
Department of Applied Mathematics
Faculty of EEMCS

t
University of Twente

The Netherlands

P.O. Box 217
7500 AE Enschede

The Netherlands

Phone: +31-53-4893400
Fax: +31-53-4893114

Email: memo@math.utwente.nl

www.math.utwente.nl/publications

Memorandum No. 1734

Versatile Markovian models for networks

with asymmetric TCP sources

N.D. van Foreest, B.R. Haverkort,

M.R.H. Mandjes and W.R.W. Scheinhardt

August, 2004

ISSN 0169-2690

Versatile Markovian Models for Networks with
Asymmetric TCP Sources

N.D. van Foreest �, B.R. Haverkort �, M.R.H. Mandjes ���, and
W.R.W. Scheinhardt ���

�Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

�Center for Mathematics and Computer Science (CWI),
P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands

Abstract

In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP
sources that share one or two buffers, thereby considerably extending earlier work. We first
consider two sources sharing a buffer and investigate the consequences of two popular as-
sumptions for the loss process in terms of fairness and link utilization. The results obtained
by our model are in agreement with existing analytic models or are closer to results obtained
by ns-2 simulations. We then study a network consisting of three sources and two buffers
and provide evidence that link sharing is approximately minimum-potential-delay-fair in
case of equal round-trip times.

Key words: TCP, fluid model, Stochastic Petri Nets, fairness analysis
AMS subject classification (2000): 60K25, 60J22, 90B18.

1 Introduction

Many models of the interaction between TCP sources and buffers have been devel-
oped over the last few years. One aim of these models is to obtain insight into how
efficiently and fairly TCP sources use link and buffer capacity in the Internet. Some
of these models, e.g., [2,3], focus on these aspects in the setting of two sources
that share one bottleneck link. Other models, e.g., [20,23], are concerned with the
performance of large networks as a whole. The models for two sources and one
buffer are probabilistic whereas the approaches that generalize to networks, such
as, [20,23], are, with respect to the analysis, completely deterministic.

As yet, there is no model that applies well to networks of intermediate size, i.e.,
networks consisting of a few sources and buffers, while retaining a stochastic flavor.

This stochasticity at packet level is arguably not of much importance in very large
networks where the presence of a single flow is hardly noticeable. However, in
these intermediately-sized networks this is important; here, one connection can add
considerably to congestion. Hence, it is of interest to have a stochastic model of the
source and buffer processes that, at the same time, can cope with intermediately-
sized networks.

The model developed in [16] for two TCP sources interacting with a buffer is sim-
ple, yet flexible, and in principle extendable to networks of the desired size, that is,
a few sources and buffers. It is formulated in terms of a continuous-time Markov
chain and enables us to study various stochastic aspects of the interaction. However,
its use is somewhat limited in practice since the generator matrix of the Markov
chain has to be constructed manually. This process is error-prone and rather time
consuming. Moreover, it becomes increasingly difficult to correctly implement ex-
tensions to multiple sources or multiple buffers. To make this additional step we
need a different methodology to specify the Markov chain and obtain the generator.
A suitable framework to extend the model of [16] is provided by Stochastic Petri
Nets (SPNs), see e.g.,[1].

A SPN is a (graphical) formalism to describe systems which exhibit complicated
dynamics. It incorporates a notion of state and a set of rules describing the al-
lowed state changes, thereby capturing static and dynamic characteristics of com-
plex systems such as communication systems. The fact that the SPN is a graphical
representation of (a model of) a system contributes to the understanding of (the dy-
namics of) the system. Moreover, computer tools such as the Stochastic Petri Net
Package (SPNP) [12] exist that automatically map a SPN to an underlying Markov
chain and generate the corresponding infinitesimal generator. Using this generator,
SPNP can compute stationary and transient performance measures formulated as
expected reward functions on the SPN. Clearly, tools as SPNP handle the more
cumbersome aspects of the performance analysis of complicated systems while the
user can concentrate on the aspects related to modeling and design.

In the current work we apply SPNs to study the interaction between multiple TCP
sources and buffers in intermediately-sized networks. This approach allows us to
express various performance measures of interest, such as packet loss probability,
the throughput, file transfer latency, and so on, as reward functions, which can
therefore be automatically computed by SPNP.

With SPNs we can generalize the TCP models of [2,3] and [16] considerably in
that we can handle large buffers and networks with more than just one node. Espe-
cially the last aspect seems difficult to incorporate in the setting of [2,3]. In contrast
to [23], in which the analysis is deterministic, our model is entirely stochastic.
Therefore, our model permits, for instance, to switch off an FTP session at a rate
depending on the source’s transmission rate. Another advantage of the probabilistic
approach is that we can easily compute higher moments of the distribution of, e.g.,

2

buffer fill levels. The authors of [5] present an interesting mixture of a deterministic
and stochastic model of TCP. There, a deterministic model controls the behavior of
the network (source states and queue lengths) as long as buffers are not congested;
at loss epochs a simulator distributes the loss over the sources, thereby introducing
stochasticity. This approach, however, still relies on simulation.

The authors of [7] also use Markovian models of TCP. However, they develop a
model of a single TCP Tahoe source, and then consider a superposition of statisti-
cally independent sources that feed traffic into an M/M/1/K queue. By fixed point
methods, see also e.g. [17] or [4], they compute performance measures. In [8,9]
these authors consider TCP Reno instead of TCP Tahoe in the same framework.
Our approach is different in that we take the source and buffer process to be depen-
dent, which is important in intermediately-sized networks.

As our approach shows considerable resemblance to the fluid model as developed
in [23], we start by summarizing this work in Section 2. Then, in Section 3, we
specify a SPN of two TCP sources that share a buffer. With this model we consider
two popular models for the distribution of loss over the sources: synchronized and
proportional loss, cf., [3]. In the former model, during congestion all connections
simultaneously reduce their window size by a factor two. In the latter model just
one source is selected to suffer from loss with a probability that is proportional to
the window size. We implement both loss models and, in Section 4, extensively
compare the results to, on the one hand, theoretical results provided by [2,3,18],
and, on the other, simulation results obtained with ns-2, see [25]. In Section 5 we
first present some further possible extensions of the source model. Then we con-
sider a network consisting of three sources and two buffers. The implementation
of the throughput formulas in this SPN are ‘topology aware’ in that they respect
the order in which packets of a TCP connection traverse the buffers. Hence, ef-
fects such as shaping at up-stream buffers are taken into account. We compare the
sharing of link capacity to the minimum-potential-delay fairness scheme as defined
in [21] and which, according to the authors of [19], is the most appropriate for
TCP. Section 6 concludes the paper. In Appendix A we introduce some necessary
background on SPNs.

2 Fluid Markov Model of TCP

Here we apply the model developed in [23] to a network of � greedy TCP sources
that share a buffer of size � and a link with capacity �. The buffer uses a Random
Early Detect (RED) packet dropping scheme, see [14]. For later reference to the
RED parameters we include a short description of RED. We summarize the dif-
ferential equations that govern the dynamics of the source and buffer processes as
derived in [23]. Then we point out two shortcomings of this model and clarify in
which respects our approach circumvents these problems.

