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Abstract

A space-time discontinuous Galerkin finite element method for the compressible
Navier-Stokes equations is presented. We explain the space-time setting, derive the
weak formulation and discuss our choices for the numerical fluxes. The resulting
numerical method allows local grid adaptation as well as moving and deforming
boundaries, which we illustrate by computing the flow around a 3D delta wing on
an adapted mesh and by simulating the dynamic stall phenomenon of a 2D airfoil
in rapid pitch-up maneuver.
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1 Introduction

Many applications in fluid dynamics require the solution of the compressible
Navier-Stokes equations on a domain with time dependent boundaries. Ex-
amples are aero-elastic problems such as helicopter rotors in forward flight,
flaps and slats on wings and piston engines. The accurate solution of these
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problems frequently requires time-dependent moving and deforming meshes
and it is non-trivial to maintain a conservative and accurate scheme on this
type of meshes [16,21]. These issues have been the main motivation in [26,28]
to develop a space-time discontinuous Galerkin (DG) finite element method
for inviscid compressible flows. This algorithm combines the well known ben-
efits of the compact stencil of a DG method, such as optimal flexibility for
local mesh refinement, adjustment of the polynomial order in each element
(hp-adaptation) and excellent performance on parallel computers, with a fully
conservative arbitrary Lagrangian Eulerian (ALE) approach to deal with de-
forming meshes. The method has been demonstrated on a variety of aerody-
namic applications, including rotorcraft [8,27] and deforming wings [29].

The space-time DG method discussed in [26,28] has been limited so far to
inviscid compressible flows. In this article we aim at extending the space-time
DG formulation to the compressible Navier-Stokes equations, which signifi-
cantly extends its range of applications. The key feature of the space-time DG
method discussed in this article is that no distinction is made between space
and time variables and the discretization is directly performed in four dimen-
sional space. This provides optimal flexibility to deal with time dependent
boundaries and deforming elements and naturally results in a conservative
discretization, even on deforming, locally refined meshes with hanging nodes.
The space-time algorithm results in an implicit time-integration method which
is unconditionally stable and preserves accuracy also on non-smooth meshes.
A complete hp-error and stability analysis of the space-time DG discretization
for the linear advection-diffusion equation is given in [24].

Discontinuous Galerkin methods have recently received significant attention
and are applied to a wide range of hyperbolic and (incompletely) parabolic
problems. For a survey, see [1,10–12,14]. An important step towards a DG
discretization for the compressible Navier-Stokes equations was made by the
pioneering work of Bassi and Rebay [3] and in a different formulation by Bau-
mann and Oden [7]. These algorithms provide discretization techniques for
the diffusion operator and extend the DG formulation for hyperbolic equa-
tions developed by Cockburn and Shu (see [14] for a detailed survey) to
incompletely parabolic equations. Improvements to the original formulation
[3], which showed a weak instability, have been provided in [5] and analyzed
in [1,9]. Applications to the solution of the compressible Reynolds averaged
Navier-Stokes equations are discussed in [2,4,15,17]. A slightly different ap-
proach to deal with the diffusion operator has been proposed by Cockburn
and Shu [13] with the local discontinuous Galerkin method. Although the var-
ious DG formulations for the diffusion operator are quite different, there are
no major differences in terms of accuracy, computational cost and complexity
between the methods which proved to be consistent, adjoint consistent and
of optimal order in the analysis given in [1]. In this article we follow the ap-
proach of Brezzi [9] for the diffusion operator and include this technique in the
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space-time discretization for compressible flows which we presented in [26,28]
and to which we refer for details on the inviscid part of the algorithm.

The outline of this article is as follows. In Section 2 we first summarize the
equations of gas dynamics. Next, we discuss in Section 3 the space-time discon-
tinuous Galerkin discretization of the compressible Navier-Stokes equations.
We start with the definition of the geometry of the space-time domain and
discuss the necessary functional spaces and operators. This setting is used to
define the weak formulation and a crucial part is the discussion of the space-
time numerical fluxes. The proper definition of these fluxes allows the trans-
formation of the space-time formulation into an arbitrary Lagrangian Eulerian
formulation which combines well with upwind schemes based on approximate
Riemann solvers. In Section 4 we derive the non-linear algebraic equations
for the expansion coefficients of the solution in each element. In Section 5 we
demonstrate the method with several test cases and concluding remarks are
drawn in Section 6.

2 The compressible Navier-Stokes equations

The equations of motion considered in this article are the Navier-Stokes equa-
tions describing viscous compressible flows, which form a system of five coupled
equations expressing conservation of mass, momentum and energy. Using the
summation convention on repeated indices and the comma notation to denote
partial differentiation the compressible Navier-Stokes equations can be written
as:

U,t + F e
k (U),k − F v

k (U,∇U),k = 0, (1)

with the vector of conservative variables U ∈ R
5, the inviscid flux F e ∈ R

5×3

and the viscous flux F v ∈ R
5×3 given by:

U =




ρ

ρuj

ρE



, F e

k =




ρuk

ρujuk + pδjk

uk(ρE + p)



, F v

k =




0

τjk

τkjuj − qk



, (2)

with j, k = 1, 2, 3. The conservative variables are the density ρ, the momen-
tum density vector ρ~u and the total energy density ρE, with ~u the velocity
vector and E the total energy. The pressure is denoted by p and the symbol
δ represents the Kronecker delta function. The total stress tensor τ is defined
as:

τjk = λui,iδjk + µ(uj,k + uk,j) ,

3



with i = 1, 2, 3 and the dynamic viscosity coefficient µ given by Sutherland’s
law:

