Faculty of Mathematical Sciences

University of Twente

The Netherlands
P.O. Box 217

7500 AE Enschede
The Netherlands
Phone: +31-53-4893400
Fax: +31-53-4893114
Email: memo@math.utwente.nl www.math.utwente.nl/publications

Memorandum No. 1615
Bi-Hamiltonian structure of the
$N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy
P.H.M. Kersten and A.S. Sorin ${ }^{1}$

February 2002

ISSN 0169-2690

[^0]
Bi-Hamiltonian structure of the $\mathbf{N}=2$ supersymmetric $\alpha=1 \mathbf{K d V}$ hierarchy

P.H.M. Kersten ${ }^{(a)}$ and A.S. Sorin ${ }^{(b)}$
${ }^{(a)}$ University of Twente, Faculty of Mathematical Sciences, P.O.Box 217,7500 AE Enschede, The Netherlands
E-Mail: kersten@math.utwente.nl
${ }^{(b)}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (JINR), 141980 Dubna, Moscow Region, Russia
E-Mail: sorin@thsun1.jinr.ru

Abstract

The $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy in $N=2$ superspace is considered and its rich symmetry structure is uncovered. New nonpolynomial and nonlocal, bosonic and fermionic symmetries and Hamiltonians, bi-Hamiltonian structure as well as a recursion operator connecting all symmetries and Hamiltonian structures of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy are constructed in explicit form. It is observed that the algebra of symmetries of the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy possesses two different subalgebras of $N=2$ supersymmetry.

AMS Subject Classification: 35Q51; 35Q53; 35Q58
Keywords: Completely Integrable Systems;Supersymmetry; Discrete Symmetries; Recursion Operator;Bi-Hamiltonian Structure

1 Introduction

The $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ equation was originally introduced in [1] as a Hamiltonian equation with the $N=2$ superconformal algebra as a second Hamiltonian structure, and its integrability was conjectured there due to the existence of a few additional nontrivial bosonic Hamiltonians. Then its Lax-pair representation has indeed been constructed in [2], and it allowed an algoritmic reconstruction of the whole tower of highest commutative bosonic flows and their Hamiltonians belonging to the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy.

Actually, besides the $N=2 \alpha=1 \mathrm{KdV}$ equation there are another two inequivalent $N=2$ supersymmetric Hamiltonian equations with the $N=2$ superconformal algebra as a second Hamiltonian structure (the $N=2 \alpha=-2$ and $\alpha=4 \mathrm{KdV}$ equations [3, 1]), but the $N=2 \alpha=1 \mathrm{KdV}$ equation is rather exceptional [4]. Despite knowledge of its Lax-pair description, there remains a lot of longstanding, unsolved problems which resolution would be quite important for a deeper understanding and more detailed description of the $N=2 \alpha=1$ KdV hierarchy. Thus, since the time when the $N=2 \alpha=1 \mathrm{KdV}$ equation was proposed, much efforts were made to construct a tower of its noncommutative bosonic and fermionic, local and nonlocal symmetries and Hamiltonians, bi-Hamiltonian structure as well as recursion operator (see, e.g. discussions in $[5,6]$ and references therein). Though these rather complicated problems, solved for the case of the $N=2 \alpha=-2$ and $\alpha=4 \mathrm{KdV}$ hierarchies, still wait their complete resolution for the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy, a considerable progress towards their solution arose quite recently. Thus, the puzzle [5, 6], related to the "nonexistence" of higher fermionic flows of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy, was partly resolved in [7, 8] by explicit constructing a few bosonic and fermionic nonlocal and nonpolynomial flows and Hamiltonains, then their $N=2$ superfield structure and origin were uncovered in [9]. A new property, crucial for the existence of these flows and Hamiltonians, making them distinguished compared to all flows and Hamiltonians of other supersymmetric hierarchies constructed before, is their nonpolynomiality. A new approach to a recursion operator treating it as a form-valued vector field which satisfies a generalized symmetry equation related to a given equation was developed in $[10,11]$. Using this approach the recursion operator of the bosonic limit of the $\mathrm{N}=2 \alpha=1$ KdV hierarchy was derived in [12], and its structure, underlining relevance of these Hamiltonians in the bosonic limit, gives a hint towards its supersymmetric generalization.

The present Letter addresses the above-mentioned problems. We demonstrate that the existence and knowledge of the bosonic and fermionic, nonlocal and nonpolynomial Hamiltonians of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy is indeed a crucial, key point in constructing the recursion operator connecting all its symmetries and Hamiltonian structures.

The Letter is organized as follows. In Section 2 we present a short summary of the main known facts concerning the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy. In Section 3 we describe a general algorithm of constructing recursion operators of integrable systems which we follow in the next sections. In Section 4 we construct a minimal, basic set of fermionic and bosonic flows as well as their Hamiltonians which is then used in Section 5 to derive the recursion operator and bi-Hamiltonian structure of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy. We also demonstrate that the algebra of symmetries of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy possesses two different subalgebras of $N=2$ supersymmetry. In Section 6 we summarize our results.

2 The $\mathbf{N}=2$ supersymmetric $\alpha=1 \mathbf{K d V}$ hierarchy

The $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ equation [1]

$$
\begin{equation*}
\frac{\partial}{\partial t_{3}} J=\left[J^{\prime \prime}+3 J[D, \bar{D}] J+J^{3}\right]^{\prime} \tag{1}
\end{equation*}
$$

is the first nontrivial representative of the infinite tower of the commutative flows $\frac{\partial}{\partial t_{2 p+1}}$

$$
\begin{equation*}
\left[\frac{\partial}{\partial t_{2 m+1}}, \frac{\partial}{\partial t_{2 n+1}}\right]=0 \tag{2}
\end{equation*}
$$

belonging to the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy. The latter can be defined via the Lax-pair representation [2]

$$
\begin{equation*}
\frac{\partial}{\partial t_{2 p+1}} L=\left[\left(L^{2 p+1}\right)_{\geq 0}, L\right], \quad L=\partial+[D, \bar{D}] \partial^{-1} J, \quad p \in \mathbb{N} \tag{3}
\end{equation*}
$$

where the subscript ≥ 0 denotes the sum of purely differential and constant parts of the operator $L^{2 p+1}, J \equiv J(Z)$ is a superfield of inverse length dimension $[J]=1$ in the $N=2$ superspace with a coordinate $Z=(z, \theta, \bar{\theta})$, ' denotes the derivative with respect to z and D, \bar{D} are the fermionic covariant derivatives of $N=2$ supersymmetry

$$
\begin{equation*}
D=\frac{\partial}{\partial \theta}-\frac{1}{2} \bar{\theta} \frac{\partial}{\partial z}, \quad \bar{D}=\frac{\partial}{\partial \bar{\theta}}-\frac{1}{2} \theta \frac{\partial}{\partial z}, \quad D^{2}=\bar{D}^{2}=0, \quad\{D, \bar{D}\}=-\frac{\partial}{\partial z} \equiv-\partial . \tag{4}
\end{equation*}
$$