3

Let us first concentrate on the dynamics of the sources. Suppose that �� is the round-
trip time for source � when the buffer is empty. Then,

�������� � �� �
����

�
(1a)

is the round-trip time of source � when the buffer content is ���� at time �. Source
� maintains a window variable �����, supposed to be continuous, and sends fluid
at rate ���������	��������, where ���� is the packet size, into the RED buffer.
The window dynamics behave according to the Additive-Increase/Multiplicative--
Decrease (AIMD) scheme as described in [10]. More specifically,

����� �

�

��������
� �����

�

������ (1b)

The first term of the right hand side corresponds to the Additive-Increase behavior
of a source. The second term implements the Multiplicative Decrease at a loss
epoch. Here, ����� models the loss arrivals as a point process, so that
����� � �
at the arrival of a loss and 0 elsewhere.

The evolution of the queue depends on the rates of the � sources through the dif-
ferential equation

�

�
�

��
���

���������

��������
� �
 (1c)

provided ���� � �	
 ��, otherwise
�	
� � 	.

The RED buffer operates, roughly, as follows. (Consult, for instance, [24] for a
more detailed description of RED.) The RED buffer maintains an estimate � of the
average queue length. At each packet arrival this estimate is updated according to
an exponentially weighted moving average with weight � � �	
 ��. If �� is the queue
length observed at the arrival of packet � then

�� � ��� ������ � ���� (2)

The RED buffer drops packet � with probability �����, where ���� has the form

��

���� ����
�

�

i.e., ���� �

����
���
	
 	 � � � ����

������

���������

��
 ���� � � � ����

�
 ���� � ��

(3)

In other words, the buffer drops a fraction ����� of the arriving packets when � �
��.

To analyze (1–2) the authors of [23] take expectations at both sides of (1–2) and
make a number of simplifying assumptions to obtain a (numerically) tractable sys-
tem of differential-equations. They solve the resulting system of differential alge-

4

braic equations with Matlab from which they find the expected transient behavior
of, for instance, the queue.

The main advantage of this approach is its flexibility, e.g., timeouts can be taken
into account, and its scalability, e.g., thousands of sources can be easily handled.
Still, two fundamental problems with this approach exist. In the first place, the en-
tire analysis is set up in terms of averages of connections. Thus, it does not include
any knowledge of individual connections. However, this is an important point, for
example, when sources switch off with a rate that depends on their transmission
rate, which is typically the case with file transfers. The second problem relates to
a more technical aspect of the analysis. In [23] there is no mention of how to com-
pute the expectations that are taken. (In technical terms, the probability space is not
provided.)

Our model does not suffer from these problems. More specifically, with regard to
the first point our stochastic model maintains a notion of the momentary window
size and buffer content so that the momentary (fluid) transmission rate is known.
With respect to our second comment, we also take expectations, but with respect
to a stationary distribution of a Markov chain, so that no problems about the inter-
pretation remain. (In a loose sense, we first solve the system and then take expec-
tations, while the authors of [23] take expectations first and then solve the system.
Reversing this ordering is not a mere technicality.) A disadvantage of our different
approach as compared to [20,23] is that our model does not scale to networks of
sizes studied there.

3 A SPN Specification of the TCP Fluid Model

In the model to be introduced now we aim to avoid some of the drawbacks of the
fluid model of Section 2. The central idea is to discretize the source and queue
processes; this is the topic of Section 3.1. Then, in Section 3.2, we represent the
discretized joint source and buffer processes as a Stochastic Petri Net (SPN). Here
we assume familiarity with basic concepts of SPNs; we refer to Appendix A for a
brief survey. The first SPN we define contains a buffer that uses the proportional
loss scheme, the details of which are explained in Section 3.2.3 below. The result-
ing SPN is similar to the model summarized in Section 2; in fact most of (1) carries
over. However, we do not take expectations to simplify the analysis but compute
the steady state probabilities � of the SPN instead. In Section 3.3 we use � to de-
fine the throughput in terms of a reward function on the SPN. To obtain insight
into the time required to compute � we discuss some computational issues in Sec-
tion 3.4. Finally, Section 3.5 shows that it is nearly trivial to modify the SPN with
proportional loss to a SPN that implements synchronized loss, that is, a loss model
according to which all sources react in synchrony to congestion by all reducing
their rate simultaneously.

5

3.1 A Discrete Source/Buffer Model

To facilitate the presentation of the SPN we first model the source window size and
buffer content as discrete processes and discuss some immediate consequences.
Mainly to keep the model concise we reduce the RED buffer of Section 2 to a drop-
tail buffer by choosing ���� � ���� � � in (3) and � � � in (2). We assume that
the sources use a TCP version, such as TCP New-Reno [13] or TCP Sack [22], that
does not (frequently) resort to timeouts and slow starts when multiple losses occur
in one window. The notation is the same as in the previous section, e.g., � is the
number of sources, etc.

The buffer process as determined by (1c) can take any value in the range
	
 ��. In
the sequel we modify this process to a corresponding discrete process ������ with
state space �	
 �
 � � �
 ��. When ���� � �, 	 � � � �, the corresponding buffer
content equals ��	�. Thus, in this case the round-trip time for source � becomes,
cf. (1a):

����� � �� �
�

�

�

�
� (4)

The window process ������� of source � is a discrete process with state space
�	
 �
 �
 � � �
 ���. Here �� denotes the maximum window of source �, which is an
important parameter in characterizing the performance of TCP. When ����� � ��
and ���� � � the source sends traffic at rate ������	�����. In the sequel we often
use the shorthand

����� �
����
�����

 (5)

so as to write the source rate as �������. We remark that the source peak rate is
given as �����	�.

Observe that if the buffer content were a continuous variable, the net input rate at
time � is given by, cf. (1c),

���� � �� � ��
�

������� � �
 (6)

where � � ���
 � � �
 ���.

Finally, we introduce the processes ������
 � � 	�, � � �
 � � �
 � . When ����� � 	
source � is allowed to increase its rate, while when ����� � � it should decrease its
rate. The next section provides further clarification for these processes.

6

�
�
�
�

� � 	� � 	

� � 	� � 	

tIncr1 tDecr1

tLoss1

loss1

win1

winF1

N�

N�

��

tIncr2tDecr2

tLoss2

loss2

win2

winF2

N�

N�

��

K

tIncrBtDecrB

bFree

bFill

lossB

	

Fig. 1. A Petri Net model of two TCP sources sharing a buffer. The loss model is taken
according to the loss proportional scheme. We indicate guards by means of dashed boxes
around strings, such as � � � appearing immediately below tDecrB.

3.2 SPN for Two Sources and One Buffer with Proportional Loss

In this section we provide a specification of a SPN consisting of two TCP sources
sharing one buffer. In other words, we specify the behavior of the joint process
������
�
���
 �����
 �
���
 ����
 � � 	� introduced in Section 3.1 by means of the
SPN shown in Figure 1. The SPN contains three ‘subnets’ indicated by dashed
boxes around a number of places and transitions. The subnets �� and �
 represent
the sources while the subnet � represents the buffer. We describe these subnets
first, then we focus on the dynamics of the complete SPN.

