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Abstract: This paper studies the M/G/1 processor-sharing (PS) queue and the sojourn time
distribution conditioned on the initial job size. Although several expressions for the Laplace-
Stieltjes transform (LST) are known, these expressions are not applicable for computational
purposes. This paper derives readily applicable expressions for insensitive bounds of all moments
of the conditional sojourn time distribution. The instantaneous sojourn time, the sojourn time
of a very small job, leads to insensitive upper bounds with special structure requiring only
knowledge of the traffic load and the initial job size. Interestingly, the special form of the
upper bounds involves polynomials with so-called Eulerian numbers as coefficients. In addition,
stochastic ordering and moment ordering results for the sojourn time distribution are obtained.
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1 Introduction

With the introduction of time-sharing computing in the nineteen sixties, people became inter-
ested in the processor-sharing (PS) discipline as the idealization of time-sharing queueing models.
Nowadays, the PS service discipline is of considerable interest in many application areas in which
different users receive a share of a scarce common system resource. In particular, in the field
of the performance evaluation of computer and communication systems, the PS discipline has
been widely adopted as a convenient paradigm for modelling bandwidth sharing.

In this paper we study the sojourn time of the classical M/G/1 queue with egalitarian PS
service discipline, conditioned on the initial service requirement (job size) of the customer. In the
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egalitarian PS service discipline, every customer simultaneously gets an equal share of 1/n of the
service capacity when n > 0 customers (jobs) are in the system. An extensive body of literature
on processor-sharing queues was initiated by Kleinrock [9, 10], who studied the M/M/1 case.
In particular he showed that the mean sojourn time conditional on the service requirement is
proportional to the service requirement. For an extensive overview of the literature on processor-
sharing queues we refer to Yashkov’s survey papers [23, 24].

The exact determination of the (stationary) sojourn time distribution in the M/G/1 processor-
sharing queue was an open problem for a long time. After puzzling researchers for 15 years,
Yashkov [22] found an analytic solution in terms of double Laplace transforms. Schassberger [16]
provided another approach to the exact solution by considering the PS discipline as a limit of
the round-robin discipline. Other solutions (via different methods) and additional contributions
were also made by for example Ott [14], Van den Berg [1], Whitt [20], and Núñez-Queija [13].
Recently, Zwart and Boxma [26] derived a new expression for the Laplace-Stieltjes transform
(LST) of the sojourn time distribution, that avoids the complex contour integrals of most of the
previous results.

Despite the availability of several exact expressions for the LST of the conditional sojourn
time distribution, these expressions are generally of complex form and simple explicit expres-
sions for the distribution function and general moments seem not to be available. A recursive
expression for the moments has been derived in [26]. However, the exact and explicit expression
for the k-th moment of the conditional sojourn time distribution increases significantly in com-
plexity and in length, as k grows larger. Even for the fourth moment in the M/M/1 PS case,
the explicit closed-form expression is very lengthy. In this paper, we use this recursive formula
to obtain new properties for and insights in the sojourn time distribution. In particular, we
are interested in bounds for the moments of the (conditional) sojourn time distribution in the
M/G/1 PS queue.

The first moment of the conditional sojourn time distribution is well-known to be a linear
function of the initial service requirement (see e.g. [11]) and is independent of the service time
distribution apart from its mean (see e.g. [5]). A customer with x times larger service requirement
will have x times larger mean sojourn time. Therefore, the processor-sharing discipline is often
referred to a fair policy. Also in PS queues, the influence of long jobs on the sojourn time of the
short jobs is limited, since short jobs can overtake long jobs. By studying the bounds of higher
moments we strengthen the fact that PS is indeed a very fair service discipline.

For the second moment of the conditional sojourn time distribution, Van den Berg [1] ob-
tained an upper (and lower) bound that only depends on the workload ρ and the initial service
requirement τ . In addition, the bounds have the attractive property of insensitivity to the service
time distribution; and the difference between the upper and lower bound is small, particularly
for small and moderate values of the workload ρ.

Motivated by [1], we generalize these second moment bounds into higher moments of the so-
journ time distribution. In particular, in this paper we will obtain tight upper and lower bounds
for all moments of the conditional sojourn time distribution and we give related stochastic or-
dering results. The main result is that there exists an upper bound for the k-th moment of the
sojourn time distribution, for all k = 1, 2, ..., and conditioned on the initial service requirement
τ > 0, that only depends on the workload ρ and the initial service requirement τ ; it does not
depend on the service time distribution, except for its mean. This shows that the impact of
excessive behavior of other customer is always limited for the sojourn time of a tagged customer.

The upper bound for the k-th moment involves a polynomial in ρ of degree k− 1, which has
so-called Eulerian numbers as coefficients. Eulerian numbers and the related Euler’s number
triangle have many combinatorial interpretations and applications, see e.g. [3, 6, 19]. The poly-
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nomial structure of the upper bound is obtained from the recursion of [26], and a generalization
of results from [1]; see Section 3.

The coefficients in the upper bounds also arise by means of an instantaneous sojourn time
analysis, where we analyze the sojourn time of a very small job (τ → 0); see Section 4. Sur-
prisingly, the instantaneous sojourn time analysis provides us coefficients of the polynomial that
turns out to be Eulerian numbers. A formal proof of the upper bound containing Eulerian
numbers is given in Section 5, together with a more general stochastic ordering- and moment
ordering results. The general moment ordering result is stated for two different but related
processor-sharing queues, both with a random number of permanent customers. Finally, we
illustrate the quality of the bounds in Section 6 and summarize our findings in Section 7.

2 Preliminaries

In this section we introduce the notation used in the paper and give a short review of the M/G/1
PS queue. Customers arrive at a single server queue according to a Poisson process with rate
λ > 0. Their required service times are i.i.d. random variables with a general distribution B(x)
and B(0+) = 0. Let βk denote the k-th moment of the service time distribution. The server
shares its fixed capacity among all customers present in the system. Thus, every customer is
being served with rate 1/n, when n > 0 customers are present in the system. Assume that the
workload is less than one, i.e., the system is in steady state or ρ := λβ1 < 1.

The steady state queue length distribution (πn)n∈N0 is geometrically distributed and only
depends on the first moment of the service time distribution (see [15]):

πn = (1− ρ)ρn, n ∈ N0 = N ∪ {0}. (2.1)

We shall let V (τ) denote the (conditional) sojourn time of a customer entering the system in
steady state having a required service time equal to τ upon arrival. Define the k-th moment by
vk(τ) = EV (τ)k. The first moment of V (τ) is given by v1(τ) = τ/(1− ρ), i.e., the mean sojourn
time v1(τ) is proportional to τ and is independent of the initial service time distribution B(x)
for fixed β1 (see e.g. [11, 5]). In this paper, we analyze higher moments vk(τ) of the sojourn
time V (τ) for all k ∈ N.

Define the Laplace-Stieltjes transform (LST) of V (τ) by v(s, τ) = E
£
e−sV (τ)

¤
, for Re s ≥ 0

and τ ≥ 0. Yashkov [22] derived an expression for v(s, τ) by writing the sojourn time as a
functional on a branching process. Using this structure of the branching process, Yashkov found
and solved a system of differential equations determining v(s, τ). The result is

v(s, τ) =
(1− ρ)e−(s+λ)τ

ψ(s, τ)− λ
R τ
0 e

−(s+λ)xψ(s, τ − x)B(x)dx− λe−(s+λ)τ
R∞
τ B(x)dx

,

where ψ(s, τ) is the LST of some unknown function which in turn has a Laplace transformeψ(s, q) (with argument q):
eψ(s, q) = q + s+ λβ(q + s+ λ)

(q + s+ λ)[q + λβ(q + s+ λ)]
,

ψ(s, τ) =
1

2πi

Z +i∞+0

−i∞+0
eψ(s, q)eqτdq,

with β(s) =
R∞
0 e−sxdB(x) as the LST of the service time distribution and B(x) = 1−B(x).
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Via different approaches, similar results for v(s, τ) are obtained in [14, 16]. These alternative
expressions (and Yashkov’s result) all contain contour integrals which are inversion formulas of
Laplace transforms. The expression for v(s, τ) obtained by Zwart and Boxma [26] that avoids
the contour integrals, is the most suitable one for our purposes. They showed that v(s, τ)−1 can
be written as an exponential generating function of the sequence αn(τ), n = 0, 1, ..., i.e.,

v(s, τ) =

Ã ∞X
n=0

sn

n!
αn(τ)

