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Abstract. Service discovery in heterogeneous Wireless Sensor Networks is a
challenging research objective, due to the inherent limitations of sensor nodes
and their extensive and dense deployment. The protocols proposed for ad hoc
networks are too heavy for sensor environments. This paper presents a resource-
aware solution for the service discovery problem, which exploits the heteroge-
neous nature of the sensor network and alleviates the high-density problem from
the flood-based approaches. The idea is to organize nodes into clusters, based on
the available resources and the dynamics of nodes. The clusterhead nodes act as
a distributed directory of service registrations. Service discovery messages are
exchanged among the nodes in the distributed directory. The simulation results
show the performance of the service discovery protocol in heterogeneous dense
environments.

1 Introduction

In recent years, the active research in the field of Wireless Sensor Networks (WSNs)
has enabled a broad range of ubiquitous computing applications. Our vision is that the
functionality of WSNs will go beyond passive gathering of sensed data, in the direc-
tion of providing active assistance in industrial processes, as well as in daily life. These
contexts require, however, a complex and dependable functionality, which cannot be
offered by individual, resource-constrained sensor nodes. We propose to address these
challenges by providing functionality according to aservice oriented approach. Orga-
nized into groups, the sensor nodes can take advantage of their cumulated resources
and achieve better accuracy and reliability, providing complex services in real-world
scenarios.

An essential component for the service oriented approach is the ability to discover
services in a wireless sensor network environment. This is a challenging task, due to (1)
the constrained capabilities of sensor nodes, (2) the mobility of both potential service
providers and consumers, (3) the extensive and dense deployment of nodes in a sensor
network. Moreover, there is already a large number of sensor hardware platforms that
determines a significant variety in the capabilities of individual sensor nodes.

Our aim is to exploit the heterogeneity of WSN for the purpose of service discov-
ery. We propose a solution that relies on an overlay topology which forms a distributed
directory. The overlay is a clustering structure, where the clusterhead role is assigned
depending on the capabilities of the nodes. Each clusterhead node keeps a service reg-
istry of all the services in its cluster. For a fast convergence of the structure in face of



mobility, nodes make decisions only based on the 1-hop neighborhood knowledge. The
energy spent on keeping a consistent service registry is minimized, as changes in the
network topology trigger only local reconfiguration of the distributed directory.

In the following section we give two examples of applications where nodes of-
fer complex collaborative services. Section 1.2 presents related work regarding service
discovery and clustering algorithms. The overlay clustering structure is discussed in de-
tail in Section 2. A description of the service discovery protocol is presented in Section
3. Section 4 evaluates the clustering algorithm and service discovery protocol through
simulation results. Section 5 presents a summary and future work.

1.1 Scenarios

Transport and logistics.The first scenario describes the process of transporting goods
from providers to consumers [13]. The products are placed on shelves which are fitted
to rolling carts. Each cart is equipped with a wireless sensor node, termed amicronode.
The nodes on the carts communicate with each other wirelessly, creating an ad-hoc net-
work. Smaller sensors calledpiconodesare placed on each shelf of the cart for a precise
control of environmental conditions when the delicate and perishable goods (such as
flowers) are being transported. The micronodes gather information from piconodes and
verify the environmental conditions.

The expedition floor is a place used by the transport company for the shipment
process. Loaded carts are pushed by the transport company personnel on the expedition
floor and are placed depending on the shop they are assigned to. A fixed infrastructure
of sensor nodes, termedbeacons, is placed expedition floor. Their role is to assist the
localization process of the loaded carts and to monitor the correct placement depending
on the assigned shop.

Summing up, the services involved in this scenario are the following:

– Providing environmental measurements.Piconodes sense the environmental condi-
tions (e.g. temperature, humidity, light) and provide this data as a service.

– Monitoring of environmental conditions.Micronodes use the services offered by
piconodes for monitoring the environmental conditions.

– Localization service.Beacons provide the localization service for carts placed on
the expedition floor.

– Monitoring of carts placement.Groups of beacons adjacent to the grid cells of a
specific shop monitor the positions of carts assigned to that shop.