The flows (3) are Hamiltonian

$$
\begin{equation*}
\frac{\partial}{\partial t_{2 p+1}} J=\left\{J, H_{2 p+1}\right\}_{2} \equiv J_{2} \frac{\delta}{\delta J} H_{2 p+1} \tag{5}
\end{equation*}
$$

with the Hamiltonians

$$
\begin{equation*}
H_{2 p+1}=\int d Z \mathcal{H}_{2 p+1}, \quad \mathcal{H}_{2 p+1}=\operatorname{res}\left(L^{2 p+1}\right) \tag{6}
\end{equation*}
$$

and the Poisson brackets

$$
\begin{equation*}
\left\{J\left(Z_{1}\right), J\left(Z_{2}\right)\right\}_{2}=J_{2}\left(Z_{1}\right) \delta^{N=2}\left(Z_{1}-Z_{2}\right), \quad J_{2} \equiv \frac{1}{2}[D, \bar{D}] \partial+\bar{D} J D+D J \bar{D}+\partial J+J \partial \tag{7}
\end{equation*}
$$

forming the $N=2$ superconformal algebra which is the second Hamiltonian structure of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy [1]. Here, $d Z \equiv d z d \theta d \bar{\theta},\left.\int d Z(\ldots) \equiv \int_{-\infty}^{+\infty} d z D \bar{D}(\ldots)\right|_{\theta=\bar{\theta}=0}, \operatorname{res}\left(L^{p}\right)$ is the $N=2$ supersymmetric residue, i.e. the coefficient at $[D, \bar{D}] \partial^{-1}$, and $\delta^{N=2}(Z) \equiv \theta \bar{\theta} \delta(z)$ is the delta function in $N=2$ superspace.

The flows (3) admit also the following useful representation [9]

$$
\begin{equation*}
\frac{\partial}{\partial t_{2 p+1}} J=\mathcal{H}_{2 p+1}^{\prime} \tag{8}
\end{equation*}
$$

in terms of Hamiltonian densities $\mathcal{H}_{2 p+1}(6)$ and possess the complex conjugation

$$
\begin{equation*}
\left(t_{2 p+1}, z, \theta, \bar{\theta}, J\right)^{\star}=\left(-t_{2 p+1},-z, \bar{\theta}, \theta, J\right) . \tag{9}
\end{equation*}
$$

A few first representatives of the Hamiltonians $H_{2 p+1}$ (6) and flows $\frac{\partial}{\partial t_{2 p+1}}(8)$ are

$$
\begin{equation*}
H_{1}=\int d Z J, \quad H_{3}=\int d Z\left(3 J[D, \bar{D}] J+J^{3}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t_{1}} J=J^{\prime} \tag{11}
\end{equation*}
$$

and the third flow $\frac{\partial}{\partial t_{3}} J$ which reproduces the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ equation (1).

3 General algorithm of constructing recursion operators

Let us present a short summary of the general scheme of constructing recursion operators of integrable systems, considered in [7] (for more details, see [7] and references therein), which we adapt and develop to the problems under consideration and use in next sections.

In effect, in the theory of deformations of the equation structure a classical recursion operator is a form-valued vector field which is a nontrivial infinitesimal deformation of the equation structure. For reasons of simplicity and in order to make it more accessible to the physics oriented reader, in the following the form-valuedness will be transformed to Fréchet derivatives of the associated variables and quantities.

Our starting point is the one-dimensional system of evolution scale-invariant ${ }^{1}$ equations (with the evolution time t) for the set of superfields $u \equiv u_{i}(Z)(i=1, \ldots, n)$

$$
\begin{equation*}
\frac{\partial}{\partial t} u-\Phi=0 \tag{12}
\end{equation*}
$$

their integrals of motion

$$
\begin{equation*}
\mathcal{G}_{\alpha}=\int_{-\infty}^{+\infty} d z G_{\alpha}, \quad \frac{\partial}{\partial t} G_{\alpha}=F_{\alpha}{ }^{\prime}, \quad \alpha=0,1, \ldots \tag{13}
\end{equation*}
$$

and the corresponding symmetry equation

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\phi\right) Y_{\tau}=0, \quad Y_{\tau}:=\frac{\partial}{\partial \tau} u \tag{14}
\end{equation*}
$$

which is derived by differentiation of the system (12) over an arbitrary independent time ${ }^{2} \tau$. Here, $\Phi \equiv \Phi(\{u\})$ is a local, while $G_{i} \equiv G_{i}(\{u\}), F_{i} \equiv F_{i}(\{u\})$ as well as $Y_{\tau} \equiv Y_{\tau}(\{u\})$ in general are nonlocal functionals of $\left\{\partial^{n} u, D \partial^{n} u, \bar{D} \partial^{n} u,[D, \bar{D}] \partial^{n} u, n \in \mathbb{N}\right\}$, and the operator ϕ is the corresponding Fréchet derivative of the functional Φ.

The symmetry equation (14) represents a complicated functional equation, and its general solution is not known. Its particular solutions are symmetries of the system (12) we started with, i.e. $\left[\frac{\partial}{\partial t}, \frac{\partial}{\partial \tau}\right]=0$ by construction. For a more complete understanding of the original system, its hierarchy structure and solutions (tau function) it seems necessary to know as many solutions of its symmetry equation (14) as possible.