µ

µ∞

=
T∞ + TS

T + TS

(
T

T∞

)3/2

,

where T is the temperature, TS a constant and (·)∞ denotes free-stream val-
ues. The thermal diffusivity coefficient λ is related to µ following the Stokes
hypothesis: 3λ+ 2µ = 0. The heat flux vector ~q is defined as:

qk = −κT,k ,

with κ the thermal conductivity coefficient. For a calorically perfect gas, the
pressure p and internal energy e are given by the following equations of state:

p = ρRT, e = cvT,

where R = cp − cv is the specific gas constant and cp and cv the specific heats
at constant pressure and constant volume, respectively. Since the total energy
is the sum of the internal and kinetic energy:

E = e+ 1
2
uiui,

the pressure and temperature can be expressed in terms of the conservative
variables as:

p = (γ − 1)
(
ρE − 1

2
ρuiui

)
, T =

1

cv

(
E − 1

2
uiui

)
,

where γ = cp/cv is the ratio of specific heats. We are mainly interested in the
flow around aircraft and therefore use uniform flow as initial condition and
far-field boundary condition:

ρ = ρ∞, ~u = ~u∞, p = p∞.

At the solid surface we apply the isothermal no-slip boundary condition:

~u = 0, T = T∞.

We conclude this section by noticing that the viscous flux F v is homogeneous
with respect to the gradient of the conservative variables ∇U :

F v
ik(U,∇U) = Aikrs(U)Ur,s ,

with the homogeneity tensor A ∈ R
5×3×5×3 defined as:

Aikrs(U) :=
∂F v

ik(U,∇U)

∂(Ur,s)
,

with i, r = 1, . . . , 5 and k, s = 1, 2, 3, see Appendix A. This property plays
a crucial role in the derivation of the weak formulation of the compressible
Navier-Stokes equations.
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3 Space-time discontinuous Galerkin discretization

This section covers the space-time discontinuous Galerkin discretization of
the compressible Navier-Stokes equations. We first define the geometry of the
space-time domain, then the necessary functional spaces and operators and fin-
ish with the derivation of the primal formulation, while discussing our choices
for the numerical fluxes.

3.1 Geometry of the space-time domain

The space-time discontinuous Galerkin finite element method does not distin-
guish between space and time variables; instead the equations are considered
in an open domain E ⊂ R

4, where a point with position x̄ = (x1, x2, x3) at
time t = x0 has Cartesian coordinates (x0, x̄). At time t, the flow domain Ω(t)
is defined as Ω(t) := {x̄ ∈ R

3 : (t, x̄) ∈ E}. Let t0 and T be the initial and
final time of the evolution of the flow domain, then the space-time domain
boundary ∂E consists of the hypersurfaces Ω(t0) := {x ∈ E : x0 = t0},
Ω(T ) := {x ∈ E : x0 = T}, and Q := {x ∈ ∂E : t0 < x0 < T}.

First, consider the partitioning of the time interval [t0, T ] by an ordered series
of time levels t0 < t1 < · · · < T . The space-time domain E is divided into
Nt space-time slabs En = E ∩ In, with In = (tn, tn+1) the n-th time interval.
Each space-time slab En is bounded by Ω(tn), Ω(tn+1) and Qn = ∂En/(Ω(tn)∪
Ω(tn+1)).

Second, consider an approximation Ωh(tn) of Ω(tn) and divide Ωh(tn) into Nn

non-overlapping hexahedral spatial elements Kj(tn), where Ωh(t) → Ω(t) as
h → 0, with h the radius of the smallest sphere completely containing each
element Kj(tn). Similarly, Ωh(tn+1) approximates Ω(tn+1). Each element Kn

is related to the master element K̂ = (−1, 1)3 through the mapping F n
K:

F n
K : K̂ → Kn : ξ̄ 7→ x̄ =

8∑

i=1

xi(K
n)χi(ξ̄),

with xi the spatial coordinates of the vertices of the hexahedron Kn and χi the
usual tri-linear finite element shape functions for hexahedra. The space-time
elements Kn

j of En are constructed by connecting Kj(tn) with Kj(tn+1) using
linear interpolation in time, which results in the mapping GK from the master
element K̂ = (−1, 1)4 to the space-time element Kn:

Gn
K : K̂ → Kn : ξ 7→ (t, x̄) =

(
1
2
(1 − ξ0)F

n
K(ξ̄) + 1

2
(1 + ξ0)F

n+1
K (ξ̄),

1
2
(tn+1 + tn) + 1

2
(tn+1 − tn)ξ0

)
.
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The tessellation T n
h of the space-time slab En

h consists of all space-time ele-
ments Kn

j , thus the tessellation Th of the discrete flow domain Eh is simply

Th = ∪Nt−1
n=0 T n

h .

Finally, consider the element boundary ∂K which is the union of open faces
of Kn

j and consists of three parts: Kj(t
+
n ) = limε↓0Kj(tn + ε), Kj(t

−
n+1) =

limε↓0Kj(tn+1−ε) and Qn
j = ∂Kn

j /(Kj(t
+
n )∪Kj(t

−
n+1)). The space-time normal

vector at an element boundary point moving with velocity ~v is given by:

n =





(1, 0, 0, 0) at K(t−n+1),

(−1, 0, 0, 0) at K(t+n ),

(−vkn̄k, n̄) at Qn.

(3)

It is often convenient to consider the faces separately instead of the whole ele-
ment boundary. Therefore, in addition to the previously defined faces Kj(t

+
n )

and Kj(t
−
n+1), we also define interior and boundary faces as follows. A face S

is an interior face if it is shared by two neighboring elements Kn
i and Kn

j , such
that S = Qn

i ∩Qn
j , and a boundary face if S = ∂En∩Qn

j . The set of all interior
faces in time slab In is denoted by Sn

I , the set of all boundary faces by Sn
B,

and the total set of faces by Sn
I,B = Sn

I ∪ Sn
B.

