restrict
the redial rates such that

0 � rki � �k�kpki; (9)

where the maximal value corresponds to the network in which all subscribers try to re-establish
their connection. Since the redial behaviour is modelled as a Poisson arrival process, this a clearly
an approximation of the actual redial behaviour that may occur in a mobile network. Intuition
suggests that the redial rate approximation leads to an overestimation of blocking probabilities since
the network seems to contain more calls. Due to the intricate relation between the constraints
determining the state space S this can, in general, not be shown at sample path level. Nevertheless,
in Section 3 we show that blocking probabilities under the maximal redial rates, de�ned as rki =
�k�kpki, do indeed overestimate the actual blocking probabilities. �

Blocking probabilities can be obtained in closed form from the distribution (8). In particular,
the fresh call, Br;i, and handover blocking probabilities, Br;ij , obtain the appealing forms (see [5])

Br;i =

P
n2Ti

QN
k=1(�

nk
k =nk!)P

n2S
QN
k=1(�

nk
k =nk!)

; Br;ij =

P
n2Tij

QN
k=1(�

nk
k =nk!)P

n2Ui
QN
k=1(�

nk
k =nk!)

; (10)

with
Ti = fn : n 2 S; n+ ei 62 Sg; Ui := fn : n+ ei 2 S g and

Tij := fn : n+ ei 2 S; n+ ej 62 Sg:

2.4 Hyper cube modi�cation

As a special redial and state space modi�cation, for a given original network with state space S,
we de�ne the hyper cube state space

Shc = fn : 0 � ni � Ni; i = 1; : : : ; Ng ; Ni = max fni : n 2 Sg ;

with transition rates Qhc;r = (qhc;r(n;n0); n; n0 2 Shc) as de�ned in (6), but now with S replaced
by Shc, and assuming the maximal redial rates: rki = �k�kpki. It can then easily be shown that
the equilibrium distribution of this hyper cube process factorises over the queues:

�hc;r(n) =

NY
i=1

24�nii
ni!

,
NiX
j=0

�ji
j!

35 ; n 2 Shc:

As a consequence, with respect to blocking probabilities, each queue behaves as an Erlang loss
queue in isolation with arrival rate determined by the tra¢ c equations. The fresh call and handover
blocking probability thus reduce to the Erlang loss probabilities, see [5]:

Bhc;r;i = Bhc;r;ji = Bloss =
�Nii
Ni!

,
NiX
k=0

�ki
k!
; i; j = 1; : : : ; N:

Remark 2.6 (Other product form modi�cations) Other product form modi�cations such as
a stop, recirculate, and jump-over protocol can also be used, see [26]. All these protocols lead
to an equilibrium distribution that is functionally the same as obtained under the redial protocol.
However, under the stop and recirculate protocol transitions leading to call blocking are removed.
This is less appropriate for analyzing blocking probabilities. In addition, under a stop or recirculate
approximation error bounds cannot, in general, be obtained. �
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3 Main results

This section provides our main practical result (Corollary 3.6). This result is based on two more
technical results (Theorems 3.1, 3.4). The proofs of these results are concentrated in Section 5.
First, we investigate monotonicity of the process in the state space and the redial rates. The second
result provides an analytic error bound on the redial rate approximation. This result consists of
two components: an error bound for the hyper cube modi�cation, and an error bound for the redial
rate approximation of the hyper cube process. Examples are included in Section 3.2.

3.1 General results

Consider the set of functions de�ned as

Chc = ff : Shc ! [0;1)jf (n+ ei)� f (n) � 0; for n;n+ ei 2 Shcg :

The family of functions f 2 Chc includes for example fresh call blocking in cell i by f(n) = 1(n 2 Ti).
The following theorem provides our main monotonicity result. For f 2 Chc for the hyper cube

process Erf �
P
n2Shc �hc;r(n)f(n) is increasing in the redial rates. This result implies that the

product form approximation that is obtained under maximal redial rates provides an upper bound
for E0f , the expectation of f for the original process.

Theorem 3.1 (Main monotonicity result) When rji � r0ji for all j; i then for any f 2 ChcX
n2Shc

�hc;r(n)f(n) �
X
n2Shc

�hc;r0(n)f(n);

and for any f 2 Chc X
n2Shc

�hc;r(n)f(n) �
X
n2S

�0(n)f(n):

Remark 3.2 (Literature) Theorem 3.1 generalises a result from [1]. In this reference, a similar
result was established for fresh call blocking, only, by a sample path argument. In the present more
general setting that involves both redial rates and a state space modi�cation, a sample path argument
can no longer be given. Though we will use Theorem 3.1 to demonstrate Theorem 3.4, Theorem 3.1
is therefore also of theoretical interest by itself and presented separately. It provides monotonicity
results in both the redial rates and the state space modi�cation. �

The following theorem provides both an upper and a lower bound on the approximation error.
Intuitively, it seems obvious that higher redial rates result in higher blocking probabilities. However,
accepting a customer in one queue may lead to a smaller number of customers in another queues
due to joint capacity constraints, which may lead to counterintuitive results (see Section 4.4).
Nevertheless, monotonicity will appear for the hyper cube process.

The theorem involves the following condition on the reward rate R, where X incurs a reward
R(n) per time unit that X spends in state n.

Condition 3.3 Assume that for all n;n+ ei 2 Shc the reward rate is such that at the hyper cube
state space Shc

0 � R(n+ ei)�R(n) (11)

� �i1(n+ 2ei =2 S) +
NX
j=1

nj�jpji1(n+ 2ei =2 S) + �ipi0 +
NX
k=1

�ipik1(n+ ek 62 S): (12)

10



In Section 3.2, it is demonstrated that this condition is satis�ed for a.o. fresh call blocking and
throughput.

Theorem 3.4 (Main error bound result) Under condition 3.3

Ahc;r � (� + �r0) � A0 � Ahc;r � A0 + (� + �r0); (13)

where
� =

X
n2Shc

�hc;r(n)�(n); �rr0 =
X
n2Shc

�hc;r(n)�rr0(n);

with

�(n) =
X
j

�j1(n+ ej 2 ShcnS) +
X
i;j

ni�ipij1(n� ei + ej 2 ShcnS);

�rr0(n) =
X
k;j

(rkj � r0kj)1(n+ ej 2 Shc;n+ ek 62 Shc) (with rkj � rkj)0:

Remark 3.5 Condition 3.3 distinguishes two conditions that each have their speci�c function.
The monotonicity condition (11) secures the ordering A0 � Ahc;0 so that by Theorem 3.1 also
A0 � Ahc;0 � Ahc;r. The bounding condition (12) will lead to the error bound jAhc;r�A0j � �+�r0.

