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Abstract: We obtain a decomposition result for the steady state queue length distribution in egal-
itarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with K customer
classes, we show that the marginal queue length distribution for class k factorizes over the number of
other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue
for type k in isolation, in which the customers of the other types reside permanently in the system.
Similarly, the (conditional) mean sojourn time for class k can be obtained by conditioning on the
number of permanent customers of the other types. The decomposition result implies linear relations
between the marginal queue length probabilities, which also hold for other PS models such as the
egalitarian processor-sharing models with state-dependent system capacity that only depends on the
total number of customers in the system. Based on the exact decomposition result for egalitarian PS
queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and
numerically show that the approximation is accurate for moderate differences in service weights.

Keywords: Processor-sharing queues, queue length, decomposition, permanent customers, approx-
imation, discriminatory processor-sharing.
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1 Introduction

The processor-sharing (PS) service discipline is of considerable interest in many application areas in
which different users receive a share of a scarce common system resource. In particular, in the field
of the performance evaluation of computer and communication systems, the PS discipline has been
widely adopted as a convenient paradigm for modelling bandwidth sharing.

Kleinrock [13] introduced the simplest and best known egalitarian PS discipline, in which a single
server assigns each customer a fraction 1/n of the service capacity when there are n customers in the
system. In particular, he showed that the mean sojourn time conditional on the service requirement
x > 0 is proportional to x. For an extensive body of literature on (egalitarian) PS queues, we refer
to Yashkov’s survey papers [18, 19] and references therein.

Cohen [8] generalized the standard PS model into a PS model in which each customer receives
a service rate according to an arbitrary positive function ¢(n). By appropriate choice of ¢(n) this
model describes a very wide class of service disciplines, and this model significantly enhances the



modelling capabilities of the standard PS model. In many practical applications it models the main
factors determining the performance, while on the other hand, it is simple enough to be analytically
tractable, see e.g. [4, 15].

Another generalization of PS is the discriminatory processor-sharing (DPS) discipline, where a
customer of type k receives service rate wy/ Z]K:1 wjnj, according to the set of weights {w; : j =
1,..., K}, and when n; customers of type j are present in the system. If all weights w; are equal,
then we have the ordinary PS queue. Under DPS it is possible to give preferential treatment (non-
preemptive) to one or more customer classes at the expense of others. The range of applications for
DPS is extremely large; see e.g. [1, 6, 12]. Exact analysis of DPS turns out to be difficult compared
to ordinary PS. Therefore, results for DPS are scarce in the literature. Most notably, the simple
geometric queue length distribution for the ordinary PS queue does not have a counterpart for DPS,
and tractable transform results for the sojourn time distribution seem not to exist.

For DPS, Fayolle et. al. [9] showed that the conditional mean sojourn times satisfy a system of
integro-differential equations and derived closed form expressions for the case of exponential service
requirements. In that case, the unconditional sojourn times can be obtained from a system of linear
equations. Rege and Sengupta [17] obtained the moments of the queue length distributions as the
solutions to linear equations for the case of exponential service requirements, and they also proved
a heavy-traffic limit theorem for the joint queue length distribution. These results were extended to
phase type distributions by Van Kessel et. al. [11]. More recently, Avrachenkov et. al. [2] show that
the mean queue lengths of all classes are finite under the usual stability condition, regardless of the
higher moments of the service requirements. They also showed that the conditional sojourn times of
the different customer classes are stochastically ordered according to the DPS weights.

In the present paper, for multi-class egalitarian and discriminatory PS models we investigate a
decomposition of the queue length and sojourn time distributions into the marginal queue length
distributions for models with permanent customers. In particular, for the egalitarian PS model
we obtain an exact and analytically tractable decomposition that is remarkable and interesting on
its own and offers additional insights into egalitarian PS queues. We apply this decomposition to
discriminatory PS to obtain an efficient and analytically tractable approximation of the queue length
distribution and mean sojourn times.

More specific, for a two class egalitarian PS queue with Poisson arrivals A1, Ao, when (N, Np) is

the joint steady state queue length distribution, we show that the marginal queue length distribution
S (N;j+1)=
Ni( j

, with ¢ # j, and N; is the steady state queue length of a single
)

N; is in distribution equal to

class M/G/1 PS queue with arrival rate A; (same as in the two class PS queue), and ]\Nfl-(m+1 * denotes

the (m + 1)-fold convolution of N;. The random variable Ni(mﬂ)* can be interpreted as the queue
length of a M/G/1 PS queue with arrival rate A\; and with m permanent customers; see e.g. [5].
The decomposition result implies that the marginal queue length distribution for class 1, factorizes
over the number of class 2 customers, and where the factorizing coefficients are equal to the queue
length probabilities of an isolated PS queue for type 1, given that type 2 customers are permanent
in the system. This queue length decomposition result can be generalized for arbitrary number of
classes K, and similar results hold for other egalitarian PS models, e.g., PS networks with feedback
customers, and PS models with state-dependent but balanced class capacities, which are treated in
Section 3.