3.2 Functional spaces and operators

Each element K of the tessellation Th is an image of the master element K̂:
K = GK(K̂), where K̂ = (−1, 1)4 is the open unit hypercube in R

4. The finite
element space associated with the tessellation Th is given by:

Wh =
{
W ∈ (L2(Eh))

5 : W |K ◦GK ∈ (P k(K̂))5, ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh and P k(K̂)
denotes the space of polynomials of degree at most k in element K̂. We will
also use the following space:

Vh =
{
V ∈ (L2(Eh))

5×3 : V |K ◦GK ∈ (P k(K̂))5×3, ∀K ∈ Th

}
.

Note that ∇hWh ⊂ Vh, where the broken gradient ∇h of Wh is defined as
(∇hWh)|K = ∇(Wh|K). This relation between the functional spaces is essential
for the discretization.

The trace of a function f ∈ Wh at the element boundary ∂KL is defined as:

fL = lim
ε↓0

f(x− εnL),
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with nL the unit outward space-time normal at ∂KL. We will also use the
notation n̄L when only the space components of the outward normal vector are
considered. Because of the discontinuous function approximation, a function
f in Wh and Vh can have a double-valued trace at the element boundaries ∂K.
The traces of the function f at an internal face S = K̄L ∩ K̄R are denoted
by fL and fR, respectively. The jump of f at an internal face S ∈ Sn

I in the
space direction k of a Cartesian coordinate system is defined as:

[[f ]]k = fLn̄L
k + fRn̄R

k . (4)

Furthermore, we define the average of f at S ∈ Sn
I as:

{{f}} = 1
2
(fL + fR). (5)

The jumps and averages are not needed at faces other than internal faces.
Note that the jump operator satisfies the following product rule at S ∈ Sn

I for
f ∈ Vh and g ∈ Wh:

[[gifik]]k = {{gi}}[[fik]]k + [[gi]]k{{fik}}, (6)

which can be verified by straightforward substitution of (4) and (5) into (6).
We will also use the following relation for the element boundary integrals
which occur in the weak formulation:

∑

K∈T n
h

∫

Q
gL

i f
L
ikn̄

L
k dQ =

∑

S∈Sn
I

∫

S
[[gifik]]k dS +

∑

S∈Sn
B

∫

S
gL

i f
L
ikn̄

L
k dS. (7)

To verify this relation, note that in the sum over all element boundary inte-
grals, the internal faces are counted twice. Therefore, when summing over the
internal faces, the contributions from the left and the right must be counted,
which is done by taking the jump .

3.3 Flux formulation in Arbitrary Lagrangian Eulerian context

Now that the space-time context is well defined, we proceed by expressing the
compressible Navier-Stokes equations in the domain E ⊂ R

4 as:





Ui,0 + F e
ik,k −

(
AikrsUr,s

)
,k

= 0 on E,

U = U0 on Ω(t0),

U = B(U, U b) on Q,

for i, r = 1, . . . , 5 and k, s = 1, . . . , 3. The initial flow field is denoted by
U0 : Ω(t0) → R

5, with U0 derived from the initial condition described in Sec. 2.
The boundary operator is denoted by B : R

5×5 → R
5 and is a function of the

7



internal data U and the boundary data U b derived from the boundary condi-
tions in Sec. 2. At the far-field boundary, suitable in- and out-flow conditions
can be derived using local characteristics. The main idea is that characteristic
variables of incoming characteristics are set equal to their free-stream values,
while the other variables are extrapolated from within the flow domain, see
for example [19]. At solid surfaces, the isothermal no-slip boundary condition
is applied.

Following the framework described in [1], we write the compressible Navier-
Stokes equations as a first-order system by introducing the auxiliary variable
Θ(U):

Ui,0 + F e
ik,k − Θik,k = 0, (8a)

Θik − AikrsUr,s = 0. (8b)

The flux formulation of (8a) is obtained after multiplying by a test function
W ∈ Wh, integrating by parts in space-time over an element K ∈ Th and
summing over all elements of the tessellation:

−
∑

K∈Th

∫

K

(
Wi,0Ui +Wi,k(F

e
ik − Θik)

)
dK

+
∑

K∈Th

∫

∂K

(
WL

i Ûin
L
0 + (F̂ e

ik − Θ̂ik)n̄
L
k

)
d(∂K) = 0,

(9)

where nL is the outward normal vector at ∂K. At the element boundaries, U
can be double-valued due to the discontinuous function approximation in each
element. Therefore, in order to uniquely define the element boundary integrals
and provide a coupling between neighboring elements, we introduce numerical

fluxes (̂·) which depend on both the left and right trace of U at the element
boundary. The numerical fluxes will be defined later on.

The auxiliary variable Θ is only needed as an intermediate step in the deriva-
tion of the discretization and will be eliminated as we go from the flux for-
mulation to the primal formulation, which is expressed solely in terms of the
primary unknowns U .

But first we turn to the Arbitrary Lagrangian Eulerian (ALE) context in order
to accommodate moving and deforming meshes. The flux formulation in ALE
context is obtained following the approach described in Van der Vegt and Van
der Ven [26]. Using the definition (3) of the space-time normal vector, the
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boundary integral in (9) becomes:

∑

K∈Th

∫

∂K
WL

i (Ûi + F̂ e
ik − Θ̂ik)n

L
k d(∂K)

=
∑

K∈Th

( ∫

K(t−n+1
)
WL

i Ûi dK −
∫

K(t+n )
WL

i Ûi dK
)

+
∑

K∈Th

∫

Q
WL

i (F̂ e
ik − Ûivk − Θ̂ik)n̄

L
k dQ.

