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Abstract

In coding theory the problem of decoding focuses on error vectors. In
the simplest situation code words are (0, 1)-vectors, as are the received
messages and the error vectors. Comparison of a received word with the
code words yields a set of error vectors. In deciding on the original code
word, usually the one for which the error vector has minimum Hamming
weight is chosen. This note is a continuation of a first investigation of er-
ror patterns. First we consider burstiness and distribution of error vectors
without assuming cyclic conditions. Then we define some forms of per-
fectness of codes and pose the problem of finding semi-perfect codes. The
results of a systematic search for small vector lengths are presented. Fi-
nally a link is laid between error vectors, graphs and balanced incomplete
block designs.

Keywords: codes, graphs, error patterns.
2000 AMS Classification: 94B

1 Introduction

We refer to our first note on error patters for an introduction to the subject [3].
We consider (0, 1)-vectors of length n. If Z2 is the Galois field on two elements,
we consider essentially all elements of Z

n
2 . Any subset of these 2n vectors forms

a code, which we may call a general code. Usually more structure is considered
to be present. A linear code is one in which the code words form a vector space.
If with a specific code word c also all cyclic shifts are present the code is called
cyclic. For the time being we consider only general codes.

We recall that for some (0, 1)-vector we introduced the concept of distribution
D of the ones of the vector. Assuming cyclic condition the k ones occur on
distances d1, d2, . . . , dk.
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Definition 1. The distribution D of a vector of length n with k ones is

D =

k∏

i=1
di · kk

nk
(k ≥ 1)

D = 1 (k = 0) .

Definition 2. The burstiness B of a vector of length n with k ones is

B = 1 − D.

2 Distribution for vectors without cyclic conditions

Let us consider the situation in which cyclic conditions are assumed for some
(error) vectors of length 9 of weight 3, so k = 3. The three ones are clearly
distributed most evenly if d1 = d2 = d3 = 3, as in the vector (0 1 0 0 1 0 0 1 0).
We obtain D = 33·33

93 = 1. For this vector B = 1 − 1 = 0.
Most likely such a vector is not due to burst errors but to three single errors.

Now let us assume that there are no cyclic conditions, then the most evenly
distribution of the three ones is as in (1 0 0 0 1 0 0 0 1). Now there are two
distances, both of value 4, that are to be considered.
As for the case of cyclic conditions we consider the product Pk−1 = d1, d2, . . . , dk−1

of the distances between consecutively occurring ones. Completely analogous
to the proof of Lemma 1 in [3], we obtain

Lemma 1. Pk−1 has maximum value (n−1
k−1 )k−1.

The maximum occurs for vectors in which first and last component are ones and
the k − 2 other ones are at equal distances consecutively, like in our example.
Note that the maximum value is not always obtained, so strictly speaking we
have here an upper bound on Pk−1. The value is used to normalize the product
of distances and to achieve that 0 ≤ Da ≤ 1 for all vectors.

Definition 3. The (acyclic) distribution Da of a vector of length n with k ones
is

Da =

k−1∏

i=1
di · (k − 1)k−1

(n − 1)k−1
(k ≥ 1)

Da = 1 (k = 0) .
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Definition 4. The (acyclic) burstiness Ba of a vector length n with k ones is

Ba = 1 − Da.

For our example we find, with d1 = 4, d2 = 4, k = 3, that Da = 4·4·22

82 = 26

26 = 1.

Usually in literature the concept of burst length is considered.

Definition 5. The burst length L of an (error) vector with k ones is the dis-
tance between first and last occurring one. We assume k ≥ 2.

Definition 6. Equivalence of the measures M1 and M2 means that, given two
vectors w1 and w2, we have that if M1(w1) ≥ M1(w2) then M2(w1) ≥ M2(w2)
and vice versa.

Lemma 2. The measures B and L are not equivalent.

Proof. We give a counterexample. Consider the vectors

w1 = (1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0) and
w2 = (1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0),

of length 16 with 4 ones.
We assume cyclic conditions and find L(w1) = 7, L(w2) = 6, so L(w1) > L(w2)
and, according to this measure, w2 is “burstier”. However, the product P4 of the
distances gives P4(w1) = 1.5.1.9 = 45, P4(w2) = 2.2.2.10 = 80. Hence D(w1) <
D(w2), so B(w1) > B(w2), which means that w1 is “burstier” according to that
measure. �

3 Various forms of perfectness of codes

Given a general code C, the set of other words of Z
n
2 may show special features.