It turns out that there exist subsets of the whole set of solutions of the symmetry equation (14) for which two different representatives Y_{τ} and $Y_{\tilde{\tau}}$ can consistently be related as

$$
\begin{equation*}
Y_{\widetilde{\tau}}:=\frac{\partial}{\partial \widetilde{\tau}} u=P \frac{\partial}{\partial \tau} u+\sum_{\alpha} P_{\alpha} \frac{\partial}{\partial \tau} \partial^{-1} G_{\alpha} \equiv\left(P+\sum_{\alpha} P_{\alpha} \partial^{-1} g_{\alpha}\right) Y_{\tau}:=R Y_{\tau} \tag{15}
\end{equation*}
$$

where the operator g_{α} is the Fréchet derivative of the functional $G_{\alpha}, P \equiv P\left(\left\{u, \partial^{-1} G, \partial, D, \bar{D}\right\}\right)$ is a general purely differential operator over the derivatives $\{\partial, D, \bar{D}\}$ which coefficientfunctions are scale-homogeneous polynomials over $\left\{u, \partial^{-1} G\right\}$ and their $\left\{\partial^{n}, D \partial^{n}, \bar{D} \partial^{n}\right.$, $\left.[D, \bar{D}] \partial^{n}\right\}$-derivatives and $P_{\alpha} \equiv P_{\alpha}\left(\left\{u, \partial^{-1} G\right\}\right)$ is a scale-homogeneous polynomial functional over its two arguments and their $\left\{\partial^{n}, D \partial^{n}, \bar{D} \partial^{n},[D, \bar{D}] \partial^{n}\right\}$-derivatives obeying the so called deformation equation ${ }^{3}$

$$
\begin{equation*}
\left(\left(\frac{\partial}{\partial t} P\right)-\phi P\right) \frac{\partial}{\partial \tau} u+P \frac{\partial}{\partial \tau} \Phi+\sum_{\alpha}\left\{\left(\left(p_{\alpha} \Phi\right)_{0}-\phi P_{\alpha}\right) \frac{\partial}{\partial \tau} \partial^{-1} G_{\alpha}+P_{\alpha} \frac{\partial}{\partial \tau} F_{\alpha}\right\}=0 \tag{16}
\end{equation*}
$$

[^1]which is the consistency condition resulting from the requirement that both Y_{τ} and $Y_{\widetilde{\tau}}$ have to satisfy the symmetry equation (14). Here, the operator p_{α} is the Fréchet derivative of the functional P_{α}. By definition, the operator R, defined in eq. (15), which has a minimal inverse length dimension, is the recursion operator of the hierarchy of symmetries of the equation (12). Scale dimensions of the quantities P and P_{α} depend on the dimension of the recursion operator (see. eqs. (18)). Extracting the coefficients at linear-independent functionals $\frac{\partial}{\partial \tau} u, \frac{\partial}{\partial \tau} \partial^{-1} G_{\alpha}$ and their $\left\{\partial^{n}, D \partial^{n}, \bar{D} \partial^{n},[D, \bar{D}] \partial^{n} u\right\}$-derivatives in eq. (16) and equating them to zero one can derive a complete set of self-consistent equations for coefficient-functions of the operator P and polynomials P_{α} which solutions specify the recursion operator R (15).

A few important remarks are in order.
First, coefficient-functions of the operator P and polynomial P_{α} can in general be nonpolynomial functions of the dimensionless quantity $\partial^{-1} G_{0}\left(\left[\partial^{-1} G_{0}\right]=0\right)$ (if any).

Second, one can see from a simple dimensional consideration that the sum over α in eqs. (15-16) is usually saturated by a finite number of terms due to pure dimensional restrictions. Indeed, the inverse length dimensions of the quantities entering into eqs. (15-16) are related and bounded as $\left[P_{\alpha}\right]+\left[\mathcal{G}_{\alpha}\right]-[u]=[R]>0,\left[P_{\alpha}\right] \geq 0,\left[\mathcal{G}_{\alpha}\right] \geq 0$, so the inverse length dimension [$\left.\mathcal{G}_{\alpha}\right]$ of the integrals \mathcal{G}_{α} (13), contributing the sum over α, is bounded both from below and above as

$$
\begin{equation*}
0 \leq\left[\mathcal{G}_{\alpha}\right] \leq[R]+[u], \tag{17}
\end{equation*}
$$

but in general there exists only a finite number of integrals which inverse length dimensions belong to a finite interval $[0,[R]+[u]$.

Third, a simple inspection of eq. (16) shows that the functional P_{α}, which is a factor of the τ-derivative of the lowest dimension superfield component of the integral ${ }^{4}$ of highest inverse length dimension entering into eq. (15), satisfies the symmetry equation (14), so this P_{α} is a symmetry of eq. (12).

Summarizing the above-described algorithm, it consists of a few steps. Thus, at the first step, as an input it is necessary to define the inverse length dimension $[R]$ of the recursion operator, then to construct a complete set of integrals \mathcal{G}_{α} (13) for eq. (12) which inverse length dimensions $\left[\mathcal{G}_{\alpha}\right]$ satisfy the inequality (17). The next step is a rather straightforward technical derivation of general expressions for scale-homogeneous operator P and polynomials P_{α} according to their inverse length dimensions

$$
\begin{equation*}
[P]=[R], \quad\left[P_{\alpha}\right]=[R]-\left[\mathcal{G}_{\alpha}\right]+[u] . \tag{18}
\end{equation*}
$$

Then substituting all the derived quantities into the deformation equation (16), extracting equations for coefficient-functions of the operator P and polynomials P_{α} and, at last, solving them, one can finally obtain a desirable explicit expression for the recursion operator R (15).

Because of the quite technically complicated construction of the recursion operator we described above, in what follows we actually make our choice by first imposing conditions on $\left\{P, P_{\alpha}\right\}$, which are more simple than the deformation equation (16), such that the relation (15) is satisfied only for a set of special symmetries. Then, after solving these conditions and obtaining the explicit expression for the recursion operator we prove additionally that it indeed satisfies the deformation equation (16) as well, i.e. proving that associated form-valued vector field is in fact a generalized (with respect to its form-valuedness) symmetry of equation (12). We refer the interested reader to ref. [13] for all details of the complete computations of the results of the next sections.

[^2]
4 Nonlocal Hamiltonians and flows of the $N=2 \alpha=1$ KdV hierarchy

In this section we realize the first step of the general scheme, presented in the previous section, i.e. construct Hamiltonians and symmetries of the $N=2 \alpha=1 \mathrm{KdV}$ equation (1) which are relevant in the context of the further construction of the recursion operator of the $N=2 \alpha=1$ KdV hierarchy.