The numerical flux Û at the faces K(t+n ) and K(t−n+1) is defined as an upwind
flux to ensure causality in time:

Û =




UL at K(t−n+1),

UR at K(t+n ).

With this numerical flux, the flux formulation in each space-time slab only
depends on the previous space-time slab, therefore the summation over the
space-time slabs can be dropped and the ALE flux formulation of (8a) be-
comes:

−
∑

K∈T n
h

∫

K

(
Wi,0Ui +Wi,k(F

e
ik − Θik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−
n+1

)
WL

i U
L
i dK −

∫

K(t+n )
WL

i U
R
i dK

)

+
∑

K∈T n
h

∫

Q
WL

i (F̂ e
ik − vkÛi − Θ̂ik)n̄

L
k dQ = 0.

(10)

3.4 The auxiliary variable

The mixed formulation (8) has the disadvantage that both U and Θ have
to be stored and solved during a computation. Fortunately, it is possible to
eliminate the auxiliary variable using a weak expression for Θ in terms of the
primary unknowns U , so only U has to be stored. To derive this expression,
we multiply (8b) by a test function V ∈ Vh, integrate by parts in space (twice)
over an element K ∈ Th and sum over all elements of the tessellation:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
VikAikrsUr,s dK

+
∑

K∈T n
h

∫

Q
V L

ikA
L
ikrs(Ûr − UL

r )n̄L
s dQ,

(11)

where we introduced the numerical flux Û after the first integration by parts.
In this case, the numerical flux does not have a time contribution because we
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only integrated in space. Instead of using integrals over the element boundary
Q, it is more convenient to use integrals over the element faces S. We therefore
apply relation (7) to the element boundary integral of equation (11):

∑

K∈T n
h

∫

Q
V L

ikA
L
ikrs(Ûr − UL

r )n̄L
s dQ =

∑

S∈Sn
I

∫

S
[[VikAikrs(Ûr − Ur)]]s dS

+
∑

S∈Sn
B

∫

S
V L

ikA
L
ikrs(Ûr − UL

r )n̄L
s dS.

Now that we explicitly distinguish between internal and boundary faces, we
can follow the approach by Bassi and Rebay [3–5] and define the numerical
flux as:

Û =




{{U}} at Sn

I ,

U b at Sn
B.

With this choice for the numerical flux at the internal faces and using relation
(6) we obtain: [[VikAikrs(Ûr − Ur)]]s = −{{VikAikrs}}[[Ur]]s, which leads to the
following expression for the auxiliary variable:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
VikAikrsUr,s dK −

∑

S∈Sn
I

∫

S
{{VikAikrs}}[[Ur]]s dS

−
∑

S∈Sn
B

∫

S
V L

ikA
L
ikrs(U

L
r − U b

r )n̄
L
s dS.

In order to obtain an explicit expression for the auxiliary variable, we need to
define a global lifting operator. The global lifting operator R ∈ R

5×3 is defined
in a weak sense as: Find an R ∈ Vh, such that for all V ∈ Vh:

∑

K∈T n
h

∫

K
VikRik dK =

∑

S∈Sn
I

∫

S
{{VikAikrs}}[[Ur]]s dS

+
∑

S∈Sn
B

∫

S
V L

ikA
L
ikrs(U

L
r − U b

r )n̄
L
s dS.

(12)

More details on the lifting operator are given in Section 4. According to this
definition, the face integrals in the expression for Θ can now be written as
element integrals, leading to the weak expression of the auxiliary variable:

∑

K∈T n
h

∫

K
VikΘik dK =

∑

K∈T n
h

∫

K
Vik(AikrsUr,s −Rik) dK, ∀V ∈ Vh. (13)

In other words, Θik = AikrsUr,s − Rik almost everywhere in En
h . The lifting

operator R effectively penalizes the jumps at the faces. For smooth solutions
R = 0.
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3.5 Primal formulation

The primal formulation can be obtained using the expression (13) for the
auxiliary variable Θ. Since ∇hWh ⊂ Vh, the special case Vik = Wi,k can be
considered in (13), and the auxiliary variable Θ can be replaced in the element
integral of (10):

∑

K∈T n
h

∫

K
Wi,kΘik dK =

∑

K∈T n
h

∫

K
Wi,k(AikrsUr,s −Rik) dK.

Now, only the numerical fluxes F̂ e and Θ̂ remain to be chosen. We therefore
consider the element boundary integrals of (10) and use relation (7) to get the
element face integrals:

∑

K∈T n
h

∫

Q
WL

i (F̂ e
ik − vkÛi − Θ̂ik)n̄

L
k dQ

=
∑

S∈Sn
I

∫

S
[[Wi(F̂

e
ik − vkÛi − Θ̂ik)]]k dS +

∑

S∈Sn
B

∫

S
WL

i (F̂ e
ik − vkÛi − Θ̂ik) dS.

The inviscid numerical flux F̂ e is based on the HLLC approximate Riemann
solver [6,25,26], because of its computational efficiency, accuracy and straight-
forward implementation. The HLLC flux is consistent and conservative and
is obtained by interpreting the discontinuity between UL and UR at a face S
as a local Riemann problem, which is solved approximately while taking into
account the grid velocity ~v. Following [26] and using the fact that nR = −nL,
we have:

[[Wi(F̂
e
ik − vkÛi)]]k = (WL

i −WR
i )Hi

with H = H(UL, UR, v, n̄L) the HLLC flux. At a face moving with velocity v,
the HLLC flux is given by:

Hi = 1
2

(
(F e

ik)
Ln̄L

k − (F e
ik)

Rn̄R
k

)

+ 1
2

(
(|SM − v| − |SL − v|)UL

i∗ − (v − |SL − v|)UL
i

)