Office. The second scenario is related to the concept of ”Smart Surroundings” [1].
Smart devices and sensors are fitted in office buildings, as well as carried by employees
and visitors, thus forming a heterogeneous WSN. The following services are provided
by this WSN:

– Climate control. Groups of sensors and actuators can collect data and actuate heat-
ing, ventilating, and air-conditioning devices to meet specific environmental para-
meters.



– Localization and guidance. In case of events such as conferences, visitors can be
guided towards the places of interest by the fixed infrastructure present in the build-
ing.

– Contact search. Colleagues, friends, persons with common interests can be discov-
ered through the WSN.

1.2 Related work

Service discovery has been extensively studied in the fields of local area, wide area, as
well as in ad-hoc networks [12]. Nevertheless, resource-awareness has not been yet a
field of great interest in the context of service discovery. The basic mechanisms used
by protocols designed for ad-hoc networks imply one of the following: delegation of
workload, flooding, maintaining several overlays or maintaining extensive topology in-
formation. We will give examples from each of these categories.

Delegating the workload to powerful devices is suitable for networks where these
devices are always available. For example, small devices in FRODO [16] only imple-
ment a part of the protocol stack and they depend on powerful devices to store and
process the service registry.

Some service discovery protocols piggyback on the routing messages to issue ser-
vice request and get replies. Frank and Karl [7] relies on AODV [6], Wu and Zitter-
bart [18] uses DSR [8]. However, these two routing protocols use flooding to construct
routes to destination. Due to the substantial power consumption inherent to this proce-
dure, flooding is an undesirable feature for scalable and resource-aware routing proto-
cols and consequently, for service discovery protocols that rely on them.

Service discovery protocols that build a dominating set which act as a distributed
directory are more appropriate to be used in the context of sensor networks. Kozat and
Tassiulas [10] build a backbone to which devices register their services. Their criteria
for choosing the nodes that become part of the backbone is the maximum node degree
among the 1-hop neighbors, together with a stability constraint concerning the link
failure frequency. Services are registered to one or more nodes from the dominating
set and service discovery messages are forwarded to members of the backbone. Due to
the high density of nodes in the backbone, lots of loops are generated when a service
discovery message travels the backbone nodes. To overcome this drawback, a source-
based multicast tree additional algorithm is proposed on top of the dominating set.
However, building and maintaining two overlays for the same purpose (the dominating
set and the multicast tree) is expensive and unfeasible for resource-constraint sensor
nodes.

Lenders et. al [11] propose a service discovery protocol inspired by electrostatic
fields from physics. Nodes in the ad-hoc network determine thepotentialof a service
depending on the distance to service providers. A service request packet arrived at a
node is forwarded to the neighbor with the highest potential. This proactive approach
is not well suited for sensor networks, because service advertisements are propagated
through the whole network and nodes have to maintain potentials for every advertised
service, which is both energy and memory consuming.

Several clustering algorithms have been proposed to support scalable routing in
large ad-hoc networks. McDonald and Znati [14] describe an (α, t) clustering algorithm,



taking the node mobility as the criteria for cluster organization. The cluster internal
paths are expected to be available for a period of timet with a probability of at least
α. Each node is aware of the complete intra-cluster topology information, which may
exceed the node capabilities.

The algorithm proposed by Amis et. al [2] uses the d-hop information for cluster-
head election. Each node initiates two rounds of flooding overd hops for building the
cluster membership. When the election algorithm finishes, nodes are at mostd hops
away from the clusterhead. We consider that making decisions based on the complete
information overd hops leads to slow convergence, high maintenance overhead and
memory consumption.

The DMAC algorithm [3] constructs and maintains an independent dominating set.
They achieve fewer nodes in the distributed directory, compared to Kozat and Tassiulas
[10], which in turn leads to fewer loops for the discovery phase. However, DMAC
suffers from thechain reactionphenomenon, where a single topology change in the
network may trigger significant changes in dominating set. For a distributed directory
composed of nodes from the dominating set, the chain reaction leads to high overhead
for maintaining consistent service registries.

