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Abstract

In coding theory the problem of decoding focuses on error vectors. In
the simplest situation code words are (0, 1)-vectors, as are the received
messages and the error vectors. Comparison of a received word with the
code words yields a set of error vectors. In deciding on the original code
word, usually the one for which the error vector has minimum Hamming
weight is chosen. In this note some remarks are made on the problem
of the elements 1 in the error vector, that may enable unique decoding,
in case two or more code words have the same Hamming distance to the
received message word, thus turning error detection into error correction.
The essentially new aspect is that code words, message words and error
vectors are put in one-one correspondence with graphs.
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2000 AMS Classification: 94B

1 Introduction

We quote one of the standard books on coding theory, that by Berlekamp [1],
§1.1. “Suppose that we wish to transmit a sequence of binary digits across a
noisy channel. If we send a one, a one will probably be received, if we send
a zero, a zero will probably be received. Occasionally, however, the channel
noise will cause a transmitted one to be mistakenly interpreted as a zero or
a transmitted zero to be mistakenly interpreted as a one. Although we are
unable to prevent the channel from causing such errors, we can reduce their
undesirable effects with the use of coding. The basic idea is simple. We take
a set of k message digits which we wish to transmit, annex to them r check
digits, and transmit the entry block of n = k + r channel digits. Assuming that
the channel noise changes sufficiently few of these n transmitted channel digits,
the r check digits may provide the receiver with sufficient information to enable
him to defect and correct the channel errors.
We refer to the given reference for an excellent introduction to code words c,
together forming a code, that after sending give received message words r that
∗On leave from Shaanxi Normal University, Xi’an, P.R. China
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may show errors e with respect to the code word that was sent through the
channel. With addition modulo 2 we have

r = c + e or
c = r + e or
e = r + c .

Usually the codes have an information rate, R = k/n, that may be low as the
number r of check digits is taken to be large. Berlekamp states, “We are usually
more interested in codes which have a higher information rate”.
The “basic idea”, as described by Berlekamp, is the concept of check digits.
However, check digits are not absolutely necessary. Suppose we have a set of c
code words c1, c2, . . . , cc, that are (0, 1)-vectors of, say, length n. Then in the
set U of 2n possible received messages r, each vector has a certain distance to
the code words. The usually chosen distance is the Hamming distance which
simply is the number of elements one in the error vector e = r + c. In U each
vector r has a certain distance to each of the code words. Decoding then can
take place by identifying the code word with minimum Hamming distance to
r. One may think of U as being partially partitioned into “spheres” around
the code words. If r is within one of these spheres, the corresponding code
word is chosen as the original. If r is outside these spheres, the distances to
c1, . . . , cc can be calculated and the code word on shortest distance is chosen
in the decoding procedure. In these cases one speaks of error correction. The
interesting situation is that in which r has the same, shortest, distance to two
or more code words, say c1, c2 and c3. Error correction is not possible in this
case, one can only speak of error detection. Let the Hamming distance between
r and the three code words c1, c2 and c3 be 7, and let the distance between r
and other code words be larger. Than we say that an error of weight 7 has been
detected, and that no error correction can take place.
Let us look at this situation in terms of the three error vectors e1 = r + c1,
e2 = r + c2 and e3 = r + c3. These are three (0, 1)-vectors with 7 elements, out
of n, being 1.
It looks as if there is little we can do to turn detection of errors into correction of
errors, i.e. determining which of the three code vectors c1, c2 and c3 is the most
likely original of r. In this note it is studied how the pattern of the ones in the
error vector can be used to decide between the three competing code vectors.
We will discuss several patterns and the way they can be used or interpreted.