!−1
. (2.2)

The coefficients αn(τ) are related to the waiting time distribution in the equivalent M/G/1
queue with First Come First Serve (FCFS) discipline: α0(τ) := 1, and for n ≥ 1,

αn(τ) =
n

(1− ρ)n

Z τ

x=0
(τ − x)n−1R(n−1)∗(x)dx, (2.3)

where Rn∗ is the n-fold (Stieltjes) convolution of the waiting time distribution R(x) in the
M/G/1 FCFS queue: R0∗(x) = 1, and

Rn∗(x) =

Z x

0
R(n−1)∗(x− u)dR(u), n ∈ N. (2.4)

The waiting time distribution R(x) in the M/G/1 FCFS queue is given by the Pollaczek-
Khintchine formula:

w(s) :=

Z ∞

0
e−sxdR(x) =

1− ρ

1− ρ
³
1−β(s)
β1s

´ ,
and by inversion of w(s)n it can be shown that (cf. [26])

Rn∗(x) = (1− ρ)n
∞X
m=0

µ
m+ n− 1
n− 1

¶
ρm eBm∗(x), (2.5)

where eBm∗(x) is the m-fold convolution of the integrated tail- or excess service time distribu-
tion eB(x) = 1

β1

R x
0 (1−B(u))du.

By differentiating both sides of the identity v(s, τ)
P∞
n=0

sn

n!αn(τ) = 1, with respect to s
and putting s = 0, it is shown in [26] that the moments vk(τ) can be calculated recursively, as
v0(τ) := 1 and for k ≥ 1,

vk(τ) = −
kX
j=1

µ
k

j

¶
vk−j(τ)αj(τ)(−1)j . (2.6)

In particular, it holds that v1(τ) = α1(τ) = τ/(1− ρ), and v2(τ) = 2τ2/(1− ρ)2 − α2(τ).

3 Upper and lower bounds for the conditional sojourn time

In this section, we establish the bounds for the moments of the conditional sojourn time distri-
bution, which have the form 1 ≤ (1 − ρ)kvk(τ)/τ

k ≤ φk−1(ρ), where φk−1(ρ) is a polynomial
in ρ of (at most) degree k − 1 and with non-negative coefficients. These bounds are insensitive
to the service time distribution for all k ≥ 1, and existence is guaranteed by ρ < 1, regardless
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of the higher moments of the service time distribution. Van den Berg [1] obtained the simple
bounds for the second moment of the sojourn time in the M/G/1 PS queue:

z2(τ) :=
1

(1− ρ)2
τ2 ≤ v2(τ) ≤

1 + ρ

(1− ρ)2
τ2 =: w2(τ). (3.1)

The lower bound z2(τ) follows from Schwartz’ inequality and the upper bound w2(τ) can be
obtained by noting that R(0) = 1− ρ > 0, which is the probability that an arriving customer in
the corresponding M/G/1 FCFS queue does not need to wait. By property of Poisson Arrivals
See Time Averages (PASTA), this probability equals the long run fraction of time the server is
idle, thus R(0) = 1 − ρ. From (3.1) we note that the upper bound for the second moment is
100ρ% larger than the lower bound, and these bounds only depend on the mean service time
and do not depend on the second moment of the service time distribution.

By using the recursive formula (2.6) for vk(τ) and ‘ignoring’ the alternating term (−1)j , the
following crude upper bound for all moments can be given:

vk(τ) ≤ k!
µ
(e− 1)τ
1− ρ

¶k
, (3.2)

also see Zwart [27]. As a consequence of this bound, it holds that the tail probability P(V (τ) > x)
is of order o(e−

1−ρ
γτ ), with γ > e−1, and the sojourn time V (τ) is always light-tailed conditional

upon its service requirement. Intuitively it supports the conjecture that a large sojourn time is
not due to excessive behavior of other customers present in the system.

The crude bound (3.2) for the second moment (k = 2) is always worse than the upper bound
w2(τ) given in (3.1), since 1+ρ < 2 < 2!(e−1)2. Furthermore, for ρ→ 0, we have the attractive
property that: w2(τ) − z2(τ) ↓ 0. We generalize this result (3.1) for all moments, by using the
results in [26] and using a generalized idea from [1] to obtain (tight) bounds. It turns out that
these bounds have a similar and special structure.

Theorem 3.1 For all k ≥ 2, there exist non-negative constants cki ∈ N0 such that vk(τ) is
bounded by

1

(1− ρ)k
τk ≤ vk(τ) ≤

φk−1(ρ)

(1− ρ)k
τk, (3.3)

where φk−1(ρ) =
Pk−1
i=0 c

k
i ρ
i is a polynomial in ρ of degree k − 1 (if k even) or k − 2 (if k odd)

and ck0 = 1.
Proof. The lower bound in (3.3) follows by applying Jensen’s inequality, since the map

f(x) = xk is a convex function on [0,∞) for all k ≥ 1. By noting that 1 − ρ ≤ R(x) ≤ 1 and
using (2.4), it is readily verified that (1−ρ)n ≤ Rn∗(x) ≤ 1. Therefore, by using (2.3) we obtain
bounds for αn(τ) :

τn

1− ρ
≤ αn(τ) ≤

τn

(1− ρ)n
, for n ≥ 1, and α0(τ) := 1. (3.4)

By doing simple algebraic manipulations using the recursive formula (2.6), the structure for the
upper bound in (3.3) can be obtained. To this end, rewrite vk(τ) := (1− ρ)kvk(τ)/τ

k, αj(τ) :=

(1−ρ)jαj(τ)/τ
j , and the recursive formula (2.6) as vk(τ) = −

Pk
j=1

¡
k
j

¢
vk−j(τ)αj(τ)(−1)j . The

bounds for αj(τ) are given by

(1− ρ)j−1 ≤ αj(τ) ≤ 1, for all j ≥ 1,
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and assume by induction hypothesis that the following bounds holds for vk−1(τ), vk−2(τ), ... :

1 ≤ vk−j(τ) ≤ φk−j−1(ρ), for all j = 1, ..., k,

hence
(1− ρ)j−1 ≤ vk−j(τ)αj(τ) ≤ φk−j−1(ρ), for all j = 1, ..., k.

We will apply induction and take into account the alternating term (−1)j , hence we need both
upper and lower bounds for the product vk−j(τ)αj(τ). Also, use the fact that

(1− ρ)j−1 = 1 +
j−1X
i=1

(−1)i
µ
j − 1
i

¶
ρi,

by Newton’s binomial theorem. Summarizing, use the bounds for vk−1(τ)α1(τ), vk−2(τ)α2(τ), ... :

1 +

j−1X
i=1

(−1)i
µ
j − 1
i

¶
ρi ≤ vk−j(τ)αj(τ) ≤ 1 +

k−j−1X
i=1

ck−ji ρi, for all j = 1, ..., k,

by induction hypothesis, to obtain the upper bound for vk(τ), for k ≥ 2. Bounds for k = 1 are
trivial and exact, and by applying induction in (3.5) we obtain:

vk(τ) =
kX
j=1
j: odd

µ
k

j

¶
vk−j(τ)αj(τ)−

kX
j=2
j: even

µ
k

j

¶
vk−j(τ)αj(τ)

≤
kX
j=1
j: odd

µ
k

j

¶(
1 +

k−j−1X
i=1

ck−ji ρi

)
−

kX
j=2
j: even

µ
k

j

¶(
1 +

j−1X
i=1

(−1)i
µ
j − 1
i

¶
ρi

)
(3.5)

= 1 +
kX
j=1
j: odd

µ
k

j

¶(k−j−1X
i=1

ck−ji ρi

)
−

kX
j=2
j: even

µ
k

j

¶(j−1X
i=1

(−1)i
µ
j − 1
i

¶
ρi

)
≡
k−1X
i=0

cki ρ
i, (3.6)

since
Pk

j=1
j: odd

¡
k
j

¢
−
Pk

j=2
j: even

¡
k
j

¢
=
Pk
j=1

¡
k
j

¢
(−1)j+1 = 1, hence ck0 = 1; and (3.6) holds by definition

of the coefficients cki . Also note that

kX
j=1
j: odd

(
k−j−1X
i=1

ck−ji ρi

)
is a polynomial in ρ of (at most) degree k − 2, and

kX
j=2
j: even

(
j−1X
i=1

(−1)i
µ
j − 1
i

¶
ρi

)
is of degree k − 1 (if k even), and of degree k − 2 (if k odd).