All words have a certain Hamming distance to one of the code words, namely
the number of ones in the error vector with respect to the code word considered.
When the code words have mutual distance greater than or equal to d = 2e+1,
the code is e –error– correcting. This means that if we consider “spheres”
around the code words of “radius” e, then all the words in a sphere can be
uniquely decoded to the code word in the center of the sphere. Because we
consider general codes we prefer to use this geometrical picture.
The first concept of perfectness involves the situation that all the spheres pre-
cisely “cover” all the words in Z

n
2 . A standard example is the code consisting

of the words (0 0 0) and (1 1 1). All 6 other words have distance 1 to either
(0 0 0) or (1 1 1). The spheres each contain 4 words, covering the 8 words
precisely. Blahut [1] gives the following definition.

Definition 7. A perfect code is one for which there are equal radius spheres
about the code words that are disjoint and that completely fill the space.

3



In general the set of non-overlapping spheres of some radius e will not com-
pletely fill the space Z

n
2 . In that case there are words that have distance e + 1

or larger to the words of the code or, shortly, distance at least e+1 to the code.
If this occurs again some special feature may be present. For example, all of
these words outside the spheres may have distance e + 1 to the code.

Definition 8. A quasi-perfect code is one in which spheres of radius e about
each code word are disjoint and all words not in such a sphere are at a distance
e + 1 from at least one code word.

If some extra conditions are posed on the words we get another related concept.

Definition 9. A nearly perfect code is a quasi-perfect code with the extra
property that every word that has distance at least e to the code; has distance
e or e+1 to the same number of code words (namely �n/(e+1)�), see Cameron
and van Lint [2].

We will introduce another concept of perfectness, which is called semi-perfectness.
The reason is that, like described in our first paper, we want to investigate the
situation that every word of Z

n
2 can be decoded uniquely. This can be the case

if all received words have a unique code word at minimum distance.

Definition 10. A d-semi-perfect code is a code with the property that every
word has a unique code word at minimum distance.

So for such a code the Hamming distance d enables one to determine the most
likely code word that was sent.

Example 1. We consider Z
4
2, the set of words of length 4 and the code C1 =

{(0 0 0 0), (1 1 1 0)}. The two code words are on distance 3, and the code is
therefore 1-error-correcting. The two spheres are:

S1 = {(0 0 0 0), (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1)}
S2 = {(1 1 1 0), (0 1 1 0), (1 0 1 0), (1 1 0 0), (1 1 1 1)}.

There are 6 words left:
(0 0 1 1), (1 0 0 1), (0 1 0 1), of weight 2, and (1 1 0 1), (1 0 1 1), (0 1 1 1), of
weight 3. The first three words have distance 2 to (0 0 0 0), but distance 3 to
(1 1 1 0). Therefore they can be decoded, by maximum likelihood, as (0 0 0 0).
The second three words have distance 3 to (0 0 0 0), but distance 2 to (1 1 1 0),
and can therefore be decoded as (1 1 1 0).
In this example we see that C is not perfect, but C is quasi-perfect and d-semi-
perfect. �

Example 2. Let us now consider the code C2 = {(0 0 0 0), (1 1 1 1)}. The
two spheres of radius 1 contain all words of weight 1 respectively weight 3. But
all six words of weight 2 have the same distance to both code words, namely 2.
This means that the code is quasi-perfect however, C2 is not d-semi-perfect as
there is no unique code word on distance 2. �
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If we consider Example 2, there is a way in which the decoding might be done in
a unique way. As we pointed out in our first paper we may introduce a second
measure next to the Hamming distance. We proposed to use the burstiness
measure B or, equivalently, the distribution measure D. In case a word has
equal Hamming distance to two, or more, code words, the measure B may be
different for the respective error vectors. If that is the case, the code word
for which B has the highest value, if it is unique, may then be chosen for the
decoding. So not only the maximum likelihood is considered for the distance,
but it is also assumed that error patterns with a higher burstiness, for a specific
code word, are indicating a more likely message of that code word. In principle
occurrence of bursts is considered more likely than the occurrence of the same
number of evenly distributed errors.