Theorem 3.4 also provides a bound on the error in the upper bound Ahc;r of A0. Often, � + �r0
has the order of magnitude of Ahc;r so that the upper bound is roughly twice the value of A0. For
applications in wireless networks, where typical values for the blocking probabilities are 1%, this is
an acceptable level of accuracy: dimensioning the system based on a guaranteed upper bound of 1%
implies that the actual system performs better than the target values.

The proof of Theorem 3.4 is provided in Section 5, and consists of two steps that cannot be
combined into a single step. The �rst step compares the original process X0 at state space S with
the hyper cube process Xhc;0 at state space Shc. Here the boundary of the state space S plays a
crucial role. The contribution in the error bound is denoted by �. The second step compares the
process Xhc;0 with the process Xhc;r. The essential step consists of a comparison of the redial rates
at the boundary of Shc. The contribution in the error bound is denoted by �r0. �

Under maximal redial rates the equilibrium distribution is of product form. The following
Corollary is therefore of more computational interest. For practical purposes, this corollary can be
regarded as the main result of this paper. The result immediately follows from Theorem 3.4 and
results from Section 2.4.

Corollary 3.6 (Main Product form error bound result) Under condition 3.3, and under max-
imal redial rates de�ned as

rki = �k�kpki; k; i = 1; : : : ; N;

(13) applies with

�hc;r(n) =
NY
i=1

24�nii
ni!

,
NiX
j=0

�ji
j!

35 ; n 2 Shc:

A disadvantage of the error bound result above, or its product form version of Theorem 3.4
is that the error bound terms �r and �rr0 require summation of the equilibrium distribution �hc;r
over Shc n S. This summation can, in general, not e¢ ciently be evaluated in closed form. Sections
4.1, and 4.3 will therefore address an e¢ cient estimation of these summations.

11



3.2 Examples

The main condition for Theorem 3.4 and Corollary 3.6 is the reward condition 3.3. This condition
may seem more restrictive than it actually is. For the hyper cube process, it does allow fresh call
blocking, handover blocking, and throughput, as will be shown below.

Fresh call blocking
For n 2 Shc, let R(n) = �j1(n+ ej 62 Shc). Then, for n+ ei 2 Shc:

R(n+ ei)�R(n) = �j1(n+ ei + ej 62 Shc)� �j1(n+ ej 62 Shc)
= �j1(n+ 2ei 62 Shc)1(i = j):

Thus R satis�es condition 3.3, and as performance measure we obtain the fresh call blocking
probability in cell j

Ahc;r =
X
n2Shc

�hc;r(n)R(n) = �jBhc;r;j1(i = j):

Handover blocking and dropping
For n 2 Shc, let R(n) =

PN
j=1 nj�jpjk1(n� ej + ek 62 Shc). Then, for n+ ei 2 Shc:

R(n+ ei)�R(n) =

NX
j=1

�
(nj + 1(i = j))�jpjk1(n+ ei � ej + ek 62 Shc)

�nj�jpjk1(n� ej + ek 62 Shc)
	

=
NX
j=1

nj�jpji1(n+ 2ei 62 Shc)1(i = k);

where we have used the observation that the right hand side is non-null only for k = i, which also
implies that j 6= i. Clearly, R thus satis�es Condition 3.3. We �nd

Ahc;r =
X
n2Shc

�hc;r(n)R(n) =
X
n2S

NX
i=1

�(n)nj�jpjk1(n� ej + ek =2 S);

which represents the enumerator of the call dropping probability in cell k. By analogy, for R(n) =
nj�jpjk1(n� ej + ek 62 Shc) we obtain the enumerator of the handover blocking probability.

Throughput
For n 2 Shc, let R(n) = nj�jpj0. Then, for n+ ei 2 Shc :

R(n+ ei)�R(n) = �ipi01(i = j);

so that R satis�es Condition 3.3. This leads to the throughput of cell j:

Ahc;r =
X
n2Shc

�hc;r(n)R(n) = Hj :

4 Applications

In this section, we will provide a separate example to illustrate the error due to

� the state space modi�cation from S to Shc (Section 4.1),

12



� the redial rate approximation (Section 4.2).

In Section 4.4 we provide a counterexample to indicate that the monotonicity result of Theorem
3.1 is not generally valid.

Section 4.1 considers the classical loss network for circuit switched communications systems.
As the equilibrium distribution in this case is multivariate Poisson, the e¤ect of the state space
modi�cation can be illustrated nicely. Section 4.2 considers a GSM network with �xed channel
allocation. This is the key application which motivated our research.

4.1 Loss networks

This example considers the error due to the state space modi�cation, where the process at the
original state space S is approximated by the process at the hyper cube state space Shc. For a
loss network the equilibrium distribution at both state spaces can, in principle, be evaluated in
closed form, so that it provides a good test case for the accuracy of the state space modi�cation.
Furthermore, it is of interest to note that the easily computable Erlang loss probabilities bound for
the hyper cube process indeed bounds the blocking probabilities of the original process.

When handovers do not occur, i.e., pij = 0 for all i; j, the network is a loss network. Redial
rates cannot occur. The equilibrium distribution �loss is well-known to be a truncated multivariate
Poisson distribution or product form distribution:

�loss(n) = G
�1

NY
k=1

�nkk
nk!

; n 2 S; G =
X
n2S

NY
k=1

�nkk
nk!

;

where �k = �k=�k, k = 1; :::; N , see [11]. Interesting performance measures are the blocking
probability Bi, and the throughput Hi. Note that Hi = �i(1 � Bi). Although the blocking
probability Bi is available in closed form, this form is not amenable for computation. Often,
Monte-Carlo summation is used to evaluate the sum [5, 20].

The reward rate R(n) = �i1(n + ei 62 S) yields the blocking probability A0 = �iBi. We have
an explicit product form distribution at both S and Shc. As a consequence,

A0 =
X
n2S

R(n)�0(n) = �i
X
n2Ti

G�1
NY
i=1

�nii
ni!