By comparing the terms in (3.6) it is also not difficult to see that ckk−1 = 1 if k even, and
ckk−1 = 0 if k odd. Furthermore, it can be shown that c

k
i ≥ 0. However, for the existence of an

upper bound of the described structure, it is not necessary since if cki < 0 we may simply set c
k
i

to an arbitrary non-negative number.
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Remark 3.2 We refer to the ‘best possible’ (insensitive) upper bound for vk(τ) of the form
given in (3.3) with only knowledge of τ and ρ, as the upper bound that has the polynomial
φ∗k−1(ρ) with the ‘smallest possible’ coefficients c

k
i , such that (1− ρ)kvk(τ)/τ

k ≤ φ∗k−1(ρ) holds
for all τ ≥ 0 and for all ρ < 1.

Remark 3.3 In principle, we can apply the ‘alternating’ procedure to obtain a lower bound as
well. However, the resulting lower bound is always worse than the Jensen’s lower bound.

For the second moment, we obtain c21 = 1 since k = 2 is even, and the result is the same as
in [1], see (3.1). As a consequence of Theorem 3.1 we have the following Corollary 3.4.

Corollary 3.4 For all k ≥ 1, and τ > 0,

vk(τ) <∞⇔ ρ < 1.

Proof. The ‘⇒’ is trivial. Since the sojourn time of a customer is always at least its service
requirement, then if vk(τ) is finite for arbitrary k ≥ 1, then the unconditional moment EV k is
also finite, and hence βk <∞ and ρ < 1. The ‘⇐’ follows from Theorem 3.1.

The distribution of V (τ) is not insensitive to the service time distribution, since the expres-
sion for the second moment v2(τ) = 2τ2/(1−ρ)2−α2(τ) depends on the service time distribution
through α2(τ) and the waiting time distribution R(x) in the M/G/1 FCFS queue. However,
Corollary 3.4 implies that the sensitivity of the service time distribution on V (τ) is always lim-
ited whenever ρ < 1, confirming that PS can be considered as a fair policy. Similar results holds
for unconditional moments of the sojourn time, whenever they exist.

Corollary 3.5 The k-th moment of the unconditional sojourn time V is upper bounded by:

EV k =
Z ∞

0
vk(τ)dB(τ) ≤

φk−1(ρ)

(1− ρ)k

Z ∞

0
τkdB(τ) =

φk−1(ρ)

(1− ρ)k
βk.

This results implies that
EV k <∞⇔ βk <∞,

which indicates that the tail behavior of the unconditional sojourn time distribution and the
service time distribution are similar. This tail equivalence result has been obtained in [26].

4 The instantaneous sojourn time

In this section we study the behavior of V (τ) and vk(τ) as τ → 0. The key idea is as follows.
A customer with a very small job size arrives at the system in steady state, say at time t0. The
tagged customer sees n other customers upon arrival with probability pn, and by the PASTA
property: pn = πn = (1−ρ)ρn. Let the remaining service requirements of the n other customers
at time t0 be xi, i = 1, ..., n. The key assumption of the instantaneous sojourn time analysis is
that at time point t0, the tagged customer requires a very small job size τ << mini=1,...,n xi.
Furthermore, we assume that τ is small enough such that no other customers arrive during time
interval [t0, t0 + (n+ 1)τ).

Under these assumptions, the next event after time point t0 is the service completion of the
same short job (as if the tagged customer arrived at a system with n permanent customers with
probability πn and with no other arriving customers). The tagged customer receives service at

7



rate 1/ (n+ 1) during its whole stay in the system. We define the instantaneous sojourn time
as bV (τ) = (N + 1)τ , when the tagged customer sees N other customers upon arrival, with N
distributed as P(N = n) = πn. The k-th moment of the true sojourn time can be approximated
with the k-th moment of the instantaneous sojourn time bvk(τ) if τ → 0:

vk(τ) ≈ bvk(τ) := EbV (τ)k = ∞X
n=0

πn {(n+ 1)τ}k , k ∈ N.

4.1 The moments of the instantaneous sojourn time

The next theorem shows that (1− ρ)kbvk(τ)/τk can be expressed as a polynomial in ρ of (exact)
degree k − 1, where the coefficients are so-called Eulerian numbers

­
k
j

®
, which counts the total

number of permutations of the elements in the set {1, ..., k} having j permutation ascents; see
Appendix for more definitions and facts about Eulerian numbers.

Theorem 4.1 The k-moment of the instantaneous sojourn time equals

bvk(τ) = τk

(1− ρ)k

k−1X
j=0

¿
k

j

À
ρj , for k = 1, 2, ...,

where the coefficients
­
k
j

®
are Eulerian numbers.

Proof. Using the identity (see Appendix)

∞X
k=1

knrk ≡ 1

(1− r)n+1
nX
i=0

¿
n

i

À
rn−i =

r

(1− r)n+1
n−1X
i=0

¿
n

i

À
rn−i−1,

where
­
n
i

®
are Eulerian numbers for i = 0, 1, ..., n− 1 (note that:

­
n
n

®
= 0), we readily derive:

bvk(τ)/τk = ∞X
n=0

πn(n+ 1)
k =

1− ρ

ρ

∞X
m=1

mkρm =

Pk−1
i=0

­
k
i

®
ρk−i−1

(1− ρ)k
=

Pk−1
j=0

­
k
j

®
ρj

(1− ρ)k
, (4.1)

where the last equality sign in (4.1) uses the fact
­
n
m

®
=
­

n
n−m−1

®
, for 0 ≤ m ≤ n − 1, by

symmetry of the Euler’s number triangle; see Appendix.

4.2 The instantaneous sojourn time and Euler’s number triangle

For τ → 0 we obtained the approximations vk(τ) ≈ bvk(τ). In particular, from the values in the
Euler’s number triangle we obtain the approximations for the first four moments:

v1(τ) ≈ bv1(τ) = τ

1− ρ
, v2(τ) ≈ bv2(τ) = 1 + ρ

(1− ρ)2
τ2,

v3(τ) ≈ bv3(τ) = 1 + 4ρ+ ρ2

(1− ρ)3
τ3, v4(τ) ≈ bv4(τ) = 1 + 11ρ+ 11ρ2 + ρ3

(1− ρ)4
τ4.

Surprisingly, the instantaneous sojourn time approximation yields an exact expression for
the first moment, and the approximation for the second moment yields an upper bound. This
might suggest that the moments of the instantaneous sojourn time bvk(τ) are upper bounds for
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vk(τ) as well for all k ≥ 3. In Section 5, we will formally prove that indeed vk(τ) ≤ bvk(τ) for all
τ ≥ 0 and k ∈ N; see Theorem 5.14 and Theorem 5.10. An intuitive explanation is given in the
next Remark 4.2.

Remark 4.2 With the instantaneous sojourn time analysis (τ → 0) we assume that during
an interval of length (n + 1)τ there is no other activity in the system. This is not very likely
in the real system, especially when n is large upon arrival. The instantaneous sojourn time
overestimates the true sojourn time when n is large upon arrival of the tagged customer, and
underestimates the true sojourn time when n is small upon arrival. Apparently, for the first
moment: over- and under estimation outweigh each other (weighted with probability πn). For
higher moments: overestimation is weighted more heavily than underestimation, since the queue
length process N(t) shows a negative drift for a large initial value of the number of customers
present in the system. To this end, note that we assume ρ < 1.