Definition 11. A semi-perfect code is a code for which a word either has a
unique code word on minimum distance or, in case there are more code words
on minimum distance than one, there is a unique code word for which the error
vector has highest burstiness B.

In our Example 2 there still is no way to distinguish between the two code
words.
It will be clear that instead of considering a measure like B or Ba, we might also
consider other measures in combination with the Hamming distance in order to
be able to uniquely decode a received word. One could e.g. consider the burst
length L or any other measure applied to the error vector. We want to focus
on the pattern of the errors of the error vectors.

4 A systematic search for semi-perfect codes

We now report on a systematic search for 1-error-correcting codes with code-
vectors of length n = 1, 2, . . ., etc. We are particularly interested in examples
that are semi-perfect or even d-semi-perfect, so where the Hamming distance
alone allows unique decoding. The main result is the discovery of an infinite
class of d-semi-perfect codes. We will follow the search in our presentation.

n = 1. There are only two words, (0) and (1). Only one word, say (0), can be
chosen as code word. The received word (1) contains one error and is decoded
as (0). This trivial code is in fact 1-error-correcting. The sphere of radius 1
about (0) contains all words so, strictly speaking, we have a perfect code! We
obtain a trivial perfect code for any value of n, by just considering only the
code word with zeroes only.

n = 2. There are four words, (0 0), (0 1), (1 0) and (1 1). We should have code
words on distance at least 3, so again only one code word, say (0 0), can be
chosen. The sphere about (0 0), of radius 1, contains (0 0), (0 1) and (1 0), but
not the word (1 1). However the sphere of radius 2 does. The code is perfect.
It is, of course, also d-semi-perfect, as there is only one candidate to decode to
for all received words, namely the code word (0 0).
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n = 3. There are eight words of which e.g. (0 0 0) and (1 1 1) can be chosen
as code words on distance 3. The two spheres of radius 1 contain 4 words
each and therefore contain all words. The code is therefore perfect (as well as
quasi-perfect and d-semi-perfect).

n = 4. We refer to the Examples 1 and 2. The words (0 0 0 0) and (1 1 1 0)
formed a code that was not perfect, but was quasi-perfect respectively d-semi-
perfect. The reasons are quite different. The code is quasi-perfect because the
words not in the two spheres are on distance 2 to the code, i.e. the minimum
distance to a code word is 2 for all of such vectors. The code is d-semi-perfect
because the words are on minimum distance to a unique code word, which
happens to be 2. This difference between the two concepts became clear in
Example 2 as well.
For our main result we should already point out that the two words (0 0 0 | 0)
and (1 1 1 | 0) can be seen as composition of the perfect code words found for
n = 3 and the digit 0, which can be seen as the perfect code word found for
n = 1!

n = 5. In constructing the code one is inclined to choose as many code words
as possible on mutual distance at least 3. So let us choose c1 = (0 0 0 0 0), c2 =
(1 1 1 0 0), without loss of generality, and try to add a third code word. After
some puzzling we might find c3 = (0 1 0 1 1). A general procedure would
be to construct a graph on 25 vertices, corresponding to the 32 possible (0, 1)-
vectors, and add edges between two vertices whenever the distance between the
corresponding words is at least 3. In the resulting graph we may then determine
a maximum clique,
But let us investigate the code C = {(0 0 0 0 0), (1 1 1 0 0), (0 1 0 1 1)}. The
three spheres of radius 1 about them contain 18 of the 32 words, showing zero
or one error. We will now list all 14 other words and give their error vectors
with respect to the three code words.

nr. word c1 = 0 0 0 0 0 c2 = 1 1 1 0 0 c3 = 0 1 0 1 1
1. 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0
2. 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1
3. 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0
4. 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1
5. 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1
6. 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0
7. 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1
8. 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0
9. 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0

10. 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0
11. 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0
12. 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1
13. 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0
14. 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0