3.2.1 The Subnets

Subnet �� contains three places: win1, winF1 and loss1; one immediate transi-
tion: tLoss1; and two timed transitions: tIncr1 and tDecr1. Subnet �
 is, ex-
cept for the naming, identical; as such the rest of the discussion applies equally well
to source �. The state of source 1 is given by the markings of win1, winF1 and
loss1, respectively. Here, the number of tokens in win1, i.e., �win1, denotes
the momentary congestion window of source 1. The marking of winF1 denotes
how much further the window can increase. Initially, �winF1 � ��, so that at all

7

����� � �win1 �
��� � �win2 ���� � �bFill

����� � �loss1 �
��� � �loss2 �
��� � �lossB.
Table 1
The correspondence between the stochastic processes of Section 3.1 and the markings of
places in Figure 1.

times during the evolution of the SPN it holds that �win1��winF1 � ��. The
loss state of source 1 is indicated by �loss1. When �loss1 � 	 the source is
allowed to increase �win1, while when �loss1 � � the source has to reduce
�win1 by a factor 2.

The buffer subnet contains three places: bFill, bFree, and lossB; and two
timed transitions: tDecrB and tIncrB. The marking of the place bFill is
the fill level of the buffer. The place bFree has initially � tokens. Its marking
corresponds to the free space, i.e., the maximum buffer level � minus the fill
level �bFill; thus, �bFill � �bFree � �. Finally, when �lossB � 	
(�lossB � �) the buffer is (not) congested.

Observe that, for instance, the window size process ������
 � � 	� and the process
��win1
 � � 	� are identical processes. For notational brevity and consistency
with the previous sections we use in the sequel ����� instead of �win1 to denote
the marking of win1, etc. Table 1 shows the relation between the variables and the
markings of the other places in the SPN. We also occasionally drop the dependency
on � of the processes �����, etc.

The marking-dependent firing rates and guards associated with all transitions are
summarized in Table 2. Here ����� is given by (4). The function

����
 �

 �� �
�

�
����� � �� �� (7)

is the transition rate at which in- and decrements of the buffer level process occur.
By comparing this expression to (6) it is clear that � is equal to �	� times the
net input rate of the buffer. The constant � appears in the numerator to ensure that
the average time required to fill an empty buffer (or drain a full buffer), given that
the window size does not change, is approximately independent of �. (Loosely
speaking, when � is large, the average time spent at one fixed buffer level should
be short.)

3.2.2 From Initial State to Congestion (Congestion Avoidance)

The initial marking of the SPN is as shown in Figure 1. Sources 1 and 2 are ‘off’
and not in a loss state while the buffer is empty and in possession of the loss token.
In the initial state only tIncr1 and tIncr2 are enabled and fire at rate �	�� and
�	�
, respectively. Each firing increases�� or�
 by one, which clearly models the

8

Transition Rate Guard

tIncrB ��	�
 	

 �� ��	�
 	

 �� � �

tDecrB ���	�
 	

 �� ��	�
 	

 �� � �

tLoss1 � ��	�
 	

 �� � �

tLoss2 � ��	�
 	

 �� � �

tIncr1
��
� ��� —

tDecr1
��
� ��� —

tIncr2
��

 ��� —

tDecr2
��

 ��� —

Table 2
Rate functions and guards for the transitions in Figure 1.

Additive-Increase phase of TCP. Note that on average source � spends an amount
����� in state ��, given � � �. In this way the SPN incorporates feedback delay.

As �� and �
 increase, the scaled net input rate (7) increases as well. After a num-
ber of firings of tIncr1 and tIncr2, �� and �
 are so large that ����
�

 	�
becomes positive. This will set the guard at tIncrB to true, so that tIncrB be-
comes enabled. Each firing of tIncrB increments � by one. After � firings of
tIncrB, the buffer is completely filled, i.e., � � �. As a result, the inhibitor arcs
from bFree to tLoss1 and tLoss2 are now no longer active, so that the ran-
dom switch consisting of the immediate transitions tLoss1 and tLoss2 becomes
enabled.

Suppose tLoss1 fires first so that source 1 receives the loss token. As such, the
loss token represents the congestion signal that the buffer sends to a source. Clearly,
in this case the inhibitor from loss1 to tIncr1 will prevent further increments
of the window of source 1. Note that, as source 1 receives the loss token, loss2
does not become marked (unlike the synchronous case, to be discussed later), and
consequently, tIncr2 can still fire.

It is evident that when source � is inactive, i.e., when �� � 	, it cannot suffer from
loss. To prevent the loss token from being sent to a quiet source there is a multiple
inhibitor arc from winF1 (winF2) to tLoss1 (tLoss2) with multiplicity ��

(�
). The multiplicity is indicated in Figure 1 at the inhibitor arc.

3.2.3 The Proportional Loss Model

The buffer uses a proportional loss model, according to which the buffer chooses
only one connection to suffer from loss during overload. The probability to select
a particular connection is proportional to its momentary transmission rate. We im-

9

������� � � ������� � �

�
����
 � � �� �
�����
�

������ �� � �

�
����
 � � �� � � �� �
�����
�

������

Table 3
Firing probability �� of tLoss1.

plement this behavior by means of the random switch consisting of tLoss1 and
tLoss.

The marking-dependent weights of the random switch are chosen such that tLoss1
fires with probability �� while tLoss2 fires with probability �
 � �� ��. Table 3
shows the values of �� when ������� � � and �
����
 � �, etc. The motivation
behind this loss model is based on the insight that if, for instance, ������� � �
and �
����
 � �, connection 1 certainly loses traffic. Thus, in this case con-
nection 1 should surely receive the loss token. Due to the proportional loss model
there is just one loss token, so that connection 2 cannot receive a loss token. There-
fore, in this case, �� � � and �
 � 	. When ������� � � and �
��� � � (but
���� �� � �) both sources can be hit by a loss with a probability proportional to
their sending rates. In the (very) rare case that ������� � � and �
����
 � �
both sources should reduce their rate. However, as lossB contains just one to-
ken, it cannot simultaneously send both sources a loss token. Therefore, we again
take the loss probabilities proportional to the sending rates. We emphasize that the
impact of this inconsistency will be small in nearly all relevant parameter settings.

3.2.4 Removing the Congestion (Multiplicative Decrease)

When �� � � the timed, variable transition tDecr1 is enabled. Once it fires, it
moves the loss token from loss1 to lossB, removes half of the tokens from
win1, and adds these to winF1. In other words, �� is reduced by a factor two,
reflecting the Multiplicative Decrease after the detection of loss. If, with the new
marking, still ����
�

 �� � 	 either tLoss1 or tLoss2 will immediately fire
again. After a sufficient number of multiplicative decrements of �� and �
 the net
input rate becomes negative. When this is the case, firings of tDecrB decrement
the buffer content. Note that another consequence of ����
�

 �� � 	 is that the
guards at tLoss1 and tLoss2 prevent the loss token from being passed on to
either of the sources. Thus, their windows cannot decrease any further.

We have not yet discussed two arcs: the inhibitors from loss1 and loss2 to
tLoss1 and tLoss2 respectively. Their role will be clarified in the synchronous
loss model presented in Section 3.5. In the proportional model they have no func-
tion, but they do not influence the performance measures in any way either.

10

3.3 Performance Measures

We now express in terms of the reward functions, as defined in equation (A.1), three
performance measures: a connection’s (average) transmission rate, its throughput
and the utilization of the link.

1. The expected transmission rate for connection � is easy:

�� � � ��������� �

2. The throughput is not as simple to specify in exact terms in the present setting.
We discuss two proposals and compare these numerically in Section 4.