4.1 Hamiltonians

To this aim let us first define a dimension of the recursion operator as well as dimensions of Hamiltonians. Remembering that the recursion operator has to connect two nearest subsequent bosonic flows $\frac{\partial}{\partial t_{2 p-1}} J$ and $\frac{\partial}{\partial t_{2 p+1}} J(8)$ of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy and that $\left[\frac{\partial}{\partial t_{2 p-1}} J\right]=2 p$, one can easily establish its inverse length dimension $[R]=2$. Moreover, because the flows $\frac{\partial}{\partial t_{2 p+1}} J(8)$ depend on the Grassmann coordinates $\{\theta, \bar{\theta}\}$ only implicitly via its dependence on the superfield $J(Z)$ as well as the fermionic covariant derivatives $\{D, \bar{D}\}$, the recursion operator has to possess the same property as well. Then using inequality (17) and relation (18) one can evaluate dimensions of Hamiltonians

$$
\begin{equation*}
0, \quad \frac{1}{2}, \quad 1, \quad \frac{3}{2}, \quad 2, \quad \frac{5}{2}, \quad 3 \tag{19}
\end{equation*}
$$

and the corresponding dimensions of the polynomials P_{α}

$$
\begin{equation*}
3, \quad \frac{5}{2}, \quad 2, \quad \frac{3}{2}, \quad 1, \quad \frac{1}{2}, \quad 0 \tag{20}
\end{equation*}
$$

we are interested in. Keeping in mind that the polynomial P_{α}, which corresponds to the Hamiltonian with the highest dimension entering into eq. (15), has to satisfy the symmetry equation (14) (see the third remark at the end of the previous section), as well as the abovementioned fact that the recursion operator does not depend explicitly on $\{\theta, \bar{\theta}\}$ and that the minimal dimension of the $\{\theta, \bar{\theta}\}$-independent flows is ${ }^{5} 2$ (it is the dimension of the first bosonic flow $\left.\frac{\partial}{\partial t_{1}} J(11)\right)$, we are led to the final conclusion that for our ultimate purposes we have to know a complete set of superfield Hamiltonians with inverse length dimensions

$$
\begin{equation*}
0, \quad \frac{1}{2}, \quad 1 \tag{21}
\end{equation*}
$$

only. We would like especially to remark that all superfield components of these Hamiltonians have in general to be included into the Ansatz (15) for the recursion operator.

Superfield Hamiltonians

$$
\begin{equation*}
I_{m}=\int_{-\infty}^{+\infty} d z \mathcal{I}_{m+1}, \quad m \in \frac{\mathbb{N}}{2} \tag{22}
\end{equation*}
$$

[^3]with dimensions $\left\{0, \frac{1}{2}\right\}$ were constructed in [9]. Their Hamiltonian densities, which are unrestricted $N=2$ superfields containing four independent superfield components, are
\[

$$
\begin{equation*}
\mathcal{I}_{1}=J, \quad \frac{\partial}{\partial t_{3}} J=\left(J^{\prime \prime}+3 J[D, \bar{D}] J+J^{3}\right)^{\prime} \tag{23}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\mathcal{I}_{\frac{3}{2}}=e^{+2 \partial^{-1} J} D J, \quad \frac{\partial}{\partial t_{3}} \mathcal{I}_{\frac{3}{2}}=\left(\mathcal{I}_{\frac{3}{2}}{ }^{\prime \prime}-3 J \mathcal{I}_{\frac{3}{2}}{ }^{\prime}+3 J^{2} \mathcal{I}_{\frac{3}{2}}+3([D, \bar{D}] J) \mathcal{I}_{\frac{3}{2}}\right)^{\prime} \tag{24}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\mathcal{I}_{\frac{3}{2}}^{\star}=e^{-2 \partial^{-1} J} \bar{D} J, \quad \frac{\partial}{\partial t_{3}} \mathcal{I}_{\frac{3}{2}}^{\star}=\left(\mathcal{I}_{\frac{3}{2}}^{\star}{ }^{\prime \prime}+3 J \mathcal{I}_{\frac{3}{2}}^{\star}{ }^{\prime}+3 J^{2} \mathcal{I}_{\frac{3}{2}}^{\star}+3([D, \bar{D}] J) \mathcal{I}_{\frac{3}{2}}^{\star}\right)^{\prime} . \tag{25}
\end{equation*}
$$

What concerns to the remaining dimension 1 in (21), we have constructed the corresponding Hamiltonian I_{1} (22) with the density

$$
\begin{align*}
\mathcal{I}_{2} & =\mathcal{I}_{\frac{3}{2}}^{\star} \partial^{-1} \mathcal{I}_{\frac{3}{2}}+(\bar{D} J) \partial^{-1} D J, \\
\frac{\partial}{\partial t_{3}} \mathcal{I}_{2} & =\left[2(\bar{D} J) D J^{\prime}-2(\bar{D} J)^{\prime} D J+4 J(\bar{D} J) D J\right. \\
& \left.-\left(\partial^{-1} \mathcal{I}_{\frac{3}{2}}\right) \partial^{-1} \frac{\partial}{\partial t_{3}} \mathcal{I}_{\frac{3}{2}}^{\star}-\left(D \partial^{-1} J\right) \bar{D} \partial^{-1} \frac{\partial}{\partial t_{3}} J\right]^{\prime} \tag{26}
\end{align*}
$$

by "brute-force". Hereafter, the subscripts denote inverse length dimensions. The Hamiltonians $I_{\frac{1}{2}}$ and $I_{\frac{1}{2}}^{\star}(22)$ with the densities $\mathcal{I}_{\frac{3}{2}}(24)$ and $\mathcal{I}_{\frac{3}{2}}$ (25), respectively, are related by the complex conjugation (9), while the complex conjugation properties of the Hamiltonians I_{0}, I_{1} are $I_{0}^{\star}=$ $-I_{0}, I_{1}^{\star}=-I_{1}$. We have verified by explicit construction that $I_{0}, I_{\frac{3}{2}}, I_{\frac{3}{2}}^{\star}$ and I_{1} are the only Hamiltonians with dimensions $\left\{0, \frac{1}{2}, 1\right\}$.

