
1

High Volume Colour Image Processing with Massively Parallel Embedded
Processors

Jan Jacobsa, Winston Bondb Roel Poulsa, Gerard J.M. Smitc

aOcé Technologies BV

bAspex Semiconductor Ltd

cUniversity Twente

Currently Océ uses FPGA technology for implementing colour image processing for their high
volume colour printers. Although FPGA technology provides enough performance it, however, has
a rather tedious development process. This paper describes the research conducted on an alternative
implementation technology: software defined massively parallel processing. It is shown that this
technology not only leads to a reduction in development time but also adds flexibility to the design.

1. Introduction

Océ Technologies B.V. develops products and services for the professional printing market, from
small format office printers (up to A3) to wide format design department printers (up to A0+).

Océ is investigating ways to reduce the rather long development trajectory for the printer’s colour
image processing subsystem, which is currently implemented with FPGA technology. The FPGA
technology, consumes more development time than a software defined system, such as DSPs, general
purpose processors and associative processors. This research is inspired by the potential advantages
of a massively parallel software defined system, namely flexibility and shorter design cycles, while
attaining equivalent or better performance (by scalable design).

Many of the image processing tasks in a printer show simple massively parallel processing. There-
fore, Océ has performed research into applicability of massively parallel embedded processors with
similar characteristics. This research has been conducted in co-operation with Aspex, a fabless semi-
conductor company specialising in high performance, software programmable, parallel processors
based on associative technology [4].

The problem addressed in this paper is: “can we use associative processing for high performance
colour image processing?”

In chapter 2 the reader is introduced to some important concepts like: colour image processing,
associative processing and FPGAs. The next chapter deals with the specification of the problem,
which is followed by the mapping onto the associative technology. Finally the results, among which
a comparison with an FPGA implementation, are given.

2. Related Work

Colour Image Processing
Colour image processing deals with the transformation of an input colour image into an output

colour image with suitable properties (e.g. for the printing process). Three important issues that will
be discussed are: image representation, image transformation and desired properties with respect to
printing.

• Images are represented as matrices in which each element contains a single integer for monochrome

2

or multiple integers for colour images. The resolution of an image, expressed in for example
pixels/inch, directly relates to the dimensions of this matrix.

• Image transformations or operations, which change a pixel’s value, may be divided into two
categories. In the first category (point operation), for example, the result of thresholding a
grey level pixel only depends on the value of the pixel itself. The second category is called
neighbourhood operation. In this category pixels are taken from a certain environment in order
to compute the resulting value of the pixel, e.g. edge detection.

• Printing high quality colour documents involves a carefully selected set of image transforma-
tions which are combined in a colour image pipeline. Examples are given in section 3.

Associative Processing
Traditional computers, rely upon a memory that stores and retrieves data by its address rather than

by its content. In such an organisation (von Neumann architecture), every accessed data word must
travel individually between the processing unit and the memory. The simplicity of this retrieval-by-
address approach has ensured its success, but has also produced some inherent disadvantages. One is
the von Neumann bottleneck, where the memory-access path becomes the limiting factor for system
performance. A related disadvantage is the inability to linearly increase the performance of a unit
transfer between the memory and the processor as the size of the memory scales up. Associative
memory, in contrast, provides a naturally parallel and scalable form of data retrieval for both struc-
tured data (e.g. sets, arrays, tables, trees and graphs) and unstructured data (raw text and digitized
signals). An associative memory can be easily extended to process the retrieved data in place, thus
becoming an associative processor. This extension is merely the capability of writing a value in
parallel into selected cells [5]. Applications range from handheld gaming, multimedia, base stations,
on-line transaction processing, image processing, pattern recognition and data mining [4].

Aspex’s Linedancer is an implementation of a parallel associative processor. The approach taken
by Aspex Semiconductor is to use many simple associative processors in a SIMD arrangement. Each
of the 4096 processing elements on the Linedancer device has about 200 bits of memory (of which
64 are full associative) and a single bit ALU, which can perform a 1 bit operation in 1 clock cycle.
Operations on larger data types take multiple clock cycles.

The aggregate processing power of Linedancer depends entirely on parallel processing. A 32-bit
add will take many times the number of clock cycles taken by a high-end scalar processor, but due
to the parallelism 4096 additions can be performed in parallel. Multiple Linedancer devices can be
easily connected together to create an even wider SIMD array.