2a. For the first proposal we consider the fluid that enters the buffer. As long as
the buffer is not full it accepts fluid, but when it is full it drops the excess fluid.
We assign this excess to the connection that receives the loss token. There is only
excess traffic when � � � and ����
�

 �� � 	. As these conditions imply, and
are implied by, the condition that either �� � � or �
 � � (due to the proportional
loss assumption), we define

�in
� � �� � �

�
����� �� � ���������

�

 (8)

where �� � � if the condition � is true and 0 otherwise. This definition assigns all
excess fluid � � ���� ���� to one source: the source that receives the loss token.
As a consequence we need to verify whether indeed ������� � � when source �
receives the loss token, for otherwise we subtract too much in the above. In view
of Table 3 observe that, for instance, the condition ������� � � is equivalent to
�
����
 � �. Thus, the problem of subtracting too much may only occur when
both source rates exceed �, As this happens (very) rarely, we neglect it, as we did
in Section 3.2.3.

2b. The other possibility is to consider the fluid that leaves the buffer. When the
buffer is empty the departure rate at time � is equal to the arrival rate. When at time �
the buffer contains � � 	 units of fluid the departure rate of source � at time � equals
the service capacity � times the fraction of traffic of source � that arrived at time
� � ��	����. As the Markov process ������
�
���
 �����
 �
���
 ����� does not
maintain the history of the source states as supplementary variables, the source rates
at time �� ��	���� are (principally) unknown. Hence we cannot incorporate the

11

effect of buffering delay on the throughput. We therefore approximate the output
process by the arrival process and neglect the impact of the delay. This yields

�out
� � �

�
�����������	� � �

�������

���� ������	�

	
� (9)

To see that this approximation is acceptable we reason as follows. Observe that the
round-trip times of all sources include the buffering delays along the route. Hence,
it always takes less time to refresh the buffer content than it takes for a source to
change its rate. Consequently, while the buffer content is refreshed the input rates
are nearly constant. We conclude that neglecting the delay only shifts the output
process backward in time, but does not substantially change its shape or the ratio
of fluid of the sources.

3. We define utilizations as

 � �
��
�

 � � �
 � �

�� � �

�

� � �
�

With respect to the existence of the stationary distribution �, which is needed in
the computation of the expectations above, we remark that the Markov chain as-
sociated with the proportional SPN may be reducible, depending on the choice of
parameters. This has, however, no consequence for the existence of �. While some
states may belong to transient classes, the other states form one recurrent class so
that a unique stationary distribution still exists.

3.4 Computational Issues

It is of interest to estimate the size 	� 	 of the Markov chain as this gives insight
into the time required to solve for the stationary distribution. We have not been able
to find an accurate, yet simple, expression for 	� 	, mainly due to the fact that the
number of recurrent states depends critically on the values of the system parameters
and the presence of guards. A simple, coarse estimator is obtained below under
some additional assumptions.

Observe that the model possesses some scaling freedom in the parameters MSS�,
� � �
 �, � and �. To remove this freedom assume henceforth that source 2 is the
distant one, i.e., �
 � ��, and set �
�	� � �. Moreover, assume that the packet sizes
are equal, i.e., MSS� � MSS
, which has as a consequence that

����� �
MSS

�����
�

�

�����

12

as �
�	� � �. Next, suppose that the source rates are not constrained by the re-
ceiver windows. Thus, each source can congest the link. This is achieved by setting
�� �
�	������ �
������	�
�, where
�� is the smallest integer larger than
�. Thus, we see that � determines the source granularity: a small (large) value of
� means that a few (many) source transitions are needed for buffer overflow. Note
that choosing �� much larger than
������	�
� hardly affects the value of the
performance measures. Clearly, such ‘high’ source states are only relatively sel-
dom visited. From numerical evaluations we conclude that choosing �� equal to
���
������	�
� is large enough for our purposes. Finally, in the (numerical) anal-
ysis we wish to specify the buffering delay
	 instead of the buffer size � itself;
therefore let � �
	�. As a result the parameters ��, �
, � and
	 now fully
characterize the system.

To obtain an upper bound on 	� 	, observe that the number of different markings
of bFill is, obviously, � � �, and that the loss token can reside in three places:
lossB, tLoss1, and tLoss2. Combining this with the above choice for �� and
�
 we obtain

	� 	 �
�� � �������

�

������

�

�
� �

�
��
���

�

�
� �

� !��� � ����� � ����
 � ����

(10)

This estimate is an upper bound as the guards in the SPN considerably reduce
the number of transitions so that not all markings counted in this formula represent
states in the reachability set. Observe that as the SPN contains only eight transitions
the number of non-zero entries per row in the generator is also bounded by eight.
Consequently, the generator is sparse.

Clearly, from the computational point of view it is of interest to choose ��, �

and � as small as possible without significantly affecting the overall results, i.e.,
the outcome of the performance measures. The following provides some insight
into how small ��, etc., can be reasonably chosen. As a first step we notice that as
source 2 is the distant source, it follows that

�
 � ���
��
���	�
� � ���
������	�
� � ���

However, the probability that �
 � �� is small. Therefore, we can safely set �
 �
��. The value of the parameter � is also of importance in the estimation of 	� 	. It
is plausible that for � �
, ������ becomes a continuous process; see e.g., [15]
for an application of such fluid queues to TCP modeling. Thus, we infer that the
performance measures hardly change for increasing � beyond a certain number.
It turns out that � � �, a relatively small number, is already large enough for
the parameter ranges we investigate in this paper; setting � to larger values makes
practically no difference. We can even set � � � in the large bandwidth-delay
product regime, i.e., when the maximum buffering delay
	 is small in comparison
to the propagation delays. In this case the time it takes for an AIMD source to ‘fill

13

the pipe’ is much longer than the buffer filling time. Thus, approximately, the buffer
is either empty or congested.

We remark that the numerical results to be presented below provide support for
these approximations.

3.5 The Synchronous Loss Model

Here we show how to change the SPN with proportional loss to a SPN that uses the
synchronized loss model.

First of all, it is clear that to signal both sources about congestion it is necessary to
have two loss tokens initially present at lossB. Secondly, in the new setting the
transitions tLoss1 and tLoss2 will no longer form a random switch. Instead,
each fires with probability 1, if enabled.

Now suppose again that once bFree becomes empty, tLoss1 is the first to fire.
This results in one of the loss tokens to move to loss1. The inhibitor from loss1
to tLoss1 prevents this transition to fire again. Consequently, the immediate tran-
sition tLoss2 fires so that both sources receive a loss token at the same instant. As
long as loss1 (loss2) is marked source 1 (source 2) cannot receive a loss token
which becomes available after a firing of tDecr2 (tDecr1) due to the inhibitor
arcs from loss1 (loss2) to tLoss1 (tLoss2).

As both sources receive a loss token, both sources can take their share of the excess
fluid arriving during congestion. Therefore the throughput as defined in (8) should
become

�in
� � �� � �

�
����� ��� ��

�������

���� ����������
��
�����	�

	
� (11)

Definition (9) does not need any modification.

Finally, with respect to the size of the state space we remark that the number of
possibilities for the loss tokens is 4 rather than 3. Thus, the bound in (10) should be
multiplied with �	
 to obtain an upper bound for the size of the reachability set of
the SPN with synchronized loss.