Table 1: Error patterns for 14 words.
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The following words have unique code words on minimum distance: nrs. 1,2,3,
4,7,8,9,11 (all with distance 2). The code is not perfect, but also not quasi-
perfect as word nr. 13 has distance 3 to the code. The interesting cases are
5,6,10,12,13 and 14, as in these cases the distances to c2 and c3 are equal,
namely 2 or 3. This means that the code is also not d-semi-perfect. Let us have
a look at the error vectors in these six cases.

c2 c3

5. 0 0 1 1 0 1 0 0 0 1
6. 0 0 1 0 1 1 0 0 1 0

10. 1 0 0 0 1 0 0 1 1 0
12. 1 0 0 1 0 0 0 1 0 1
13. 0 1 0 1 1 1 1 1 0 0
14. 0 0 0 1 1 1 0 1 0 0

Let us investigate whether the error patterns allow distinction between c2 and
c3 for the decoding. We choose B as measure and consider the word nr. 13.
The error patterns are different. D has factors 2, 1 and 2 for c2 and factors 1,
2 and 3 for c3. Hence the error vector for c3 is burstier and may be chosen for
the decoding. Also word. nr. 14 can be decoded in this way, as D has factors 1
and 4 for c2 and factors 2 and 3 for c3, so that word nr. 14 can be decoded as
c2.
For the words 5, 6, 10 and 12 we meet the situation that the values for D are
the same. Hence for this choice of a measure, next to the Hamming distance,
we obtain the conclusion that the code is not semi-perfect.
Now let us choose Ba, the acyclic burstiness. All four remaining cases are now
resolved and we have unique decoding. So for Hamming distance and Ba we
have indeed a semi-perfect code. Note that with the burst length L we would
obtain the same result.

We have chosen a code consisting of three words. However we may consider
the code consisting of two words: (0 0 0 0 0) and (1 1 1 1 1). This code is a
2-error-correcting perfect code, as the two spheres of radius 2 contains precisely
all 32 words. A code like this may be indicate for all odd values of n. We will
call them simple perfect codes.

For our discussion it is also important to consider the code consisting of the
two words (0 0 0 | 0 0) and (1 1 1 | 0 0), where we, again, indicated that we
have partitioned the five digits into a set of three and a set of two digits. The
set of three digits shows the perfect simple code for n = 3, whereas the set of
two digits shows the perfect trivial code for n = 2.
Now consider an arbitrary received word, say (0 1 1 | 1 1). Partitioning this
word we obtain the partial words (0 1 1) and (1 1). As the code on the first
set of three digits is perfect (0 1 1) has (1 1 1) as the unique code word on
distance 1. As the code on the second set of two digits is perfect (1 1) has (0 0)
as the unique code word on distance 2. It is clear that (0 1 1 | 1 1) is to be
decoded as (1 1 1 | 0 0) with distance 1 + 2 = 3 as the distance to (0 0 0 | 0 0)
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is 2+2 = 4. The code is d-semi-perfect but not quasi-perfect. This feature will
now be investigated further.

n = 6. We have 26 = 64 words and we consider the composition of two times
the perfect code for n = 3. So we partition the words as follows: (a b c | d e f).
For the first set of three digits we choose (0 0 0) or (1 1 1) and for the second
set we do the same. This yields the following code C of four code words.

C = {(0 0 0 | 0 0 0), (0 0 0 | 1 1 1), (1 1 1 | 0 0 0), (1 1 1 | 1 1 1)}.
Although there can be codes with more words than four on mutual distance at
least 3, this code has the nice property that it is d-semi-perfect. Any received
word can be partitioned into two sets of three digits. If the word is (a b c | d e f),
then both sets (a b c) and (d e f) have a unique code word in the perfect code
on the corresponding digits. The code word for which (a b c) is nearest to the
word on the corresponding digits and (d e f) is nearest evidently is the unique
code word on minimum distance. So if we receive (1 0 1 | 0 1 0) the word (1 0 1)
is nearest to (1 1 1), whereas (0 1 0) is nearest to (0 0 0). Hence the received
word is nearest to (1 1 1 | 0 0 0) and this is the unique code word on minimum
distance.

n = 7. For n = 7 we might e.g. consider the composition of three perfect codes
for a partitioning 7 = 3 + 3 + 1 or a composition of two perfect codes for a
partitioning 7 = 5 + 2.
In both cases we obtain a d-semi-perfect code, of four and two code words
respectively, namely

C1 = {(0 0 0 | 0 0 0 | 0), (0 0 0 | 1 1 1 | 0), (1 1 1 | 0 0 0 | 0), (1 1 1 | 1 1 1 | 0)}
C2 = {(0 0 0 0 0 | 0 0), (1 1 1 1 1 | 0 0)}.
The reader should by now easily follow us.