= �iBi;

and

Ahc = �i
X

n2Ti[(ShcnS)
G�1hc

NY
i=1

�nii
ni!

where

Ghc =
NY
i=1

24 NiX
j=0

�ji
j!

35
so that the normalising constant Ghc is readily evaluated.

Evaluation of Ahc requires summation of �hc(n) = G�1hc
QN
i=1

�
ni
i
ni!

over the set Ti [ (Shc n S).
When this set is small, i.e., when S does not deviate too much from a hyper cube , evaluation of
Ahc is much faster than evaluation of A0 that requires evaluation of the normalising constant G,

which involves a summation of
Q
k
�
nk
k
nk!
. Below we also provide a readily computable bound on Ahc.

The error due to the state space modi�cation is expressed by � as

� =
X
n2Shc

�hc(n)�(n) =
X
n2Shc

NX
j=1

�j1(n+ ej 2 Shc n S)G�1hc
NY
i=1

�nii
ni!
:
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Especially when some of the �j for j 6= i are large, we have Ahc � � < 0 so that the lower bound
is not of practical value. An upper bound is of great practical interest. This can be obtained as
follows.

Let M = (M1; : : : ;MN ) be the upper corner of the hyper cube that is completely contained in
S, let

SMhc = fn : 0 � ni �Mi; i = 1; : : : ; Ng � S;

and

�M =
X
n2Shc

�hc(n)
NX
j=1

�j1(n+ ej 2 ShcnSMhc ):

As � � �M and taking into account the explicit expression for the equilibrium distribution �hc, we
obtain

jAhc �A0j � �M �

0@ NX
j=1

�j

1A NX
`=1

NX̀
n`=M`

24�n``
n`!

,
NX̀
j=0

�ji
j!

35 :
This result may be sharpened by carefully taking into account the state space summations involved
in the de�nition of �M . In addition, note that the selection ofM need not be unique, which allows
�exibility for minimisation of the upper bound. We have thus obtained an explicit upper bound on
the error in the blocking probabilities due to state space modi�cation.

4.2 Fixed channel allocation: a hyper cube space process

In a GSM network operating under �xed channel allocation, each cell is assigned a �xed number of
channels that can be used by calls in that cell only. As a consequence, the state space is a hyper
cube Shc = fn : 0 � ni � Nig, where Ni is the number of channels assigned to cell i. Under
maximal redial rates rkj = �k�kpkj

�r0 =
X
n2Shc

�hc;r(n)
NX

k;j=1

rkj1(n+ ej 2 Shc;n+ ek 62 Shc)

=

NX
k;j=1

�k�kpkjBhc;r;k(1�Bhc;r;j);

where we have used that the state space is a hyper cube. We thus obtain

Bhc;r;j �
NX

k;`=1

�k�kpk`
�j

Bhc;r;k(1�Bhc;r;`)

� Bhc;0;j � Bhc;r;j � Bhc;0;j +
NX

k;`=1

�k�kpk`
�j

Bhc;r;k(1�Bhc;r;`);

where

Bhc;r;j =
�
Nj
j

Nj !

24 NjX
t=0

�tj
t!

35�1 ;
the Erlang loss probability. From the expressions for blocking probabilities obtained in [5], for
maximal redial rates Bhc;r;jk = Bhc;r;k.

The term
PN
k;`=1

�k�kpk`
�j

may be small, especially when pk0 � 1. This is in accordance with
intuition, as in this regime handovers are rare, and redial rates are small, so that the redial rate
approximation is likely to be accurate.

14



Notice that the lower bound may actually be below zero. In applications, often, the upper
bound is of more importance than the lower bound. Observe that

Bhc;0;j +

NX
k;`=1

�k�kpk`
�j

Bhc;r;k(1�Bhc;r;`) � Bhc;0;j +

NX
k;`=1

�k�kpk`
�j

Bhc;r;k

= Bhc;0;j +
NX
k=1

�k�k(1� pk0)
�j

Bhc;r;k:

When the upper bound Bhc;r;j < 1%, the error in the blocking probability of the actual fresh call
blocking probabilities Bhc;0;j is of that order of magnitude, too. Thus, it is su¢ cient to dimension
the system with maximal redial rates to guarantee a Quality of Service limit of 1% of the blocking
probabilities, in which case the actual blocking probabilities will be in the range 0.5% �1%.

4.3 General result including routing

The approach for a loss network without routing as in Section 4.1 can readily be extended to
networks with routing. Note that in this case the equilibrium distribution of the original chain is
not known. However, the bounds are expressed in the equilbrium distribution of the hyper cube
process with redial rates. Under maximal redial rates the resulting truncated Poisson equilibrium
distribution is explicitly known and amenable for computation since its normalising constant is
known in closed form.

The bound consist of two parts: � and �r0. Under maximal redial rates:

� + �r0 =
X
n2Shc

�hc;r(n)

8<:
NX
j=1

�j1(n+ ej 2 ShcnSMhc ) +
NX

i;j=1

ni�ipij1(n� ei + ej 2 ShcnSMhc )

+
NX

k;j=1

rkj1(n+ ej 2 Shc;n+ ek 62 Shc)

9=;
=

X
n2Shc

�hc;r(n)

8<:
NX
j=1

�j1(n+ ej 2 ShcnSMhc ) +
NX

i;j=1

�i�ipij1(n+ ej 2 ShcnSMhc )

+
NX

i;j=1

(�i�ipij)1(n+ ej 2 Shc;n+ ei 62 Shc)

9=;
Following the steps as in Section 4.1, we readily obtain

�M �
NX
`=1

NX̀
n`=M`

24�n``
n`!

,
NX̀
j=0

�ji
j!

358<:
NX
j=1

�j +
NX
i=1

�i�i(1� pi0)

9=;
+

NX
i=1

NX
i;j=1; j 6=i

(�i�ipij)
�Nii
Ni!

,
NkX
k=0

�ki
k!
:

Remark 4.1 (Complete sharing) Under complete sharing of capacity all cells share the common
capacity s. The state space is

Ss = fn :
NX
i=1

ni � sg;
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and handovers cannot be blocked. The PASTA property implies that

Bj = Br;j =

�PN
j=1 �j

�s
s!