To close this subsection let us present Fréchet derivatives $f_{i}\left(i=\frac{1}{2}, 1\right)$ of the Hamiltonian densities $\mathcal{I}_{i+1}(24-26)$

$$
\begin{align*}
& f_{\frac{1}{2}}=e^{2\left(\partial^{-1} J\right)} D+2 \mathcal{I}_{\frac{3}{2}} \partial^{-1}, \quad f_{\frac{1}{2}}^{\star}=e^{-2\left(\partial^{-1} J\right)} \bar{D}-2 \mathcal{I}_{\frac{3}{2}}^{\star} \partial^{-1}, \\
& f_{1}=\mathcal{I}_{\frac{3}{2}}^{\star} \partial^{-1} f_{\frac{1}{2}}-\left(\partial^{-1} \mathcal{I}_{\frac{3}{2}}\right) f_{\frac{1}{2}}^{\star}+(\bar{D} J) D \partial^{-1}-\left(D \partial^{-1} J\right) \bar{D} \tag{27}
\end{align*}
$$

as well as their operator conjugated quantities

$$
\begin{align*}
& f_{\frac{1}{2}}^{T}=-D e^{2\left(\partial^{-1} J\right)}-2 \partial^{-1} \mathcal{I}_{\frac{3}{2}}, \quad f_{\frac{1}{2}}^{\star T}=-\bar{D} e^{-2\left(\partial^{-1} J\right)}+2 \partial^{-1} \mathcal{I}_{\frac{3}{2}}^{\star}, \\
& f_{1}^{T}=f_{\frac{1}{2}}^{T} \partial^{-1} \mathcal{I}_{\frac{3}{2}}^{\star}+f_{\frac{1}{2}}^{\star T}\left(\partial^{-1} \mathcal{I}_{\frac{3}{2}}\right)-D \partial^{-1}(\bar{D} J)-\bar{D}\left(D \partial^{-1} J\right) \tag{28}
\end{align*}
$$

which we use in what follows. Here, we use the following standard convention regarding the operator conjugation (transposition) ${ }^{T}$

$$
\begin{equation*}
(\partial, D, \bar{D})^{T}=-(\partial, D, \bar{D}), \quad(O P)^{T}=(-1)^{d_{O} d_{P}} P^{T} O^{T} \tag{29}
\end{equation*}
$$

where $O(P)$ is an arbitrary operator with the Grassmann parity $d_{O}\left(d_{P}\right), d_{O}=0\left(d_{O}=1\right)$ for bosonic (fermionic) operator O.

4.2 Flows

The flows can be derived from Hamiltonians by means of the formula (5). Let us present fermionic and bosonic flows generated by the superfield integrals with the densities $\mathcal{I}_{0}, \mathcal{I}_{\frac{1}{2}}, \mathcal{I}_{\frac{1}{2}}^{\star}$ and $\mathcal{I}_{1}(23-26)$,

$$
\begin{equation*}
U_{0} J=\left(\theta \frac{\partial}{\partial \theta}-\bar{\theta} \frac{\partial}{\partial \bar{\theta}}\right) J, \quad Q_{\frac{1}{2}} J=Q J, \quad \bar{Q}_{\frac{1}{2}} J=\bar{Q} J, \quad \frac{\partial}{\partial t_{1}} J=J^{\prime} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\frac{1}{2}} J=\mathcal{D}_{\frac{5}{2}}(\theta \bar{\theta}), \quad U_{1}^{(+)} J=\mathcal{D}_{\frac{5}{2}}(\theta), \quad U_{1}^{(-)} J=\mathcal{D}_{\frac{5}{2}}(\bar{\theta}), \quad D_{\frac{3}{2}} J=\mathcal{D}_{\frac{5}{2}}(1) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{D}_{\frac{1}{2}} J=\overline{\mathcal{D}}_{\frac{5}{2}}(\theta \bar{\theta}), \quad \bar{U}_{1}^{(+)} J=\overline{\mathcal{D}}_{\frac{5}{2}}(\bar{\theta}), \quad \bar{U}_{1}^{(-)} J=\overline{\mathcal{D}}_{\frac{5}{2}}(\theta), \quad \bar{D}_{\frac{3}{2}} J=\overline{\mathcal{D}}_{\frac{5}{2}}(1) \tag{32}
\end{equation*}
$$

as well as

$$
\begin{equation*}
U_{1} J=\mathcal{D}_{3}(\theta \bar{\theta}), \quad Q_{\frac{3}{2}} J=\mathcal{D}_{3}(\bar{\theta}), \quad \bar{Q}_{\frac{3}{2}} J=\mathcal{D}_{3}(\theta), \quad U_{2} J=\mathcal{D}_{3}(1) \tag{33}
\end{equation*}
$$

respectively, where $D_{\frac{p}{2}}$ and $\bar{D}_{\frac{p}{2}}, Q_{\frac{p}{2}}$ and $\bar{Q}_{\frac{p}{2}}\left(U_{p}, U_{p}^{(\pm)}\right.$and $\left.\bar{U}_{p}^{(\pm)}\right)(p \in \mathbb{N})$ are new fermionic (bosonic) evolution derivatives with the following properties with respect to the complex conjugation (9):

$$
\begin{equation*}
D_{\frac{1}{2}}^{\star}=\overline{\mathcal{D}}_{\frac{p}{2}}, \quad Q_{\frac{1}{2}}^{\star}=\overline{\mathcal{Q}}_{\frac{p}{2}}, \quad U_{p}^{ \pm \star}=\bar{U}_{p}^{ \pm}, \quad U_{p}^{\star}=(-1)^{p+1} U_{p}, \quad \frac{\partial}{\partial t_{2 p+1}}{ }^{\star}=-\frac{\partial}{\partial t_{2 p+1}}, \tag{34}
\end{equation*}
$$

