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Abstract. In this survey paper we present a general framework for col-
oring problems that was introduced in a joint paper which the author
presented at WG2003. We show how a number of different types of color-
ing problems, most of which have been motivated from frequency assign-
ment, fit into this framework. We give a survey of the existing results,
mainly based on and strongly biased by joint work of the author with sev-
eral different groups of coauthors, include some new results, and discuss
several open problems for each of the variants.
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1 General introduction

In the application area of frequency assignment graphs are used to model the
topology and mutual interference between transmitters (receivers, base stations):
the vertices of the graph represent the transmitters; two vertices are adjacent
in the graph if the corresponding transmitters are so close (or so strong) that
they are likely to interfere if they broadcast on the same or ‘similar’ frequency
channels. The problem in practice is to assign a limited number of frequency
channels in an economical way to the transmitters in such a way that inter-
ference is kept at an ‘acceptable level’. This has led to various different types
of coloring problems in graphs, depending on different ways to model the level
of interference, the notion of similar frequency channels, and the definition of
acceptable level of interference (See e.g. [25],[32]).

In [10] an attempt was made to capture a number of different coloring prob-
lems in a unifying model. This general framework that we will consider here too
is as follows:

Given two graphs G1 and G2 with the property that G1 is a (spanning)
subgraph of G2, one considers the following type of coloring problems:
Determine a coloring of (G1 and) G2 that satisfies certain restrictions of
type 1 in G1, and restrictions of type 2 in G2, using a limited number of
colors.

? The work that led to this survey paper is partly sponsored by NWO-grant
047.008.006.



Many known coloring problems related to frequency assignment fit into this
general framework. We will discuss the following types of problems.

1.1 Distant-2 coloring

First of all suppose that G2 = G2
1, i.e. G2 is obtained from G1 by adding edges

between all pairs of vertices that are at distance 2 in G1. If one just asks for a
proper vertex coloring of G2 (and G1), this is known as the distant-2 coloring
problem. Much of the research has been concentrated on the case that G1 is a
planar graph, and on obtaining good upper bounds in terms of the maximum
degree of G1 for the minimum number of colors needed in this case. In Section 2
we will survey some of the existing results, and discuss the proof techniques and
open problems in this subarea.

1.2 Radio coloring

In some versions of the previous problem one puts the additional restriction on
G1 that the colors should be sufficiently separated. One way to model this is to
use positive integers for the colors (modeling certain frequency channels) and to
ask for a coloring of G1 and G2 such that the colors on adjacent vertices in G2

are different, whereas they differ by at least 2 on adjacent vertices in G1. This
problem is known as the radio coloring problem and has been studied under
various names. In Section 3 we will briefly survey some of the existing results in
this subarea.

1.3 Radio labeling

The so-called radio labeling problem models a practical setting in which all
assigned frequency channels should be distinct, with the additional restriction
that adjacent transmitters should use sufficiently separated frequency channels.
Within the above framework this can be modeled by considering the graph G1

that models the adjacencies of n transmitters, and taking G2 = Kn, the complete
graph on n vertices. The restrictions are clear: one asks for a proper vertex col-
oring of G2 such that adjacent vertices in G1 receive colors that differ by at least
2. In Section 4 we will discuss some of the existing results in this subarea, with
an emphasis on recent results concerning a prelabeled version of this problem.

1.4 Backbone coloring

The last type of coloring is the recently in [10] introduced notion of backbone
coloring. In this variant one models the situation that the transmitters form
a network in which a certain substructure of adjacent transmitters (called the
backbone) is more crucial for the communication than the rest of the network.
This means one should put more restrictions on the assignment of frequency
channels along the backbone than on the assignment of frequency channels to
other adjacent transmitters. The backbone could e.g. model so-called hot spots in
the network where a very busy pattern of communications takes place, whereas
the other adjacent transmitters supply a more moderate service. This leads to
the problem of coloring the graph G2 (that models the whole network) with a
proper vertex coloring such that the colors on adjacent vertices in G1 (that model



the backbone) differ by at least 2. So far three types of backbones have been
considered: (perfect) matchings, spanning trees and a special type of spanning
trees also known as Hamiltonian paths. In Section 5 we will discuss the existing
results and many open problems in this subarea. Note that the notion of back-
bone coloring in fact generalizes both radio coloring and radio labeling: radio
coloring is the special case of backbone coloring in which G1 is the backbone of
G2 = G2

1, while radio labeling is the special case in which G1 is the backbone of
Kn.