4 A Comparison with Analytic Models and ns-2

In this section we compare the numerical results of the SPN to other analytic work
and simulation with ns-2. We specify the investigated scenarios in Section 4.1 and
present the results in Section 4.2.

14

Scenario � �	 (ms) �

‘25s’ 25.7 16 1

‘80s’ 80.7 16 1

‘25l’ 25.7 160 5

‘80l’ 80.7 160 5
Table 4
SPN parameter values. We use mnemonics such as ‘25s’ to denote the scenario in which
the link rate is ‘���	’ and the maximum buffering delay �	 is ‘small’. A buffering delay of
�
 ms corresponds to a buffer size of 5 packets in the ns-2 simulation.

10 ms

250 ms

2 Mbps

2 Mbps
1.5 Mbps

�� ms

��

��

��

��

��

��

Fig. 2. The network configuration and some parameters. For the purpose of comparison we
use the same parameters as in [2].

4.1 Scenarios

Figure 2 shows the network we used for the numerical analysis and ns-2. To facili-
tate the comparison with [2] we use the same parameters. Two greedy TCP sources,
�� and �
, communicate with destination " via a router with buffer size � �
	�.
The receiver windows are assumed to be so large that they do not constrain the con-
gestion windows. Table 4 shows the values of � and
	 for the four investigated
scenarios. For each scenario we vary the propagation delay
� of the link connect-
ing �� and #� in �	 steps from �	 ms to ��	 ms. The rest of the parameters of the
SPN now follow from Section 3.4.

In the simulations with ns-2 we use a RED buffer and consider a small and a large
buffer case. In the former (latter) the buffer’s total size is 20 (200) packets. The
RED parameters in (2–3) are taken as follows. The minimum threshold ���� is 5
(50) packets, the maximum threshold ���� is 10 (55) packets, the maximum drop
probability �� � 	�� and the weight � � 	�		�. The packet size is, including IP
header, ���Bytes. (The RED parameter values for the small buffer are also identical
to the values chosen in [2].)

Note that the buffer in the SPN is a drop-tail type buffer instead of a RED buffer,
which, on the face of it, is inconsistent with the simulated network. As a motiva-
tion for using RED in ns-2 we follow an argument of [2]. It is commonly seen

15

in simulations with two sources sharing one drop-tail buffer that sometimes one
and sometimes both sources lose packets during a congested period. Thus, at least
in simulations, bursts at the packet level determine which source(s) lose(s) traffic
in case a drop-tail buffer overflows. However, such rapid fluctuations at the packet
level are absent in the context of fluid sources. Thus, a fluid source never perceives a
‘true’ drop-tail buffer. As such, comparing fluid models to simulations with (small)
drop-tail buffers will not be appropriate. As RED is a queue management tech-
nique that can effectively absorb these rapid queue-length fluctuations, it is apt to
use RED buffers in the simulations even when the modeled fluid buffer is a drop-tail
buffer.

We remark here that a consequence of using RED in the simulations is that packets
will be dropped with a probability proportional to the sending rate of a source.
Thus, our proportional loss model is the more appropriate to compare against the
simulations.

4.2 Results

In [18] it has been derived that in case of synchronous loss and a small buffer the
ratio of the throughputs ��	�
 � $��, where $ � ��	�
 is the ratio of propagation
delays and % � �. The authors of [2] present a model with proportional loss in
which ��	�
 � $�� with % � 	���. As our model allows to analyze both loss mod-
els we investigate what values for % the model will give in either case. Moreover
we analyze the impact of buffering delay. The left and right panel of all figures of
this section show the results for the small and large buffer case, respectively.

In Figure 3 we plot the throughput ratio computed by the model with proportional
loss as a function of $ for the scenarios of Table 4. We compare the differences
between the ‘input ratio’ � in

� 	�
in

 obtained by (8) and the ‘output ratio’ �out

� 	�out

by (9). We also plot $�� for several values of %. Finally we mention an analytic
estimate as derived in [3]:

��
�

� �

$

�$�

$� �
� (12)

The results for the small buffer case show that for relatively coarse-grained sources
the input and output ratios are different. The input ratio is too high, as compared
to the function $�	�
�, while the output ratio is too low. By increasing � the two
ratios seem to converge to, approximately, $�	�
�, which is close to the result of
[2]. Note that, as observed in [3], (12) approximates $�	�
� very well. Clearly, the
graphs of the output ratios lie below the graphs of the input ratios, implying that the
output ratios are more fair than the input ratios. We are unable to provide intuition
as to why the output ratio is more fair than the input ratio. Observe also that the
sharing of the link becomes more fair when the buffer size increases (% drops to
approximately 	���), which is in accordance with intuition.

16

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ajn

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

��

T
hr

ou
gh

pu
tr

at
io

T
hr

ou
gh

pu
tr

at
io

� � 	���

� � 	�
�

� � 	�
�

� � 	���

25s,�in

25s,�out

80s,�out

80s,�in

25l,�in

25l,�out

80l,�out

80l,�in

�� � �� ms �� � ��	 ms

Fig. 3. Ratio of throughputs as a function of � �
��

 for the proportional loss model.
The left (right) panel shows the ratio when �
 � �
 ms (�
 � �
� ms). (The label ‘25s,�in’
refers to the input-related throughput (8) computed for Scenario 25s, etc.; the label ‘ajn’
refers to (12).)

We explain the impact of the choice for � on these two ratios by considering the
overload states. Suppose first that just source 1 is in state 26 when congestion oc-
curs. When � � ���� source 1 needs �
 round-trip times after a loss before it can
fill the link by itself, whereas when � � �	��, and source 1 is in state 81 it needs
�� round-trip times. However, the congestion duration is in both cases one round-
trip time. Thus, applying this insight to the situation with two sources, the fraction
of time spent in congestion, i.e., � � � and � � 	, is smaller when � � �	��
than when � � ���� (using the scaling of the other parameters as explained in Sec-
tion 3.4). As the computations of �out

� and �in
� mainly differ when � � �, and the

fraction of time in congestion is less when � � �	�� as compared to � � ����, the
difference between �out

� and �in
� is smaller when � � �	��.

In Figure 4 we plot similar results but now for the synchronous loss model. There is
hardly any difference between the input and output ratios. For small buffers we see
that the ratios according to our model behave like $�
�
 instead of $�
 as obtained
by [18]. When the buffer size increases, the power decreases to a value smaller than
�, in line with the results of [18].

In Figure 5 we compare the utilization ��out
� � �out

 �	� as computed by our model
against simulation of two New-Reno sources and two TCP Sack sources, and the-
oretical results of [18] and [3]. In the synchronous loss model the authors of [18]
estimate the utilization as
	� independent of the ratio $. For the proportional model
the authors of [3] provide in their Equation (23) the approximation

��
�
� �$
 � �

��$
 � ��

�

$� �
� �

��$
 � ��
�

�

�

�$�

�$� ��

� (13)

Combining this with (12) yields a similar expression for �
	�.

17

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

��

T
hr

ou
gh

pu
tr

at
io

T
hr

ou
gh

pu
tr

at
io

� �
�
� �
�

� � ��

25s,�in

25s,�out

80s,�out

80s,�in

25l,�in

25l,�out

80l,�out

80l,�in

�� � �� ms �� � ��	 ms

Fig. 4. Ratio of throughputs for the synchronous loss model as a function of � �
��

.
The labeling is as in Figure 3.