2 Clustering algorithm

The clustering structure that we propose facilitates the construction and maintenance of
a distributed directory. The clusterhead nodes keep a registry of the services available
in their clusters. For minimizing the energy consumption during the discovery phase,
service discovery messages are flooded among the clusterhead nodes, and not in the
whole network.

We consider a wireless network, where two nodesu andv are neighbors if there is a
direct communication channel betweenu andv. We assume that the lower layers (such
as MAC) filter out asymmetrical links, so that we can rely on bidirectional communi-
cation. Each node is assigned (1) a unique hardware identifier, termed theaddressof
the node, and (2) a weight, termed thecapability grade, representing an estimate of the
node’s dynamics and the available resources. The higher the capability grade, the more
suitable is the node for the clusterhead role. We assume that these weights are unique,
as the node hardware identifier may be used to break ties.

Our clustering structure is aforestcomposed of a set oftreesor clusters. We assume
that each node knows who its neighbors are and their capability grades from the lower
network layers. We also assume that the underlying network layers provide a reliable,
best-effort message delivery service. The clustering algorithm follows the idea of a
greedy algorithm where nodes choose a neighbor with higher capability grade asparent,
while other nodes that do not have such a neighbor areroots. Theheightof the cluster
is the longest path from the root node to a leaf. We say that two trees areadjacentif
there are two nodes, one from each tree, that are connected through a link.

2.1 Cluster setup

The algorithm constructs a set of trees, based on local knowledge of neighboring nodes.
The protocol works as follows:



– Nodes that have the highest capability grades among their neighbors declare them-
selves clusterheads and broadcast aS etRootmessage announcing their roles.

– The remaining nodes choose as parent the neighbor with the highest capability
grade.

– When a node receives aS etRootmessage from its parent, it learns the cluster mem-
bership and rebroadcasts theS etRootmessage.

Figure 1(a) shows an example network of nine nodes grouped into three clusters.
The parent-child relationship is indicated by arrows. The dashed lines connect neigh-
boring nodes that are in different trees (clusters).

(a) Network 1 (b) Network 2

2.2 Knowledge on adjacent clusters

Since the identity of the root node is propagated in the cluster down to the leaf nodes
via the broadcast messageS etRoot, this information also reaches nodes from adjacent
clusters. These nodes store the adjacent root identity and report it to their parents. The
information is then propagated up in the tree until it reaches the root node, by using
a message which we termU pdateIn f o. Through this message, nodes learn which are
the clusters adjacent to their sub-trees and the next hops on the paths leading to their
clusterheads. In particular, the root nodes find out about all the adjacent clusters. Figure
1(a) shows the lists of adjacent clusters kept by each node in the forest.

2.3 Maintenance against topology changes

Nodes adjust their cluster membership according to topology changes:

– A node discovers a new neighbor with a higher capability grade than its current
parent. The node then selects that neighbor as its new parent.

– A node detects the failure of the link to its parent. The node then chooses as new
parent the node with the highest capability grade in its neighborhood.

Besides reclustering, topology changes may also require modifications in the knowl-
edge on adjacent clusters. TheU pdateIn f omessage is used for transmitting the updates
from children to their parents. We distinguish the following situations:



– A nodev detects a new neighbor from a different cluster. Consequently,v adds the
root of that cluster to its knowledge, together with the neighbor as the next hop for
reaching the clusterhead.

– A nodev switches from parentp0 to p1. Thenv (1) sends the list of adjacent clusters
to p1 and (2) notifiesp0 to remove the information associated withv.

– A nodev detects the failure of the link to one of its neighborsu. As a result,v erases
the knowledge associated withu.

– Any change of global knowledge at nodev results in transmitting the message
U pdateIn f ofrom v to its parent.

Taking the example from Figure 1(a), node 8 moved to the neighborhood of nodes 6
and 2 (see Figure 1(b)). The clustering structure and the knowledge on adjacent clusters
change accordingly.

3 Service discovery protocol

For efficiency and scalability reasons, we propose an integrated solution, in which the
service discovery protocol uses the underlying clustering structure. The role of the clus-
tering structure is to keep a distributed directory of service descriptions. Nodes register
their services to their parents and thus every node in the hierarchy maintains informa-
tion on the services offered by the nodes in its sub-tree. The root nodes have a complete
view of the services in their clusters.