2 Distant-2 coloring

In this section we will survey some of the existing results on distant-2 coloring,
and discuss the proof techniques and open problems in this subarea. We refer to
[1], [7], [8], [29], [33], and [38] for more details.

2.1 Introduction and main results

Throughout Section 2, G is a plane graph ( i.e., a representation in the plane
of a planar graph ), that is simple ( i.e., without loops and multiple edges ) and
with vertex set V and edge set E. The distance between two vertices u and v is
the length of a shortest path joining them.

A distant-2-coloring of G is a coloring of the vertices such that vertices at
distance one or two have different colors. The least number for which a distant-2-
coloring exists is called the distant-2 chromatic number of G, denoted by χ2(G).
We recall that a distant-2-coloring of G is equivalent to an ordinary vertex
coloring of the square G2 of G. ( The square of a graph G, denoted G2, is the
graph with the same vertex set and in which two vertices are joined by an edge
if and only if they have distance one or two in G. ) And hence the distant-2
chromatic number χ2(G) equals the ordinary chromatic number χ(G2) of G2.

The following conjecture was formulated in Wegner [38]. ( See also Jensen &
Toft [[30], Section 2.18]. )

Conjecture 1 If G is a planar graph with maximum degree ∆, then

χ2(G) ≤
{

∆ + 5, if 4 ≤ ∆ ≤ 7;
b 3

2 ∆c + 1, if ∆ ≥ 8.

A first result towards a proof of this conjecture can be found in work of Jonas [31].
From one of the results in [31] it follows directly that χ2(G) ≤ 8 ∆ − 22 for a
planar graph G with maximum degree ∆ ≥ 7. This bound was significantly
improved in Van den Heuvel & McGuinness [29] to χ2(G) ≤ 2 ∆ + 25.
Independently, a result with a smaller factor in front of the ∆ was proved by
Agnarsson & Halldórsson [1] who showed that, provided ∆ ≥ 749, for a
planar graph G with maximum degree ∆ we have χ2(G) ≤ b 9

5 ∆c + 2.
In [8], the lower bound on ∆ for this last bound has been reduced. In fact,

the following result was proved there.

Theorem 2 If G is a planar graph with maximum degree ∆, then

χ2(G) ≤
{

59, if ∆ ≤ 20;
max{∆ + 39, d 9

5 ∆e + 1 }, if ∆ ≥ 21.

In particular, if ∆ ≥ 47, then χ2(G) ≤ d 9
5 ∆e + 1.



The proof of Theorem 2 in [8] involves the establishment of the existence of cer-
tain unavoidable configurations in a planar graph, first of all in [7] for maximal
planar graphs. The existence of these configurations is proved by the discharging
technique. This approach goes back to Heawood’s proof of the 5-Color Theo-
rem [27], and the old and new proofs of the 4-Color Theorem ([3],[4],[35]).

To give the general idea, let us repeat the structure of the unavoidable con-
figurations in [7] and [8]. They are defined in terms of “bunches” and “stars”.

We say that G has a bunch of length m ≥ 3 with as poles the vertices p
and q, where p 6= q, if G contains a sequence of paths Q1, Q2, . . . , Qm with the
following properties. Each Qi has length 1 or 2 and joins p with q. Furthermore,
for each i = 1, . . . , m−1, the cycle formed by Qi and Qi+1 is not separating in G
( i.e., has no vertex of G inside ). Moreover, this sequence of paths is maximal
in the sense that there is no path Q0 ( or Qm+1 ) that could be added to the
bunch, preserving the above properties. If the cycle bounded by Q1 and Qm

separates G, then the internal vertices of Q1 and Qm (if they exist) are the end
vertices of the bunch. A path Qi = pq of length 1 in the bunch will be referred
to as a parental edge.