In [26] the following heavy traffic result has been derived: limρ→1 E [(1− ρ)V (τ)]k = k!τk. For
the instantaneous sojourn time we arrive at the following heavy traffic result for the moments.

Corollary 4.3
lim
ρ→1

(1− ρ)kbvk(τ) = k!τk. (4.2)

Proof. Use the fact that
Pk−1
j=0

­k
j

®
= k!, i.e., the total number of permutations of the

elements in the set {1, ..., k} equals k!.

For ρ = 0 we have the equality bvk(τ) = vk(τ) = τk (deterministic), and for ρ → 1 we have
that (4.2) is similar to the heavy-traffic result in [26]. This qualitative result and Remark 4.2
suggest that bvk(τ) are tight upper bounds of a simple and special form, only depending on τ and
on the first moment of the service time (through ρ). Also note that k!τk/(1− ρ)k, k = 1, 2, ...,
is the moment sequence of an exponentially distributed random variable with mean τ/(1− ρ).
From [25] we know that for fixed τ > 0:

P(V (τ)(1− ρ)/τ ≤ x)→ 1− e−x, as ρ ↑ 1, x ≥ 0, (4.3)

i.e., V (τ) converges in distribution to an exponentially distributed random variable, properly
scaled and as ρ ↑ 1. These observations suggest that V (τ) is stochastic ordered in convex order.
Informally stated: V (τ) is always less variable than an exponential random variable with the
same mean τ/(1− ρ).

In the next section we obtain more precise stochastic ordering results together with the
formal proof that the instantaneous sojourn time moments are upper bounds for vk(τ), for all
τ ≥ 0 and k ∈ N, with Eulerian numbers as coefficients for the polynomials.

5 Stochastic ordering

In this section we give some new results for the distribution of V (τ) in relation with stochastic
ordering theory. For stochastic ordering theory we refer to Stoyan [18], and Shaked & Shan-
thikumar [17]. The main goal of this Section 5 is to prove that the moments of the instantaneous
sojourn time serve as upper bound for the moments of the conditional sojourn time.

In Section 5.1 we first establish a Laplace transform ordering between V (τ) and the instan-
taneous sojourn time bV (τ). In addition, in Section 5.1 a characterization that the distribution
V (τ) belongs to the so-called L-class of life time distributions will be derived, which is related to
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the Laplace transform ordering. In Section 5.2 we finally arrive at the moment ordering result
between V (τ) and bV (τ), i.e., EV (τ)k ≤ EbV (τ)k for all τ ≥ 0 and k ∈ N.
5.1 Laplace transform ordering

The distribution of V (τ) can be stochastically ordered in Laplace transforms as a consequence
of Theorem 5.1.

Theorem 5.1 For all Re s ≥ 0, the LST v(s, τ) of the random variable V (τ) is bounded by

z(s, τ) ≤ v(s, τ) ≤ w(s, τ), (5.1)

with z(s, τ) := e−sτ/(1−ρ), and w(s, τ) := 1−ρ
esτ−ρ .

Proof. Use the expression for v(s, τ) given by (2.2), and the bounds for αn(τ) given in (3.4).
From v(s, τ)−1 =

P∞
n=0

sn

n!αn(τ), α0(τ) = 1, and
τn

1−ρ ≤ αn(τ) ≤ τn

(1−ρ)n for n ≥ 1, we get

w(s, τ)−1 = 1 +
∞X
n=1

sn

n!

τn

1− ρ
≤ v(s, τ)−1 ≤

∞X
n=0

sn

n!

τn

(1− ρ)n
= z(s, τ)−1.

Note that the lower bound z(s, τ) is the LST of the constant value τ/(1 − ρ). This bound
has a form similar to Jensen’s lower bound vk(τ) ≥ v1(τ)k. The upper bound w(s, τ) is the LST
of the instantaneous sojourn time bV (τ) = (N + 1)τ , since for Re s ≥ 0 and τ ≥ 0

E
h
e−s(N+1)τ

i
=

∞X
n=0

e−s(n+1)τ (1− ρ)ρn =
1− ρ

esτ − ρ
= w(s, τ), if ρe−sτ ≤ ρ < 1.

This observation suggests that the distribution of V (τ) is in certain sense ‘in between’ a
deterministic and an exponential random variable with the same means. A more precise char-
acterization follows in Theorem 5.4. However, the stochastic ordering in Laplace transform is
in general a weak relation. From the Laplace transforms ordering: z(s, τ) ≤ v(s, τ) ≤ w(s, τ),
denoted as τ

1−ρ ≥Lt V (τ) ≥Lt bV (τ), the only implication is the ordering of the first moments
E( τ

1−ρ) ≥ EV (τ) ≥ EbV (τ), cf. [18]. Implications for higher moments cannot be made in general
for stochastic ordering in Laplace transforms. If in addition, equality in means is given, we
obtain the following second moment ordering result.

Theorem 5.2 For any random variables Z, V,W with respectively the Laplace-Stieltjes trans-
forms z(s), v(s), w(s), such that z(s) ≤ v(s) ≤ w(s), for all Re s ≥ 0, and if EZ = EV = EW,
then it holds that

EZ2 ≤ EV 2 ≤ EW 2.

Proof. The first moment EV equals − lims→0 d
dsv(s), i.e., the slope (with a minus sign) of

the tangent line of the LST v(s) at s = 0, and a LST is equivalent to a completely monotonic
function with value 1 at the function argument 0 (Bernstein’s Theorem, cf. [21]). Observe that
the tangent line of v(s) at s = 0 is equal to the tangent line of w(s) at s = 0, by EV = EW. Then,
by convexity and analyticity of completely monotonic functions, and the ordering v(s) ≤ w(s),
it is readily seen that d2

ds2
v(s) ≤ d2

ds2
w(s) for s in a neighborhood of 0, and thus: lims→0 d2

ds2
v(s) =

EV 2 ≤ EW 2.
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For the M/G/1 PS case, all corresponding means in (5.1) equal τ/(1 − ρ), hence we have
again that z2(τ) ≤ v2(τ) ≤ w2(τ) = (1 + ρ)τ2/(1 − ρ)2. We have even a stronger stochastic
ordering result (see Theorem 5.4), which states that V (τ) belongs to the so-called L-class of life
time distributions (see Klefsjö [8]).

Definition 5.3 It is said that V (τ) belongs to the L-class of life time distributions if for some
exponentially distributed random variable X(τ), with EX(τ) = EV (τ), that the Laplace trans-
form ordering V (τ) ≥Lt X(τ) holds, i.e., for all Re s ≥ 0 : v(s, τ) ≤ x(s, τ) where x(s, τ) is the
LST of X(τ).

Theorem 5.4 V (τ) ∈ L if ρ < 1.
Proof. From Theorem 5.1, we can further upper bound the LST by

v(s, τ) ≤ 1− ρ

esτ − ρ
≤ 1− ρ

1 + sτ − ρ
=

1

1 + sτ/(1− ρ)
=: x(s, τ).

Clearly, x(s, τ) is the LST of an exponential distribution with mean τ/(1− ρ).

Distributions belonging to the L-class of life time distributions always have a finite second
moment, and the coefficient of variation is not greater than one; see e.g. [2, 12]. For V (τ) in
the M/G/1 PS queue, we have in fact that the coefficient of variation is less or equal to

√
ρ, cf.

(3.1). More interestingly, although the L-class is a wide class of distributions, Klar [7] obtained
explicit and sharp ‘reliability bounds’ for any L-class distribution. Applying these reliability
bounds (Theorem 4.1 from [7]), for the sojourn time distribution in the M/G/1 PS queue, we
obtain simple explicit and insensitive bounds for the tail probabilities P(V (τ) > x).

Corollary 5.5 For x ≤ τ/(1− ρ) we have the insensitive lower bound

P(V (τ) > x) ≥ 1− 1

(x(1− ρ)/τ)2 − 2x(1− ρ)/τ + 2
,

and this lower bound is sharp for 2−
√
2 ≤ x(1− ρ)/τ ≤ 1.

And for x > τ/(1− ρ) we have the insensitive upper bound

P(V (τ) > x) ≤ 1

(x(1− ρ)/τ)2 − 2x(1− ρ)/τ + 2
,

which is sharp if x(1− ρ)/τ ≥ 2 +
√
2.