264 sX
t=0

�PN
j=1 �j

�t
t!

375
�1

;

and
Bij = Br;ij :

When the states space S is close to that of complete sharing, we may use Ss instead of SMhc to
approximate the error bound. �

4.4 Counterexample

This section provides an example to illustrate that the introduction of redial rates does not nec-
essarily increase fresh call blocking probabilities at all cells. Consider a network of 5 cells, cell 1,
. . . ,5, with common capacity constraints

n1 + n2 � 1; n2 + n3 � 1; n3 + n4 � 1; n4 + n5 � 1:

Handovers are allowed only from cell 2 to cell 3, say with probability p. The tra¢ c equations (5)
have the unique solution

�i = �i=�i; i = 1; 2; 4; 5; �3 = (�3 + �2p)=�3:

The maximal redial rate into cell 3 when cell 2 is blocked (which is due to the constraint n1+n2 � 1)
is r23 = �2p. When cell 2 is blocked, while cell 3 is not blocked, it must be that n1 = 1, and n4 = 0.
In this state an extra call may be added to cell 3 due to the redial rate. As a consequence, cell 4
is blocked, and therefore, due to the redial rate in cell 3, cell 4 contains less calls. An immediate
consequence is that the blocking probability in cell 5 will decrease, since the constraint n4+n5 � 1
will less often be tight. This illustrates that for a general state space there is a knock-on e¤ect due
to the redial rates: extra calls in one cell may decrease the load in neighbouring cells, resulting in
lower blocking probabilities in cells sharing a capacity constraint with that neighbouring cell.

To numerically illustrate the argument provided above, consider the network with fresh call
arrival rate and holding times �i = 1, �i = 4, i = 1; : : : ; 5, and let p = 1=2. Fresh call blocking
probabilities in the cell 1,. . . ,5 are for the process without redial rates, and with maximal redial
rates:

B =

�
22 531 289

129 964 237

17 307 792

129 964 237

25 390 649

129 964 237

17 428 912

129 964 237

22 507 065

129 964 237

�
; Br =

�
21

121

16

121

25

121

16

121

21

121

�
;

and
Bi < Br;i; i = 1; 3; 5; Bi > Br;i; i = 2; 4;

in agreement with intuition.

5 Proof of the main results

This section provides the proofs of our main results and some related arguments. Some of the
results are duplicated to enhance the readability of the section. Section 5.1 �rst establishes pre-
liminary results on Markov reward structures and uniformization. Next, Section 5.2 develops the
monotonicity results, and Section 5.3 proves the error bound result.
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5.1 Preliminaries

We will compare performance measures for the system under di¤erent conditions by means of
expected rewards. To this end, let a reward R(n) be incurred per unit time whenever the system
is in state n, and de�ne

A =
X
n2S

�(n)R(n) = lim
t!1

1

t
E
Z t

0
R(X(u))du;

with �(n) the equilibrium distribution of the Markov chain X(t). First, in order to use inductive
arguments, we transfer the continuous-time setting to a discrete-time formulation by means of
uniformization. To this end, let � be some arbitrarily large number such that

� �
NX
j=1

�j +
NX
j=1

NX
k=0

Nj�jpjk +
NX
j=1

NX
k=1

rkj =
NX
j=1

�j +
NX
j=1

Nj�j +
NX
j=1

NX
k=1

rkj :

The continuous-time Markov chain X can then be evaluated as a discrete-time Markov chain with
one-step transition probabilities (uniformization), see e.g. [21, p. 110]

P (n;n0) =

�
q(n;n0)=�; if n0 6= n;
1�

P
n00 6=n q(n;n

00)=�; if n0 = n:

Furthermore, let the functions V k(n) represent the expected cumulative reward over k steps when
starting in state n at time 0 and incurring a reward R(n)=� per step for the corresponding discrete-
time Markov chain, i.e.

V K(n) =
1

�

K�1X
k=0

X
n02S

P k(n;n0)R(n0); n 2 S; K = 0; 1; 2; :::; V 0(n) = 0;

where, by convention, P 0(n;n0) = 1(n = n0). These functions can recursively be determined as

V K+1(n) =
R(n)

�
+
X
n02S

P (n;n0)V K(n0); n 2 S; K = 0; 1; 2; :::; V 0(n) = 0;

and by virtue of the uniformization:

A = lim
K!1

�

K
V K(n):

Similarly, with the same uniformization parameter �, for the modi�ed processes with redial rates
rkj and the state space transformed to the hyper cube Shc, we can determine Ar and Ahc;r by
de�ning the one-step matrices Pr and Phc;r and cumulative rewards V kr and V

k
hc;r with qr and qhc;r

replacing q.

5.2 Monotonicity

This section provides proofs for a variety of monotonicity results. These monotonicity results have
a twofold function. In the �rst place, the Theorems 5.3, 5.4, and 5.7 will be essential for the proof
of the error bound theorem 3.4 as will appear in Section 5.3. Secondly, these theorems will also lead
to upper bounds of practical interest by themselves. In particular, the main monotonicity result
(Theorem 5.7) states that rewards for the hyper cube process with arbitrary redial rates exceed
those of the original process.
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First, we show that rewards for the hyper cube process are monotone and increasing in the
number of steps of the Markov chain. Next, it is shown that the cumulative expected rewards
for the hyper cube process exceed those for the original process. Our main monotonicity result
states that rewards for the hyper cube process with arbitrary redial rates exceed those of the
original process. In particular, this result allows us to select maximal redial rates under which the
equilibrium distribution is truncated multivariate Poisson. The proof of this result consist of a
number of steps. This section provides these steps as well as additional comments on the results.

Consider the set of functions de�ned as

Chc = ff : Shc ! [0;1)jf (n+ ei)� f (n) � 0; for n;n+ ei 2 Shcg :

Lemma 5.1 Chc is closed under Phc;r, that is (Phc;rf) 2 Chc for all f 2 Chc.