A d-vertex in G is a vertex of degree d. The big vertices in G are those of
degree at least 26, and minor vertices those of degree at most 5.

Let u be a d-vertex, and let v1, . . . , vk be adjacent to u for some integer k
with 1 ≤ k ≤ d. We say that the vertices u, v1, . . . , vk and edges uv1, . . . , uvk

form a k-star at u, defined by v1, . . . , vk, of weight
k
∑

i=1

d(vi). A (d − 1)-star at a

d-vertex is called precomplete, and a d-star at a d-vertex is complete.

The following result describes the unavoidable configurations used in [8] to
prove Theorem 2 on distant-2-colorings. We omit the proof.

Theorem 3 For each plane graph G at least one of the following holds :

(a) G has a precomplete star of weight at most 38 that does not contain big
vertices and is centred at a minor vertex.

(b) G has a big vertex b that satisfies at least one of the following conditions:

• b is a pole for a bunch of length greater than d(b)/5;

• b is a pole for a bunch of length precisely d(b)/5 with a parental edge;
• b is a pole for 5 bunches of length d(b)/5 without parental edges and with

pairwise different end vertices. Moreover, among the end vertices there
is a vertex v0 of degree at most 11, and each other end vertex has degree
at most 5. Furthermore, if vi and vi+1 are consecutive in the vicinity
of b and are end vertices of two bunches such that vi 6= v0 and d(vi) = 5,
then vi and vi+1 are adjacent in G.

As proved in Borodin & Woodall [9], each plane graph with minimum de-
gree 5 has a precomplete star of weight at most 25 centred at a 5-vertex. On
the other hand, planar graphs with vertices of degree less than 5 may have ar-
bitrarily large weight of the precomplete stars at all minor vertices, as follows
from the n-bipyramid. Theorem 3 shows that this is only possible if there are
long enough bunches at big vertices.

This structural result of Theorem 3 can be used to prove Theorem 2 by
induction (contracting an edge in a suitable star or bunch). In fact, the structural
result is used to first prove a best possible upper bound on the minimum degree



of the square of a planar graph, and hence on a best possible bound for the
number of colors needed in a greedy coloring of it.
Using different unavoidable configurations and a proof which is also based on the
discharging method, Molloy & Salavatipour were able to prove the following
considerable strengthening of Theorem 2 in [33].

Theorem 4 If G is a planar graph with maximum degree ∆, then

χ2(G) ≤
{

b 5
3∆c + 78,

b 5
3∆c + 24, if ∆ ≥ 241.

Based on the length and depth of the proofs of the previous results one is likely to
think that further improvements should be based on a different proof approach,
avoiding complicated discharging and unavoidable configurations.

Recently, Andreou & Spirakis announced an “almost proof” of Conjec-
ture 1 in [2].

3 Radio coloring

In some versions of the previous problem one puts the additional restriction on
G1 that the colors should be sufficiently separated, in order to model practi-
cal frequency assignment problems in which interference should be kept at an
acceptable level. One way to model this is to use positive integers for the col-
ors (modeling certain frequency channels) and to ask for a coloring of G1 and
G2 = G2

1 such that the colors on adjacent vertices in G2 are different, whereas
they differ by at least 2 on adjacent vertices in G1. This problem is known
as the radio coloring problem and has been studied (under various names, e.g.
L(2, 1)-labeling, λ2,1-coloring and χ2,1-labeling) in [6], [12], [15], [16], [17], [18],
and [31].

A radio coloring of a graph G = (V, E) is a function f : V → N+ such that
|f(u) − f(v)| ≥ 2 if {u, v} ∈ E and |f(u) − f(v)| ≥ 1 if the distance between
u and v in G is 2. The notion of radio coloring was introduced by Griggs &
Yeh [23] under the name L(2, 1)-labeling. The span of a radio coloring f of G
is maxv∈V f(v).