Proof. Direct application of Theorem 4.1 from [7].

Remark 5.6 Stronger results for the reliability bounds exist for life time distributions belonging
to subclasses of the L-class.

In the remainder of this paper, our main goal is to provide the ‘best possible’ upper bounds
for vk(τ) in the sense of Remark 3.2. By Theorem 3.1, existence of an upper bound of the form
(1− ρ)kvk(τ)/τ

k ≤ 1 +
Pk−1
i=1 c

k
i ρ
i, is guaranteed for some constants cki ∈ N0. As in the proof of

Theorem 3.1, we can calculate the coefficients cki by bounding the product vk−j(τ)αj(τ) in the
recursive formula (2.6) term by term, for j = 1, ..., k, in a recursive manner and by alternated
use of lower and upper bounds for vk−j(τ) and αj(τ). However, due to the alternated term (−1)j
in the recursive formula, this procedure of term by term bounding does not provide us the ‘best
possible’ upper bound.

11



The coefficients αj(τ) for j = 2, 3, ... are not independent of each other. For example, if αj(τ)
is close to its lower bound τ j/(1 − ρ), then αj+1(τ) is generally not close to its upper bound
τ j+1/(1−ρ)j+1. In fact, if αj(τ) = τ j/(1−ρ) for some j ≥ 2, then necessarily αk(τ) = τk/(1−ρ)
for all k ≥ 2. In addition, if it holds that αj(τ) = τ j/(1 − ρ)j for some j ≥ 2, then necessarily
αk(τ) = τk/(1− ρ)k for all k ≥ 2. In other words: the ‘alternating’ procedure of term by term
bounding in a recursive manner is too conservative.

It is not immediately clear that the moments bvk(τ) of the instantaneous sojourn time are
upper bounds for the moments vk(τ). The main difficulty in proving (upper) bounds is caused
by the alternating term (−1)j in the recursive formula. On the other hand, it is also due to the
presence of the alternating term (−1)j that the obtained bounds are tight.

Via a different construction, we will formally prove that the moments of the instantaneous
sojourn time are upper bounds for the moments of the conditional sojourn time. This will be
done by comparing two different but related PS queues, and both queues are constructed with
a random number of permanent customers. The general moment ordering result, that compares
the sojourn times of the two related PS queues, will be established in the next Section 5.2.

5.2 Moment ordering

In this section, we will prove our main result that vk(τ) ≤ (1+
Pk−1
i=1

­
k
i

®
ρi)/ [(1− ρ)/τ ]k , which

is identical to the moment ordering EV (τ)k ≤ EbV (τ)k for all k ≥ 1; see Theorem 5.14. This
moment ordering result follows from a more general moment ordering result between the random
variables Vλ1(τ)

(N2+1)∗ and Vλ2(τ)
(N1+1)∗. These random variables will be defined for PS queues

with a random number of permanent customers. The general moment ordering result between
these new defined random variables: E(Vλ1(τ)(N2+1)∗)k ≤ E(Vλ2(τ)(N1+1)∗)k, for all k ≥ 1, is
only valid for a certain range of values of λ1 and λ2; see Theorem 5.10.

Definition 5.7 For random variables X and Y , X is said to be smaller than Y in moments
order, denoted by X ≤mom Y, if and only if Eφ(X) ≤ Eφ(Y ), for all polynomial φ with non-
negative coefficients; see [17].

We construct two independent processor-sharing queues as follows. Both M/G/1 PS queues
have the same service time distribution, but with different arrival rates only, respectively with
λ1 and λ2. Let Vλi(τ) denote the sojourn time in a Mλi/G/1 PS queue with arrival rate λi, and
service time distribution B(x) with mean EX, for i = 1, 2.

Next, we construct two other related processor-sharing queues as follows. We define the ran-
dom variable Vλ1(τ)

(j+1)∗ as a random variable whose distribution is the (j+1)-fold convolution
of the distribution of Vλ1(τ). This can be interpreted as the sojourn time in the same Mλ1/G/1
PS model with j permanent customers; see e.g. [1].

Next, the random variable Vλ1(τ)
(N2+1)∗ is the random variable that is in distribution equal

to Vλ1(τ)
(j+1)∗ with probability P (N2 = j) , for j ∈ N0. Hence, Vλ1(τ)(N2+1)∗ can be interpreted

as the sojourn time in theMλ1/G/1 PS model with an additional random number of permanent
customers in the system, with the number of permanent customers distributed as N2.

Finally, the random variable Vλ2(τ)
(N1+1)∗ is defined analogously with the same service time

distribution, and the distributions of N1 and N2 are defined by the geometric probabilities:

P (N1 = i) =
1− ρ

1− ρ2

µ
ρ1

1− ρ2

¶i
, and P (N2 = j) =

1− ρ

1− ρ1

µ
ρ2

1− ρ1

¶j
, (5.2)
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for i ∈ N0, j ∈ N0, ρ1 = λ1EX, ρ2 = λ2EX, and ρ := ρ1 + ρ2 < 1.The probabilities P (N1 = i)
and P (N2 = j) are in fact the marginal queue length probabilities of a two-class egalitarian
processor-sharing queue (with two types of customer classes); see e.g. [4].

It is not difficult to show that EVλ2(τ)(N1+1)∗ = EVλ1(τ)(N2+1)∗ = τ/(1− ρ). In general, we
will prove that the following moment ordering holds: Vλ1(τ)

(N2+1)∗ ≤mom Vλ2(τ)(N1+1)∗, if the
values for λ1 and λ2 satisfies λ1 ≥ λ2; see Theorem 5.10. By special choice of the value λ2, this
result will enable us to prove that EV (τ)k ≤ EbV (τ)k for all k ≥ 1 and τ ≥ 0; see Theorem 5.14.
First we derive the LST’s of the random variables Vλ1(τ)

(N2+1)∗ and Vλ2(τ)
(N1+1)∗.

Lemma 5.8 The LST’s for the random variables Vλ1(τ)
(N2+1)∗ and Vλ2(τ)

(N1+1)∗ are given by

ev(s, τ) := E³e−sVλ1(τ)(N2+1)∗´ = Ã ∞X
n=0

sn

n!
eαn(τ)!−1 , Re s ≥ 0, (5.3)

ew(s, τ) := E³e−sVλ2(τ)(N1+1)∗´ = Ã ∞X
n=0

sn

n!
eβn(τ)

!−1
, Re s ≥ 0, (5.4)

where eα0(τ) = eβ0(τ) = 1, eα1(τ) = eβ1(τ) = τ/(1− ρ), and for n ≥ 2 :

eαn(τ) = n

1− ρ

∞X
m=0

µ
m+ n− 2
n− 2

¶
ρm1

Z τ

x=0
(τ − x)n−1 eBm∗(x)dx, (5.5)

eβn(τ) = n

1− ρ

∞X
m=0

µ
m+ n− 2
n− 2

¶
ρm2

Z τ

x=0
(τ − x)n−1 eBm∗(x)dx. (5.6)

Note that the only difference between the expressions in eαn(τ) and eβn(τ) is the term ρ1 or ρ2.
Proof. The LST’s are readily expressed by

ev(s, τ) = ∞X
j=0

{v1(s, τ)}j+1 P (N2 = j) =
(1− ρ) v1(s, τ)

1− ρ1 − ρ2v1(s, τ)
,

ew(s, τ) = ∞X
i=0

{v2(s, τ)}i+1 P (N1 = i) =
(1− ρ) v2(s, τ)

1− ρ1v2(s, τ)− ρ2
,

where vi(s, τ) is the LST of Vλi(τ) of an ordinary Mλi/G/1 PS queue, i.e., v1(s, τ)
−1 =P∞

n=0
sn

n!αn(τ), and v2(s, τ)
−1 =

P∞
n=0

sn

n! βn(τ), where the coefficients αn(τ) and βn(τ) are
similar to (2.3). Alternatively, we can rewrite the LST’s as

ev(s, τ) = µ1− ρ1
1− ρ

v1(s, τ)
−1 − ρ2

1− ρ

¶−1
=

Ã ∞X
n=0

sn

n!
eαn(τ)!−1 ,

ew(s, τ) = µ1− ρ2
1− ρ

v2(s, τ)
−1 − ρ1

1− ρ

¶−1
=

Ã ∞X
n=0

sn

n!
eβn(τ)

!−1
,

where eα0(τ) = 1, eβ0(τ) = 1, and for n ≥ 1 :
eαn(τ) = 1− ρ1

1− ρ
αn(τ), eβn(τ) = 1− ρ2

1− ρ
βn(τ).
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More explicitly, the coefficients can be expressed as eα1(τ) = eβ1(τ) = τ/(1 − ρ), since α1(τ) =
τ/(1 − ρ1), β1(τ) = τ/(1 − ρ2), and for n ≥ 2 : eαn(τ) and eβn(τ) can be expressed as (5.5)
and (5.6), which follows by combining the expressions given by (2.3) and (2.5) for an ordinary
Mλi/G/1 PS queue.