+ 1
2

(
(|SR − v| − |SM − v|)UR

i∗ − (v + |SR − v|)UR
i

)
,

with (F e)L,R = F e(UL,R). The intermediate states UL
∗ and UR

∗ are given by:

UL,R
∗ =

SL,R − qL,R

SL,R − SM
UL,R +

1

SL,R − SM




0

(p∗ − pL,R)n̄k

p∗S
M − pL,RqL,R



,

with q = n̄kuk the normal velocity and p∗ the intermediate pressure:

p∗ = ρL(SL − qL)(SM − qL) + pL = ρR(SR − qR)(SM − qR) + pR.
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The middle wave speed is defined as:

SM =
ρRqR(SR − qR) − pR − ρLqL(SL − qL) + pL

ρR(SR − qR) − ρL(SL − qL)
,

and the left and right wave speeds as:

SL = min{qL − aL, qR − aR}, SR = max{qL + aL, qR + aR},

with a =
√
γp/ρ the speed of sound. At the boundary faces, we use H b =

H(UL, U b, v, n̄L).

The numerical flux Θ̂ is defined following Brezzi [9] as a central flux Θ̂ = {{Θ}},
using the weak expression (13) for the auxiliary variable. This is a suitable
choice as viscosity does not have a preferred direction. The numerical flux can
thus be written as:

Θ̂ik(U
L, UR) =




{{AikrsUr,s − ηRS

ik}} for S ∈ Sn
I ,

Ab
ikrsU

b
r,s − ηRS

ik for S ∈ Sn
B,

where η is a stabilization constant and Ab = A(U b) and U b
r,s denotes the deriva-

tives of U at the boundary. The local lifting operator RS is an approximation
of the global lifting operator R and is preferable because it reduces the width
of the stencil to the minimum, see [9]. The local lifting operator RS ∈ R

5×3 is
defined as follows: Find an RS ∈ Vh, such that for all V ∈ Vh:

∑

K∈T n
h

∫

K
VikRS

ik dK =





∫

S
{{VikAikrs}}[[Ur]]s dS for S ∈ SI ,

∫

S
V L

ikA
L
ikrs(U

L
r − U b

r )n̄s dS for S ∈ SB.
(14)

With these numerical fluxes the space-time weak formulation of the com-
pressible Navier-Stokes equations in terms of the primary unknown U can be
written as follows: Find a U ∈ Wh, such that for all W ∈ Wh:

−
∑

K∈T n
h

∫

K

(
Wi,0Ui +Wi,k(F

e
ik − AikrsUr,s + Rik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1
)
WiU

L
i dK −

∫

K(t+n )
WiU

R
i dK

)

+
∑

S∈Sn
I

∫

S
(WL

i −WR
i )Hi dS +

∑

S∈Sn
B

∫

S
WL

i H
b
i dS

−
∑

S∈Sn
I

∫

S
[[Wi]]k{{AikrsUr,s − ηRS

ik}} dS

−
∑

S∈Sn
B

∫

S
WL

i

(
Ab

ikrsU
b
r,s − ηRS

ik

)
n̄L

k dS = 0,

(15)
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where we used the relation [[WiΘ̂ik]]k = [[Wi]]kΘ̂ik, which follows from the
viscous numerical flux being conservative: Θ̂(UL, UR) = Θ̂(UR, UL).

Discontinuous Galerkin methods are known to suffer from numerical oscilla-
tions around shocks and sharp gradients. This problem can be overcome using
a slope limiter (see for example [12]), but we prefer the artificial dissipation
proposed in [26] as it allows convergence to steady-state up to machine pre-
cision. We refer to [26] for a detailed description of the artificial dissipation
operator.

4 Algebraic system

In this section, the space-time discretization of the compressible Navier-Stokes
equations is completed by defining the basis functions, computing the local
lifting operator and constructing the system of algebraic equations.

4.1 Basis functions

We use polynomials of degree k to represent the trial function U and the test
function W in each element K ∈ T n

h :

U(t, x̄)|K = Ûmψm(t, x̄),

W (t, x̄)|K = Ŵlψl(t, x̄),

with (̂·) the expansion coefficients and ψ the basis functions. The basis func-
tions are defined such that the test and trial functions are split into an element
mean at time tn+1 and a fluctuating part. This construction facilitates the def-
inition of the artificial dissipation operator and of the multigrid convergence
acceleration method [26]. The basis functions ψ are given by:

ψm = φm(t, x̄) − 1

|Kj(t
−
n+1)|

∫

Kj(t
−

n+1
)
φm(t, x̄) dK,

where the functions φ in an element K are related to the basis functions φ̂ on
the master element K̂ through the mapping G:

φm = φ̂m ◦G−1
K with φ̂m(ξ) ∈ P k(K̂),

where ξ are the local coordinates in the master element K̂ defined in Sec. 3.
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4.2 Lifting operators

The global and local lifting operators contained in the primal formulation (15)
must be computed first in order to obtain the system of algebraic equations
for the expansion coefficients Û of the trial function U . The volume integral
containing the global lifting operator can simply be replaced by face integrals
using its definition (12):

∑

K∈T n
h

∫

K
Wi,kRik dK =

∑

S∈Sn
I

∫

S
{{Wi,kAikrs}}[[Ur]]s dS

+
∑

S∈Sn
B

∫

S
WL

i,kA
L
ikrs(U

L
r − U b

r )n̄
L
s dS.

These face integrals can be directly computed by replacing the test and trial
functions by their polynomial expansions. The local lifting operator, however,
cannot be computed directly. Like the test and trial functions, it is represented
by a linear polynomial:

RS(t, x̄)|K = R̂jψj(t, x̄),

and a small linear system must be solved for the expansion coefficients R̂j. The
linear system follows from the definition of the local lifting operator (14). By
this definition, the local lifting operator is only non-zero on the two elements
KL and KR connected to the face S ∈ Sn

I , hence:

∫

KR
VikRS

ik dK +
∫

KL
VikRS

ik dK =
∫

S
{{VikAikrs}}[[Ur]]s dS.