2 Burst errors

Let n = 20 and let the three error vectors of our example in Section 1 look like

e1 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0)
e2 = (0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0)
e3 = (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0).
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There is a difference in the patterns of these error vectors. e1 seems a rather
random occurrence of errors, e2 shows a burst of 4 consecutive errors and e3
shows two bursts, of length 3 and length 4, and no other errors.
One way to take the pattern into account is to define a burst as a set of con-
secutive errors of cardinality above a certain integer. Such an integer might
be chosen on probabilistic grounds by calculating the probability of a burst of
length b and set some bound on this probability, e.g. 0.01. Whenever b con-
secutive errors occur with probability smaller than 0.01, they are considered to
form a burst.
Suppose for our example error vectors, we talk of a burst in case there are 3
or more consecutive errors. Then these may be considered to be special errors
that can be dealt with in a special way, by burst reduction.
By this is meant that the errors of the bursts are removed from the error vectors
that now have 7, 3 respectively 0 ones. In this case the third error vector e3
hints at c3 being the original code word. We have reduced as it were the distance
between r and c3, as it appeared from the original error vector, from 7 to 0.
Suppose now that b = 3 is not considered to indicate a burst but b = 4 is.
Then the burst reduction only removes the bursts of length 4 and the resulting
reduced error vectors er

1, e
r
2 and er

3 have 7, 3 respectively 3 ones. Whereas in
the former case error detection was turned into error correction, here we still
have only error detection.

This analysis can be extended in the following way where, for the ease of calcu-
lation, we assume cyclic conditions on the code words and error vectors. This
means that last and first digit are considered to be consecutive. The zeroes and
ones can then be seen as positioned on a circle. n can be seen as the “length”
of this circle, that is divided by the k ones into k parts of lengths d1, d2, . . . , dk,
with d1 +d2 + . . .+dk = n. For our three example error vectors we have n = 20,
k = 7 and the distances, in vector representation, are

d1 = (3, 2, 4, 3, 2, 2, 4)
d2 = (2, 4, 1, 1, 1, 4, 7)
d3 = (1, 1, 7, 1, 1, 1, 8).

We agreed that e3 was “burstier” that e2 and e1 and that e2 was “burstier” than
e1. The burstiness B of an error vector might be used to obtain error correction,
next to the Hamming distance. Hence we want to develop a measure for B.
Now, intuitively, burstiness means many consecutive ones, in the extreme case
all ones being consecutive in the error vector, creating one burst. Low burstiness
means that the occurring errors are not related and, intuitively, are distributed
over the circle. We might therefore also consider a measure for the distribution
D. High distribution means low burstiness and low distribution means high
burstiness.

We focus on the distribution measure D.

Let us multiply the k distances to obtain Pk =
k∏

i=1
di. The maximum value for

Pk occurs when the circle is divided by the k ones into equal parts of length n
k .
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Compare this with the physical situation of k electric charges, say electrons, on
a circular wire. They repel each other and will distribute in the described way
over the circle. But the statement is also easily proven mathematically. We
admit non-integral values for the distances in this proof.

Lemma 1. Pk has maximum value
(

n
k

)k.
Proof. Consider an interval of length a and a point on it so that the two parts
of the interval have lengths x and a −x. The product x(a −x) is maximum for
x = a

2 .
Now consider an arbitrary distribution of the k ones. Whenever two consecutive
intervals are different in length, the distribution can be changed into one in
which the intervals are equal, by shifting the one that both intervals have in
common to the middle of the joint interval. The value of Pk for that distribution
will be larger.
The maximum for Pk is obtained for that distribution in which all k intervals
have the same length n

k . 2

Although n
k need not be integer, we take the value (n

k )k to norm the product
Pk and obtain

Definition 2. The distribution of an error vector of length n with k ones is

D =

k∏
i=1

dk

(n
k )k

=

k∏
i=1

dk · kk

nk
(k ≥ 1)

D = 1 (k = 0) .

Clearly we have 0 ≤ D ≤ 1. In case there are no errors, e = 0, we have defined
D to be 1 as we also define burstiness now as follows.

Definition 3. The burstiness of an error vector e of length n with k ones is

B = 1 − D,

where D is the distribution of e given in Definition 2.

Clearly if k = 0 we would like to have the error vector e to have burstiness 0.