In Section 4, we propose an approximation method for DPS based on the queue length decompo-
sition result. The basic assumption is that an isolated customer class in DPS is considered to behave
like an egalitarian PS model with reduced capacity and a random environment that is exogenously
determined. Similar idea is presented in Lee [14], to assume independence between the various cus-
tomer classes in light traffic. More specifically, if one type of customers is treated as permanent in
a general two class DPS model, then the model is analytically tractable for the non-permanent class
type with reduced service capacity that is exogenously given. The approximations are obtained as
solutions of linear systems, which can be applied under general DPS frameworks.



2 Model

In this section we introduce a general single server processor-sharing model with K customer classes
and we introduce the notation used in this paper. Customers arrive at a single server according to
individual and independent Poisson processes with rate Ax > 0, for customer class k. The required
service times of type k customers are i.i.d. random variables with a general distribution Fj(z) =
P(X; < x) with mean EXj. Denote the load of class k by p, = A\gEXk, and the total offered load
by p = Zszl p;- The server shares its capacity among all customers present in the system. Denote
n = (ni,...,nk), with n; the number of customers of type j present in the system. The server
capacity may be dependent on the system state. When the system state is n, the total rate class
k receives is ¢p(n). All customers within a class k type share the capacity ¢,(n) in an egalitarian
manner, i.e., each customer in class k receives rate ¢, (n)/ni. We assume that ¢, (n) = 0 if and only
if ny, = 0. The total server capacity is denoted by ¢(n) := K ¢, (n).

This general model describes a very wide class of service disciplines. In particular, it includes the
following special cases of processor-sharing models.

1. Egalitarian processor-sharing (with fixed capacity): ¢, (n) = > ok —.
j=1"
2. Egalitarian processor-sharing with state-dependent service capacity: ¢, (n) = g’}i(r; Note
j=1Tj

that in the original generalized PS model studied by Cohen [8], ¢(n) only depends on n through
its sum ny + ... + ng.

3. Discriminatory processor-sharing (with fixed capacity): ¢, (n) = Z_;(Uﬁﬂwkx
o

Furthermore, this model framework also covers DPS models with state-dependent service capacity
¢(n), state-dependent weights wg(n), and state-dependent service rate ¢, (n)/ng for each type k
customer.!

The egalitarian PS models 1 and 2 (when ¢(n) only depends on n through its sum nj + ... + ng)
are analytically tractable. In particular, analytical expressions are available for the equilibrium
distributions of customers simultaneously present in the system (and marginal distributions), mean
number of customers EN; of class k, mean sojourn time ET} and conditional mean sojourn time
ETy(x) of a class k customer given its initial service requirement x > 0. For DPS models (Model 3),
these expressions have not yet been obtained (in general and tractable form).

3 Decomposition of Egalitarian Processor-Sharing models

In this section, we first establish decomposition results for the ordinary egalitarian PS model. Results
for more general egalitarian PS models are briefly indicated at the end of this section.

Consider an egalitarian processor-sharing model with two types of customers (indexed by I = 1, 2),
with ¢;(nq,ne) = nlilm , where the second class of customers is possibly an aggregate of several other
classes. Let (N1, N2) denote the joint steady state queue length in this processor-sharing model. The
joint steady state queue length distribution has the product form (cf. [8, 10])

P(Ny =145 Ny = j) = (1 —p) (2 J;]> piph, (3.1)

when the stability condition is satisfied, i.e., p := p; + py < 1, and is insensitive to the service
time distributions apart from their means; see e.g. [7]. From the key identity Y 2, (“i”) ph=

!'Note that in single class case: state-dependent service capacity is equivalent to state-dependent service rate, while
in the case of multiple classes the equivalence does not hold. In the latter case: state-dependent service rate incorporates
both state-dependent weights and state-dependent service capacity.