Proof It is su¢ cient to show that (Phc;rf) (n + ei) � (Phc;rf) (n) � 0 for n;n + ei 2 Shc for
all f 2 Chc. We will �rst establish results for the process at arbitrary state space S, and only
when required in the derivation restrict ourselves to Shc. For notational convenience, we omit the
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subscript in the transitions rates. Straightforward calculations yield, for n; n+ ei 2 S,

�[(Phc;rf) (n+ ei)� (Phc;rf) (n)] =
X
n02S

q(n+ ei;n
0)f(n0) + �f(n+ ei)

�
X
n02S

q(n+ ei;n
0)f(n+ ei)�

X
n02S

q(n;n0)f(n0)� �f(n) +
X
n02S

q(n;n0)f(n)

=
NX
j=1

�jf(n+ ei + ej)1(n+ ei + ej 2 S)�
NX
j=1

�jf(n+ ej)1(n+ ej 2 S)

+
NX
j=1

�jf(n+ ei)1(n+ ei + ej 62 S)�
NX
j=1

�jf(n)1(n+ ej 62 S)

+

NX
j=1

NX
k=0

(nj + �ij)�jpjkf(n+ ei � ej + ek)1(n+ ei � ej + ek 2 S)

�
NX
j=1

NX
k=0

nj�jpjkf(n� ej + ek)1(n� ej + ek 2 S)

+

NX
j=1

NX
k=1

(nj + �ij)�jpjkf(n+ ei � ej)1(n+ ei � ej + ek 62 S)

�
NX
j=1

NX
k=1

nj�jpjkf(n� ej)1(n� ej + ek 62 S)

+

NX
j=1

NX
k=1

rkjf(n+ ei + ej)1(n+ ei + ej 2 S;n+ ei + ek 62 S)

�
NX
j=1

NX
k=1

rkjf(n+ ej)1(n+ ej 2 S;n+ ek 62 S)

+�[f(n+ ei)� f(n)]

�
NX
j=1

�jf(n+ ei) +

NX
j=1

�jf(n)

�
NX
j=1

NX
k=0

(nj + �ij)�jpjkf(n+ ei) +
NX
j=1

NX
k=0

nj�jpjkf(n)

�
NX
j=1

NX
k=1

rkjf(n+ ei)1(n+ ei + ej 2 S;n+ ei + ek 62 S)

+

NX
j=1

NX
k=1

rkjf(n)1(n+ ej 2 S;n+ ek 62 S);
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so that

�[(Phc;rf) (n+ ei)� (Phc;rf) (n)] =
NX
j=1

�j [f(n+ ei + ej)� f(n+ ej)]1(n+ ei + ej 2 S)

+
NX
j=1

�j [f(n+ ei)� f(n)]1(n+ ej 62 S)

+

NX
j=1

NX
k=0

nj�jpjk[f(n+ ei � ej + ek)� f(n� ej + ek)]1(n+ ei � ej + ek 2 S)

+
NX
k=0

�ipik[f(n+ ek)� f(n)]1(n+ ek 2 S)

+

NX
j=1

NX
k=1

nj�jpjk[f(n+ ei � ej)� f(n� ej)]1(n� ej + ek 62 S)

+
NX
j=1

NX
k=1

rkj [f(n+ ei + ej)� f(n+ ej)]1(n+ ei + ej 2 S;n+ ei + ek 62 S)

+

8<:�r �
NX
j=1

�j �
NX
j=1

NX
k=0

(nj + �ij)�jpjk �
NX
j=1

NX
k=1

rkj1(n+ ej 2 S;n+ ek 62 S)

9=; [f(n+ ei)� f(n)]
+

NX
j=1

�j [f(n+ ei)� f(n+ ej)]1(n+ ei + ej 62 S; n+ ej 2 S)

+
NX
j=1

NX
k=1

nj�jpjk[f(n+ ei � ej)� f(n� ej + ek)]1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+
NX
j=1

NX
k=1

rkj [f(n+ ej)� f(n+ ei)][1(n+ ei + ej 2 S;n+ ei + ek 62 S)� 1(n+ ej 2 S;n+ ek 62 S)]

Now restrict attention to the hyper cube process Xhc;r with state space Shc, and transition prob-
abilities Phc;r. For this process all terms except the last three are positive due to the de�nition of
� and the assumption that f 2 Chc. At the hyper cube state space, the last three terms are zero
since for n + ei 2 Shc it must be that n + ej 2 Shc implies that n + ei + ej 2 Shc unless i = j.
However, for i = j we have [f(n + ei) � f(n + ej)] = 0. A similar argument applies to the other
terms. �

Remark 5.2 (Chc closed under P?) The hyper cube state space is essential for the proof of
Lemma 5.1. In particular, besides the assumption that f 2 Chc, for the proof to be completed,
it must hold that the terms

NX
j=1

�j [f(n+ ei)� f(n+ ej)]1(n+ ei + ej 62 S; n+ ej 2 S)

+

NX
j=1

NX
k=1

nj�jpjk[f(n+ ei � ej)� f(n� ej + ek)]1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+
NX
j=1

NX
k=1

rkj [f(n+ ej)� f(n+ ei)][1(n+ ei + ej 2 S;n+ ei + ek 62 S)� 1(n+ ej 2 S;n+ ek 62 S)]
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cancel. Recall from the proof that, at the hyper cube state space, these terms are zero since for
n+ ei 2 S it must be that n+ ej 2 S implies that also n+ ei + ej 2 S unless i = j. However, for
i = j we have [f(n+ ei)� f(n+ ej)] = 0. Similarly, in the second term the indicator is non-zero
only when k = i, but then the term in square brackets cancels. For non hyper cube state spaces the
contribution of [f(n + ei) � f(n + ej)] may be arbitrary, and, in general, Chc is not closed under
Pr. �

Theorem 5.3 For any f 2 Chc and k � 0 we have with 0 = (0; :::; 0)

P khc;rf(0) � P k+1hc;r f(0) �
X
n2Shc

�hc;r(n)f(n):

Proof We will prove the �rst inequality by induction in k. For k = 0 it applies since

�Phc;rf(0) = �f(0) +

NX
j=1

�j (f(0+ ej)� f(0)) � �f(0);

where we have used that ej 2 Shc for all j. Suppose that the inequality holds for k � t. Then it
also holds for k = t+ 1, since

P t+1hc;rf(0)� P
t+2
hc;rf(0) = P

t
hc;r (Phc;rf) (0)� P t+1hc;r (Phc;rf) (0) � 0;

where the last inequality is obtained since Phc;rf 2 Chc by Lemma 5.1.
The second inequality is a direct consequence of the �rst inequality and the irreducibility as-

sumption that implies that limk!1 P khc;rf(0) =
P
n2Shc �hc;r(n)f(n). �

Monotonicity between the original Markov chain and the hyper cube process can only be obtained
for redial rates equal to zero. As we will see in Lemma 5.6, the hyper cube process is monotone in
the redial rates. We are now ready to state a main monotonicty result which will be used in the
proof of Theorem 3.4.