Let us see whether these measures make sense. For k = 1 we have one interval,
due to the cyclicity, of length n. We obtain D = n·11

n1 = 1 and B = 0. One error
is not considered a burst!
For our three example error vectors we have (20

7 )7 in all three cases as the
denominator of D and respectively 23 · 32 · 42, 13 · 11 · 42 · 71 and 15 · 71 · 81 in
the denumerator of D, leading to values 0.74, 0.24 and 0.06 for the distribution
D and 0.26, 0.76 and 0.94 for the burstiness B of e1, e2 and e3.
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If one accepts these measures, one should be aware of the following. It may
be that a vector without consecutive ones has higher burstiness than one that
does have two consecutive ones. Compare the vectors

e4 = (1 0 1 0 1 0 1 0 0 0 0 0 0 0 0) and
e5 = (1 1 0 0 0 1 0 0 0 0 1 0 0 0 0),

with n = 15 and k = 4.
The first vector e4 has no burst but the four ones are very close, whereas
the second vector e5 has a burst of length 2 but the rest of the ones is well
distributed. Which vector is burstier? e4 has 23 · 91 = 72 in the denumerator,
whereas e5 has 11 · 41 · 52 = 100 in the denumerator. (n

k )k = (15
4 )4 ≈ 198, so

that we find about 0.36 and 0.50 for D, so 0.64 and 0.50 for B respectively. In
our opinion e4 should be considered “burstier” than e5, in spite of the fact that
no two ones are consecutive.
Now we have a measure, next to the Hamming distance, that may enable us
to turn error detection into error correction. In order to see this happen we
consider a code consisting of the following four code words of length 6.

c0 = (0, 0, 0, 0, 0, 0)
c1 = (1, 1, 1, 1, 0, 0)
c2 = (1, 0, 1, 0, 1, 1)
c3 = (0, 1, 0, 1, 1, 1) .

There are 64 possible received words r. The four code words have, pairwise,
distance 4. 28 vectors r have Hamming distance 1 to one of the code words and
can therefore be corrected. The 36 vectors that show two or more error vectors
with the same minimum Hamming weight, so that we cannot correct to one of
the four code words, exhibit 2,3,4 or 6 ones.

Now we try to obtain correction by applying the measure B and assuming that
if an error vector is burstier, then the corresponding code word is more likely
to have been sent. Consider, for example, the received word (0,0,0,0,1,1), that
has error vectors

e0 = (0, 0, 0, 0, 1, 1)
e1 = (1, 1, 1, 1, 1, 1)
e2 = (1, 0, 1, 0, 0, 0)
e3 = (0, 1, 0, 1, 0, 0)

with respect to the four code words. e1 has Hamming weight 6, the other three
vectors have Hamming weight 2. So there are three candidates for the decoding.
The product Pk is 5, 8 and 8 for these three candidate error vectors respectively.
So D is smallest for e0 or, equivalently B is largest. So we have now c0 as the
most likely candidate for our decoding.
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The only received words that cannot be decoded still are, with the error vectors,

r = (1, 1, 0, 0, 0, 0) e0 = (1, 1, 0, 0, 0, 0) e1 = (0, 0, 1, 1, 0, 0)
r = (0, 0, 1, 1, 0, 0) e0 = (0, 0, 1, 1, 0, 0) e1 = (1, 1, 0, 0, 0, 0)
r = (1, 0, 0, 1, 1, 1) e2 = (0, 0, 1, 1, 0, 0) e3 = (1, 1, 0, 0, 0, 0)
r = (0, 1, 1, 0, 1, 1) e2 = (1, 1, 0, 0, 0, 0) e3 = (0, 0, 1, 1, 0, 0) .

So in these four out of 64 cases neither the Hamming distance nor the burstiness
leads to identifying a most likely code word sent. Our effort will be focussed on
finding a way to make a further distinction for a situation like this.

Burst patterns like we considered here were only chosen as an example to show
how an extra consideration, burstiness next to the Hamming weight of an error
vector, may turn error detection into error correction, i.e., unique decoding. In
the next section we give a more sophisticated interpretation of error patterns.