Since V is an arbitrary test function, this is equivalent with the two following
equations: ∫

KL,R
VikRS

ik dK = 1
2

∫

S
V L,R

ik AL,R
ikrs[[Ur]]s dS,

where the superscript L,R refers to the traces from either the left or right
element. Replacing RS by its polynomial approximation leads to two systems
of linear equations for the expansion coefficients R̂ikj of RS

ik on S ∈ SI :

R̂L,R
ikj

∫

KL,R
ψlψj dK = 1

2

∫

S
ψL,R

l AL,R
ikrs[[Ur]]s dS.

The element mass matrices on the l.h.s. are denoted by ML,R
lj and can easily

be inverted leading to following expression for the expansion coefficients of the
local lifting operator on S ∈ SI :

R̂L,R
ikj = 1

2
(M−1)L,R

jl

∫

S
ψL,R

l AL,R
ikrs[[Ur]]s dS. (16)
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Similarly, the expression for the expansion coefficients of the local lifting op-
erator for the faces S ∈ SB is:

R̂L
ikj = (M−1)L

jl

∫

S
ψL

l A
L
ikrs(U

L
r − U b

r )n̄
L
s dS. (17)

Note that the mass matrices M only have to be inverted once per element in
each space-time slab, after which the local lifting operator can be computed
as a small matrix-vector multiplication.

4.3 Equations for the expansion coefficients of the flow field

The system of algebraic equations for the expansion coefficients Û of the trial
function U is obtained by replacing U and the test function W in (15) by their
polynomial expansions. We distinguish between the inviscid and viscous part:

Le(Ûn, Ûn−1) + Lv(Ûn) = 0.

The term Le corresponds to the inviscid part of the residuals and is defined
as:

Le
il = −

∑

K∈T n
h

(
Ail +Bil

)
+

∑

K∈T n
h

Cil +
∑

S∈Sn
I,B

Eil,

with i = 1, . . . , 5 the equation number, l = 0, . . . , 4, the index of the expansion
coefficients and the terms A, B, C and E defined as:

Ail =
∫

K
ψl,0Ui dK, (18)

Bil =
∫

K
ψl,kF

e
ik dK, (19)

Cil =
∫

K(t−
n−1

)
ψL

l U
L
i dK −

∫

K(t+n )
ψL

l U
R
i dK, (20)

Eil =





∫

S
(ψL

l − ψR
l )Hi dS for S ∈ SI ,

∫

S
ψL

l H
b
i dS for S ∈ SB,

(21)

with F e
ik = F e

ik(U) the Euler flux and Hi = Hi(U
L, UR, v, n̄L) the HLLC flux.

The term Lv corresponds to the viscous part of the residual and is defined as:

Lv
il =

∑

K∈T n
h

Dil +
∑

S∈Sn
I,B

(
− Fil −Gil +Hil

)
,
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with

Dil =
∫

K
ψl,kAikrsUr,s dK, (22)

Fil =





∫

S
{{ψl,kAikrs}}[[Ur]]s dS for S ∈ SI ,

∫

S
ψL

l,kA
L
ikrs(U

L
r − U b

r )n̄
L
s dS for S ∈ SB,

(23)

Gil =





∫

S
[[ψl]]k{{AikrsUr,s}} dS for S ∈ SI ,

∫

S
ψL

l (Ab
ikrsU

b
r,s)n̄

L
k dS for S ∈ SB,

(24)

Hil =





η
∫

S
[[ψl]]k{{RS

ik}} dS for S ∈ SI ,

η
∫

S
ψL

l RS
ikn̄

L
k dS for S ∈ SB,

(25)

with RS
ik = RS

ik(U) the local lifting operator and Aikrs = Aikrs(U) the homo-
geneity tensor.

Thus, the space-time discontinuous Galerkin discretization of the compressible
Navier-Stokes equations results in a system of coupled non-linear equations for
the expansion coefficients, which is solved by adding a pseudo-time derivative:

∂Ûn

∂τ
= − 1

∆t

(
Le(Ûn, Ûn−1) + Lv(Ûn)

)
,

and integrating to steady-state in pseudo-time. For more details on the pseudo-
time stepping method we refer to [18]. Computing the viscous part Lv of the
residual takes roughly twice the CPU time needed for the inviscid part Le,
see Table 1. The stabilization term (25) is by far the most expensive as it
requires the expansion coefficients of the local lifting operator, which must be
computed first using (16) and (17).

5 Numerical results

The space-time discontinuous Galerkin method for the compressible Navier-
Stokes equations is implemented in the NLR program hexadap and, in this
section, numerical results are presented. We consider a model problem of
two-dimensional laminar dynamic stall and the three-dimensional vortex flow
around a delta wing.
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5.1 Laminar dynamic stall of NACA0012 airfoil

We consider the laminar flow over a NACA0012 airfoil in rapid pitch-up ma-
neuver, comparable to the situation described in [22] and [30]. The flow is
characterized by a complex interaction of an unsteady leading-edge vortex,
shear layer vortices and trailing edge vortex, resulting in the detachment of
the leading edge vortex: the dynamic stall phenomenon. The complexity of
the unsteady flow and the significant grid movement make this a challeng-
ing test case for the space-time discretization of the Navier-Stokes equations,
where the deforming elements in the neighborhood of the moving airfoil are
accommodated with the deformation algorithm proposed in [26].