. Jj+1
>0 (Z?) pr= (%p) , the marginal queue length distributions are easily obtained:

1— 7
P(lei)zl_pf;<1flp2>, i€y, (3.2)
P(N, = j) = ~—2 Y Z 3.3
(2—3)—1_p1 =) J €Ly (3.3)

3.1 Queue length decomposition

Theorem 1 shows how the marginal steady state queue length probabilities of the two class PS queue
can be related through the negative binomial probabilities a(i, j) and 3(j,7), defined as

. . [o¢]
a(i,j) =P (NH" —z')=<1—p1>j+1(2jj>pi, S alij)=1, forallj€Z,  (34)
=0

80i,1) =P (NS = j) = (1= )™ <i;j>p§, N B(i)=1, forallieZy,  (3.5)
j=0

where Nk denotes the steady state queue length of an isolated M/G/1 PS queue with arrival rate
Ak, general service requirement distribution Fi(x), and N denotes the m-fold convolution of the
random variable Nk Assume that N; is independent of Nj, for i # j.

Theorem 1 For i,5 = 1,2 and i # j, the marginal queue length N; is in distribution equal to the

random variable N(N ) , 1.e.,
N; & N®itD* (3.6)
where ]Vl.(NjH)* = Zﬁjzo Ni i, with { i m}m>0 ii.d. and distributed as N;.
Proof. First observe that the following equality holds by combining (3.1)-(3.5):
P(N1 =i N2 = j) = a(i, j)P(N2 = j) = 5(j, )P(N1 = i). (3.7)

Hence, for all i € Z :

PR =) = SB(FO i) Ny =) B = )
j=0

a(i, )JB(N2 =j) =Y P(N\1 =i N2 =j) =P(N1=1i).  (38)
j=0

Il
.MS

I
o

J
Analogously, P <N(N1+1) = ]> =P(Ny=j)forall j€Z;. m

Corollary 2 From (3.8) we obtain the following set of linear equations:

= ali, )P(N2 = j), (3.9)
7=0
= B, ))P(Ny = i). (3.10)
=0



The decomposition theorem can be generalized for K classes with joint steady state distribu-

tion P(Ny =ny;...Ng =ng) = (1 —p) (Zfil n,)']_[fil pi*/n;i!, and the marginal distributions

n ~
P(Ny =ng) = lj;fpk <1*Zipk> * can be decomposed into Ng 4 NISN”“H)*, forall k = 1,..., K,

where we denote N_j, := zilil’#k N;.

Theorem 1 can be interpreted as follows. When we observe the queue length V7 in isolation in
the two class PS model at an arbitrary moment in time (in steady state), then it also seems that with
probability P(Ne = j) we are observing the queue length in a single class M/G/1 PS queue with
arrival rate A\; and with j permanent customers. To this end, note that the queue length distribution
in an ordinary M/G/1 PS queue with j permanent customers, is in distribution equal to the (j + 1)-
fold convolution of the queue length distribution of the same model without permanent customers;
see [5].

We have to stress that a(i,7) is not defined as the conditional steady state distribution of the
number of type 1 customers conditioned on the number of j type 2 customers in steady state,
ie., a(i,j) is not defined as P(Ny =i | Ny =j) := P(N; =i;No =j) /P(No=j). It is defined
as the steady state queue length distribution of an isolated type 1 queue with j permanent cus-
tomers in the system. However, the remarkable fact is that P(Ny =i | No =j) and a(i,j) :=
P (Nl =1 | j permanent customers) are identical.

From the class 1 point-of-view in the original two class PS model, it seems as if class 1 behaves
according to an ordinary single class My, /G/1 PS queue with j permanent customers if j customers
of type 2 are present in the system. Furthermore, if there is a customer arrival (resp. departure) for
type 2 in the system, then it seems as if class 1 instantaneously ’jumps’ to a My, /G/1 model with
j+1 (resp. j — 1) permanent customers, and as if the new equilibrium (steady state behavior) is
instantaneously attained at the jump epoch.

3.2 Sojourn time decomposition

After establishing the queue length decomposition result, a natural question is whether or not a
similar decomposition result holds for the sojourn time distribution. As the sojourn time distribution
(conditional and unconditional) in a M)y, /G/1 PS queue with j permanent customers, is distributed
as the (j + 1)-fold convolution of the sojourn distribution of the same M), /G/1 PS queue without
permanent customers (see [5]), one could expect that T} (x) < T}Nﬁl)*(m) and Ty (x) < IN’Q(NIH)*(JU),
where Ty (z) is the conditional sojourn time for customer type k (with initial service requirement
x > 0) in the original two class PS model, and T () is the conditional sojourn time for customer
type k in the isolated queue. However, it is easily seen that this is not true in general. For example,
take A7 = 0 and Ay > 0, then Tl(N2+1)*(I‘) 4 (N2 + 1)z, and the latter random variable is well-
known to be insensitive to the service time distribution F5(z), apart from its mean. However, since
a customer with fixed service requirement is concerned in the original two class PS model, it must

hold that T (x) L (x) and this is not insensitive to the distribution F5(z) (only the mean E [T} (z)]

is insensitive to the service time distributions), hence T} (z) 4 1~’1(N2+1)*(x) can not hold in general.