3 Graph patterns

We consider complete graphs first and refer to Bondy and Murty [3] for graph
terminology. In particular we are interested in K2n+1, n ∈ N, so the complete
graph with an odd number of vertices, having even degree 2n. This graph has
many eulerian tours. When the vertices are labeled 0, 1, 2, . . . , 2n the edges can
be partitioned into n classes by considering the differences of the labels modulo
2n +1. If i and j are two labels either i− j or j − i modulo 2n +1 is an integer
t in [1, n]. The edge with vertices with labels i and j is said to be of type t. It
was proven by Jetten [7], that a canonical eulerian tour exists, that starts in an
arbitrary vertex with an edge of type 1, followed by edges of type 2, 3, . . . , n,
whereafter the sequence of edges of types 1 up to n is repeated.
K2n+1 has

(2n+1
2

)
= n(2n +1) edges, exactly 2n +1 of each type 1, 2, . . . , n. As

an example in Figure 1 K7 is considered. The canonical eulerian tour has edges
of type 1, 2 and 3, and is indicated by arrows.

1

2 7

63

4 5

Figure 1: K7 with first six edges of a canonical Euler tour 1 → 2 → 4 → 7 →
1 → 3 → 6 → . . . starting from vertex 1.

As there are
(7
2

)
= 21 edges we can associate a (0, 1)-vector of length 21 with

each subgraph G of K7, by choosing representation 1 if the edge corresponding
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to the element of the vector is present and 0 otherwise. The order of the elements
in the vector may be chosen according to an eulerian tour of K7, in particular
according to the canonical eulerian tour. It is evident that the following lemma
holds.

Lemma 4. There is a one to one correspondence between the (0, 1)-vectors of
length n(2n + 1) and the subgraphs of K2n+1.

The importance of this simple lemma is that code word c, message word r
and error vector e all three show a certain pattern, namely the graph that
corresponds to them!
This means that a code can be seen as a set of graphs, subgraphs of some
complete graph in the situation considered sofar, and that the way of looking
at c, r and e has changed. If we set K2n+1 as a picture on a TV-screen, and
every subgraph as well, then c is some graph that is received as some distorted
graph r, the distortion also being a graph e. Suppose now that just the (0, 1)-
vectors are considered and that no correction does take place as there are two
or more (0, 1)-vectors c with the same Hamming distance to the received word
r, then the code words, as graphs, may give a clue to the error correction. To
make this idea clear we consider four code words in the form of four pictures
and assume they correspond to certain (0, 1)-vectors. The received words also
have the form of a picture with corresponding (0, 1)-vector, see Figure 2.

rc1 c2 c3 c4

Figure 2: Code words in the form of pictures.

Just for the sake of illustration, let there be (0, 1)-vectors for c1, c2, c3, c4 and r
with the property that the Hamming distance between r and c1 and between r
and c3 are the same and that this distance is smaller than that between r and
the other two code words c2 and c4. Then the candidates for decoding are c1
and c3 as far as the Hamming distance is concerned. However, looking at the
pictures of c1, c2 and r, we immediately notice the similarity between r and c1
and want to identify c1 as the original message.
What happens here is that the graph pattern is used as an extra check to turn
the error detection into an error correction. Looking on code words as graphs
ties up decoding with pattern recognition, providing an extra check for the
decoding procedure. Of the many techniques in that field we only mention the
use of similarity measures. For graphs these have been developed by Hoede [6]
in the context of knowledge representation. Having an appropriate similarity
measure SIM(G1, G2) for the similarity of two graphs G1 and G2, decoding
then consists of two steps.

1. The Hamming distance between code words c and received word r are
calculated.
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2. In case no unique decoding can take place, as more code words have
the same distance to r, the similarity between the graphs corresponding
to these code words on one side and the graph corresponding to r are
calculated. The code words with the graph showing the highest similarity
is chosen.

Some remarks are due here. First, it may happen that even the similarities
turn out to be the same. Second, in principle it is not necessary to carry out
the first step at all. Once code words are set into one-one correspondence to
graphs, similarity calculation may suffice. Third, if error correction still did not
take place some third criterium might be developed to achieve this.