Theorem 5.4 For any f 2 Chc and k � 0 we have

P0
kf(0) � P khc;0f(0): (14)

Moreover, X
n2S

�0(n)f(n) �
X
n2Shc

�hc;0(n)f(n): (15)

Proof For notational convenience, we introduce the Markov chain �Xr as the extension of Xr
to state space Shc, that has transition rates �Qr = (�qr(n;n0);n;n0 2 Shc) for n0 6= n de�ned as

�qr(n;n
0) =

8<:
qr(n;n

0); if n;n0 2 S;
qhc;r(n;n

0); if n 2 ShcnS;n0 2 Shc
0 otherwise.

Note that qr(n;n0) = qhc;r(n;n
0) if n;n0 2 Shcn [i fTi [j Tijg, and that the states ShcnS are

transient states for �Xr. The chain �Xr is uniformizable with transition matrix

�Pr(n;n
0) =

8>><>>:
qr(n;n

0)=�; if n0 6= n; n;n0 2 S
qhc;r(n;n

0)=� if n 2 ShcnS;n0 2 Shc
1�

P
n00 6=n qr(n;n

00)=�; if n0 = n 2S
1�

P
n00 6=n qhc;r(n;n

00)=� if n0 = n 2ShcnS
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Note that for the process starting at S, e.g. starting empty (in state 0 = (0; :::; 0), the evolution of
the process �Xr coincides with that of Xr, so that

�P kr f(0) = P
k
r f(0):

The entries of �P0 and Phc;0 di¤er only at the boundary of S. We readily �nd that, for f 2 Chc, for
n 2 Shc

�
Phc;0 � �P0

�
f(n) =

NX
j=1

�j1(n+ ej 2 ShcnS) (f(n+ ej)� f(n)) (16)

+
NX
i=1

NX
j=1

ni�ipij1(n� ei + ej 2 ShcnS) (f(n� ei + ej)� f(n� ei)) � 0:

Observe that�
P khc;0 � �P k0

�
f(0) = �P0

h�
P k�1hc;0 � �P k�10

�
f
i
(0) +

�
Phc;0 � �P0

� �
P k�1hc;0 f

�
(0)

= ::: = �P k0
�
P 0hc;0f � �P 00 f

�
(0) +

k�1X
t=0

�P t0
�
Phc;0 � �P0

� �
P k�t�1hc;0 f

�
(0):

Note that P 0hc;0f = �P 00 f = f by de�nition. By Lemma 5.1, observe that P
k�t�1
hc;0 f 2 Chc for f 2 Chc,

so that by (16)
�
Phc;0 � �P0

� �
P k�t�1hc;0 f

�
(0) � 0 for all t = 0; :::; k � 1. Furthermore, since �P0 is a

stochastic matrix, we can use that �P t0g � 0 if g � 0 componentwise. The proof of (14) is hereby
completed. From Theorem 5.3 we obtain from (14) for r = 0: P0kf(0) �

P
n2Shc �hc;0(n)f(n) for

all k. (15) now follows noting that S is an irreducible class for X, so that for all m 2 S

lim
K!1

1

K

K�1X
k=0

P k0 f(m) = lim
K!1

1

K

K�1X
k=0

P k0 f(0) =
X
n2S

�0(n)f(n): (17)

�

Remark 5.5 (General redial rates) The assumption of null redial rates is used in (16). For
non-null redial rates an additional negative term involving the redial rates at the boundary of S
would appear. �

Now we will show that P khc;rf(0) for f 2 Chc is strictly increasing in the redial rates, which
implies that the rewards (blocking probabilities) are increasing in the redial rates. This result will
enable us to provide a computable bound on the blocking probabilities for the original process
(without redial rates). The main step is the following Lemma.

Lemma 5.6 Consider the processes Xhc;r and Xhc;r0 at state space Shc with rji � r0ji for all j; i.
For f 2 Chc

P khc;rf(0) � P khc;r0f(0);

and X
n2Shc

�hc;r(n)f(n) �
X
n2Shc

�hc;r0(n)f(n):
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Proof Note that

(Phc;r � Phc;r0)f(n) =
X
k;i

(rki � r0ki)(f(n+ ei)� f(n))1(n+ ek 62 Shc; n+ ei 2 S) � 0:

Furthermore, Chc is closed under Phc;r. The remainder of the proof can be shown along the lines
of that of Theorem 5.4. �

Our main monotonicity result now follows directly as a consequence of Theorem 5.4, and Lemma
5.6 for r0 = 0.

Theorem 5.7 (Main monotonicity result) For any f 2 Chc, rji � 0 for all j; i, and k � 0

P k0 f(0) � P khc;rf(0):

Moreover, X
n2S

�0(n)f(n) �
X
n2Shc

�hc;r(n)f(n):

Remark 5.8 (Bound by maximal redial rates) Under the conditions of Theorem 5.7, i.e., for
rji = �j�jpji, j; i = 1; : : : ; N , an upper bound can readily be computed by

�hc;r(n) =
NY
k=1

0@ �nkk
nk!

� NkX
j=1

�
nj
j

nj !

1A :
�

Remark 5.9 (Other product form modi�cations) Various modi�cations resulting in a prod-
uct form or truncated multivariate Poisson equilibrium distribution have been introduced in the
literature. For these modi�cations, the result of Lemma 5.1 that is crucial for our main monotonic-
ity result Theorem 5.7 cannot be obtained, since the transition rates in the modi�cation do not lead
to higher states (transitions from n to n+ ei for some i). �

Remark 5.10 A sample path proof for Lemma 5.6 is provided in [1] for fresh call blocking proba-
bilities. In the present paper we have provided a direct proof for general f 2 Chc. �

5.3 Error bounds

We are now also able to establish error bounds on performance measures such as the fresh call
blocking probabilities and throughputs by studying cumulative reward structures of the Markov
reward chains. The following lemma establishes a lower and upper bound for the di¤erent terms
of the cumulative rewards for the system with redial rates rij . To make our result and the role of
the state space more explicit, we formulate the results for a general state space. As a corollary we
provide the result for the hyper cube state space.