However, it can be easily shown that E[T1(z)] = E [Tl(Nﬁl)*(:r)]. See Theorem 3.

Theorem 3 The conditional mean sojourn times can be decomposed into

j=0
i=0



where (m + 1)z /(1 — p;,) is the mean conditional sojourn time of an isolated M/G/1 PS queue with
arrival rate \g, service requirement distribution Fj(x) and with m permanent customers.
Proof. From (3.2), (3.3), (3.11), (3.12) it is readily verified that

B [fl(Nerl)*(x)} _E [@(Nﬁl)*(:r)} - - f ) (3.13)

which is the same as the well-known result E [T1(z)] = E[T2(x)] = z/(1 — p), e.g. see [13, 18]. m

Obviously, the result for unconditional mean sojourn times is similar; since it also follows directly
from the exact decomposition result for queue length distributions and Little’s Law.

3.3 Generalization to a feedback network with egalitarian processor-sharing

Consider a processor-sharing network with an egalitarian PS node and a node used by a single
feedback customer. Exogenous customer arrivals at the PS node form a Poisson process with rate
A > 0, and these customers are served at the PS node with i.i.d. service requirements (generally
distributed with mean EX). The service requirement for the feedback customer at the PS node is
generally distributed and denoted by the random variable Z. After service completion of the feedback
customer at the PS node, the feedback customer is routed to the feedback node (with probability 1)
where he spends a generally distributed time Y. After this random time Y at the feedback node, the
feedback customer joins the PS node for a service requirement Z.

If we denote P(NPS = n) as the steady state distribution of the number of (non-feedback)
customers at the PS node, then it is readily verified that the following decomposition holds:

P(NPS =n) =€ -mo(n) + (1 =€) - m1(n), (3.14)

where 7;(n) is the steady state distribution of the M,/G/1 PS queue with i permanent customers,
and £ is the steady state probability that the feedback customer is at the feedback node in the
network, i.e., mo(n) = (1 — p)p”, m1(n) = (1 — p)?(n+1)p", £ = WXM and p := A\EX.

The result can be extended to multiple feedback customers where the feedback node is a so-called

BCMP [3] node. In fact, the feedback node may be replaced by a BCMP network.

3.4 Generalization to egalitarian processor-sharing queues with
state-dependent capacity

Consider the processor-sharing queue with K customer classes served in egalitarian manner, with
the total service capacity dependent on the system state n through its sum n; + .. + ng, cf. [§].
More precisely, ¢(n) = ¢(n - e), for all n # 0 (null vector), where e is the vector with 1-entries of
appropriate length, n-e denotes the inner product, and where p(z) : N — R is an arbitrary positive
function. Serving the customers in egalitarian manner reads

¢i(n) ‘P(n'e), foralli=1,.. K, (3.15)
n; n-e

and the class capacities ¢;(n) are uniquely characterized and balanced by (see [10, 7])

®(n—e;)

(n) = .1
6 (m) = 25, (3.16)
where ®(n) is the so-called balance function, and e; is the i-th unity vector of appropriate length.

It is said that the class capacities ¢;(n) are balanced if a function ®(n) exists such that (3.16) is



satisfied, and equivalently the class capacities ¢;(n) are balanced if

¢;(n —ej)/¢;(n) = ¢;(n —e;)/¢;(n), for all 4,5, and n; > 0,n; > 0. (3.17)

~1
From (3.15) and (3.16), we get ®(n) = l_[(; e)rl ' ( paie} € ¢(j)) ,and without restriction ¢(0) = 1.
The joint steady state queue length distribution m(n) := P(N1 = ni1;...; Nk = ng) is given by the
product form (see [7])

-1

m(n) = (n-e)! GH (7 Hp?i/ni!, for n # 0. (3.18)
i=1

with p, = MEX;, and a normalizing constant GG. It can be shown that the marginal distributions of
(3.18) can be decomposed into queue lengths of (isolated) permanent customer queues.