A drawback of the presented use of graph patterns is that we consider complete
graphs K2n+1, so that the length of the code words is 3, 10, 21, 36, . . . ,

(2n+1
2

)
,

etc. However, any graph that allows a eulerian tour gives a one-one correspon-
dence between graphs and code words satisfying the cyclicity condition (without
this condition any graph with the appropriate number of edges may be chosen).
An interesting example was developed in relation to the Ising problem in sta-
tistical physics, see Hoede [5].
Consider a n × (n +1) quadratic lattice with toroidal boundary conditions. All
vertices have degree 4 and there are two types of edges, horizontal and vertical
edges. Due to the choice of the dimensions, n in vertical and n+1 in horizontal
direction, there is a canonical eulerian tour in which alternatingly a horizontal
and a vertical edge are chosen, see Figure 3 for the 3 × 4 lattice.

(0,0)

(4,3)

Figure 3: 3×4 quadratic lattice with canonical eulerian tour. Starting in vertex
(0, 0) eight edges have been drawn solidly.

The (0, 1)-vectors have length 2n(n + 1) now and correspond to subgraphs of
the quadratic lattice. So here we have a way to represent code words of length
4, 12, 24, 40, . . . , etc. Thinking of the graphs as pictures on a TV-screen again,
the fact that TV-pictures are built up from pixels on a square lattice makes clear
that virtually any picture may be represented by a (0, 1)-vector corresponding
to a subgraph of a square lattice like we considered here.

We have assumed a cyclicity condition on the code and certain structures of
the graph, that caused a restriction on the length of the code words. We might
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of course have taken a simple cycle of length n when considering code words of
length n, but then the graph structure does not give more information than the
cyclic array of zeroes and ones of the code words themselves. We would not go
beyond what was discussed in Section 2.

Sofar we only considered subgraphs of unlabeled graphs as code words. Edges
were present or not, represented by a one or a zero respectively. We might of
course also have used two colors, white and black or any other two colors to
get an edge-colored subgraph, of K2n+1 say, as corresponding to a (0, 1)-vector.
The TV-screen needed was a simple black and white screen. Now let us allow
that there are more than two colors for the edges. We would now need a color
TV-screen to represent our code words, that now have elements chosen from
a set of three values, say {−1, 0,+1}. The ideas presented easily generalize to
this situation. The first step, comparison of (−1, 0,+1)-vectors, yields error
correction or error detection, the second step may be used to turn detection
into correction by calculating the similarity of graphs that are edge-colored.
There is, in principle, no limit to the number of colors that may be used. There
may be an infinite scale of colors, like in the rainbow. This brings us to an
interesting generalization that is investigated with great interest recently.

4 Quantum patterns

An infinite number of colors could be encoded by the complex numbers eiϕ,
ϕ ∈ [0, 2π], or just by ϕ. The code vectors now correspond to multicolored
graphs. The numbers correspond to vectors of length 1 in the two-dimensional
space of complex numbers. Such a space may be associated to every element
of a code vector, that are therewith elements of the tensor product of n of such
spaces.

The interesting thing is that code vectors like these are currently investigated
in quantum coding theory, in which the errors occurring are shifts in the phase
ϕ of the elements and there is interrelation between the various elements, called
entanglement, very much the way there are patterns in the cases we considered
sofar. We will now investigate this relationship further.

We recall some of the definitions given by Calderbank and Shor [2], who showed
in 1996 that good quantum error-correcting codes exist.
The definition of their quantum codes relies heavily on that of normal linear
codes. The basis of the description of such a linear code is the field F2, of
two elements 0 and 1. A linear code is a subspace of Fn

2 (the n-dimensional
vector space over the field F2). Socalled quantum codes are described after
introducing a quantum Hilbert space. The simplest such space is H2 which is
the complex space generated by basis vectors |b0〉 and |b1〉, where we use the
socalled bra- and ket-vector notation that is usual in quantumphysics. The
state of some physical operator is described by a ket-vector | 〉. The bra-vector
〈 | also denotes a state, the terminology being due to the fact that the inner
product of two vectors can now be described by the bracket(s) 〈a|b〉 for the
vectors 〈a| and |b〉. Note that in linear algebra the inner product of the vectors
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a and b is usually seen as the matrix multiplication of a (1 × n)-matrix with a
(n × 1)-matrix.