The Linedancer device (shown in Figure 1) includes an intelligent DMA controller, to ensure that
data is moved in and out of the ASProCore concurrently with data processing, and a RISC processor,
to issue high level commands to the ASProCore and to setup the DMA controller. All parts of the
device run at the same clock frequency, which can be up to 400 MHz. A Linedancer is programmed
in an extended version of C, with additional syntax for controlling the ASProCore.

FPGA
Currently FPGAs are used for the colour image processing. FPGA stands for Field Programmable

Gate Array and denotes an integrated circuit which is programmed in the field as opposed to an
Application Specific IC (ASIC). ASICs are typical used in high volume quantities because of the
high development efforts, costs and manpower involved. As we are not targetting the consumer
market, ASICs are not considered in this paper.

3

Figure 1. Aspex Semiconductor’s Linedancer

From a computation viewpoint the FPGA offers a two dimensional array of configurable logic
blocks which are capable of processing a two dimensional image. As the majority of image process-
ing algorithms can be broken down into highly repetitive tasks, FPGAs present a very interesting
alternative. An important property of an FPGA is that its throughput is better than the throughput of
a von Neumann processor. This can be achieved because the individual logic cells of FPGAs map
well to the individual mathematical steps involved in image processing.

FPGAs such as the Xilinx Virtex series [6] provide a large two-dimensional array of logic blocks
where each block contains several flip-flops and look-up tables capable of implementing many logic
functions. In addition, there are also dedicated resources for multiplication and memories that can
be used to further improve the performance.

3. Specification of the Application

Functional process graph
For simplicity, it was decided to restrict the initial research to the most challenging components of

the colour pipeline for a 30 pages per minute, 600 dots per inch, full colour printer. A block diagram
of this simplified pipeline is shown in Figure 2. Also shown is the amount of communication between
the blocks, indicated as bits per pixel.

edge
detection

separation
image

[RGB pixel: 3x8 bit]

trapping halftoning

image
[7color pixel: 7x8 bit]

image
[7color pixel: 7x8 bit]

edge [1 bit]

image
[7color pixel: 7x4 bit]

haftone
segmentation

segment [1 bit]

420 Mbit/
sec

491 Mbit/
sec

Figure 2. Simplified image processing pipeline

Separation
The Separation stage of the image processing pipeline, also known as colour space conversion,

translates the RGB image data into the 7 toner colours that are available in the printer: black (K),
blue (B), red (R), green (G), cyan (C), magenta (M) and yellow (Y).

Various algorithms exist for this task, but high quality colour space conversion is a highly non-
linear operation [2]. The best results are obtained with a look-up table (LUT) based approach. The

4

look-up table is a large LUT of 224=3×8 entries of 7× 8 bit = 940 Mbit in total.

Edge Detection
Edge detection is a neighbourhood operation which determines whether a pixel is an edge pixel or

not. The Edge Detection module assists the other modules in making the right choices how to process
a particular pixel [1]. The functionality is based on absolute differences in the RGB colour values
between each pixel and its immediate neighbours (in a 3×3 kernel). In general such a neighbourhood
operation can be specified by the absolute value of a convolution edge = |kernel⊗ image|1. For a
small and symmetrical 3× 3 kernel this convolution may be described by

∀i,j∈N×MPixel (i, j) =
1∑

k=−1

1∑

l=−1

kernel(k, l) · Pixel (i + k, j + l)

Figure 3 shows an example of a 3× 3 kernel.

-1 -1 -1

-1 -1 -1

-1 8 -1

Figure 3. Sample edge detec-
tion kernel

2

3

4

0

5

scanline
[600 dpi]

print direction [2400 dpi]

pixels

1

Figure 4. Half-toning error propagation, scanlines arranged
horizontally

Trapping
The purpose of trapping is to enhance the print quality by reducing the visibility of small mis-

alignments between the different mechanical components used to print each colour [3].
Trapping decreases the visibility of misalignments by creating an overlap between areas of the

different toner colours.
One consequence of the trapping stage is that the imaging pipeline cannot process the 7 colour

planes independently. Changes in one colour plane can cause changes in other colour planes.

Half-tone Segmentation
Half-tone segmentation controls how each colour channel has to be half-toned in order to select the

best technique for half-toning further down the image pipeline. Half-tone segmentation is another
edge detection operation, with many similarities to the Edge Detection stage. The main difference is
that it must operate on the 7 colour data output by the trapping stage.