In this case, the far-field Reynolds number is Re∞ = 104 and the Mach number
M∞ = 0.2, based on a non-dimensionalization with the reference length c of
the airfoil, the free-stream speed of sound a∞, density ρ∞ and temperature
T∞. The pitch axis is situated at 25% from the leading edge and the airfoil
rotates in such a way that the angle of attack α evolves as follows:

α(t) = a + bt− a exp(−ct). (26)

The coefficients are a = −1.2455604, b = 2.2918312, c = 1.84 and the time t
ranges from 0 to 25. With these coefficients, the movement of the airfoil is the
same as the movement of the NACA0015 used in [30]. At time t = 0, both
α = 0 and dα/dt = 0 and, after a short transition, the movement becomes
mainly linear. The basis functions in the discretization are linear and the
stabilization constant is η = 5.

Since the flow is still laminar, the boundary layer thickness is estimated as
b ≈ 5/

√
Re and the computational mesh should be fine enough to accurately

represent this layer. In this case, b ≈ 0.05 and we use a C-type grid with
112 × 38 elements which results in 14 elements in this boundary layer. The
physical time step is ∆t = 0.005 and at each step the mesh moves and deforms
according to the motion of the airfoil prescribed by (26), see Figures 3, 4 and 5
for the details of the mesh at a 50◦ angle of attack. At this point, the mesh lines
are no longer perpendicular to the airfoil geometry and are sharply bend near
the trailing edge. Yet, even on this mesh of reduced quality, the space-time
discontinuous Galerkin method still performs well as can be seen in Figures 6,
7 and 8 which show the streamlines at angles of attack α = 30◦, 40◦ and 50◦,
respectively. The sudden drop in lift and increase in drag associated with the
detachment of the leading edge vortex (between α = 40◦ and 50◦) can clearly
be seen in Figure 9, where we show the lift and drag coefficients as a function
of the angle of attack.

We conclude therefore that the space-time discontinuous Galerkin method
combined with grid movement and deformation has significant potential to
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simulate the complex flow phenomenon which occur in dynamic stall situa-
tions.

5.2 3D Delta wing with mesh adaptation

To test the performance of the space-time method with local mesh adaptation
in a 3D situation, we consider the steady state flow around the 85◦ delta wing
used in the experiments by Riley and Lowson [23], see Figure 10 for details
on the geometry. The flow is symmetric with, along both sides of the wing,
a large steady vortex and two secondary vortices, see for example the similar
situation in [23].

We consider the case with far-field Reynolds number Re∞ = 4 · 104, Mach
number M∞ = 0.3 and angle of attack α = 12.5◦. The non-dimensionalization
is similar to the dynamic stall case. We compute the solution on a coarse
mesh with 208 896 elements and on a fine mesh with 1 671 168 elements. The
basis functions are linear and the stabilization constant is η = 7. Figure 11
shows the streamlines and the vorticity in several cross sections of the flow
field computed on the fine mesh. The two main vortices are clearly visible as
well as the secondary vortices near the edges of the wing, see also Figure 12
for the streamlines in cross sections x/c = 0.6.

In the local mesh adaptation procedure, we start with the solution on the
coarse mesh, then refine the mesh in the regions with the highest vorticity,
thereby increasing the number of elements by 10%. Then we compute the
solution on the adapted mesh and repeat the same procedure until the mesh
has been adapted three times. The final adapted mesh has 286 416 elements,
see Figure 13 for an impression of the 3D adaptation. Note that the refinement
mainly takes place in the stream-wise direction.

The effect of vorticity driven mesh adaptation is shown by comparing the
pressure coefficient and the helicity (u · ω with w the vorticity) obtained on
the coarse and adapted mesh with those on the fine mesh. Figures 14 and 15
show the pressure coefficient Cp on the delta wing at cross sections x/c = 0.3
and x/c = 0.6 respectively. In these figures, we also show the Cp computed
with the NLR finite volume code ensolv [20] on the fine mesh and found some
small differences. For instance, the suction peak with hexadap on the coarse
and adapted mesh is higher than the one on the fine mesh and the one obtained
with ensolv. Also, the sharp edge at the bottom of the wing induces a small
oscillation in Cp with hexadap on the coarse and adapted mesh, while the
fine mesh results of both hexadap and ensolv are smoother. We conclude
that the pressure coefficient is not very sensitive to the mesh quality, even the
coarse mesh gives reasonable results.
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The helicity, however, is much more sensitive to the mesh quality as can be
seen in Figures 16 and 17 where we show the mesh and helicity contours in
cross sections x/c = 0.9 and x/c = 1.1, respectively. At x/c = 0.9, the results
on the coarse mesh are rather poor, while the results on the adapted mesh
are much closer to those on the fine mesh. Downstream of the delta wing
(x/c = 1.1), the advantage of grid adaptation is even clearer: on the coarse
grid the details in the helicity are almost lost, while on the adapted grid the
helicity still strongly resembles the one on fine mesh. Since the adapted mesh
has five times less elements than the fine grid, the computational cost is much
lower.

This demonstrates that a solution adaptive space-time method can result in
significant cost savings when applied to vortex dominated viscous flows.

6 Discussion and conclusions

In this article, we presented a space-time discontinuous Galerkin method for
the compressible Navier-Stokes equations aimed at the accurate solution of
time dependent problems on moving and deforming grids. The method does
not distinguish between space and time, thereby providing optimal flexibil-
ity to accomodate time-dependent boundaries and element deformation. We
have discussed our choices for the space-time numerical fluxes and empha-
sized the treatment of the viscous part of the Navier-Stokes equations needed
to maintain locality of the stencil and optimal order of accuracy.