The problem of determining a radio coloring with minimum span has received
a lot of attention. For various graph classes the problem was studied by Sakai
[36], Bodlaender, Kloks, Tan & van Leeuwen [6], Van den Heuvel,
Leese & Shepherd [28], and others. NP-hardness results for this Radio Col-
oring problem (RC) restricted to planar, split, or cobipartite graphs were ob-
tained by Bodlaender, Kloks, Tan & van Leeuwen [6]. Fixed-parameter
tractability properties of RC are discussed by Fiala, Kratochv́ıl and Kloks
[16]. Fiala, Fishkin & Fomin [15] study on-line algorithms for RC. For only
very few graph classes the problem is known to be polynomially solvable. Chang
& Kuo [12] obtained a polynomial time algorithm for RC restricted to trees and
cographs. The complexity of RC even for graphs of treewidth 2 is a long stand-
ing open question. An interesting direction of research was initiated by Fiala,
Kratochv́ıl & Proskurowski [17]. They consider a precolored version of RC,
i.e. a version in which some colors are pre-assigned to some vertices. They proved
that RC with a given precoloring can be solved in polynomial time for trees.
Recently Golovach [21] proved that RC is NP-hard for graphs of treewidth 2.

Due to page limitations we omit the details and confine ourselves to referring
the interested reader to the cited papers.



4 Radio labeling

The so-called radio labeling problem models a practical setting in which all
assigned frequency channels should be distinct, with the additional restriction
that adjacent transmitters should use sufficiently separated frequency channels.
Within the above framework this can be modeled by considering the graph G1

that models the adjacencies of n transmitters, and taking G2 = Kn, the complete
graph on n vertices. The restrictions are clear: one asks for a proper vertex
coloring of G2 such that adjacent vertices in G1 receive colors that differ by at
least 2.

4.1 Definitions and preliminary observations

The girth of a graph G is the length of a shortest cycle in G. A graph G is
t-degenerate if each of its subgraphs has a vertex of degree at most t. A labeling
of the (vertex set of the) graph G = (V, E) is an injective mapping L: V → N+.
A labeling L of G is called a radio labeling of G if for any edge {u, v} ∈ E the
inequality |L(u)−L(v)| ≥ 2 holds; the span of such a labeling L is maxv∈V L(v).

The Radio Labeling problem (RL) is defined as follows: “For a given graph
G, find a radio labeling L with the smallest span.” The name radio labeling was
suggested by Fotakis & Spirakis in [19] but the same notion (under different
names) has been introduced independently and earlier by other researchers (see,
e.g. Chang & Kuo [12]). Problem RL is equivalent to the special case of the
Traveling Salesman problem TSP(2,1) in which all edge weights (distances)
are either one or two. The relation is as follows. For a graph G = (V, E) let KG be
the complete weighted graph on V with edge weights 1 and 2 defined according
to E: for every {u, v} ∈ E the weight w({u, v}) in KG is 2 and for {u, v} 6∈ E
the weight w({u, v}) = 1. The weight of a path in KG is the sum of the weights
of its edges. The following proposition can be found in [19, 18].

Proposition 5 There is a radio labeling of G with span k if and only if there
is a Hamiltonian path (i.e. a path on |V | vertices) of weight k − 1 in KG.

Another equivalent formulation of this problem, which was extensively studied
in the literature, is the Hamiltonian Path Completion problem (HPC), i.e.
the problem of partitioning the vertex set of a graph G into the smallest possible
number of sets which are spanned by paths in G. This equivalence is expressed
in the following well-known proposition. Here G denotes the complement of G,
i.e. the graph obtained from a complete graph on |V (G)| vertices by deleting the
edges of G.

Proposition 6 There is a radio labeling of G with span ≤ k if and only if there
is a partition of V into ≤ k sets, such that each of these sets induces a subgraph
in G that contains a Hamiltonian path.

As we mentioned above the Traveling Salesman problem TSP(2,1) (which
is equivalent to RL) is a well-studied problem. Papadimitriou & Yannakakis
[34] proved that this problem is MAX SNP-hard, but gave an approximation
algorithm for TSP(2,1) which finds a solution not worse than 7/6 times the
optimum solution. Later Engebretsen [14] improved their result by showing
that the problem is not approximable within 5381/5380− ε for any ε > 0.