3.1 Service registration

The registration works as follows:

– Every nodev registers its services and the services of the children to the parent
node.

– In the case of a parent reselection, a nodev transfers the service registry to the new
parentp1, and notifies the old parentp0 to purge the outdated service information.
The process is transparent for the other nodes in the sub-tree rooted atv.

– If the overall service information atp0 andp1 changes due to the parent reselection,
the modifications are propagated up in the hierarchy.

The service registration process can be easily integrated with the construction and
maintenance of the clustering structure. Nodes are informed on the services provided
by children through the same messageU pdateIn f o. The condition on which a node
sends anU pdateIn f omessage to its parent is when the overall knowledge on adjacent
clusters or services its sub-tree has changed.

3.2 Service discovery

The service discovery process uses the distributed directory of service registrations.
Suppose a node in the network generates a service discovery requestS ervDisc. The re-
quest is first checked against the local registrations. In the case where no match is found,



the message is forwarded to the parent. This process is repeated until theS ervDisc
message reaches the root of the cluster. When a root node receives a service discovery
request message and it does not find any match in the local registry, theS ervDiscmes-
sage is forwarded to the roots of the adjacent clusters. The next hop on the path leading
to the adjacent cluster is decided by every node that acts as forwarder of theS ervDisc
message. Each nodev along the path checks the knowledge on adjacent clusters and
picks a neighbor that has a path to the root. In the case where a link is deleted andv
cannot forward theS ervDiscmessage, it chooses another neighbor that provides a path
to destination. If such a neighbor does not exist,v informs its parent that it no longer
has a route to the next cluster. The same procedure is repeated until all the paths to des-
tination are tested. If the next cluster is not reachable, the root node erases the cluster
from its knowledge.

Typically the result of a service search is the address of one or more service providers.
This response can be returned by the first node that finds a match in its registry for the
requested service. However, in certain situations it may be preferable that the service
provider itself issues a reply for the service request. Examples include applications
where service descriptions change frequently, or in cases where the reply incorporates
more information than the address of the node. In these situations, theS ervDiscmes-
sage is forwarded down the cluster until it reaches the service provider. In the case
where the link to the service provider is deleted before the de-registration process, the
service request is sent back to the root node who forwards it to the adjacent clusters.

The service discovery reply may follow the reverse cluster-path to the client, or any
other path if a routing protocol is available. For the first case, if there is a cluster parti-
tion, the path can be reconstructed using the same search strategy as for theS ervDisc
message, where this time the service is the address of the client.

4 Performance evaluation

For our experiments we use the OMNeT++ [17] simulation environment. We generate
a random network, by placingN nodes uniformly distributed on a square area of size
a× a, wherea = 500m. We consider links to be bidirectional, so nodes have the same
transmission range,r. There is a link between two nodes if the distance between them
is less or equal tor. Each node chooses a capability grade from a uniform distribution.
Static nodes have higher capability grades than mobile nodes.

We use a heartbeat broadcast message periodically sent by every node to maintain
the neighborhood information. The heartbeat is also used for the cluster setup and main-
tenance, replacing theS etRootmessage for the propagation of root identity. The focus
of our simulations is the overhead induced by theU pdateIn f oandS ervDiscmessages.

4.1 Cluster density

The number of clusters is an important measure for the performance of a clustering
algorithm that is intended to be used as a basis for a discovery protocol. The reason is
that a high density of clusterheads leads to a high discovery cost.



For measuring the cluster density, we use the cyclic distance model for link forma-
tion, in order to avoid the border effects [4]. In this model, nodes at the border of the
system area establish links via the borderline to the nodes located at the opposite side
of the area. This setup approximates an area where nodes are distributed according to
a Poisson point process [4] with constant densityρ = N/a2. The expected node degree
for a Poisson point process is:

D(ρ, r) = ρπr2 (1)

After we randomly place the nodes on the simulation area, within a finite time in-
terval the network converges to a valid cluster structure. We repeat the experiment for
three values of the transmission range 0.1a, 0.2a and 0.3a, over at least 1000 topolo-
gies, and we count the number of clusters formed in each experiment. The mean of the
samples are shown in Figure 1, with 5th and 95th percentile.
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Fig. 1.Average number of clusters ona× a area, with 5th and 95th percentile.