The method was implemented in the NLR program hexadap, parallelized
using OpenMP and typically runs at 6.4 Gflops/s on 8 processors of an SGI
Altix supercomputer. This method accurately handles complex aerodynamic
problems, which we demonstrated by computing the flow around a 3D delta
wing and around a 2D NACA0012 airfoil in rapid pitch-up maneuver. We
found that the results for the 3D delta wing on a coarse adapted mesh are
comparable with those on a (costly) fine mesh. The method remains accurate
even in the case of significant mesh movement and deformation as required by
the NACA0012 airfoil in rapid pitch-up maneuver.
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A The homogeneity tensor

The elements of the homogeneity tensor (Aikrs) are calculated by applying the
definition:

Aikrs(U) :=
∂F v

ik(U, ∇̄U)

∂(Ur,s)
,

for i, r = 1, . . . , 5 and k, s = 1, . . . , 3 and by using the Stokes hypothesis
3λ+2µ = 0 to eliminate λ. For clarity’s sake, the elements are grouped in the
following matrices:

A11 := A|k=1
s=1, A12 := A|k=1

s=2, A13 := A|k=1
s=3,

A21 := A|k=2
s=1, A22 := A|k=2

s=2, A23 := A|k=2
s=3,

A31 := A|k=3
s=1, A32 := A|k=3

s=2, A33 := A|k=3
s=3.

which are given by:

A11 =
1

ρ




0 0 0 0 0

−4
3
µu1

4
3
µ 0 0 0

−µu2 0 µ 0 0

−µu3 0 0 µ 0

A5111 (4
3
µ− κ

cv
)u1 (µ− κ

cv
)u2 (µ− κ

cv
)u3

κ
cv




,

with
A5111 = −1

3
µu2

1 − µ‖~u‖2 − κ
cv

(E − ‖~u‖2),

A12 =
1

ρ




0 0 0 0 0

2
3
µu2 0 −2

3
µ 0 0

−µu1 µ 0 0 0

0 0 0 0 0

−1
3
µu1u2 µu2 −2

3
µu1 0 0




,

A13 =
1

ρ




0 0 0 0 0

2
3
µu3 0 0 −2

3
µ 0

0 0 0 0 0

−µu1 µ 0 0 0

−1
3
µu1u3 µu3 0 −2

3
µu1 0




,
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A21 =
1

ρ




0 0 0 0 0

−µu2 0 µ 0 0

2
3
µu1 −2

3
µ 0 0 0

0 0 0 0 0

−1
3
µu1u2 −2

3
µu2 µu1 0 0




,

A22 =
1

ρ




0 0 0 0 0

−µu1 µ 0 0 0

−4
3
µu2 0 4

3
µ 0 0

−µu3 0 0 µ 0

A5212 (µ− κ
cv

)u1 (4
3
µ− κ

cv
)u2 (µ− κ

cv
)u3

κ
cv




,

with

A5212 = −1
3
u2

2 − µ‖~u‖2 − κ
cv

(E − ‖~u‖2),

A23 =
1

ρ




0 0 0 0 0

0 0 0 0 0

2
3
µu3 0 0 −2

3
µ 0

−µu2 0 µ 0 0

−1
3
µu2u3 0 µu3 −2

3
µu2 0




,

A31 =
1

ρ




0 0 0 0 0

−µu3 0 0 µ 0

0 0 0 0 0

2
3
µu1 −2

3
µ 0 0 0

−1
3
µu1u3 −2

3
µu3 0 µu1 0




,
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A32 =
1

ρ




0 0 0 0 0

0 0 0 0 0

−µu3 0 0 µ 0

2
3
µu2 0 −2

3
µ 0 0

−1
3
µu2u3 0 −2

3
µu3 µu2 0




,

A33 =
1

ρ




0 0 0 0 0

−µu1 µ 0 0 0

−µu2 0 µ 0 0

−4
3
µu3 0 0 4

3
µ 0

A5313 (µ− κ
cv

)u1 (µ− κ
cv

)u2 (4
3
µ− κ

cv
)u3

κ
cv




,

with
A5313 = −1

3
µu2

3 − µ‖~u‖2 − κ
cv

(E − ‖~u‖2).
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Fig. 3. Overview of the mesh deformation in the dynamic stall case (α = 50◦).
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Fig. 4. Detail of the mesh deformation near the leading edge in the dynamic stall
case (α = 50◦).
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Fig. 5. Detail of the mesh deformation near the trailing edge in the dynamic stall
case (α = 50◦).
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Fig. 6. Streamlines in the dynamic stall case for α = 30◦.
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Fig. 7. Streamlines in the dynamic stall case when α = 40◦.
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Fig. 8. Streamlines in the dynamic stall case when α = 50◦.
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Fig. 11. Streamlines and vorticity in several cross sections of the delta wing.

35



Fig. 12. Streamlines around the delta wing (cross section x/c = 0.6).
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Fig. 13. Impression of the vorticity based mesh adaptation.
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Fig. 14. Pressure coefficient Cp at cross section x/c = 0.3 of the delta wing.
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Fig. 16. Grid and helicity isolines at cross section x/c = 0.9 for the coarse, adapted
and fine mesh. The helicity ranges from −5 to 2 with step size 0.2, the negative part
being represented with solid lines, the positive part with dashed lines.
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Fig. 17. Grid and helicity isolines at cross section x/c = 1.1 for the coarse, adapted
and fine mesh. The helicity ranges from −5 to 2 with step size 0.2, the negative part
being represented with solid lines, the positive part with dashed lines.
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Table 1
Relative computational effort.

Equation notation CPU time

Time flux (18) Ail 1.7 %

(20) Cil 1.8 %

Euler flux (19) Bil 4 %

(21) Eil 25 %

Viscous flux (22) Dil 10 %

(23) Fil 10 %

(24) Gil 7 %

(25) Hil 40.5 %
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