H2 is called a qubit. The complex space Hn
2 over n qubits is the space generated

by basisvectors |b0〉, |b1〉, . . . , |b2n−1〉 where bi is the representation of the num-
ber i in binary. So for n = 3 we have the eight vectors |000〉, |001〉, . . . , |111〉.
This Hilbert space has a natural representation as a tensor product of n copies
of H2, with the i-th copy corresponding to the i-th bit of the basisvectors.
Now we recall that Hn

2 is a complex space where, in general, the j-th bit of
the vector is some complex number eiϕj . ϕj is called the phase of the j-th bit.
The general vector looks like (eiϕ1 , eiϕ2 , . . . , eϕn), which is the encoding for the
coloring with an infinite number of colors that we discussed at the end of the
former section.

Calderbank and Shor used the [7, 4, 3] Hamming code as an example to illustrate
the construction of quantum error-correcting codes. This code has code words
of length 7, has 24 = 16 code vectors, so dimension d = 4, and correct one error
as the minimum distance between code words in 3. The code vectors are
c1 0000000 c9 1111111
c2 1001110 c10 1011000
c3 0100111 c11 0101100
c4 1010011 c12 0010110
c5 1101001 c13 0001011
c6 1110100 c14 1000101
c7 0111010 c15 1100010
c8 0011101 c16 0110001.

2

3 4

5

1

Figure 4: Canonical eulerian tour in K5: 1 → 2 → 4 → 5 → 2 → 3 → 5 → 1 →
3 → 4 → 1.

The first half of the 16 vectors has even weight and are orthogonal to all 16
vectors. These 8 vectors of the code C1 form the dual code C⊥1 . The construc-
tion of quantum states, there turn out to be only two, |c0〉 and |c1〉, relies on
the structure of these code in the sense that C⊥1 is a code contained in the
larger code C1. We want to show that this structure can also be interpreted in
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a graph theoretical way. This then means that the process of quantum coding
and decoding can also be interpreted in a graph theoretical way.

We recall the one-one correspondence between code vectors and subgraphs of
the complete graph with odd number of vertices. As we have code words of
length 7 and we want to embed in a larger quantum Hilbert space we choose
n = 10 and consider the graph K5. In terms of Calderbank and Shor we consider
a quantum error-correcting code as a unitary mapping of H7

2 into H10
2 .

The canonical eulerian tour of K5 has alternatingly edges of type 1 and type 2,
see Figure 4.

Each vertex of K5 has two image vertices on the tour, as each vertex has degree
4. Consider vertex 1 and draw the tour as in Figure 5.

3

4

5

2

5

4
2

1 3

Figure 5: Alternative drawing of the eulerian tour.

In Figure 5 we see that the tour has one part of length 3 and one part of length
7. We now let the bits of the code words correspond to the edges of the part
of length 7. In this way each code vector determines, by the bits that are one,
a set of edges in K5. In Figure 6 the subgraphs corresponding to the 16 code
words are given.
One sees in Figure 6 that the graphs corresponding to the code words c1, c2, . . . , c8,
have an even number of edges in common with the other 15 graphs, due to the
orthogonality of C⊥1 . Let HC1 be the subspace of H10

2 generated by vectors |c〉
with c ∈ C1. Let M be a generator matrix for C1; this means that C1 is the
row space of M , so that vM ranges over all the code words in C1 as v ranges
over all vectors in F

dim(C1)
2 . In our example dim(C1) = 4, so there are 24 = 16

vectors v. Calderbank and Shor now define, for w ∈ Fn
2 , a quantum state |cw〉

by

|cw〉 = 2− dim(C1)/2
∑

v∈F
dim(C1)
2

(−1)vMw|vM〉.