Lemma 5.11 Consider the process Xr with state space S, transition rates qr and reward rate R.
A su¢ cient condition for

0 �
�
V K+1r (n+ ei)� V K+1r (n)

�
� 1; n;n+ ei 2 S;

is that
0 �

�
V Kr (n+ ei)� V Kr (n)

�
� 1; n;n+ ei 2 S;
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and

0 � R(n+ ei)�R(n)

+
NX
j=1

�j
�
V Kr (n+ ei)� V Kr (n+ ej)

�
1(n+ ej 2 S; n+ ei + ej 62 S)

+
NX
j=1

NX
k=1

nj�jpjk
�
V Kr (n+ ei � ej)� V Kr (n� ej + ek)

�
1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+

NX
j=1

NX
k=1

rkj
�
V Kr (n+ ei)� V Kr (n+ ej)

�
[1(n+ ej 2 S;n+ ek 62 S)
�1(n+ ei + ej 2 S;n+ ei + ek 62 S)]

�
NX
j=1

�j1(n+ ej 2 S; n+ ei + ej 62 S) (18)

+

NX
j=1

NX
k=1

nj�jpjk1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+�ipi0 +
NX
k=1

�ipik1(n+ ek 62 S)

+

NX
j=1

NX
k=1

rkj [1(n+ ej 2 S;n+ ek 62 S)� 1(n+ ei + ej 2 S;n+ ei + ek 62 S)]
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Proof For K+1, a derivation similar to that in the proof of Lemma 5.1 yields, for n; n+ei 2 S,

�
�
V K+1(n+ ei)� V K+1(n)

�
= R(n+ ei)�R(n)

+
NX
j=1

�j
�
V K(n+ ei + ej)� V K(n+ ej)

�
1(n+ ei + ej 2 S)

+
NX
j=1

�j
�
V K(n+ ei)� V K(n)

�
1(n+ ej =2 S)

�
NX
j=1

�j
�
V K(n+ ej)� V K(n+ ei)

�
1(n+ ej 2 S; n+ ei + ej 62 S)

+
NX
j=1

NX
k=0

nj�jpjk
�
V K(n+ ei � ej + ek)� V K(n� ej + ek)

�
1(n+ ei � ej + ek 2 S)

+

NX
j=1

NX
k=1

nj�jpjk
�
V K(n+ ei � ej)� V K(n� ej)

�
1(n� ej + ek 62 S)

+
NX
j=1

NX
k=1

nj�jpjk
�
V K(n+ ei � ej)� V K(n� ej + ek)

�
1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+
NX
k=0

�ipik
�
V K(n+ ek)� V K(n)

�
1(n+ ek 2 S)

+
NX
j=1

NX
k=1

rkj [V
K(n+ ei + ej)� V K(n+ ej)]1(n+ ei + ej 2 S;n+ ei + ek 62 S)

�
NX
j=1

NX
k=1

rkj [V
K(n+ ej)� V K(n+ ei)] [1(n+ ei + ej 2 S;n+ ei + ek 62 S)

�1(n+ ej 2 S;n+ ek 62 S)]

+

0@�� NX
j=1

�j �
NX
j=1

NX
k=0

(nj + �ij)�jpjk

�
NX
j=1

NX
k=1

rkj1(n+ ej 2 S;n+ ek 62 S)

1A�V K(n+ ei)� V K(n)�
First consider the lower bound. Observe that

1(n+ ei + ej 2 S) + 1(n+ ej 62 S) + 1(n+ ej 2 S; n+ ei + ej 62 S) = 1;
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and a similar relation for the handover, and redial terms. As 0 �
�
V K(n+ ei)� V K(n)

�
, n;n+ei 2

S, all terms are guaranteed positive (use de�nition of �), except the three terms

R(n+ ei)�R(n)

�
NX
j=1

�j
�
V K(n+ ej)� V K(n+ ei)

�
1(n+ ej 2 S; n+ ei + ej 62 S)

+
NX
j=1

NX
k=1

nj�jpjk
�
V K(n+ ei � ej)� V K(n� ej + ek)

�
1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

�
NX
j=1

NX
k=1

rkj [V
K(n+ ej)� V K(n+ ei)] [1(n+ ei + ej 2 S;n+ ei + ek 62 S)

�1(n+ ej 2 S;n+ ek 62 S)]
;

but this expression is non-negative by the assumption of the lemma.
Now consider the upper bound. In the expression

NX
k=0

�ipik
�
V K(n+ ek)� V K(n)

�
1(n+ ek 2 S)

the k = 0 term cancels. This absorbs the term �ipi0 in the bound on R(n + ei) � R(n). As�
V K(n+ ei)� V K(n)

�
� 1, n;n+ ei 2 S, we obtain by insertion of the upper bound, and noting
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that under the upper bound all terms involving the redial rates cancel,

�
�
V K+1(n+ ei)� V K+1(n)

�
�

NX
j=1

�j1(n+ ei + ej 2 S)

+
NX
j=1

�j1(n+ ej =2 S)

+
NX
j=1

NX
k=0

nj�jpjk1(n+ ei � ej + ek 2 S)

+

NX
j=1

NX
k=1

nj�jpjk1(n� ej + ek 62 S)

+
NX
k=1

�ipik1(n+ ek 2 S)

+

0@�� NX
j=1

�j �
NX
j=1

NX
k=0

(nj + �ij)�jpjk

1A
+

NX
j=1

�j1(n+ ej 2 S; n+ ei + ej 62 S)

+
NX
j=1

NX
k=1

nj�jpjk1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

+�ipi0 +

NX
k=1

�ipik1(n+ ek 62 S)

=
NX
j=1

�j

+

NX
j=1

NX
k=0

(nj + �ij)�jpjk

+

0@�� NX
j=1

�j �
NX
j=1

NX
k=0

(nj + �ij)�jpjk

1A
which completes the proof. �

Corollary 5.12 Consider the hyper cube process Xhc;r. A su¢ cient condition for

0 �
�
V Khc;r(n+ ei)� V Khc;r(n)