We see from the graphs that most models overestimate the utilizations in compari-
son to simulation. Our model, contrary to (13), correctly captures the trend that the
utilization decreases as a function of $. Note that the proportional loss model is the
more appropriate model as we use a RED queue in the simulations. We include the
results for the synchronous case mainly for reference. In the right panel, showing
the results for large buffers, we do not include the results of [3] and [18] as these
only apply to small buffers. Interestingly, in line with an observation in [2], the
utilization in case of proportional loss is higher than the utilization in case of syn-
chronized loss. Finally, we conclude that the theoretical models are too optimistic
about link utilization in all cases. (The results of the TCP New-Reno simulation
in the right panel are a bit odd. This behavior did not disappear by slight changes
of the parameters of the RED buffer. We did not investigate large changes as this
would introduce considerable differences between the model and the simulation.)

Figure 6 shows the normalized throughput of the first connection �out
� 	��out

� � �out

 �

in comparison to (13) and the simulations; the results for the second connection
follow immediately, as �out

 � � � �out
� 	��out

� � �out

 �. Clearly, the theoretical ratios

are in nearly perfect agreement. Moreover, for the small buffer case the proportional
loss models are ‘too fair’, while the synchronous models are ‘too unfair’, which is
in line with the findings in [16].

5 Extensions

The extensions presented in this section provide further support for the versatility of
applying SPNs to modeling TCP. We start with two relatively simple extensions of
the model of Section 3. The first allows sources to switch on (e.g. ‘downloading’)
and off (e.g. ‘thinking’); the second is such that multiple sources can share the

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utilization, db=16ms

prop25
prop80
sync25
sync80

sack
newreno

ajn
Laksh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utilization db=160ms

prop25
prop80
sync25
sync80

sack
newreno

��

U
til

iz
at

io
n

U
til

iz
at

io
n

Fig. 5. The utilization as a function of the ratio of propagation delays. The label ‘ajn’
refers to (13) as obtained by [3], while ‘Laksh’ labels the line ��� which is the estimate
obtained by [18]. The label ‘prop25’ in the left (right) panel refers to scenario 25s (25l) of
the proportional model, etc.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Source 1, db=16ms

sync80
Sack

New-Reno
prop80

ajn
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Source 1, db=160ms

sync80
Sack

New-Reno
prop80

��

�

ou
t

�

�
��

ou
t

�

�
�

ou
t

�

�

�

ou
t

�

�
��

ou
t

�

�
�

ou
t

�

�

Fig. 6. The normalized throughput as a function of �.

bottleneck link. Then we specify and analyze a network consisting of three sources
and two links. Especially this last model appears difficult to tackle ‘by hand’.

5.1 Multiple Sources and On/Off Behavior

Figure 7 specifies a source that can switch on and off. The extension of the source
subnet consists of adding two transitions tOn and tOff that fire at rate &�� and
&�� . The probability that the on-time exceeds � is �����&on��. We take the file
sizes as exponentially distributed with average size ��file size�. Consequently, the
rate at which the source switches off is given as &off � �����	��file size�, if� � �
and � � �.

19

tIncr

tDecr
tOn tOff

losswin

winF

N

N

Fig. 7. An on/off source. (We do not draw the arcs that connect the source subnet to the
buffer subnet.)

Suppose the source is off. Then, clearly, all its window tokens should be positioned
in winF and the marking � of win should equal 0. The inhibitor from winF to
tIncr with multiplicity � disables tIncr as long as � � 	. Thus, the only
possibility to move a token from winF to win is the transition tOn. As soon as
win contains one token, the inhibitor to tOn disables this transition. The source
switches off when tOff removes all tokens at win via the variable arc from win
and adds these tokens to winF. When the source is in a loss state, i.e., loss is
marked, it cannot finish a file transfer. The inhibitor from loss to tOff prevents
this. Note that this implementation of on/off behavior does not come at the cost of
extra places. Hence, the set of markings� does not increase.

We refer the reader to [16] for an analysis of the impact of on/off behavior on the
sharing and utilization of the link.

Extending the SPN of Section 3 to incorporate more than two sources is quite
simple. SPNP supports arrays of places, transitions, etc. The window size �� of
source � corresponds then to the value of the �-th element of the ‘window’ array,
etc. The size of the arrays equals the number of sources, which can be controlled,
clearly, by a single variable. For the synchronous loss model the number of loss
tokens initially present at lossB should of course equal the number of sources.

5.2 Three TCP Sources sharing Two Buffers

In this section we extend the model to a network consisting of three sources and
two buffers in a configuration as shown in Figure 8. We explain the SPN in which
the buffers use a proportional loss scheme, define the performance measures and
present some results.

The SPN for the network is shown in Figure 9. The subnets for sources 1 and 2 and
the buffers �� and �
 are identical to their counterparts of Section 3.2. Source 0,
as shown by the middle, lower subnet in Figure 8, is different in that its connection
uses both buffers. We elaborate on this now. To avoid tedious repetition we do not
formally introduce variables such as ��
 ��, etc., when the meaning is obvious.

20

10 ms 10 ms240 ms

�� ms�� ms

�� ��
��

�� ��

�� �� �	

��

�� ��

Fig. 8. A network of three sources sharing the links between routers ��,�
, and ��. Router
�� (�
) contains the first (second) shared buffer in front of the link �� (�
).

win1

b2 > 0 b2 > 0b1 > 0

�
�
�

�
�
�

�
�
�

�
�
�

b1 > 0

b2 > 0b1 < 0 b1 > 0 b2 < 0

tIncr1 tDecr1 tDecr20

L10 L20L11

winF0

tIncr2tDecr2

L22

bFill2

K2bFree2

win0 win2

winF2winF1

bFill1

K1bFree1

lossB1 lossB2

N0 N2

tL10tL11 tL20 tL22

tIncrb2tIncrb1tDecrb1 tDecrb2

tDecr20 incr0

N1

N1
N0 N0 N2

��
�� ��

	� 	�

Fig. 9. TCP source 0 uses buffers 1 and 2, while source 1 (2) uses buffer 1 (2). Note that in
Figure 1 we used rather descriptive names for the transitions. In the present case we turned
to shorter, but less descriptive, names for presentational reasons.

The average round-trip time of source 0 is

�	��� � �	 �
��
��

��

��
�

�

�

�

�

where we write � � ���
 �
�. Thus, the analog of (5) becomes

�	��� �
���	
�	���

�

With respect to the loss model we see that Source 0 can receive a loss token from
both buffers. A consequence of this is that Source 0 can have both loss tokens in
possession simultaneously. As such it suffers from loss twice within one round-trip
time, i.e., within one window of data, and reduces its rate twice accordingly. This
is inconsistent with the behavior of TCP New-Reno or TCP Sack which mostly

21

decrease only once even when more than one packet of a window of data are lost.
We contend that this undesirable side effect has small impact. First, for this event to
happen, congested periods of both buffers have to overlap. Second, source 0 should
receive the loss token of both buffers. As source 0 is usually sending at a lower rate
than source 1 and 2, both conditions will not often be satisfied simultaneously.