Based on the example Hamming code a quantum code is constructed with only
two code words |c0〉 and |c1〉 where

|c0〉 =
1
4
(|c1〉 + . . . . . . . . . . . . . . . . . . . . . + |c16〉)

|c1〉 =
1
4
(|c1〉 + . . . + |c8〉 − |c9〉 − . . . − |c16〉).
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c16

c15

c1 c2 c3

c4 c5 c6

c7 c8 c9

c10 c11 c12

c13 c14

Figure 6: Graphs corresponding to code words.
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Trying to interpret these quantum code words in terms of the 16 graphs in
Figure 6, we may look upon the quantum states as states of the graph K5.
With each edge corresponds a qubit H2 that has two basis vectors |0〉 and |1〉.
These two basic quantum states may be identified with the real and the imagi-
nary unit, 1 and i, of the complex plane. The normalized states, length 1, in H2
are then | cos ϕ·1+sin ϕ·i〉 = |eiϕ〉, ϕ ∈ [0, 2π]. The two basis vectors can there-
fore also be represented as |0〉 = |ei·π2 〉 and |1〉 = |ei·0〉. The “state” of an edge
is, in general, |eiϕ〉 for some ϕ ∈ [0, 2π]. The states |c1〉, . . . , |c16〉 can therefore
been seen as special states of K5, the general state being |eiϕ1 , eiϕ2 , . . . , eiϕ10〉.
Calderbank and Shor define a quantum error-correcting code Q with rate k/n as
a unitary mapping of Hk

2 ⊗Hn−k
2 into Hn

2 , where the quantum state in Hn−k
2 is

taken to be that where all the qubits have quantum state |0〉. For our example
three qubits are taken to be in this state. The graphs corresponding to the code
vectors ci have edges that are in state |1〉 and nonedges that are in state |0〉. If
we take ϕ in |eiϕ〉 to be the color of the edge, corresponding to this qubit state,
then in all 16 cases the K10 is edge-colored with colors 0 (for edges in state |1〉)
and π

2 (for edges in state |0〉).
The code words |c0〉 and |c1〉 of the constructed quantum code are superpositions
of states |c1〉, i = 1, . . . , 16, that were interpretable as colored graphs K5. The
interpretation of these entangled states is not very clear. The coefficients of
the states are +1 or −1. These may be seen as multiplication of the elements
with ei·0 = 1 respectively ei·π = −1, or as non-shifting respectively shifting the
colors of the edges by π. The superpositions of states |ci〉 in |c0〉 then only differ
in the sense that two different sets of colorings of 16 graphs K5 are considered.
A change of basis to each of the bits of a code word |cw〉,

|0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉),

in the interpretation of colored edges, now is interpreted as a change from colors
0 respectively π

2 to colors 3π
4 respectively π

4 . For the example quantum code
the rotated basis leads to states

|s0〉 =
1

2
√

2
(|c1〉 + |c2〉 + . . . + |c8〉) and

|s1〉 =
1

2
√

2
(|c9〉 + |c10〉 + . . . + |c16〉).

Cancellation of states, |a〉 − |a〉 = 0, can be interpreted as cancellation of
graphs with colorings that differ precisely π for every edge (qubit). The change
of basis causes the superposition of two times 16 colored graphs to change into
a superposition of two times 8 colored graphs.

A final remark should me made on the concept of decoherence. An original state
|x〉 ∈ Hk

2 is encoded by Q to an encoded state Q | x〉, which, on transmission,
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can be decohered, modeled by an arbitrary unitary transformation D on some
of the qubits, and leading to a decohered encoded state DQ | x〉. The decoding
problem consists of recovering the original state |x〉. Here we just remark that
the decoherence in some of the qubit states can be interpreted as some color
shift of the corresponding edges of a graph, in our example the graph K5.
It is now clear that also in the case of quantum errors, color shifts of edges, the
structure of the graph, the quantum error pattern might help in the decoding
process. This idea is to be investigated further.