Q and \bar{Q} are generators of the $N=2$ supersymmetry,

$$
\begin{align*}
& Q=\frac{\partial}{\partial \theta}+\frac{1}{2} \bar{\theta} \frac{\partial}{\partial z}, \quad \bar{Q}=\frac{\partial}{\partial \bar{\theta}}+\frac{1}{2} \theta \frac{\partial}{\partial z}, \quad Q^{2}=\bar{Q}^{2}=0, \quad\{Q, \bar{Q}\}=\partial \\
& \{Q, D\}=\{Q, \bar{D}\}=0, \quad\{\bar{Q}, D\}=\{\bar{Q}, \bar{D}\}=0 \tag{35}
\end{align*}
$$

and in eqs. (30-33) we have introduced the operators

$$
\begin{equation*}
\mathcal{D}_{\frac{5}{2}} \equiv-J_{2} f_{\frac{1}{2}}^{T}, \quad \overline{\mathcal{D}}_{\frac{5}{2}} \equiv J_{2} f_{\frac{1}{2}}^{\star T}, \quad \mathcal{D}_{3} \equiv J_{2} f_{1}^{T} \tag{36}
\end{equation*}
$$

where the operators J_{2} and f_{i}^{T} are defined in equations (7) and (28), respectively. When deriving eqs. (30-33) we integrated by parts and made essential use of the following realization for the inverse derivative:

$$
\begin{equation*}
\partial_{z}^{-1} \equiv \frac{1}{2} \int_{-\infty}^{+\infty} d x \epsilon(z-x), \quad \epsilon(z-x)=-\epsilon(x-z) \equiv 1, \quad \text { if } \quad z>x . \tag{37}
\end{equation*}
$$

From the derived formulae (30-33) one can easily see that only the flows, generated by the highest superfield components of the Hamiltonians (23-26), depend implicitly on the Grassmann coordinates $\{\theta, \bar{\theta}\}$, while other flows comprise the latter explicitly. The minimal dimension of the $\{\theta, \bar{\theta}\}$-independent flows is 2 and it corresponds to the first bosonic flow $\frac{\partial}{\partial t_{1}} J(30)$.

4.3 The algebra of flows and Hamiltonians

Using the explicit expressions (30-32) for the fermionic flows $Q_{\frac{1}{2}}, \bar{Q}_{\frac{1}{2}}, D_{\frac{1}{2}}$ and $\bar{D}_{\frac{1}{2}}$ one can calculate the folowing anticommutators

$$
\begin{equation*}
D_{\frac{1}{2}}^{2}=\bar{D}_{\frac{1}{2}}^{2}=0, \quad\left\{D_{\frac{1}{2}}, \bar{D}_{\frac{1}{2}}\right\}=+\frac{\partial}{\partial t_{1}} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\frac{1}{2}}^{2}=\bar{Q}_{\frac{1}{2}}^{2}=0, \quad\left\{Q_{\frac{1}{2}}, \bar{Q}_{\frac{1}{2}}\right\}=-\frac{\partial}{\partial t_{1}} \tag{39}
\end{equation*}
$$

and observe that they form two sets of closed algebraic relations, moreover each of them displays the $N=2$ supersymmetry. Thus we are led to the important conclusion that the $N=2 \alpha=1$ KdV hierarchy possesses actually a more rich symmetry structure, than it is indicated in its title, related to two different $N=2$ supersymmetries with the generators $\left\{Q_{\frac{1}{2}}, \bar{Q}_{\frac{1}{2}}, \frac{\partial}{\partial t_{1}}\right\}$ and $\left\{D_{\frac{1}{2}}, \bar{D}_{\frac{1}{2}}, \frac{\partial}{\partial t_{1}}\right\}$.

The Poisson bracket algebra (7) can also be used to derive the following useful formula

$$
\begin{equation*}
\left\{\int d Z \widetilde{\mathcal{H}}_{1}, \int d Z \widetilde{\mathcal{H}}_{2}\right\}=\int d Z\left(\widetilde{f}_{1} J_{2} \tilde{f}_{2}^{T}\right)_{0} \tag{40}
\end{equation*}
$$

where \widetilde{f}_{1} and \widetilde{f}_{2}^{T} are Fréchet derivatives of the Hamiltonian densities $\widetilde{\mathcal{H}}_{1}$ and $\widetilde{\mathcal{H}}_{2}$, respectively. Using this formula one can calculate the Poisson brackets between the integrals $I_{0}, I_{\frac{1}{2}}, I_{\frac{1}{2}}^{\star}$ and $I_{1}(23-26)$, and this algebra is isomorphic to the algebra of the corresponding flows. Repeatedly applying this procedure one can derive new nonlocal Hamiltonians. As an illustrative example we present the Hamiltonian density of the Hamiltonian $I_{2}\left(I^{\star}=-I_{2}\right)(22)$

$$
\begin{align*}
\mathcal{I}_{3} & =\left(D \mathcal{I}_{\frac{3}{2}}^{\star}\right) \partial^{-1} \bar{D} \mathcal{I}_{\frac{3}{2}}+\left(\bar{D} \mathcal{I}_{\frac{3}{2}}^{\star}\right) \partial^{-1} D \mathcal{I}_{\frac{3}{2}}+\frac{1}{2}[D, \bar{D}] J^{2}-\frac{3}{2} J[D, \bar{D}] J \\
& +J\left(\partial^{-1} D J\right) \bar{D} J-J(D J) \partial^{-1} \bar{D} J-([D, \bar{D}] J)\left(\partial^{-1} D J\right) \partial^{-1} \bar{D} J \tag{41}
\end{align*}
$$

derived in this way. It is interesting to remark that the higher superfield component of the Hamiltonian $I_{2}\left(I_{0}\right)$ coincides with the Hamiltonian $H_{3}\left(H_{1}\right)(10)$.

A discussion of the complete, very rich superalgebraic structure of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy is out of the scope of the present Letter and will be discussed in [14].

5 Recursion operator and bi-Hamiltonian structure of the $N=2 \alpha=1 \mathbf{K d V}$ hierarchy

Now, the results of preceding sections give us all necessary inputs to construct the recursion operator of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy following the algorithm described in Section 3 and then to derive its bi-Hamiltonian structure. In this Section we present main results in a telegraphic style and refer the reader to ref. [13] for more details.