Theorem 4 For multi-class egalitarian processor-sharing models, with balanced class capacities
¢p(n) = <p(n e)ni/(n - e), the marginal steady state queue length distribution can be decomposed

into N = N(N*k—'—l) , for all k =1, ..., K, and where we denote N_j, := Zfil’#k N;.
Proof. The decomposition for class k follows from the observation that

-1 -1

n-e Nk -1 n-e—ng
[[e)] = (Hgo(lﬂn-e—nk))) IT #G)] & fornx>1, (3.19)
j=1 j=1

=1

with ¢(0) = 1. Hence, with (3.19) and by appropriate summation of (3.18), the marginal queue
length distribution for class k£ equals

P(Ng=m) = >, a0 ~ Y (el ][[e) Hp il (3.20)
N1y Me—1 N1seesMp—1 7j=1
Nk+15NK Nk+15NK
-1
(n-e)! - ' - "HE s -
oy o) ) (o) Tl e
Ng: Hi;ﬁk ng: =1 j=1 ik

where the symbol ~ denotes equality up to a multiplicative constant.

The proof is readily completed, by observing that the expression between parentheses in (3.21)
is up to a multiplicative constant (and a combinatorial expression) equivalent to the queue length
distribution P(N; = ng | n- e — ng permanent customers), for type k in isolation and with n-e — ny
permanent customers of the other types. The expression after the parentheses in (3.21) is equivalent
to the marginal steady state probability P(N_; = n - e — ng), after appropriate summation. m

4 Approximation for Discriminatory Processor-Sharing models

In this section we propose an approximation method for (unconditional) mean sojourn times in general
discriminatory processor-sharing models. The basic approximation assumption in the DPS model
is, that a class k queue (in isolation) is considered as an egalitarian PS model with (reduced) state-
dependent capacity, and where the state-dependent capacity for class k is exogenously determined. In
the exact DPS model this is obviously not the case, since the random environments for the different
isolated queues in DPS are interrelated and not independent. We investigate the ’error’ impact if
this assumption is made under DPS models. By the exact queue length decomposition results for



egalitarian PS models (with state-dependent and balanced class capacities), our method provides
exact results if applied on these egalitarian models.

4.1 General approximation method for mean sojourn times

For sake of notational convenience, first we consider a two class DPS model where ¢;(n1,n2),l = 1,2,
can be an arbitrary positive function. This is a generalized DPS model with state-dependent service
rates (possibly including state-dependent weights %) In addition, we assume a finite number
of service positions for both customer types separately (N7 < m and Ny < n), which is not a crucial

assumption.

4.1.1 Approximation method for K = 2 customer classes

If one customer type is treated as permanent in the system, then the model is analytically tractable
for the non-permanent type. More precisely, the probabilities a(i, j) and ((j,4) are easily computed
in closed form by (see [8, 15])

o phe()
o) = s ) (1)

i -1
where @1,2(]) = (H ¢l(ka])) a@l,O(j) =1 for au.] = 07 ]-7 ey T
k=1

N ﬂ§¢2,j(i)
U0 = S i@ (42)

-1

J
where oy ;(i) = (H ¢)2<i7k)> spa0(i) =1 foralli=0,1,..,m.
k=1

Our basic approximation assumption for DPS models is that the linear system given in Corollary
2 is applicable. Under this assumption, we approximate the marginal distributions n; = P (N1 = i)
and §; =P (Ny = j ) by solving the following set of linear equations:

n;, = a(i,j)§;, fori=0,1,...,m, (4.3)

/6(372)7727 forj :O7 17"'7n7 (4‘4)

M= 14-

s
Il
=)

& =

cf. Corollary 2, or in matrix form: n = Ag, and € = Bn, where 1 = (199,71, ., )", & =
(&0, &1, ...,fn)T, and the matrices are given by

a(0,0)  «(0,1) -+ «(0,n) £(0,0) B(0,1) B(0,m)
A — a(lz,O) O‘(1:> 1) O‘(l::n) B= /8(170) 5(171) ﬁ(lvm) . (4'5)
a(m,0) a(m,1) --- a(m,n) B(n,0) B(n,1) --- B(n,m)

It is not difficult to give conditions such that the (approximated) probability vectors n and & are
uniquely determined after normalization. The system of equations is also equivalent to n = (AB) 7,
or £ = (BA) ¢, which can be interpreted as ’solving the equation m = 7P’, where P is a transition
matrix of a discrete-time Markov chain. In many practical DPS models, it is easily verified that the
product matrices (AB)” and (BA)”, have row sums equal to one and do not have negative entries



(irreducible, regular stochastic matrices). It is sufficient to have ¢;(n) > 0 for all j, and for all vectors
n with n; > 0, to guarantee uniqueness of 17 and &, up to a multiplicative constant.