�
� 1; n;n+ ei 2 S

is that

0 � R(n+ ei)�R(n) (19)

� �i1(n+ 2ei =2 S) +
NX
j=1

nj�jpji1(n+ 2ei =2 S) + �ipi0 +
NX
k=1

�ipik1(n+ ek 62 S) (20)
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Proof We use expression (18) for which it can readily be seen that all indicator terms are equal
to zero. Hence,

NX
j=1

�j
�
V K(n+ ej)� V K(n+ ei)

�
1(n+ ej 2 S; n+ ei + ej 62 S)

=
NX
j=1

�j
�
V K(n+ ej)� V K(n+ ei)

�
1(j = i; n+ ei 2 S; n+ 2ei 62 S) = 0;

and

NX
j=1

NX
k=1

nj�jpjk
�
V K(n+ ei � ej)� V K(n� ej + ek)

�
1(n+ ei � ej + ek 62 S; n� ej + ek 2 S)

=
NX
j=1

NX
k=1

nj�jpjk
�
V K(n+ ei � ej)� V K(n� ej + ek)

�
1(k = i; n+ ei 2 S; n+ 2ei 62 S) = 0:

By analogy, the redial rates term cancel, which completes the proof. �

The following result now transforms the comparison of the original and the hyper cube process with
null redial rates into a condition on the bias-terms for only one process, the hyper cube process.

Theorem 5.13 Suppose that for some nonnegative function � 2 Chc, for all n 2 S and k =
0; 1; 2; :::

0 �
X
n02Shc

(qhc;0(n;n
0)� q0(n;n0))

�
V khc;0(n

0)� V khc;0(n)
�
< ��(n):

Then
Ahc;0 � � � A0 � Ahc;0;

where
� =

X
n2Shc

�hc;0(n)�(n):

Proof Recall the de�nition of �P provided in the proof of Theorem 5.4. By iteration, and by
analogy with the proof of Theorem 5.4, we get

�
V khc;0 � V0k

�
(0) =

k�1X
t=0

�P t0
�
Phc;0 � �P0

�
V k�t�1hc;0 (0):

For notational convenience, we will omit the index 0.
Since

P
n02Shc �p(n;n

0) = 1 =
P
n02Shc phc;0(n;n

0) we have�
Phc � �P

�
V khc(n) =

X
n02Shc

(phc;0(n;n
0)��p(n;n0))V khc(n0) =

X
n0 6=n

(phc;0(n;n
0)��p(n;n0))(V khc;0(n0)�V khc;0(n))

Combination of this result with the hypothesis of the theorem gives

�
V khc � V k

�
(0) �

k�1X
t=0

�P t� (0) �
k�1X
t=0

P thc;0� (0) � k
X
n

�hc;0(n)�(n); (21)

where the second inequality follows from Theorem 5.4. Recall (17). Application of Lemma 5.3
completes the proof. �
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Remark 5.14 Note that the condition of the theorem is for n 2 S. Further note that q0(n;n0) = 0
for n 2 S, n0 62 S.

Remark 5.15 Note that the theorem can also be formulated with the roles of Xhc;0 and X0 reversed.
However, this requires an upper bound on

�
V k0 (n

0)� V k0 (n)
�
that usually cannot be obtained.

As a second comparison result, by analogy with the monotonicity result for the transition
matrices, also the cumulative rewards of the hyper cube process appear to be monotone in the
redial rates.

Theorem 5.16 Consider the processes Xhc;r and Xhc;r0 at state space Shc. Let rji � r0ji for all
j; i. Suppose that for some nonnegative function �rr0 2 Chc, for all n 2 Shc and k = 0; 1; 2; :::

0 �
X
n02Shc

(qhc;r(n;n
0)� qhc;r0(n;n0))

�
V khc;r(n

0)� V khc;r(n)
�
< ��rr0(n):

Then
Ahc;r � �rr0 � Ahc;r0 � Ahc;r;

where
�rr0 =

X
n2Shc

�hc;r(n)�rr0(n):

Proof The proof is by analogy with that of Theorem 5.13 but now invoking Theorem 5.6. �

For n 2 S, under the conditions of Corollary 5.12,X
n02Shc

(qhc;0(n;n
0)� q0(n;n0))

�
V khc;0(n

0)� V khc;0(n)
�

=
X
j

�j1(n+ ej 2 ShcnS)(V khc;0(n+ ej)� V khc;0(n))

+
X
i;j

ni�ipij1(n� ei + ej 2 ShcnS)(V khc;0(n� ei + ej)� V khc;0(n� ei))

�
X
j

�j1(n+ ej 2 ShcnS) +
X
i;j

ni�ipij1(n� ei + ej 2 ShcnS) = �(n);

and � 2 Chc. For n 2 Shc, under the conditions of Corollary 5.12, and assuming that rk;j � r0k;j ,
for all k; j, X

n02Shc

(qhc;r(n;n
0)� qhc;r0(n;n0))

�
V khc;r(n

0)� V khc;r(n)
�

=
X
k;j

(rk;j � r0k;j)1(n+ ej 2 Shc;n+ ek 62 Shc)(V khc;r(n+ ej)� V khc;r(n))

�
X
k;j

(rk;j � r0k;j)1(n+ ej 2 Shc;n+ ek 62 Shc) = �rr0(n)

�

Combination of Theorem 5.13 and Theorem 5.16 yields our main error bound result of Theorem
3.4.
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6 Concluding remarks

This paper has investigated analytical results for performance measures in networks of Erlang loss
queues with common capacity constraints that naturally arise when modelling �nite circuit switched
communication systems.For such networks, the equilibrium distribution is, in general, not available
in closed form. Via subsequently a state space modi�cation, and a redial rate approximation,
monotonicity results and bounds have been obtained for performance measures including blocking
probabilities and throughputs. Both the approximating results for these performance measures, and
bounds on the accuracy of the approximation have been obtained in closed form via the product
form equilibrium distribution that is available for a network with suitably chosen redial rates.

Result for the upper bound on the approximating performance measures are amenable for di-
mensioning in practical systems, since the error in these bounds is roughly in the order of magnitude
of the performance measure. The lower bounds has been argued to be rather loose. Further re-
search includes improvement of the accuracy of the lower bounds. Furthermore, extension of the
bounds to systems with time-dependent arrival rates is among our aims for further research.
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