The functions �� and �
 should also be adapted to the network environment. It is
clear that

����
�� �
��

��
��	����	 � �������� � ��� �

To obtain a similar expression for �
 we should account for the fact that the first
buffer shapes the output process of source 0. We approximate the output rate, Æ	
say, of source 0 at the first buffer similarly to (9):

Æ	��
�� �

��
��	����	
 if �� � 	

��
�������

����������������

 if �� � 	�

Now we can define �
 as

�
��
�� �
�

�

�Æ	��
�� � �
��
��
 � �
� �

For reasons of consistency with the definition of Æ	 above, we use the output-related
definitions of throughput as in (9). Thus, omitting the superscript ‘out’,

�	��
�� �

��
�Æ	
 if �
 � 	

Æ�
Æ����

�

 if �
 � 	

����
�� �

��
���
 if �� � 	

��

�����
��
 if �� � 	

�
��
�� �

��
��

 if �
 � 	

��

Æ����
�

 if �
 � 	

where

�	 � �	����	
 �� � ��������

�
 � �
��
��

 Æ	 � Æ	��
���

With this we set
�� � ������
���
 � � 	
 �
 �
 (14)

where � � ��	
��
�
� and � � ���
 �
�. Finally, the utilizations for the first
and second link become, respectively,

 � �
�	 � ��
��

 �
�	 � �

�

�

22

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput fractions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utilizations

��

� � 	�
�

�
�
��

�

�
�
��

�

�
�
���

�
�
���

��
�
� �

�
����

Fig. 10. The throughput ratios for both buffers and utilization for the first buffer as functions
of � �
��
	 �

�
	.

We compute �	, etc., for this model. Here the second buffer is identical to the first,
i.e., �
 � �� � ���� and
	�

�
	�
� �� ms, as in Scenario 1 of Table 4. We vary

the propagation delay
� of the links connecting sources 1 and 2 to the routers #�

and #
, respectively, from �	 ms to ��	 ms simultaneously in ten steps. The left
panel of Figure 10 shows the ratios of the throughputs ��	�	 and �
	�	 as functions
of $ � ��	�	 � �
	�	. We see that the throughputs of source 1 and 2 are nearly
the same. This is to be expected when the fraction of lost traffic at the first buffer
is small. Indeed, in that case the rate of the ‘thinned connection 0’, i.e. the traffic
of connection 0 minus the loss incurred at the first buffer, is nearly the same as
the transmission rate of source 0. Hence, connection 1 and connection 2 have to
compete with approximately the same connection. The fact that �
 is just slightly
larger than �� shows, in accordance with the above, that the rate of the thinned
connection 0 is a bit smaller than its initial rate. As the difference between �� and
�
 is small, we neglect this aspect in the rest of the discussion.

When �	 � �� � �
 we can compare ��	�	 to some theoretical fairness results
for networks as derived by [21]. The authors of [19] claim that, in the terminology
of [21], the bandwidth sharing obtained by TCP in networks results in minimum-
potential-delay fairness. When we apply these results to the network shown in Fig-
ure 8 we obtain that, theoretically, ��	�	 �

�
�. Our model, on the other hand, gives

��	�	 � �
���	���� � ���, which is quite near to
�
�. Interestingly, in Figure 10

we plot as a reference the function $ � �
�$�	�
�. This shows considerable agree-

ment to the numerical results. It seems that the power of $ is dictated by the loss
model while the pre-factor is determined by the topology. We defer an investigation
of this result to future research.

23

6 Summary

We use stochastic Petri nets to specify, in a versatile way, Markovian models of
TCP New-Reno or Sack (more specifically, AIMD) sources that share one or two
buffers. The first model contains two connections competing for a single bottle-
neck link and buffer. The second model describes one connection traversing two
consecutive buffers, while each buffer receives additional side traffic from other
TCP connections. We also show that the first model can be simply extended to
more than two sources, and present a modification of the source model to include
on/off behavior.

This methodology is flexible, extendable, and enables to obtain qualitative insight
into the impact of various source and network parameters on transient and long-
term properties such as source throughput, link utilization and fairness. With re-
spect to parameters as packet size, round-trip time, and buffer size, the results of
our model are consistent with those of earlier models, e.g. [6,16], and therefore not
reported here.

In the first model (two sources, one buffer) we implement two popular assumptions
about the loss process at the buffer, viz. proportional loss and synchronized loss.
We validate the Markovian models for either loss process by extensively comparing
it, on the one hand, to the theory developed in [2],[3] and [18], and, on the other,
to simulation by ns-2. The models provide results that are consistent with the the-
oretical results or improve these in that better resemblance is found to simulation
results obtained by ns-2.

The second model (three sources, two buffers) shows that when the round-trip times
of all connections are equal, the computed ‘fairness’ is approximately minimum-
potential-delay fair as defined in [21]. It would be interesting to investigate the type
of fairness in case buffer sizes are not small or when the round-trip times differ. To
the best of our knowledge, the approach based on SPNs is one of the few theoretical
approaches that enables such quantitative analysis. In [21] the impact of round-trip
time differences is considered, but the window control is non-adaptive contrary to
our source model.

We finally mention that specifying the Markovian models by means of SPNs, so
that the generator of Markov chain and the performance measures are computed
automatically, has some noteworthy advantages over implementing the generator
by hand as is done in [16]. The implementation of the SPNs is straightforward
and less error-prone. Moreover, the automatically generated Markov chains usually
need less states, and can therefore be solved more efficiently. Finally, it is easy
to include complex behavior of the application layer or modify aspects of TCP in
the SPN. In summary, we feel that using SPNs shifts the burden of the work from
simple but awkward programming to the more attractive task of designing a Petri

24

net that behaves according to a set of pre-specified rules.

Acknowledgments

To obtain the performance results in this paper we made extensive use of the soft-
ware package SPNP version 4. The authors thank Kishor S. Trivedi of Duke Uni-
versity for making this package available. The authors are grateful to Chadi Barakat
for sharing the ns-2 script he used to obtain the results of [2]. Finally, the first author
thanks Pasi Lassila for some help with the simulations with ns-2.

A Some Concepts of Stochastic Petri Nets

In this section we introduce the concepts of stochastic Petri nets that are relevant to
this paper. We refer to Figure 1 as an example.

A SPN consists of a set of places and a set of transitions. These two sets are con-
nected via directed arcs as a bipartite graph: places (drawn as circles) connect only
to transitions, while transitions (drawn as bars) connect only to places. A directed
arc from a place (transition) to a transition (place) is called an input (output) arc to
(from) a transition. Places can contain tokens indicated as a number of black dots
or an integer in the place. In case a place contains at least one token, we say that it
is marked. The distribution of the tokens over the places represents the state of the
net and is called the marking. When all input places, i.e., all places connected to the
input arcs of a transition, are marked the transition is enabled. Once enabled, the
transition can fire, thereby removing tokens from its input places and adding tokens
to its output places. Thus, a firing nearly always changes the marking. These firings
are to occur immediately (contrary to timed transitions to be introduced below) and
atomically, i.e., other transitions cannot fire before the action of the firing transition
is completed. Note that during firing ‘conservation of tokens’ is not necessarily
implied.

Starting from an initial marking�	, the reachability set� is the set of all different
markings � reachable by any succession of enabled transitions starting from �	.

Besides the input and output arcs just mentioned, a Petri net can contain inhibitor
arcs, to be drawn as an arc from a place to a transition with as arrowhead a small
circle. If the place connected to an inhibitor arc is marked, the related transition is
disabled.