5 Codes, graphs and patterns

The idea behind error patterns is that the decoding process may be helped by
extra information. Such extra information is present in graphs that were put
in one to one correspondence with code vectors. The similarity of graphs, a
subject still to be discussed, may turn error detection into error correction. In
a way similarity defines a distance on top of the “normal” distance between
code words as given e.g. by the Hamming distance. If SIM(G1, G2) is some
similarity measure, with

0 ≤ SIM(G1, G2) ≤ 1,

then a “distance” between G1 and G2 may be defined as DIST (G1, G2) =
1 − SIM(G1, G2). For this concept of distance we also would have

0 ≤ DIST (G1, G2) ≤ 1.

A graph, when drawn in the plane, can be seen as a pattern. As there are no
prescriptions for drawing a graph, the pattern contains more information than
the graph. The specific way of drawing the graph introduces the distances in
the plane of drawing, of the vertices of the graph. The situation is therefore
the following.
A set C of code words can be represented by a set G of graphs, that can be
represented by a set P of patterns. Graphs contain more information than code
words and patterns contain more information than graphs. This hints at an
important role that pattern analysis, see Grenander [4], can play in connection
with the decoding problem. We will shortly consider six problems, mentioned
by Grenander and will try to formulate analogous problems for graphs and
codes.

Code words c give rise to received message words cD, the vectors that we have
indicated by r in the former sections. Graphs G give rise to distorted graphs GD,
and patterns P give rise to deformed pattern PD. The six problems considered
by Grenander are

a) Image restoration

b) Image analysis

c) Image approximation
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d) Pattern recognition

e) Image description

f) Patterns inference and abduction.

We will now try to formulate these problems for graphs and codes as well. As
the pattern is “richer” than the graph or the code we may expect that not all
six problems have a natural counterpart.

Problem a (image restoration)

This is the problem of finding a mapping from PD to P, GD to G respectively
CD to C. The mapping is supposed to restore the pure P,G respectively c which
were deformed by D into the observed PD, GD, respectively cD.

This problem is the basic decoding problem in case of codes and can be formu-
lated in all three cases.

Problem b (image analysis)
“Given an image I find a configuration c that gives rise to I. This involves
finding the generators and combinatory relations of c.”

From this quotation we see that patterns are seen as built up from genera-
tors and combinatory relations. A similar statement can be made for graphs,
seeing the vertices as “generators” and the edges as “combinatory relations”.
For code words the digits may be seen as “generators”, but the “combinatory
relations” are unclear. It is precisely for this reason that we considered graph
error patterns in Section 3.

Problem c (image approximation)
Let P∗ be an additional pattern set with P ⊂ P∗, we want to find a “good”
mapping PD → P∗ such that the P ∗ is in some sense close to P ∈ P.

This problem can also be posed for graphs and code words. The main aspect
is, of course, the concept of a “good” mapping. This asks for some distance
concept, e.g. the Hamming distance for codes, which for graphs might be based
on the concept of similarity.

Problem d (pattern recognition)
Give PD find the pattern class Pr to which P belongs.

The new aspect here, with respect to problem a, is the concept of pattern class.
Analogously, we can think of graph class and code word class for an analogous
setting.

Problem e (image description)
Given P and P∗ find a mapping P → P∗ such that the P∗ ∈ P∗ is a “good”
representative of P .

Even more than in Problem b this problem leans heavily on the fact that pat-
terns contain more information than graphs or codes, for which no obvious
analogous problem can be indicated.

Problem f (pattern inference and abduction)
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“Given elements from PD make inferences concerning P and the underlying
regularity structure”.

This problem is so general in nature that on one hand one can pose the prob-
lem for graphs and code words as well, but on the other hand we may quote
Grenander: “At this level of generality, the question is almost meaningless, and
it is only when we get to more detailed and concrete pattern (graph, code word)
systems that we can start to offer specific methods of solution”.

It will be our goal to study the possibility of exploiting the differences in in-
formation contained in patterns, graphs and code words, for some of these
problems, focusing first on explicit examples.
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