The approximated (unconditional) mean sojourn time for each class follows from Little’s law, and
in our case with finite capacity (blocking) we have the approximation:

ETy = Zz Mis (4.6)

]‘_777')11/0

- 1 .
ETy, = m;%fj» (4.7)

Remark 5 The proposed approximation is exact for egalitarian PS models with balanced class ca-
pacities. The steady state queue length distribution is insensitive to the service time distributions
if and only if the class capacities are balanced (see [7]), hence the approximation (4.1)-(4.7) can not
be exact for models with unbalanced capacities, since the approximation is insensitive to the service
time distributions.

4.1.2 Outline of the approximation method for K > 2 customer classes

In principle, our approximation can be applied for general number of customer classes K. The method
seems very efficient, since only linear systems have to be solved. However, with increasing K sig-
nificantly more computational effort needs to be done. To illustrate the complexity, let us consider
the case of K = 3 classes. Suppose that the class capacities ¢;(n1,n2,n3), { = 1,2,3, are given in a
three class PS model with system states (N1, N2, N3) = (i, j, k). The approximated marginal steady
state probabilities ; = P(N1 = i),{; = P(N2 = j),(; = P(N3 = k) are uniquely obtained (up to a
multiplicative constant) from the linear equations (4.8), (4.9), (4.10):

{m = 2 palt| g, k)msa(k | 4))E = 2250585 (4.8)
n; (> ali | g, k)m ,( | k)G =0 Dok bikCr ‘

2k

{ § = YOk B i k)msa(k [ d)n;, = > ;ciimg (4.9)

&G o= 2 BU i k)ms(i | k)G = X dikCr ‘
2

(& = DTl i D = Tien w0
o= Sk liimali |00 = 5, fbs |

The coefficients (i | j, k) are easily computed, similar to (4.1), since «(i | 7, k) is the steady state
queue length distribution for the isolated type 1 queue given that type 2 and 3 customers reside perma-
nently in the system. Analogously, the coefficients 3(j | i, k) and v(k | 7, j) are also easily computed.
The pairs of coefficients {ma1(j | 7),m3.1(k | 9)}, {m12( | ]),7‘(’3,2(]{ | 7)}, and {ma3(j | k), m13(i | k)}
are obtained as unique solutions (up to multiplicative constant) from the linear systems (4.11), (4.12),
(4.13):

mon(i [ 1) = Y. B0 i, k)msa(k | 4) '
{ 31k | 1) = Zj’ﬂk |, j)man(i | 4) for all 1, (4.11)

(i | 7)) = Ypali] g, k)msa(k | j) ol
{ maa(k [ ) = ZfW(k' |4, 5)m20i | j) for all 7, (4.12)



ma(i | k) = Y;a(i |5, k)m2s( | k)
{ ma3(j | k) = Z:ﬁ(j | i, k)mis(i | k) for all & (4.13)

The systems (4.8), (4.9), (4.10) written in matrix form: n = Ag, n = B¢, € = Cn, £ = D¢,
¢ = En, ¢ = F¢&, are efficiently solved by e.g. the following two systems:

n = (ACBFDE)n,
¢ = (CADEBF),

with normalization n7-e =1 and £ - e = 1, and where the system for determining ¢ is automatically
satisfied and normalized. For increasing K, it seems that convenient notation may overcome the
increase in complexity.

4.2 Conservation law

In this section, we obtain a conservation law for unconditional mean sojourn times in a DPS queue,
which turns out to be useful in improving the approximations for the lowest priority class.

Theorem 6 For a K class DPS queue with fixed capacity, Poisson arrivals \;, and exponential
service requirements with mean EX;, ¢ = 1, ..., K, the following conservation law for unconditional
mean sojourn times holds:

K K pi
JZ:; p,BET; = ; — pEXi, (4.14)

and independently of (wy, ..., wk).

Proof. Provided that IEX]2 < oo we can use the conservation law for DPS models from [2]:

K 0o .
Y | @ a-Fe)e -7,

where U is the time average unfinished work in the system. In case of Poisson arrivals we have
7 _ L MEXT
2(1—-p)

see [2]. The proof is readily completed, since in case of exponential service requirements, we have
2
(1 — Fj(z))dx = ﬂidej(m), and BX? = 2(EX;)” = 2/u3. m

Remark 7 The practical use of a conservation law is that if we are able to obtain accurate approx-
imations of BT}, for customer classes £k = 1,..., K — 1, then an accurate approximation for class K
follows automatically.