5.1 Recursion operator

We use the Ansatz (15) for the recursion operator R where only superfield components of the Hamiltonians $I_{0}, I_{\frac{1}{2}}, I_{\frac{1}{2}}^{\star}$ and $I_{1}(23-26)$ are included. Then, as it was already noted at the end
of Section 3, we impose the condition that two special symmetries $\left(\frac{\partial}{\partial t_{5}} J\right.$ and $\left.\frac{\partial}{\partial t_{7}} J(8)\right)$ of the $N=2 \alpha=1 \mathrm{KdV}$ equation (1) are related by this recursion operator as

$$
\begin{equation*}
\frac{\partial}{\partial t_{7}} J \equiv \operatorname{res}\left(L^{7}\right)=R \operatorname{res}\left(L^{5}\right) \equiv R \frac{\partial}{\partial t_{5}} J \tag{42}
\end{equation*}
$$

in accordance with eq. (15), and solve this condition. It is interesting to remark that this condition completely fixes all unknown coefficient-functions, involved in the Ansatz for the recursion operator, and allows to construct the explicit expression for the latter

$$
\begin{align*}
R & =\partial^{2}+2 J[D, \bar{D}]+\frac{3}{2}([D, \bar{D}] J)+J^{2} \\
& +\left\{J^{\prime}[D, \bar{D}]+\frac{1}{2}\left([D, \bar{D}] J^{\prime}\right)+\frac{1}{2}[D, \bar{D}] J^{\prime}-D\left(\bar{D} J^{2}\right)-\bar{D}\left(D J^{2}\right)\right\} \partial^{-1} \\
& +\bar{D}\left\{\mathcal{I}_{\frac{3}{2}}^{\star}\left[\left(D \partial^{-1} J\right)-\frac{1}{2} D\right]-D \mathcal{I}_{\frac{3}{2}}^{\star}\right\} \partial^{-1} f_{\frac{1}{2}}+D\left\{\mathcal{I}_{\frac{3}{2}}\left[\left(\bar{D} \partial^{-1} J\right)+\frac{1}{2} \bar{D}\right]+\bar{D} \mathcal{I}_{\frac{3}{2}}\right\} \partial^{-1} f_{\frac{1}{2}}^{\star} \\
& -[\bar{D}(D J)+D(\bar{D} J)]\left\{\partial^{-1} f_{1}+\left(\partial^{-1} \mathcal{I}_{\frac{3}{2}}\right) \partial^{-1} f_{\frac{1}{2}}^{\star}+\left(D \partial^{-1} J\right) \bar{D} \partial^{-1}\right\} \tag{43}
\end{align*}
$$

where $f_{i}\left(i=\frac{1}{2}, 1\right)$ are the Fréchet derivatives defined in eqs. (27). Then we have explicitly verified that the constructed expression (43) satisfies the deformation equation (16), i.e. it indeed gives the proper recursion operator for symmetries of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy.

We would like to note that other conditions, similar to the condition (42), which relate flows $\frac{\partial}{\partial t_{1}} J$ and $\frac{\partial}{\partial t_{3}} J$ or/and flows $\frac{\partial}{\partial t_{3}} J$ and $\frac{\partial}{\partial t_{5}} J$ do not fix the recursion operator completely.

For completeness let us also present the recurrence relations

$$
\begin{equation*}
Y_{p+1}^{a} J=R Y_{p}^{a} J \tag{44}
\end{equation*}
$$

for flows $Y_{p}^{a} J$ of the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy in the following useful form:

$$
\begin{align*}
Y_{p+1}^{a} J & =\left\{\partial^{2}+2 J[D, \bar{D}]+\frac{3}{2}([D, \bar{D}] J)+J^{2}\right\} Y_{p}^{a} J \\
& +\left\{J^{\prime}[D, \bar{D}]+\frac{1}{2}\left([D, \bar{D}] J^{\prime}\right)+\frac{1}{2}[D, \bar{D}] J^{\prime}-D\left(\bar{D} J^{2}\right)-\bar{D}\left(D J^{2}\right)\right\} \partial^{-1} Y_{p}^{a} J \\
& +(-1)^{d_{Y} a} \bar{D}\left\{\mathcal{I}_{\frac{3}{2}}^{\star}\left[\left(D \partial^{-1} J\right)-\frac{1}{2} D\right]-D \mathcal{I}_{\frac{3}{2}}^{\star}\right\} \partial^{-1} Y_{p}^{a} \mathcal{I}_{\frac{3}{2}} \\
& +(-1)^{d_{Y} a} D\left\{\mathcal{I}_{\frac{3}{2}}\left[\left(\bar{D} \partial^{-1} J\right)+\frac{1}{2} \bar{D}\right]+\bar{D} \mathcal{I}_{\frac{3}{2}}\right\} \partial^{-1} Y_{p}^{a} \mathcal{I}_{\frac{3}{2}}^{\star} \\
& -[\bar{D}(D J)+D(\bar{D} J)]\left\{\partial^{-1} Y_{p}^{a} \mathcal{I}_{2}+(-1)^{d_{Y} a}\left(\partial^{-1} \mathcal{I}_{\frac{3}{2}}\right) \partial^{-1} Y_{p}^{a} \mathcal{I}_{\frac{3}{2}}^{\star}+\left(D \partial^{-1} J\right) \bar{D} \partial^{-1} Y_{p}^{a} J\right\}(4 \tag{45}
\end{align*}
$$

where Y_{p}^{a} is an evolution derivative from the set (34) and $d_{Y^{a}}$ is its Grassmann parity.

5.2 Bi-Hamiltonian structure

We have observed that the constructed recursion operator R (43) can be represented in the factorized form

$$
\begin{equation*}
R=J_{2} J_{0}^{-1}, \quad J_{0}^{-1}=[D, \bar{D}] \partial^{-1}+\partial^{-1} J_{2} \partial^{-1}+\frac{1}{2} f_{\frac{1}{2}}^{\star T} \partial^{-1} f_{\frac{1}{2}}-\frac{1}{2} f_{\frac{1}{2}}^{T} \partial^{-1} f_{\frac{1}{2}}^{\star} \tag{46}
\end{equation*}
$$

where J_{2} is the second Hamiltonian structure (5), (7) and $f_{\frac{1}{2}}^{T}\left(f_{\frac{1}{2}}^{\star}\right.$ T) is the operator conjugated Fréchet derivative (28). Then $J_{0}^{-1}\left(J_{0} J_{0}^{-1}=J_{0}^{-1} J_{0}=1\right)$ can obviously be treated as the inverse operator of the zero Hamiltonian structure,

$$
\begin{equation*}
\left\{J\left(Z_{1}\right), J\left(Z_{2}\right)\right\}_{0}=J_{0}\left(Z_{1}\right) \delta^{N=2}\left(Z_{1}-Z_{2}\right), \quad J_{0}^{-1} \frac{\partial}{\partial t_{2 p-1}} J=\frac{\delta}{\delta J} H_{2 p+1} . \tag{47}
\end{equation*}
$$