Damaschke, Deogun, Kratsch & Steiner [13] proved that the Hamil-
tonian Path Completion problem HPC can be solved in polynomial time
on cocomparability graphs (complements of comparability graphs). To obtain
this result they used a reduction to the problem of finding the bump number
of a partial order. (The bump number of a poset P and its linear extension L
is the number of neighbors in L which are comparable in P .) It was proved by
Habib, Möhring & Steiner [24] and by Schäffer & Simons [37] that the
Bump Number problem can be solved in polynomial time. By Proposition 6,
the result of Damaschke, Deogun, Kratsch & Steiner yields that RL is
polynomial time solvable for comparability graphs. Later, this result was redis-
covered by Chang & Kuo [12] but under the name of L′(2, 1)-labeling and
only for cographs, a subclass of the class of comparability graphs. Notice that
RL is NP-hard for cocomparability graphs because the Hamiltonian Path
problem is known to be NP-hard for bipartite graphs which form a subclass of
comparability graphs. Recently, Fotakis & Spirakis [19] proved that RL can
be solved in polynomial time within the class of graphs for which a k-coloring
can be obtained in polynomial time (for some fixed k). Note that, for example,
this class of graphs includes the well-studied classes of planar graphs and graphs
with bounded treewidth.

4.2 Radio labeling with prelabeling

Here we focus briefly on a recently studied prelabeling version of the radio la-
beling problem ([5]).

For a graph G = (V, E) a pre-labeling L′ of a subset V ′ ⊂ V is an injective
mapping L′: V ′ → N+. We say that a labeling L of G extends the pre-labeling
L′ if L(u) = L′(u) for every u ∈ V ′. We consider the following two problems
that were introduced in [5]:

– p-RL(∗): RL with an arbitrary number of pre-labeled vertices.
For a given graph G and a given pre-labeling L′ of G, determine a radio
labeling of G extending L′ with the smallest span.

– p-RL(l): RL with a fixed number of pre-labeled vertices.
For a given graph G = (V, E), a subset V ′ ⊆ V with |V | ≤ l, and a pre-
labeling L′: V ′ → N+, determine a radio labeling of G extending L′ with the
smallest span.

In [5], the authors studied algorithmical, complexity-theoretical, and combinato-
rial aspects of radio labeling with pre-labeled vertices. We will briefly summarize
these results in Section 4.3, and list some open problems in Section 4.4.

4.3 Upper bounds for the minimum span

Let G = (V, E) denote a graph on n vertices, and let V ′ ⊆ V and L′: V ′ → N+

be a fixed subset of V and a pre-labeling for V ′, respectively. Let

M := max{n, max
v∈V ′

L′(v)}.

Clearly, M is straightforward to compute if G and L′ are known. And clearly, M
is a lower bound on the span of any radio labeling in G extending the pre-labeling
L′ of G. A natural question is how far M can be away from the minimum span
of such a labeling. In [5] it is shown that the answer to this question heavily
relies on the girth of the graph G:



Theorem 7 Consider a graph G on n ≥ 7 vertices, and a pre-labeling L′ of G.
Then there is a radio labeling in G extending L′

(a) with span ≤ b(7M − 2)/3c
(b) with span ≤ b(5M + 2)/3c if G has girth at least 4
(c) with span ≤ M + 3 if G has girth at least 5.

All these bounds are best possible. The third bound is even best possible for the
class of paths.

For graphs with bounded degeneracy the following results are proved in [5].

Lemma 8 If G is a t-degenerate graph on n vertices, then it has a radio labeling
with span ≤ n + 2t.

Theorem 9 If G is a t-degenerate graph and L′ is a pre-labeling of G, then
there exists a radio labeling extending L′ with span ≤ M + (4 +

√
3)t + 1.

The above results imply a polynomial time approximation algorithm for solv-
ing the radio labeling problem (with pre-labeling) in t-degenerate graphs. The
bound in Theorem 9 can possibly be improved considerably. In [5] the following
conjecture is posed.

Conjecture 10 If G is a t-degenerate graph and L′ is a pre-labeling of G, then
there exists a radio labeling extending L′ with span ≤ M + 3t.