Definition 12. A partition code C with code words of length n is a code in
which n is partitioned into integers n1, n2, n3, . . . , nk.
Let C1, C2, c3, . . . , Ck be codes with code words of lengths n1, n2, n3, . . . , nk,
then C consists of all possible combinations of these code words.

Clearly we have |C| =
k∏

i=1
|Ci|. We will be mainly interested in partition codes

for which the codes Ci, i = 1, . . . , k, are perfect. We will call this a partition
code of perfect codes.

Theorem 1. A partition code of perfect codes is d-semi-perfect.

Proof. Let n be partitioned into the number ni, i = 1, . . . , k and let there
be perfect codes with code words of length ni. Any received word r can be
partitioned according to the partitioning of the code words. Let us call the k
sets of digits the parts of the word r. Then each part has a unique nearest
code word in the perfect codes on the corresponding digits. Therefore there is
a unique code word in C with minimum distance to r. �
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Remark 1. The theorem presupposed that there are indeed perfect codes with
code-words of lengths ni, i = 1, . . . , k. As we have seen from our systematic
search we have trivial or simple perfect codes for n = 1, 2, 3, 5, 7, 9, . . . etc. This
means that we can construct many d-semi-perfect codes already.

Remark 2. The essential difference between the way of looking at codes that
are perfect or quasi-perfect on one hand and that are d-semi-perfect or semi-
perfect on the other hand is that in the first case the focus is on spheres about
the code words that do not overlap. When the minimum distance is e.g. 3 then
only spheres of radius 1 can be considered. In the second case, however, the
focus is not on spheres, but on sets of words that have a certain code word as
the code word on unique minimum distance.

Definition 13. A semi-sphere is a set of words consisting of a codeword c and
all words that have c as the unique code word on minimum distance.

With this definition we may formulate d-semi-perfectness as the property that
the union of the semi-spheres of the code words contains precisely all words, in
distinction from perfectness where the union of all spheres contains precisely
all words.

Example 3. Consider the example we gave for n = 6. The code C consists of
the four words (0 0 0 | 0 0 0), (0 0 0 | 1 1 1), (1 1 1 | 0 0 0) and (1 1 1 | 1 1 1).
We calculate the semi-sphere about (0 0 0 | 0 0 0). The 16 words that have this
code word as unique code word on minimum distance are, in order of weight,
(0 0 0 | 0 0 0), the code word itself.

(1 0 0 | 0 0 0), (0 1 0 | 0 0 0), (0 0 1 | 0 0 0),
(0 0 0 | 1 0 0), (0 0 0 | 0 1 0), (0 0 0 | 0 0 1),

the words on distance 1.

(1 0 0 | 1 0 0), (1 0 0 | 0 1 0), (1 0 0 | 0 0 1),
(0 1 0 | 1 0 0), (0 1 0 | 0 1 0), (0 1 0 | 0 0 1),
(0 0 1 | 1 0 0), (0 0 1 | 0 1 0), (0 0 1 | 0 0 1),

the words on distance 2.

In all there are 1 + 6 + 9 = 16 words in this semi-sphere. Note that in the
sphere about (0 0 0 | 0 0 0) of radius 2 we also have a word like (1 1 0 | 0 0 0).
However, this code is closer to (1 1 1 | 0 0 0), and belongs to the semi-sphere
about that code word. �
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5 A relation between word patterns, graphs and block
designs

Given a specific value for n we can pose the problem to determine all differ-
ent error patterns, or even just all different patterns of words. This can be
done assuming cyclic conditions or acyclic conditions. We will assume cyclic
conditions.