An important property of input, output, and inhibitor arcs is their multiplicity. A
multiple input (output) arc removes (adds) a number of tokens according to its

25

multiplicity from (to) a place, provided it is enabled. Note that the transition is
only enabled if the number of tokens at each input place is larger than or equal to
the multiplicity of the corresponding input arc. A multiple inhibitor arc becomes
effective as soon as the place contains a number of tokens at least as large as the
inhibitor’s multiplicity. Besides multiple arcs we need variable in- and output arcs.
The multiplicity of these arcs may depend on the actual marking of the net. Thus,
the multiplicity of variable arcs is generally not constant. Variable arcs are shown
as directed arcs with a ‘zigzag’: .

Sometimes it is desirable to incorporate probabilistic behavior in the net. One
mechanism for this—the other mechanism is related to time, which will be dis-
cussed presently—is a random switch. Such a switch consists of a set of immediate
transitions which are all simultaneously enabled by the same marking. A set of
weights is adjoined to the random switch. The probability that a certain transition
of the random switch fires is proportional to its weight. Such weights are allowed
to depend on the marking at the moment just prior to firing.

The arc types we have discussed above permit us to specify various types of condi-
tions to enable or disable transitions. However, sometimes it is rather cumbersome
to specify complicated conditions in the SPN by means of places and arcs. To avoid
such awkward complications we can use guards. A guard is a marking-dependent
enabling function attached to a transition. If the condition of the guard is satisfied,
the transition is enabled; otherwise the transition is disabled. Thus, by means of
guards quite complex marking dependent conditions can be imposed on the dy-
namics of the net. In this paper we draw a guard as a box with a dashed boundary
containing a (shorthand of a) condition. (This graphical representation of a guard
is by no means standard in the literature.)

Up to now the transitions discussed above are immediate: if a transition is enabled,
and chosen when it is an element of a random switch, it fires immediately. We
can introduce the concept of time in the Petri net by means of timed transitions,
which are drawn as open rectangles. Such a transition fires, if enabled, after an
exponentially distributed amount of time. A useful feature is that the transition
rates of such transitions are allowed to depend on the marking.

Once we have specified the SPN the computation of performance measures is rel-
atively straightforward. Under some mild boundedness conditions, it is possible to
automatically map the SPN to a continuous-time Markov chain �����
 � � 	� with
infinitesimal generator' and initial probability vector representing the initial mark-
ing of the SPN. The size of the chain equals the cardinality 	� 	 of the reachability
set� . If ������ is irreducible, the stationary distribution � � �(
 � � �
 (�� �� ex-
ists and does not depend on the initial marking. The vector � satisfies �' � 	,�

� (� � �, and can be computed by Gauss-Seidel iteration, or other, more ad-
vanced, numerical procedures, cf. [26].

26

The performance measures of interest for the stationary limit � of ������ can
then be expressed in terms of a reward rate function � �� � � which associates
with every state) � � a real-valued reward rate ��)�. The steady-state reward
is then given as

������� �
�
���

��)�(�� (A.1)

For more information regarding SPNs consult, e.g., [1]. For details concerning
SPNP, see [11].

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[2] E. Altman, C. Barakat, E. Laborde, P. Brown, and D. Collange. Fairness analysis of
TCP/IP. In Proc. of IEEE Conference on Decision and Control, 2000.

[3] E. Altman, T. Jimenez, and R. Núñez-Queija. Analysis of two competing TCP/IP
connections. Performance Evaluation, 49:43–55, 2002.

[4] K. Avratchenkov, U. Ayesta, E. Altman, P. Nain, and C. Barakat. The effect of router
buffer size on the TCP performance. In LONIIS workshop on Telecommunication
Networks and Teletraffic Theory, 2002.

[5] F. Baccelli and D. Hong. Flow level sumulation of large IP networks. In Proc. of IEEE
INFOCOM, 2003.

[6] P. Brown. Resource sharing of TCP connections with different roundtrip times. In
Proc. of IEEE INFOCOM, pages 1734–1741, 2000.

[7] C. Casetti and M. Meo. A new approach to model the stationary behavior of TCP
connections. In Proc. of IEEE INFOCOM, pages 367–375, 2000.

[8] C. Casetti and M. Meo. An analytical framework for the performance evaluation of
TCP Reno connections. Computer Networks, 37(5):669–682, 2001.

[9] C. Casetti and M. Meo. Modeling the stationary behavior of TCP Reno connections.
In QOS-IP, pages 141–156, 2001.

[10] D.H. Chiu and R. Jain. Analysis of the increase and decrease algorithms of congestion
avoidance in computer networks. Computer Networks and ISDN Systems, 17:1–14,
1989.

[11] G. Ciardo, G. M. Fricks, J.K. Muppala, and K.S. Trivedi. SPNP Users Manual, 4th
edition, 1994.

[12] G. Ciardo, G. Muppalla, and K. Trivedi. SPNP: Stochastic Petri Net Package. In 3rd
Int. Workshop on Petri Nets and Performance Models (PNPM’89), pages 142–151.
IEEE Comp. Soc. Press, 1989.

27

[13] S. Floyd and T. Henderson. The NewReno modification TCP’s Fast Recovery
algorithm, 1999. RFC 2582.

[14] S. Floyd and V. Jacobson. Random Early Detection gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[15] N.D. van Foreest, M.R.H. Mandjes, and W.R.W. Scheinhardt. Analysis of a feedback
fluid model for heterogeneous TCP sources. Stochastic Models, 19(3):299–324, 2003.

[16] N.D. van Foreest, M.R.H. Mandjes, and W.R.W. Scheinhardt. A versatile model for
asymmetric TCP sources. In Proc. of ITC 18, pages 631–640, 2003.

[17] R.J. Gibbens, S.K. Sargood, C. Van Eijl, F.P. Kelly, H. Azmoodeh, R.N. Macfadyen,
and N.W. Macfadyen. Fixed-point models for the end-to-end performance analysis
of IP networks. In ITC Specialist Seminar: IP Traffic Measurement, Modeling and
Management, volume 13, 2000.

[18] T. V. Lakshman and U. Madhow. The performance of TCP/IP for networks with high
bandwidth-delay products and random loss. IEEE/ACM Transactions on Networking,
5(3):336–350, 1997.

[19] K.W. Lee, T.E. Kim, and V. Bharghavan. A comparison of end-to-end congestion
control algorithms: the case of AIMD and AIPD. In Globecom, 2001.

[20] Y. Liu, F. Lo Presti, V. Misra, D. Towsley, and Y. Gu. Fluid models and solutions
for large-scale IP networks. ACM SIGMETRICS Performance Evaluation Review,
31(4):91–101, 2003.

[21] L. Massoulié and J.W. Roberts. Bandwidth sharing: objectives and algorithms. In
Proc. of IEEE INFOCOM, pages 1395–1403, 1999.

[22] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgment
options, 1996. RFC 2018.

[23] V. Misra, W. Gong, and D. F. Towsley. Fluid-based analysis of a network of AQM
routers supporting TCP flows with an application to RED. ACM SIGCOMM Computer
Communication Review, 30(4):151–160, 2000.

[24] L.L. Peterson and B.S. Davie. Computer Networks. Morgan Kaufman Publ., 2nd
edition, 2000.

[25] Network Simulator. Available at: http://www.isi.edu/nsnam/ns/.

[26] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

28