The upper bound in the above conjecture cannot be improved.

We now turn to graphs with a bounded maximum degree.

Theorem 11 Let G = (V, E) be a t-degenerate graph with maximum degree ∆
and let V ′ ⊆ V be the set of vertices that is pre-labeled by L′. If the number of
unlabeled vertices p = |V \ V ′| ≥ 4∆(t + 1), then L′ can be extended to a radio
labeling of G with span M .

In [5] Theorem 11 is used to obtain the following complexity result for graphs
with a bounded maximum degree.

Corollary 12 Let k be a fixed positive integer. For every graph G with maximum
degree ∆ ≤ k and pre-labeling L′, p-RL(∗) can be solved in polynomial time.

The above corollary shows that p-RL(l) and p-RL(∗) have the same complexity
behavior as RL for graphs with a bounded maximum degree, i.e. all three of the
problems can be solved in polynomial time. This picture changes if we restrict
ourselves to graphs which are k-colorable and for which a k-coloring is given (as
part of the input) for some fixed positive integer k.

Related to Proposition 5 we discussed the useful equivalence between RL
and the Traveling Salesman problem TSP(2,1). In [5] this equivalence is
adapted as follows to capture the restrictions of the pre-labeling problem. Let L
be a labeling of a graph G = (V, E) on n vertices. The path P = (v1, v2, . . . , vn)
corresponding to L visits the vertices by increasing labels, i.e. for all 1 ≤ a <
b ≤ n we have L(va) < L(vb). P is a path in the complete graph KG; its weight
w(P ) is measured according to the edge weights w in KG. In [5] the following
result is proved and used to obtain the next corollary.



Theorem 13 Let G = (V, E) be a graph with a given k-coloring with color
classes I1, I2, . . . , Ik. Let L′ be a pre-labeling of a subset V ′ ⊆ V with |V ′| = l.
Then a radio labeling L of G extending L′ with the smallest possible span can be
computed in time O(n4(l+1)k(k−1)).

For each of the graph classes in the following corollary, it is possible to construct
a vertex coloring with a constant number of colors in polynomial time. Hence:

Corollary 14 The radio labeling problem p-RL(l) is polynomially solvable

– on the class of planar graphs,
– on any class of graphs of bounded treewidth,
– on the class of bipartite graphs.

The above results show that p-RL(l) is solvable in polynomial time for graphs
with a bounded chromatic number and a given coloring. As shown in [5] this
result does not carry over to the more general labeling problem p-RL(∗) where
the number of pre-labeled vertices is part of the input. It is shown there that
p-RL(∗) is NP-hard even when restricted to 3-colorable graphs with a given
3-coloring by a transformation from Partition into triangles; this result
is then easily generalized in [5] to k-colorable graphs (k ≥ 4) with a given k-
coloring.

Theorem 15 For any fixed k ≥ 3, problem p-RL(∗) is NP-hard even when the
input is restricted to graphs with a given k-coloring.

The final results in [5] refer to another class of graphs for which RL is known to
be polynomially solvable, namely the class of cographs, i.e. graphs without an
induced path on four vertices. Using an easy reduction from 3-partition it is
shown in [5] that p-RL(∗) is NP-hard for cographs.
The complexity of p-RL(l) for cographs is left in [5] as one of the open problems.

4.4 Open problems

In this section we focussed on two versions of the radio labeling problem in which
a pre-labeling is assumed. The known results are summarized in the following
table.

graphs with graphs with a Cographs
a bounded ∆ given k-coloring

RL P [19] P [19] P [13, 12]
p-RL(l) P [5] P [5] ???
p-RL(∗) P [5] NP for k ≥ 3 [5] NP [5]

In this table, an entry P denotes solvable in polynomial time, NP denotes NP-
hard, and the sign ??? marks an open problem.

For the results in the middle column, we assume that k is a fixed integer that
is not part of the input. Note that the class of graphs with a given k-coloring
contains important and well-studied graph classes such as the class of planar
graphs and the class of graphs with bounded treewidth.

Many questions remain open, a few of which are listed in [5] and repeated
below:



– The complexity of any of the variants of Radio Labeling (RL, p-RL(l)
and p-RL(∗)) for interval graphs are open problems.