4.3 Numerical Results

In this section, we numerically investigate our approximation method with exact results in case of
exponential service requirements, for the two and three class DPS models and with fixed capacity.
4.3.1 Two class DPS queue

In the two class DPS model we refer to type 1 customers as the high priority customers and to type
2 customers as the low priority customers (w7 > we). In case of exponential service requirements,
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Figure 1: Exact and approximated mean sojourn times [ETj for 2-class DPS with exponential service
requirements with EXy = EX, = 1, for weight ratios {3 € {2,3,5,10}.

exact closed form expressions are given by (see [9])

ET, = — /M <L+ tpa (w2 =~ w1) > (4.15)
L—p1—py pyw (1 — py) 4+ pows (1 —py) )’
1/ s ( popy (w1 — wa) >
ET, — 1+ . (4.16)
L—p1—py pywr (1= py) + prows (1 — pg)

The approximated mean sojourn times ET; and ET} are calculated from (4.1)-(4.7) with ¢4 (¢,7) =
i-wi /(i wy +j-ws), ¢o(i, j) = j- w2/ (i-wi +j-w2) and with infinite buffer capacity (m = n = c0).
The direct approximation ET5 (based on decomposition) can be improved by using the conservation
law and the direct approximation ET; for the high priority class. The improvement T for the low
priority class is given by

_ 1 N\ 1
ET2:£l<J%l—ETQ—%4@Z. (4.17)
p2 \1—p 1—p

Figure 1 provides graphs for the exact and approximated mean sojourn times for both classes
with EX; = EXy = 1, and for different values of the weight ratio w;/ws. For class 2, in addition,
the improved approximation (4.17) is included. Figure 1 gives results as function of p = p; + ps,
with p; = py = p/2. As can be seen from these graphs, the approximation for E7} is good up to a
traffic load p = 0.9 for all weight ratios. The approximation for ET5 breaks down with increasing

11



Expected sojourn time - class 1: w =(2,2,1) " Expected sojourn time - class 1: w =(3,2,1)

20 /’
35 s -~ E(T1) - App. --E(T1) - App.

-o- E(T1) - Exact - E(T1) - Exact

0.45 0.55 0.65 0.75 0.85 0.95 0.45 0.55 0.65 0.75 0.85 0.95
total offered load total offered load
Expected sojourn time - class 2:w =(2,2,1) Expected sojourn time - class 22w =(3,2,1)
30

20

15
10
-o- E(T2) - Exact -o- E(T2) - Exact

25
--E(T2) - App. j; --E(T2) - App.

0.45 0.55 0.65 0.75 0.85 0.95 0.45 0.55 0.65 0.75 0.85 0.95
total offered load total offered load
Expected sojourn time - class 3: w =(2,2,1) Expected sojourn time - class 3: w =(3,2,1)
c 60 -
40
50
35 | - E(T3) - App. /; -e- E(T3) - App.

30 40

25 |

2 | j 30

15 20

10 M -~ E(T3) - Exact 1 j -~ E(T3) - Exact
5 M-M

0 : : : : : 0 : : : : :

0.45 0.55 0.65 0.75 0.85 0.95 0.45 0.55 0.65 0.75 0.85 0.95
total offered load total offered load

Figure 2: Exact and approximated mean sojourn times &7} for 3-class DPS with exponential service
requirements (EX; = 2, EXy = EX3 = 1), for weights w = (2,2,1) and w = (3,2, 1).

weight ratio. However, the approximation (4.17) that uses Eﬁ to approximate ET5 is accurate for
all weight ratios. For a discussion of the quality of the approximation, we refer to Section 4.4.

4.3.2 Three class DPS queue

For the three class DPS model with fixed capacity, infinite buffer, and with exponential service
requirements, we consider the following numerical examples with mean service requirements EX; = 2,
and EXy = EX3 = 1. The exact value for E7}, j = 1,2, 3, can be obtained from [9] as solution of a
linear system.

Figure 2 provides graphs for the exact and approximated mean sojourn times for the three classes
and for two sets of weights w = (w1, wa, ws), respectively for w = (2,2,1) and w = (3,2, 1). Figure
3 provides approximated and exact mean sojourn times for w = (5,3,1) and w = (10,3,1). The
approximated mean sojourn times E]A“j, j = 1,2,3, are calculated according to the equations (4.8)-
(4.13) in Section 4.1.2 and by applying Little’s law. The figures are provided as function of the total
load p := p; + py + p3, with p; = py = p3 = p/3. In addition, in Figure 3, an improved approximation
ET3 is included, based on the conservation law (4.14) and based on the direct approximations ET}
and ET} of the other types. R

As can be seen from the graphs (Figure 2 and 3), the approximations for ET}, are accurate as
long as the set of weights is 'more or less balanced’, see Remark 5. It seems that our approximation
improves for K = 3 customer classes. This can be explained by the fact that adding an additional
customer class can increase the balance between the classes.
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Figure 3: Exact and approximated mean sojourn times ET} for 3-class DPS with exponential service
requirements (EX; = 2,EXe = EX3 = 1), for weights w = (5,3,1) and w = (10,3, 1).