As a direct consequence of Lemma 5.8, the moments of the random variables Vλ1(τ)
(N2+1)∗

and Vλ2(τ)
(N1+1)∗ satisfy a similar recursion as for an ordinary M/G/1 PS queue.

Corollary 5.9 For all τ ≥ 0, the moments of Vλ1(τ)
(N2+1)∗ and Vλ2(τ)

(N1+1)∗, defined by

respectively evk(τ) = E©Vλ1(τ)(N2+1)∗ªk and ewk(τ) = E©Vλ2(τ)(N1+1)∗ªk , are recursively given
by ev0(τ) = ew0(τ) = 1, and for k ≥ 1 :

evk(τ) = − kX
j=1

µ
k

j

¶evk−j(τ)eαj(τ)(−1)j ,
ewk(τ) = − kX

j=1

µ
k

j

¶ewk−j(τ)eβj(τ)(−1)j .
Theorem 5.10 For τ > 0, and ρ := ρ1 + ρ2 < 1, the moment ordering

Vλ1(τ)
(N2+1)∗ ≤mom Vλ2(τ)(N1+1)∗

holds, if and only if ρ1 ≥ ρ2 (equivalently λ1 ≥ λ2).
Proof. First, we have the following observations and implications. If ρ1 = ρ2, then obviously

it holds that Vλ1(τ)
(N2+1)∗ d

= Vλ2(τ)
(N1+1)∗ and hence evk(τ) = ewk(τ), for all k ≥ 1 and all τ ≥ 0.

It always holds that ev1(τ) = ew1(τ) = τ/(1−ρ) for all τ ≥ 0, irrespective of ρ1 and ρ2. Also note
that the following statements are equivalent:

(i) There exists a τ > 0 such that eαn(τ) = eβn(τ), for some n ≥ 2
(ii) ρ1 = ρ2
(iii) For all τ ≥ 0 and for all n ≥ 1 : eαn(τ) = eβn(τ)
(iv) For all τ ≥ 0 : evk(τ) = ewk(τ) for all k ≥ 1
The equivalent statements can be seen as follows: (i) ⇒ (ii) follows by comparing (5.5) and
(5.6). These expressions are the same infinite polynomials (power series, generating function),
R+-valued and with the same strictly positive coefficients for every n ≥ 2 and for every τ > 0,
only evaluated at a different point, respectively at ρ1 and ρ2. A polynomial

P∞
m=0 amx

m, with
strictly positive coefficients is increasing convex for x ≥ 0 and strictly increasing. Thus, if it
holds that

P∞
m=0 amρ

m
1 =

P∞
m=0 amρ

m
2 , then necessarily ρ1 = ρ2 by the fact of strict increasing.

The implication (ii) ⇒ (iii) is trivial, and (iii) ⇒ (iv) follows by the corresponding recursive
formula for the moments; see Corollary 5.9. Finally, (iv) ⇒ (i) is also trivial since (i) holds in
particular for n = 2 for some τ > 0. In fact, the latter must hold for all τ > 0.

To complete the proof, we will first prove that the following equivalence holds for all k ≥ 2 and
for all τ > 0:

“evk(τ) = ewk(τ)⇔ ρ1 = ρ2”. (5.7)

We stress that the above equivalence is not the same as:

“for all k ≥ 2 and for all τ > 0 : evk(τ) = ewk(τ)”⇔ ρ1 = ρ2. (5.8)
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In fact, the latter equivalence (5.8) is obviously true. The statement (5.7) reads that we have
to prove the equivalence for any k ≥ 2 fixed and for any τ > 0 fixed. The ‘⇐’ implication is
trivial. The difficult implication in (5.7) is the ‘⇒’, i.e., prove for arbitrary τ > 0 fixed that the
following implications hold

ev2(τ) = ew2(τ)⇒ ρ1 = ρ2 (5.9)ev3(τ) = ew3(τ)⇒ ρ1 = ρ2 (5.10)
...

...evk(τ) = ewk(τ)⇒ ρ1 = ρ2 (5.11)

for all k ≥ 2. Equivalently, we have to prove that if evk(τ) = ewk(τ) for some k ≥ 2 and for some
τ > 0, then necessarily evk(τ) = ewk(τ) for all k ≥ 1 and for all τ ≥ 0.
The proof of the claim is as follows. Fix arbitrary τ > 0. Then, the implication (5.9) is straight-
forward, since ev2(τ) = ew2(τ) is equivalent to

2τ2/(1− ρ)2 − eα2(τ) = 2τ2/(1− ρ)2 − eβ2(τ),
and thus eα2(τ) = eβ2(τ), and hence necessarily ρ1 = ρ2. The implications (5.11) for k ≥ 3 are not
straightforward due to the alternating term (−1)j in the recursive formula for the moments. For
example, if ev3(τ) = ew3(τ) holds, then it is not immediately clear that ev2(τ) 6= ew2(τ) cannot be
true. We will prove now that if evk(τ) = ewk(τ), for some k ≥ 3, then necessarily ev2(τ) = ew2(τ)
and ρ1 = ρ2. To this end, we first need the following strong equivalences:

For some n ≥ 2 : eαn(τ) = eβn(τ)⇔ For all n ≥ 2 : eαn(τ) = eβn(τ)⇔ ρ1 = ρ2, (5.12)

For some n ≥ 2 : eαn(τ) 6= eβn(τ)⇔ For all n ≥ 2 : eαn(τ) 6= eβn(τ)⇔ ρ1 6= ρ2, (5.13)

i.e., either eαn(τ) = eβn(τ) for all n ≥ 2, or eαn(τ) 6= eβn(τ) for all n ≥ 2, must be true. The strong
equivalences (5.12) and (5.13) follow directly from the similar R+-valued polynomial structure
of (5.5) and (5.6) with the same strictly positive coefficients if τ > 0, for every n ≥ 2; also see
the equivalences (i)-(ii)-(iii)-(iv).

Now we are able to prove the implication (5.11) for arbitrary k ≥ 3. So, suppose if evk(τ) = ewk(τ),
then we have two mutual exclusive possibilities:

(a) eαk(τ) = eβk(τ)
(b) eαk(τ) 6= eβk(τ)
Exactly one possibility must hold; evk(τ) = ewk(τ) implies either (a) or (b). Moreover, if (a)
holds, then necessarily eα2(τ) = eβ2(τ), ev2(τ) = ew2(τ) and ρ1 = ρ2 by (5.12). If (b) holds, then
necessarily eα2(τ) 6= eβ2(τ), ev2(τ) 6= ew2(τ) and ρ1 6= ρ2 by (5.13). We have proven the implication
(5.11) if (a) holds. To this end, we will show that (b) cannot occur, by contradiction. So, suppose
(b) is true and necessarily (a) false, i.e., if (b) is true then evk(τ) = ewk(τ) implies (b), which is
equivalent with the statement evk(τ) = ewk(τ)⇒ ρ1 6= ρ2, (5.14)

which is not true, since the negation of (5.14), i.e.,

ρ1 = ρ2 ⇒ evk(τ) 6= ewk(τ),
is clearly not the case. Hence, we conclude that the assumption of possibility (b) true, is false.
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Thus, necessarily possibility (a) is true, i.e.,

evk(τ) = ewk(τ)⇒ ρ1 = ρ2,

which completes the proof of the sequence of implications (5.9), (5.10),... for all k ≥ 2.
Since τ > 0 is arbitrary, it also holds that the equivalence evk(τ) = ewk(τ)⇔ ρ1 = ρ2 is true for
all k ≥ 2 and for all τ > 0. In particular, if for some τ∗ > 0 and some k ≥ 2 : evk(τ∗) = ewk(τ∗)
then necessarily ρ1 = ρ2, and thus evk(τ) = ewk(τ) for all τ ≥ 0 and for all k ≥ 1.
We conclude for ρ1 > ρ2 that either evk(τ) < ewk(τ) must be true, or evk(τ) > ewk(τ) must be true,
for all k ≥ 2 and for all τ > 0, since evk(τ) and ewk(τ) are continuous functions in all arguments
τ , ρ1 and ρ2. This can be seen from (5.5), (5.6) and its corresponding recursive formulas for the
moments, and the fact that eB(x) is a proper distribution function. Note from the above that
not necessarily evj(τ) < ewj(τ) for all j ≥ 2 must be true, or not necessarily evj(τ) > ewj(τ) for all
j ≥ 2 must be true. But we will also show that this is the case.
To this end, the proof is completed, if we can find a τ∗ > 0, such that evj(τ∗) < ewj(τ∗)⇔ ρ1 > ρ2,

for all j ≥ 2. This can be done by choosing τ∗ large enough, since Vλ1(τ)/τ
P→ 1/(1 − ρ1) and

Vλ2(τ)/τ
P→ 1/(1− ρ2), as τ →∞, cf. [26]. And for τ →∞ we have that

Vλ1(τ)
(N2+1)∗

τ
d→ N2 + 1

1− ρ1
, and

Vλ2(τ)
(N1+1)∗

τ
d→ N1 + 1

1− ρ2
.

It is readily verified that (cf. proof of Theorem 4.1, and (5.2)):

E
µ
N2 + 1

1− ρ1

¶k
=

Pk−1
i=0

­k
i

® ³ ρ2
1−ρ1

´i
(1− ρ)k

, and E
µ
N1 + 1

1− ρ2

¶k
=

Pk−1
i=0

­k
i

® ³ ρ1
1−ρ2

´i
(1− ρ)k

,

hence for k = 1 we have the equality

E
µ
N2 + 1

1− ρ1

¶
= E

µ
N1 + 1

1− ρ2

¶
=

1

1− ρ
,

irrespective of ρ1 and ρ2, provided that ρ := ρ1 + ρ2 < 1. For higher moments we have the
moment ordering:

E
µ
N2 + 1

1− ρ1

¶j
< E

µ
N1 + 1

1− ρ2

¶j
, for all j ≥ 2, iff ρ1 > ρ2, (5.15)

and with equality in (5.15) iff ρ1 = ρ2, and hence evk(τ) ≤ ewk(τ) iff ρ1 ≥ ρ2.

Remark 5.11 The moment ordering (5.15) can be intuitively explained as follows. Both ran-
dom variables have the same means, irrespective of ρ1 and ρ2 (provided ρ < 1). However, if
ρ1 > ρ2, then N1 is stochastically larger than N2, while 1/(1 − ρ1) and 1/(1 − ρ2) are fixed
numbers. Hence, we expect that N2+11−ρ1

is less variable than N1+1
1−ρ2

if ρ1 > ρ2. Note that
N1+1
1−ρ2

is

not stochastically larger than N2+1
1−ρ1

. This can be seen from the fact that X ≤st Y and EX = EY

implies X d
= Y, for arbitrary (non-negative) random variables X and Y.

Theorem 5.10 can be interpreted as follows. For a fixed τ > 0, if the sojourn time Vλ2(τ)
(N1+1)∗

is very large, then this is more likely due to the presence of many permanent customers in the
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system (large λ1) instead of a large arrival intensity of non-permanent customers (large λ2).

Remark 5.12 We conjecture that Vλ1(τ)
(N2+1)∗ ≤cx Vλ2(τ)(N1+1)∗ holds if λ1 ≥ λ2, i.e., the

random variables are ordered in convex stochastic ordering (see [18, 17]). Then, it is said that
the random variable Vλ1(τ)

(N2+1)∗ is less variable than the variable Vλ2(τ)
(N1+1)∗. The first

moments are necessarily equal. This can also be interpreted as: Vλ2(τ)
(N1+1)∗ is more likely to

take ‘extreme’ values than Vλ1(τ)
(N2+1)∗, if λ1 ≥ λ2. A sufficient condition for convex stochastic

ordering is the so-called Karlin & Novikoff cut-criterion, cf. [18], which states that two r.v’s X
and Y are convex stochastic ordered if the means are equal and the corresponding distribution
functions crosses each other once and exactly once. The difficulty to verify the cut-criterion is
that we do not have the distribution functions explicitly. We note that the cut-criterion and
the intuition for the conjecture given in the instantaneous sojourn time analysis, are similar (see
Remark 4.2).

Remark 5.13 If λ1 ≥ λ2, then it follows immediately from (5.5)-(5.6) that eαn(τ) ≥ eβn(τ),
and from (5.3)-(5.4) that ev(s, τ) ≤ ew(s, τ) for all Re s ≥ 0. Since ev1(τ) = ew1(τ) = τ/(1− ρ), it
follows by Theorem 5.2 that ev2(τ) ≤ ew2(τ). And for all λ1 and λ2 provided ρ < 1, it also holds
that Vλ1(τ)

(N2+1)∗ ∈ L and Vλ2(τ)(N1+1)∗ ∈ L.

We arrive at our final result that the instantaneous sojourn time moments are upper bounds
for the moments of the conditional sojourn time distribution in the M/G/1 PS queue.

Theorem 5.14 In the M/G/1 PS queue, if ρ < 1, and for τ ≥ 0, k ∈ N :

zk(τ) := τk/(1− ρ)k ≤ vk(τ) ≤ wk(τ) := τkE(N + 1)k,

where N is the steady state queue length distribution (2.1). The moments wk(τ) = τkE(N+1)k

are given by the moments bvk(τ) of the instantaneous sojourn time, i.e.,
bvk(τ) = τkE(N + 1)k =

τk

(1− ρ)k

k−1X
j=0

¿
k

j

À
ρj .

Proof. The result is trivial for τ = 0. For τ > 0, we take ρ2 = 0 in Theorem 5.10. Then, we
have N2 = 0 and Vλ2(τ) = τ (with probability 1), thus

Vλ1(τ)
(N2+1)∗ d

= Vλ1(τ), and Vλ2(τ)
(N1+1)∗ d

= τ (N1 + 1) .

Hence, by Theorem 5.10, for all ρ ≡ ρ1 ≥ ρ2 = 0, and ρ < 1,

V (τ) ≡ Vλ1(τ) ≤mom τ (N1 + 1) ≡ τ (N + 1) = bV (τ),
and also vk(τ) ≡ evk(τ) ≤ ewk(τ) ≡ wk(τ) for all k ∈ N. By Theorem 4.1, we have that
wk(τ) = bvk(τ) = τk/(1− ρ)k

Pk−1
j=0

­
k
j

®
ρj . The lower bound zk(τ) for vk(τ) is trivial, by Jensen’s

inequality.

Remark 5.15 Note that taking ρ2 = 0 in Theorem 5.10 and in the proof of Theorem 5.14, is
essentially the same as the assumptions made in the instantaneous sojourn time analysis, τ → 0,
as in Section 4. For ρ2 → 0 : Vλ2(τ)

(N1+1)∗ → bV (τ) = (N1 + 1)τ ≡ (N + 1)τ , as if the tagged
customer arrived at a system with n1 permanent customers with probability P(N1 = n1) and
with no other arriving customers (ρ2 = 0).
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M/M/1 PS: rho = 0.5
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Figure 1: Third moment of the conditional sojourn time in the M/M/1 PS queue with ρ = 0.5
and mean service time β1 = 2, as function of the initial service requirement τ > 0.
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M/M/1 PS: rho = 0.9
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Figure 2: Third moment of the conditional sojourn time in the M/M/1 PS queue with ρ = 0.9
and mean service time β1 = 2, as function of the initial service requirement τ > 0.