Half-toning
The purpose of half-toning is to render continuous tone information for a print engine, which has

a lower tonal resolution than the input bitmaps. 8-bit image data can have 256 different values, but
ink is binary – it is either printed or not [2].
1⊗ stands for the convolution operator.

5

Printers overcome this problem by printing at a higher spatial resolution than the input bitmap. In
our case, for example, the printer will print in one dimension 4 ink dots (sub-pixels) for each input
pixel. A 600 × 600 dpi image will be printed using 600 × 2400 dots of each of the 7 colours, per
square inch.

Half-toning has to translate 8-bit colour values into 4 ink dots per pixel and does this depending on
the pixel being an edge or not. Pixels in a smoothly varying neighbourhood are treated by dithering,
a technique which optimises grey level quality at the expense of some spatial resolution. Edges,
however, are treated specially in order to retain the sharpness or spatial resolution: they spread
the error between the desired colour and the realised colour around the pixels in the very close
neighbourhood. See Figure 4 for this required spread of errors: the scanlines are arranged vertically
and aggregate errors have to be propagated in horizontal direction.

Performance requirements
The processing of each pixel on the printed page is relatively simple, being mainly based on 3× 3

convolution kernels. However, the total image processing pipeline is a challenging task because of
the volume of data involved.

All images in the pipeline represent a 7K×5K A4 bitmap page. Every stage must be performed on
35 million pixels and multiple colours. In the two edge detection stages alone there are 350 million
(edge detection) operations for every printed A4 page and trapping adds even more.

Many of the tasks in the imaging pipeline can be implemented for many pixels in parallel. The next
chapter describes how the image processing pipeline was implemented on the Linedancer parallel
processing device.

Table 1 contains the processing requirements for a sequential implementation.

module number of sequential
operations / pixel

separation 3
edge detection 68
trapping 255
half-tone segmentation 30
half-toning 1162

Table 1
Processing requirements

4. Design

Because the size of the whole bitmap is much larger than the available storage space in the
Linedancer we have to use a kind of bitmap tiling or patching. For a 4K processor array in which a
single Processor Element (PE) deals with a single pixel, a 64× 64 tiling scheme is used. For simple
point operations each pixel has sufficient data to compute the result. However, for neighbourhood
operations as in case of edge detection, the directly involved 8 neighbouring pixels have to be copied
to each PE. This can be done for all PEs in parallel. A consequence of this approach is that pixels
at the tile’s boundary do miss pixel values so can not determine its value. For trapping, for example,
only the 62 × 62 inner pixels can be computed effectively per tile. However, due to the subsequent
neighbourhood like computation of half-tone segmentation an extra overlap band is needed, which
yields an effective payload of 60× 60 inner pixels.

6

For edge detection, trapping and half-tone segmentation we use the same square patching struc-
ture. However, the structure of half-toning breaks up the pipeline and forces us to use a second
pass where all pixels are revisited. The intermediate results after half-tone segmentation are dumped
into memory and are reloaded again but now using very slim, 1 pixel wide, scanline patches. The
reason for this is that the error inputs (see Figure 4) must be added to each pixel in a line before it
can be half-toned and its error output can be calculated. Every pixel propagates an error output to 3
neighbours. First the even pixels send an error component to the odd pixels in the current line and
the even pixels on the next line. Then the accumulated error of the odd pixels in the current line send
errors to the 3 neighbour pixels on the next line.

As mentioned we must process the error propagation one scan line at a time. First doing the
calculations for the even pixels, then the odd pixels, while working from left to right.

We can fit an A4 page height (7K pixels) into one Linedancer by packing an odd/even pair of
pixels into each processing element; 12% of the PEs remain unused.

This tiling strategy described above, implies a two pass process. All modules except for half-
toning are processed in a 64×64 square pixel tile or patch with overlap to accommodate convolution
operations like in edge detection. The initial time budget for processing a single patch can be derived
by dividing the total number of clocks in the 2 sec/page (2 × 400 MHz) by the number of patches
needed (35 Mpixels / 60× 60)2 yielding a budget of 82K clocks per patch for a single Linedancer.

All modules except for half-toning are run subsequently with a square patch and the intermediate
result of pass 1 is dumped to the RAM, see Figure 5.

Then the second pass is started in which complete scanlines are processed in parallel.