4.4 Discussion

In this section we discuss the quality of our approximation EIA’] for ET;. In particular, in the case of
K = 2 customer classes, numerical examples indicate that the approximation for the lower priority
class Efg is poor when the ratio of weight w;/wo is extremely large (unbalanced), whereas the
improved approximation ET5 is very accurate.

Our basic approximation assumption is that the various customer classes in DPS models are
treated as isolated customer classes that behave independently of the other classes and according to
single class egalitarian PS queues with state-dependent (and reduced) service capacity. Supported by
the queue length decomposition result for egalitarian PS models, the isolated single class PS queues
in a multi-class egalitarian PS queue are exactly related to the other isolated customer queues.

When the ratio of weights w; /ws is large, then from class 2 point-of-view the queue behaves as an
ON-OFF processor-sharing queue [16]. As an illustration, Figure 4 shows the typical behavior of the
queue length processes N;(t) for a two class DPS under heavy load and large ratio wq /ws. From a class
2 point-of-view, it seems as if a burst of permanent customers (of size wy/w2) arrives instantaneously
when a single customer of type 1 arrives in the original two class DPS model. Therefore, when the
number of class 1 customers gets large enough, then the service process for class 2 may seem frozen
(OFF period), and the queue length process for class 2 increases rapidly. However, since also the
high priority customers (class 1) reside in the system for a relatively short time period (class 1 gets
a large share of the capacity), the queue length for the high priority class will decrease rapidly. In
this case, when there is no high priority customer in the system, the low priority class receives all
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Figure 4: A sample path of the queue length process Ni(t) and Ny(t), for a 2 class DPS model with
wy/wg =10, A = A2 = 0.49, and EX; = EXy = 1 (exponential service requirements).

the available service capacity despite the large ratio of weights w;/ws (ON period), and the queue
length for the low priority class decreases significantly.

If the traffic load of the system is near its saturation (i.e., p < 1,p & 1), then the queue length
(and sojourn times) for class 2 will become very large, whereas the queue length (and sojourn times)
for class 1 stays relatively small (compared to class 2). In the original two class DPS model, the
isolated customer class 2 has a random environment that is severely influenced by the ’burstiness’
of class 1 (seen from class 2 point-of-view), while the random environment for class 1 is much less
dependent on the queue length process of class 2. From an isolated class 1 point-of-view, it seems as
if class 1 behaves according to its own single class and isolated (egalitarian) PS queue, with a random
environment that is less fluctuating over time (compared to the isolated class 2 point-of-view).

For the case of K > 3 customer classes, similar behavior is present in the DPS model. The queue
length process of the highest priority class has a significant influence on the queue length process of
the lowest priority class, and not in the other way round. However, in the case that more customer
classes are present in the system, with service weights that are in between the highest and lowest
priority class, the marginal influence of the highest priority class on the random environment of
lowest priority class may be less than in the case of K = 2.

5 Conclusion

In this paper, we obtained a decomposition result for the queue length distributions in the egali-
tarian processor-sharing models. In particular, for a K class egalitarian processor-sharing model,
the marginal steady state distribution Ny for class k, satisfies Ny 4 ngN’kH)*. The latter random
variable can be interpreted as a random variable denoting the queue length of an isolated class k
processor-sharing queue, where the other customer types are permanent customers in the system
and N_j represents the total number of permanent customers. This result remains valid for egali-
tarian processor-sharing models with state-dependent system capacity that only depends on the sum
n+...+ng.

Motivated by these results, we have proposed an approximation for mean sojourn times in gen-
eral DPS models. The numerically efficient method is also applicable for DPS models with state-
dependent service rates and state-dependent weights. Numerical results have indicated that our
approximation is accurate for a wide range of the weight ratios and for moderate loads. The approx-
imation error is small for all loads if the DPS queue has 'nearly balanced’ class capacities, which is
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in agreement with the exact queue length decomposition results. In heavy traffic and for extreme
weight ratios wi/we (in case K = 2) or extreme unbalanced set of weights {wy : k = 1,..., K}, in-
sights provided in this paper suggests other approximations, e.g., exploit processor-sharing models
with ON-OFF periods. This remains a topic for further research.
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