In the first part of the curve the nodes are sparsely distributed on the simulation area.
When the network becomes dense, the new nodes added either join the already existing
clusters or they form their own cluster and force the root nodes in the neighborhood to
join. We can notice in Figure 1 that from a certain number of nodes in the area, adding
new nodes does not change the number of clusters. This behavior has a positive effect
on the performance of the service discovery protocol, since the number of nodes in the
distributed directory remains constant after reaching a certain network density.

We make the observation that the spatial distribution of the clusterheads belongs to
the family of hard-core point proccesses[15] [4], in which the constituent points are
forbidden to lie closer together than a certain minimum distance. We approximate the
cluster density by using theMatérn hard-core process, which applies a thinning to a
stationary Poisson process such as every retained nodex has the highest weight in the



circle with radiusr centered atx. The estimated number of clusterheads for a the Matérn
process is the following:

Eclusters(N, r,a) =
a2

πr2
(1− e−

Nπr2

a2 ) (2)

In addition, we can compute the limit on the estimated number of clusters, asN
grows to infinity:

c = lim
N→∞

Eclusters(N, r,a) =
a2

πr2
(3)

We define an area as beingsaturatedif |Eclusters(N, r,a) − c| ≤ ε, where 0< ε � 1.
From Eq. 2 and 3, we compute the minimum number of nodes on a saturated area:

N ≥ c ln(
c
ε

) (4)

As a numerical example, fora = 500m, r = 100m, a saturated area withε = 0.1 is
reached fromN ≥ 35. In other words, increasing the number of nodes above 35 does
not influence the cluster density.

We plotted the theoretical estimations for the three values of the transmission range
r. Figure 1 shows that the estimated values match exactly the simulation results.

4.2 Cluster height

In the next set of experiments we investigate what is the average cluster height for the
same setting explained in Section 4.1. Figure 2 shows the results depending on the
expected node degree, with the 5th and 95th percentile of the samples. We can notice
that for all the three transmission ranges that we choose, the points follow the same
curve. Consequently, our first conclusion is that the cluster height does not depend on
the number of nodes, but it depends only on the density of the network. The second
conclusion is that the average cluster height is lower than 2, and in 95% of the cases
the clusters have the height less than or equal to 3. This means that we can achieve
relatively small height clusters without imposing a maximal hop diameter limit, which
would increase the maintenance effort and generate the chain reaction effects.

4.3 Role ratio

We represent in Figure 4.3 the ratio of clusterheads, parents and leaves depending on
the expected node degree. We notice that the average role ratio is only a function of
the expected number of neighbors. WhenD(ρ, r) = 0, the number of root nodes equals
the number of nodes in the network. For dense networks, the ratio of clusterheads and
parent nodes gets close to zero, while the ratio of leaf nodes grows asymptotically to 1.

4.4 Discovery cost

We analyze the discovery cost as a function of the number of nodes in the network.
The nodes are uniformly distributed on the bounded simulation area of sizea× a, with
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transmission ranger = 0.2a. We adopt a uniform repartition of services, where a ser-
vice is provided on average by five service providers. After placing the nodes on the
simulation area, we wait until the network reaches consistency and we randomly pick a
node. The node generates a discovery request with a randomly chosen service. We com-
pute the total number ofS ervDiscmessages during one discovery phase. We perform
experiments over at least 100 different topologies and we calculate the average values.