Let us consider a simple example of a cyclic (7,4) Hamming code, namely the
code consisting of the code words

(0 0 0 0 0 0 0)
(0 0 0 1 0 1 1)
(1 1 1 0 1 0 0)
(1 1 1 1 1 1 1)

and their cyclic shifts.

As shifting (0 0 0 0 0 0 0) and (1 1 1 1 1 1 1) yields the same vectors there are
16 code words in all as both (0 0 0 1 0 1 1) and (1 1 1 0 1 0 0) yields 6 other
vectors on shifting cyclically. Moreover all 16 code words have mutual distance
at least 3, as we shall see in a moment, so we may consider the 16 spheres of
radius 1 about them that each contains 8 words. So there are 16 spheres that
together contain 16 × 8 = 24 × 23 = 27 words, so the code is perfect.
We can relate this code to subgraphs of the complete graph K7. We let the
components of the vectors corresponding with the 7 vertices of the K7, num-
bering these with the numbers 0, 1, 2, 3, 4, 5, 6. Note that there are 7 edges for
which the difference between these numbers for the vertices are 1 modulo 7, 7
for which this difference is 2 modulo 7 and 7 for which it is 3 modulo 7, see
Figure 1.

6

3 4

0

1

2 5

Figure 1: Labeled K7.
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Each word, of the 27 words, corresponds to a subgraph of this K7. We choose
the vertices indicating the positions for which the component of the word is 1.
This yields the empty graph, without vertices for the word (0 0 0 0 0 0 0), the
K7 itself for the word (1 1 1 1 1 1 1) and subgraphs K3 and K4 for the other
14 words of the considered code.

The code word (0 0 0 1 0 1 1) corresponds with the subgraph K3 on the vertices
3,5 and 6. The code word (1 1 1 0 1 0 0) corresponds with the subgraph K4 on
the vertices 0,1,2, and 4. The set {3, 5, 6} forms a difference set. The differences
are {1, 2, 3} modulo 7, as 6 − 5 = 1, 5 − 3 = 3 and 6 − 3 = 3. So we have
precisely one type each of the three types that we distinguished for the edges.
Note that 3 − 6 = −3 ≡ 4 modulo 7, so that the vertices 3 and 6 determine a
difference 3, but along the cycle C7 with edges of type 1 they can be seen as
being on distance 4. This is how we calculated the distances for our measure
D.
Anyhow, shifting the code word cyclically corresponds to shifting the K3 around
in the K7 cyclically. The 7 K3’s each have precisely one edge of each type and
together they contain each edge precisely once. But the properties of these
7 K3’s can be worded as follows. There are b = 7 blocks of k = 3 elements
out of v = 7 elements, such that each element occurs r = 3 times and each
pair of elements occurs precisely λ = 1 times. Such a configuration is called a
Balanced Incomplete Block Design (b, v, r, k, λ) or BIBD, and here we meet a
(7,7,3,3,1)-BIBD.

The word (1 1 1 0 1 0 0) has corresponding vertices {0, 1, 2, 4}. Now there are
six differences, namely {1, 1, 2, 2, 3, 3}. Shifting this K4 cyclically gives b = 7
blocks of k = 4 elements, out of v = 7 elements, each occurring v = 4 times
each pair occurring precisely d = 2 times. Hence these seven words determine
a (7,7,4,4,2)-BIBD.

By considering the 14 code words as K3’s respectively K4’s one can easily see
that two of them have at least 3 vertices in common. The K3 on {3, 5, 6} and
the K4 on {0, 1, 2, 4} have even no vertex in common and the corresponding
code words have therefore Hamming distance 7. The two K3’s on {3, 5, 6} and
{4, 6, 0} have only one vertex, 6, in common and have distance 4, as words.

For our problem, of getting grip on error patterns, or on word patterns in
general, the interpretation of a word as a subgraph of a complete graph may
turn out to be fruitful. If we consider e.g. n = 5 and words of weight 3, then
one type of word is (1 1 1 0 0) and another type is (1 1 0 1 0). All

(5
3

)
= 10

words are of one of these types. One type corresponds to K3’s with edges of
types 1, 1 and 2 whereas the other types corresponds to K3’s with edges of type
1, 2 and 2 of the embedding K5, that has only two types of edges.
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