– As mentioned earlier another open problem concerns the computational com-
plexity of p-RL(l) for cographs.

– The results in [5] imply that p-RL(l) is polynomial for bipartite graphs. On
the other hand, it is proved there that p-RL(∗) is NP-hard for 3-partite
graphs even if a 3-coloring of the graph is given. The complexity of p-RL(∗)
for bipartite graphs is open.

– As shown in [5] p-RL(l) is polynomial for planar graphs and graphs of
bounded treewidth. The complexity of p-RL(∗) for these graph classes is
open.

5 Backbone coloring

5.1 Introduction and terminology

In this last section we consider backbone colorings, a variation on classical vertex
colorings that was introduced in [10]: Given a graph G = (V, E) and a spanning
subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper
vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent
vertices in H differ by at least two. We recall that the chromatic number χ(G) is
the smallest integer k for which there exists a proper coloring f : V → {1, . . . , k}.
The backbone coloring number bbc(G, H) of (G, H) is the smallest integer ` for
which there exists a backbone coloring f : V → {1, . . . , `}.

In [10] the results are concentrated on cases where the backbone is either a
spanning tree or a spanning path, in [11] the backbone is a perfect matching.
In both [10] and [11] combinatorial and algorithmic aspects are treated. We
summarize the main results from [10] and [11] in the next two subsections, but
first introduce some additional terminology and notation.

A Hamiltonian path of the graph G = (V, E) is a path containing all vertices
of G, i.e. a sequence (v1, v2, . . . , vn) such that V = {v1, v2, . . . , vn}, all vi are
distinct, and {vi, vi+1} ∈ E for all i = 1, 2, . . . , n − 1. A perfect matching is a
subset of |V |/2 edges from E in which none of the edges share a common end
vertex. A split graph is a graph whose vertex set can be partitioned into a clique
(i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of
mutually nonadjacent vertices), with possibly edges in between. The size of a
largest clique in G is denoted by ω(G). Split graphs are perfect graphs, and
hence satisfy χ(G) = ω(G).

5.2 Relations with the chromatic number

Part of the results in [10] and [11] are motivated by the following question: How
far away from χ(G) can bbc(G, H) be in the worst case? To answer this question,
in [10] the authors introduced, for integers k ≥ 1, the values

T (k) = max {bbc(G, T ) : G with spanning tree T , and χ(G) = k} (1)

As shown in [10], it turns out that this function T (k) behaves quite primitively:

Theorem 16 T (k) = 2k − 1 for all k ≥ 1.



The upper bound T (k) ≤ 2k − 1 in this theorem in fact is straightforward to
see. Indeed, consider a proper coloring of G with colors 1, . . . , χ(G), and replace
every color i by a new color 2i− 1. The resulting coloring uses only odd colors,
and hence constitutes a ‘universal’ backbone coloring for any spanning tree T
of G. The proof (in [10]) of the matching lower bound T (k) ≥ 2k − 1 is more
involved and is omitted.

Next, let us discuss the situation where the backbone tree is a Hamiltonian
path. Similarly as in (1), in [10] the authors introduced, for integers k ≥ 1, the
values

P(k) = max {bbc(G, P ) : G with Hamiltonian path P , and χ(G) = k} (2)

In [10] all the values of P(k) were exactly determined. They roughly grow like
3k/2. Their precise behavior is summarized in the following theorem.

Theorem 17 For k ≥ 1 the function P(k) takes the following values:

(a) For 1 ≤ k ≤ 4: P(k) = 2k − 1;
(b) P(5) = 8 and P(6) = 10;
(c) For k ≥ 7 and k = 4t: P(4t) = 6t;
(d) For k ≥ 7 and k = 4t + 1: P(4t + 1) = 6t + 1;
(e) For k ≥ 7 and k = 4t + 2: P(4t + 2) = 6t + 3;
(f) For k ≥ 7 and k = 4t + 3: P(4t + 3) = 6t + 5;

In [10] the authors also discuss the special case of backbone colorings on split
graphs. Split graphs were introduced by Hammer & Földes [26]; see also the
book [22] by Golumbic. They form an interesting subclass of the class of per-
fect graphs. The combinatorics of most graph problems becomes easier when
the problem is restricted to split graphs. The following theorem from [10] is a
strengthening of Theorems 16 and 17 for the special case of split graphs.