Figure 5. Overview of the 2 pass pipeline

2Effective area of a patch is (64− 4)× (64− 4) due to the 2× 1 pixel overlap at each side.

7

5. Results and Comparison with FPGAs

In this section the results of the previously elaborated modules are combined in order to formulate
a conclusion on the feasibility of functionality and timing of the Linedancer implementation. It
serves furthermore as a basis for comparison with FPGA technology.

Pass 1 consisting of loading RGB, edge detection, separation, trapping and half-tone segmentation
takes 16K5 cycles per patch. From these modules Separation runs on the DMA controller in parallel
with the other modules. Half-toning in pass 2 takes up 2K5 clocks per line per colour (see Table 2).

ASProCore DMA
module number of

cycles / patch
module number of

cycles / patch
number of
patches / page

number of
cycles / page

PASS I
load tile 2K

edge detection 2K2 separation 6K5
trapping 7K3
half-tone segmentation 5K

16K5 cycles per patch 9K7 161M
PASS II
half-tone 17K5 cycles per line 5K 87M
TOTAL 248M

Table 2
Performance estimate

The overall processing time is 248M cycles per A4 page, which is equivalent to 0.62 seconds per
page, with a single Linedancer at 400 MHz. This is well below the required 2 seconds per page.

Illustrative for the power of massively parallel computing is the speedup compared to the sequen-
tial implementation as shown in Table 1. Although the processing capacity of each PE is much lower
than a von Neumann processor, the number of processors working in parallel yield large speedups.
Parallelism accounts for the speedup although the clock-speed of the Linedancer is lower, see Ta-
ble 3.

module number of seq cycles3/ pixel number of cycles / pixel speedup
separation 3 6K5 / 3600 = 1.81 1.66
edge detection 68 2K2 / 3600 = 0.61 111
trapping 255 7K3 / 3600 = 2.03 126
half-tone segmentation 30 5K / 3600 = 1.39 21.6
half-tone 1162 17K5 / 7K = 2.5 465

Table 3
Measured speedup

The productivity benefits of using an associative processing approach to this problem rather than
using FPGA technology are shown in Table 4. The ratio of development effort for an FPGA versus
3Based on single cycle operations

8

Linedancer is estimated at 2:1 (including coding, testing, PCB design etc.), assuming a person with
domain and target hardware experience.

technology development effort [man days] execution speed [ppm]
2 way SMP Intel Pentium Xeon4 10-20 2-30
FPGA Spartan2E5 100 30
Linedancer 50 90

Table 4
Comparison

6. Conclusions

An associative processor combines the speed of FPGAs with high-level software programmability
and flexibility.

A single Linedancer device is capable of implementing a colour image processing pipeline at a
rate of 90 pages per minute, well above the required 30 pages per minute [ppm]. Large speedups can
be realised compared to the sequential case: the speedup in operations/sec can go up as far as 400
(up to 80 in execution time).

A key issue in the design is how to partition the 35M pixels of a page into 4K chunks for process-
ing. This apparently simple problem is complicated by the conflicting requirements of the various
3× 3 kernel operations and the error propagation in half-toning.

Software defined systems enable fast developments. The development of code for a PC based
solution is faster. But when real time performance is critical, and the choice is between FPGA or
Linedancer, than the use of the latter reduces the design cycle by a factor of 2.

Due to the inherent scalable architecture the performance can scale with the number of processors
without changing the code (e.g. delivering more productivity, more resolution, more colours).

References

[1] Gonzales, Woods: Digital Image Processing (2nd Edition). Prentice Hall. ISBN 0201180758. 2002.
[2] Kang: Color Technology for Electronic Imaging Devices. SPIE-International Society for Optical Engine.

ISBN 0819421081. 1997.
[3] Alex Vakulenko: http://www.oberonplace.com/draw/trapping/. 1999.
[4] Aspex Semiconductor Ltd: http://www.aspex-semi.com/products/downloads/aspex-

technology background.pdf. 2004.
[5] Anargyros Krikelis, Charles C. Weems: Associative processing and processors. IEEE Computer, Volume

27 , Issue 11 (November 1994), Pages: 12 – 17.
[6] Xilinx: http://www.xilinx.com/products/virtex4/overview.htm.

4Numbers represent normal as well as the optimised case
5The system could be build using ± 5 Spartan XC2S400E devices