Remark 5.16 The upper bound for the tail probabilities P(V (τ) > x) as given in Corollary 5.5
can be improved by using vk(τ) ≤ (1 +

Pk−1
i=1

­
k
i

®
ρi)/ [(1− ρ)/τ ]k and the Chebyshev-Markov

inequalities, for all k ≥ 1. The improvement is considerable, particularly for large x; the bounds
are still simple, explicit and in closed-form expressions.

6 Numerical example

In this section we numerically illustrate the lower and upper bounds. Furthermore we examine
the quality of the bounds for the M/M/1 PS queue. The service requirements are exponentially
distributed with mean β1 = 2. Figure 1 and Figure 2 depict the third moment v3(τ), together
with its Jensen’s lower bound z3(τ) = τ3/(1− ρ)3, and the third moment of the instantaneous
sojourn time w3(τ) = (1 + 4ρ+ ρ2)τ3/(1− ρ)3 as an upper bound for v3(τ).

In Figure 1 the workload ρ equals 0.5, and in Figure 2 the workload ρ equals 0.9. In addition,
both Figures are depicted on three different scales for the initial service requirement τ , respec-
tively on a small (0 ≤ τ ≤ 1

2β1), moderate (0 ≤ τ ≤ 3β1), and a large scale (0 ≤ τ ≤ 50β1).
Graphs for other moments than k = 3 show similar behavior with respect to the Figures 1 and
2, except for v1(τ). The only difference is a different scale and magnitude.

As expected from the instantaneous sojourn time analysis (τ → 0), it turns out that the upper
bound is a good approximation for vk(τ) when the initial service requirement τ is small (τ → 0).
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The lower bound is generally a better approximation for very large τ , since V (τ)/τ P→ 1/(1− ρ)
as τ →∞, for all ρ < 1 fixed. But obviously, it is intuitively clear that the ‘speed of convergence’
of V (τ)/τ to 1/(1− ρ) as τ →∞, is slower for a larger ρ.

In addition, for all τ > 0 fixed we have that vk(τ)/wk(τ)→ 1 and vk(τ)/zk(τ)→ 1 as ρ→ 0,
and vk(τ)/wk(τ)→ 1 and vk(τ)/zk(τ)→ k! as ρ→ 1. These observations are not illustrated in
the figures, but it can be seen from the results (4.2), (4.3), and Theorem 5.14.

7 Conclusion

In this study, we have investigated the sojourn time V (τ) conditional on the initial service
requirement τ > 0 of a tagged customer in the M/G/1 processor-sharing (PS) queue. In
particular, we studied all moments of V (τ) and we obtained upper and lower bounds. Our
main result (Theorem 5.14 and 5.10) is that there exists an upper bound for the moments of
the conditional sojourn time distribution, which can be expressed in terms of the workload
ρ < 1 and the initial service requirement τ only. The upper bound for EV (τ)k is given by³
1 +

Pk−1
i=1

­k
i

®
ρi
´
τk/(1 − ρ)k, where

­k
i

®
are Eulerian numbers. A lower bound follows easily

from Jensen’s inequality.
An attractive feature of the upper bound of the above structure is that it is independent of

second- and higher moments of the service time distribution. Another attractive feature is that
the upper bound converges to the Jensen’s lower bound when ρ → 0, for all τ fixed. And for
ρ → 1, the k-th moment of the true sojourn time and its upper bound of the above structure,
converge to the same expression, after proper scaling.

The upper bound of the above structure with Eulerian numbers is related to a so-called
instantaneous sojourn time analysis, where we studied the sojourn time of a customer with
a very small initial service requirement (τ → 0). If the initial service requirement τ > 0 is
arbitrary (and not necessarily small), the instantaneous sojourn time analysis also corresponds
to the situation of a certain PS model with a random number of permanent customers.

By studying the higher moments and providing insensitive upper bounds, we strengthen the
fact that processor-sharing is a very fair service discipline. Under the stability condition ρ < 1,
excessive behavior of other customers in the system always has a limited influence on the sojourn
time of the tagged customer. Intuitively, from a tagged customer point-of-view, the influence
of the service time requirements of other customers in the system on the sojourn time of the
tagged customer, is nearly insensitive. Even when there is a customer with infinite service time
requirement, the influence of this permanent customer on non-permanent customers is limited.

We conclude this paper with the remark that considerable attention has been paid in the
literature to the exact analysis of the sojourn time in the M/G/1 PS queue. Relatively little work
has been done on the investigation of the practical implications of the results. From a practical
point-of-view, the discovery of simple bounds for all moments of the conditional sojourn time
stimulates the investigation of simple but nevertheless good approximations for the distribution
of V (τ), the moments and the tail probabilities. This remains a topic for further research.
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Appendix

Eulerian numbers

For k ∈ N, and j = 0, 1, ..., k, the Eulerian numbers
­
k
j

®
are given by¿

k

0

À
=

¿
k

k − 1

À
= 1,

¿
k

k

À
= 0, (A.1)

and for j = 1, ..., k − 1, given by the recurrence relation¿
k

j

À
= (k − j)

¿
k − 1
j − 1

À
+ (j + 1)

¿
k − 1
j

À
. (A.2)

A slightly different definition of the Eulerian number can be used. The notation A(k, j)
is sometimes referred as the Eulerian number and it is defined shifted, i.e., A(k, j) =

­
k
j−1
®

or equivalently defined by: A(k, 0) = 0, A(k, 1) = A(k, k) = 1, and the recurrence relation:
A(k, j) = (k − j + 1) · A(k − 1, j − 1) + j · A(k − 1, j). We use the notation and the definition­k
j

®
for the Eulerian number throughout this paper.

The Eulerian numbers
­k
j

®
are given explicitly by the sum

¿
k

j

À
=

j+1X
i=0

(−1)i
µ
k + 1

i

¶
(j − i+ 1)k. (A.3)
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The Eulerian numbers satisfy the sum identity

kX
j=0

¿
k

j

À
= k!. (A.4)

The arrangement of the numbers
­
k
j

®
for k ≥ 1 and j = 0, ..., k − 1 gives the Euler’s number

triangle. The defining recurrence relation weighs the sum of neighbors by their row and column
numbers, respectively.

Euler’s number triangle

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

1 120 1191 2416 1191 120 1
1 247 4293 15619 15619 4293 247 1

The Eulerian numbers have many combinatorial applications, and they represent a sort of
generalization of the binomial coefficients. It is also interesting to note that the rows of Eulerian
numbers approach a normal density for k →∞, just as do the rows of the binomial coefficients
(Pascal’s number triangle). The Eulerian number

­k
j

®
gives the number of permutations of the

elements in the set {1, ..., k} having j permutation ascents (or descents). For example, the six
possible permutations of the set {1, 2, 3}, along with the number of ‘rises’ (i.e., the number of
times it goes from a lower to a higher number, reading left to right) are shown below:

permutation 1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1
number of rises 2 1 1 1 1 0

The numbers of permutations having exactly 0, 1, and 2 rises (or falls) are 1, 4, and 1
respectively, and these numbers comprise the 3rd row of the Euler’s number triangle, i.e.,

­3
0

®
= 1,­3

1

®
= 4,

­3
2

®
= 1. The number

­3
3

®
is by definition 0.

Interestingly, the Eulerian numbers arises in polylogarithm functions with negative integer
index of the form (see e.g., [19])

∞X
k=1

knrk = Li−n(r) ≡
1

(1− r)n+1
nX
i=0

¿
n

i

À
rn−i, (A.5)

where the Z-transform of the sequence
©
nk
ª∞
n=1

is equal to Z
£©
nk
ª∞
n=1

¤
(z) = Li−k

¡
1
z

¢
and the

polylogarithm function is defined as Lin(z) ≡
P∞
k=1

zk

kn . For more on Eulerian numbers we refer
to [19, 3, 6] and references therein.
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