We notice from Figure 4 that in the first part of the curve, the average number of
messages grows proportionally with the number of nodes in the network. This behavior
changes for networks with high density: results indicate an asymptotically bounded dis-
covery cost. The reason is that the discovery protocol propagates messages at the level
of clusterhead nodes, while from a certain network density, the number of clusterheads
remains constant (see Section 4.1).
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Figure 5 gives a rough comparison on the number of messages spent during the
service discovery phase, when using the proposed discovery protocol and flooding. We
estimate the number of received messages during a complete flood as:

E f lood(N, ρ, r) = D(ρ, r)N (5)

4.5 Maintenance overhead

We study the impact of the network density over the maintenance overhead (number
of U pdateIn f omessages) in a dynamic network. We consider that 50% of the nodes
are mobile and they move according to a simplified version of the random waypoint
mobility model [9], that closely match the presented scenarios. At the beginning, nodes
are randomly placed on the simulation area and they stay there for a specified period of
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time. When the time expires, they choose a random destination and start moving toward
the destination with a constant speed of 1m/s (the speed of a walking person). Upon
arrival at the destination, nodes pause for 30 seconds before restarting the process. Due
to the initialization problems that characterize the random waypoint mobility model [5],
we discard the initial 1000 seconds of simulation time in each simulation trial and we
count the number ofU pdateIn f omessages for the next 1000 seconds.

Figure 6 shows the number of messages exchanged per node in 1000 seconds, as an
average over at least 50 simulations. We are mainly interested in the maintenance over-
head for dense networks. We recall from Section 4.3 that for dense networks, the large
majority of nodes are leaves. Moreover, the mobile nodes are mainly leaf nodes for our
simulation case, due to the fact that they have lower capability grades. Letv be a static
node in a dense network. A new child ofv is most probably a mobile leaf node, which
sends anU pdateIn f omessage containing information on adjacent clusters. However,
since the network is dense,v already has this information, so it does not forward the
message to its parent. Consequently, in dense networks, the information received from
a new neighbor node may not change the knowledge on adjacent clusters, so it does
not generate the additional overhead necessary for sparse networks. We can see from
Figure 6 that the average number of maintenance messages per node slowly decreases
after reading a certain network density.

4.6 Load per capability groups

We next investigate how the capability grades influence the energy consumption during
the maintenance and discovery phases. We sort the nodes in ascending order depending
on the capability grades and we group them in 10 classes such that the weakest nodes
belong to the first class and the most powerful nodes fit in the last class. Considering
that we have 100 nodes in the network, each capability group has 10 member nodes.
The first five groups of nodes are static, while nodes in the last groups are mobile.
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simulation time.

We are first interested in the distribution of maintenance overhead. In Figure 7 we
represent the number ofU pdateIn f omessages sent and received on average by a node
in 1000 simulation seconds, depending on the capability group it belongs. We notice
that the least overhead is experienced by the two weakest groups of stationary nodes,
most probably small sensors which are part of the static network. The mobile nodes,
have a higher maintenance overhead, due to frequent parent re-selections. The last two
groups of nodes have the highest overhead, since they represent the static powerful
nodes in the network.
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In the following, we are interested in the division of the discovery overhead among
the capability groups. During 1000 seconds of simulation time we issue 10 random
service requests, with a delay of 100 seconds. Figure 8 shows the number of service
discovery messagesS ervDiscsend and received on average by every node from a ca-
pability group during one service discovery phase. We notice that nodes with higher
capability grades spend more energy during discovery.
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5 Conclusions

This paper proposes a service discovery protocol for a heterogeneous wireless sensor
network environment. The protocol relies on a clustering structure, which is a solution
for the scalability problem as it achieves restricted reconfiguration, distributed knowl-
edge and it avoids network flooding. The clusters are set up depending on the available
resources and dynamics of nodes. The algorithm exploits the heterogeneous nature of
the network by assigning higher tree levels to more powerful nodes. The simulation
results show that the protocol performance degrades gracefully when increasing the
network density. Moreover, the protocol delegates more workload to powerful nodes
while relieving the mobile and stationary weak devices.

Our plan for the future is to avoid the possibility of overloading the root and parent
nodes with service registrations. The idea is that nodes that reach their memory limit
can decrease the capability grade. This dynamic adjustment of capabilities depending
on the context is expected to improve the resource-awareness and to provide even bet-
ter performance. Another research interest concerns directing the discovery messages
towards the most suitable adjacent cluster. For that, we plan to integrate location within
the service discovery protocol in order perform geographic routing at the cluster level.
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