Theorem 18 Let G = (V, E) be a split graph.

(a) In G is connected, then for every spanning tree T in G, bbc(G, T ) ≤ χ(G)+
2.

(b) If ω(G) 6= 3 and G contains a Hamiltonian path, then for every Hamiltonian
path P in G, bbc(G, P ) ≤ χ(G) + 1.

Both bounds are tight.

An example in [10] shows why for split graphs with clique number 3 the statement
in Theorem 18(b) does not work.

In [11], similar as in (1) and (2), for integers k ≥ 1, the values

M(k) = max {bbc(G, M) : G with perfect matching M , and χ(G) = k} (3)

were introduced and exactly determined. These values roughly grow like 4k/3.
Their precise behavior is summarized in the following theorem,

Theorem 19 For k ≥ 1 the function M(k) takes the following values:

(a) M(4) = 6;
(b) For k = 3t: M(3t) = 4t;
(c) For k 6= 4 and k = 3t + 1: M(3t + 1) = 4t + 1;
(d) For k = 3t + 2: M(3t + 2) = 4t + 3.



5.3 Complexity of backbone coloring

In [10] and [11] the authors also discussed the computational complexity of com-
puting the backbone coloring number: “Given a graph G, a spanning subgraph
H, and an integer `, is bbc(G, H) ≤ `?” Of course, this general problem is
NP-complete. It turns out that in case H is a spanning tree for this problem the
complexity jump occurs between ` = 4 (easy for all spanning trees) and ` = 5
(difficult even for Hamiltonian paths). This is proved in [10].

Theorem 20

(a) The following problem is polynomially solvable for any ` ≤ 4: Given a graph
G and a spanning tree T of G, decide whether bbc(G, T ) ≤ `.

(b) The following problem is NP-complete for all ` ≥ 5: Given a graph G and a
Hamiltonian path P of G, decide whether bbc(G, P ) ≤ `.

As shown in [11], in case H is a perfect matching, the complexity jump occurs
between ` = 3 and ` = 4.

Theorem 21

(a) The following problem is polynomially solvable for any ` ≤ 3: Given a graph
G and a perfect matching M of G, decide whether bbc(G, M) ≤ `.

(b) The following problem is NP-complete for all ` ≥ 4: Given a graph G and a
perfect matching M of G, decide whether bbc(G, M) ≤ `.

5.4 Discussion

In [10] and [11] the combinatorics and the complexity of backbone colorings of
graphs have been analyzed, where the backbone is formed by a Hamiltonian
path, by a spanning tree, or by a matching.

Since this area is new, it contains many open problems. For arbitrary graphs
G with spanning tree T , the backbone coloring number bbc(G, T ) can be as
large as 2χ(G)−1. What about triangle-free graphs G? Does there exist a small
constant c such that bbc(G, T ) ≤ χ(G) + c holds for all triangle-free graphs G?
And what about chordal graphs? It can be shown that bbc(G, P ) ≤ χ(G) + 4
whenever G is chordal and P is a Hamiltonian path of G. Does this result carry
over to arbitrary spanning trees, i.e., does bbc(G, T ) ≤ χ(G) + c hold for any
chordal graph G with spanning tree T ?

Finally, what about planar graphs? The 4-Color Theorem together with The-
orem 16 implies that bbc(G, T ) ≤ 7 holds for any planar graph G with spanning
tree T . However, this bound 7 is probably not best possible. Can it be im-
proved to 6? There are planar graphs that demonstrate that this bound can not
be improved to 5, even for Hamiltonian path backbones. What about perfect
matching backbones? The 4-Color Theorem together with Theorem 19 implies
that bbc(G, M) ≤ 6 holds for any planar graph G with perfect matching M . It
seems that this bound 6 is not best possible, but there are planar graphs showing
that we cannot improve this bound to 4.
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