Therefore, we come to the conclusion that the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ hierarchy is a bi-Hamiltonian system. Acting k-times with the recursion operator (43) on the second Hamiltonian structure $J_{2}(5),(7)$ of the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy, one can derive its $2(k+1)$-th Hamiltonian structure,

$$
\begin{align*}
J_{2(k+1)}= & R^{k} J_{2}, \quad \frac{\partial}{\partial t_{2 p+1}} J=\left\{J, H_{2(p-k)+1}\right\}_{2(k+1)} \equiv J_{2(k+1)} \frac{\delta}{\delta J} H_{2(p-k)+1}, \\
& \left\{J\left(Z_{1}\right), J\left(Z_{2}\right)\right\}_{2(k+1)}=J_{2(k+1)}\left(Z_{1}\right) \delta^{N=2}\left(Z_{1}-Z_{2}\right) \tag{48}
\end{align*}
$$

6 Summary

In this Letter we have adapted the general algorithm of constructing recursion operators to the case of the $N=2$ supersymmetric $\alpha=1 \mathrm{KdV}$ equation in $N=2$ superspace. Then we have constructed all basic objects which are relevant to this aim: nonpolynomial and nonlocal, bosonic and fermionic Hamiltonians (23-26) and symmetries (30-33). Furthermore we have observed that the $N=2 \alpha=1 \mathrm{KdV}$ hierarchy possesses a more rich symmetry structure, than it is indicated in its title, related to two subalgebras of the $N=2$ supersymmetry (38-39) of its algebra of symmetries. Finally we have constructed its recursion operator (43), recursion relations (45) as well as zero Hamiltonian structure (46-47) which were unsolved longstanding problems.

Acknowledgments. We would like to thank I.S. Krasil'shchik for useful discussions. A.S. is grateful to University of Twente for the hospitality extended to him during this research. This work was partially supported by the grants NWO NB 61-491, FOM MF 00/39, RFBR 99-02-18417, RFBR-CNRS 98-02-22034, PICS Project No. 593, Nato Grant No. PST.CLG 974874 and the Heisenberg-Landau program.

References

[1] P. Labelle and P. Mathieu, A new $N=2$ supersymmetric Korteweg-de Vries equation, J. Math. Phys. 32 (1991) 923.
[2] Z. Popowicz, The Lax formulation of the "new" $N=2$ SUSY KdV equation, Phys. Lett. A174 (1993) 411.
[3] C. A. Laberge and P. Mathieu, $N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg-de Vries equation, Phys. Lett. B 215 (1988) 718.
[4] L. Bonora, S. Krivonos and A. Sorin, Towards the construction of $N=2$ supersymmetric integrable hierarchies, Nucl. Phys. B 477 (1996) 835, hep-th/9604165.
[5] P. Dargis and P. Mathieu, Nonlocal conservation laws in $N=1$,2 Supersymetric KdV equation, Phys. Lett. A176 (1993) 67, hep-th/9301080.
[6] P. Mathieu, Open problems for the superKdV equations, math-ph/0005007.
[7] I.S. Krasil'shchik and P.H.M. Kersten, Symmetries and recursion operators for classical and supersymmetric differential equations, Kluwer Acad. Publ., Dordrecht/Boston/London, 2000.
[8] P.H.M. Kersten, Symmetries and recursions for $N=2$ supersymmetric $K d V$-equation, in Integrable Hierarchies and Modern Physical Theories, Eds. H. Aratyn and A.S. Sorin, Kluwer Acad. Publ., Dordrecht/Boston/London, 2001, pg. 317.
[9] A.S. Sorin and P.H.M. Kersten, The N=2 supersymmetric unconstrained matrix GNLS hierarchies, nlin.SI/0201026.
[10] I.S. Krasil'shchik, Some new cohomological invariants for nonlinear differential equations, Differential Geom. Appl. 2 (1992) 307.
[11] I.S. Krasil'shchik and P.H.M. Kersten, Graded differential equations and their deformations: a computational theory for recursion operators, Acta Appl. Math. 41 (1995) 167.
[12] P.H.M. Kersten and J. Krasil'shchik, Complete integrability of the coupled $K d V-m K d V$ system, nlin.SI/0010041.
[13] A.S. Sorin and P.H.M. Kersten, Deformation and recursion for the $N=2$ supersymmetric $\alpha=1 K d V$ hierarchy, in preparation.
[14] P.H.M. Kersten and A.S. Sorin, Superalgebraic structure of the $N=2$ supersymmetric $\alpha=1$ KdV hierarchy, in preparation.

[^0]: ${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (JINR), 141980 Dubna, Moscow Region, Russia

[^1]: ${ }^{1}$ This means that all parameters, involved in the equation, are dimensionless.
 ${ }^{2}$ We would like to emphasize that supersymmetric systems in general admit both bosonic or fermionic evolution times. Here, for definiteness we discuss only the former case, its generalization to the latter case is rather straightforward.
 ${ }^{3}$ Here, the brackets $(\ldots)_{0}$ mean that the relevant operators act only on the superfields inside the brackets.

[^2]: ${ }^{4}$ An $N=2$ superfield integral of the form (13) has four independent superfield components in general.

[^3]: ${ }^{5}$ We have verified by explicit construction that there are no flows with dimensions $\left\{0, \frac{1}{2}\right\}$ and that existing flows with dimensions $\left\{1, \frac{3}{2}\right\}$ are $\{\theta, \bar{\theta}\}$-dependent (see the expressions for the flows $U_{0} J, D_{\frac{1}{2}} J$ and $\bar{D}_{\frac{1}{2}} J$ $\left(\left[U_{0} J\right]=1,\left[D_{\frac{1}{2}} J\right]=\left[\bar{D}_{\frac{1}{2}} J\right]=\frac{3}{2}\right)$ in eqs. (30-32) and discussion at the end of the next subsection $)$.

