
Faculty of Mathematical Sciences

University of Twente
University for Technical and Social Sciences

P.O. Box 217
7500 AE Enschede

The Netherlands
Phone: +31-53-4893400

Fax: +31-53-4893114
Email: memo@math.utwente.nl

Memorandum No. 1525

List scheduling in a parallel machine
environment with precedence constraints

and setup times

J.L. Hurink and S. Knust
1

May 2000

ISSN 0169-2690

1Universität Osnabrück, Fachbereich Mathematik/Informatik, D-49069 Osnabrück, Germany

List Scheduling in a Parallel Machine Environment
with Precedence Constraints and Setup Times

Johann Hurink
University of Twente, Faculty of Mathematical Sciences,

NL-7500 AE Enschede
j.l.hurink@math.utwente.nl

Sigrid Knust ∗

Universität Osnabrück, Fachbereich Mathematik/Informatik,
D-49069 Osnabrück

sigrid@mathematik.uni-osnabrueck.de

May 2, 2000

Abstract

We present complexity results which have influence on the strength of list schedul-
ing in a parallel machine environment where additionally precedence constraints and
sequence-dependent setup times are given and the makespan has to be minimized. We
show that contrary to various other scheduling problems, in this environment a set of
dominant schedules cannot be calculated efficiently with list scheduling techniques.

Keywords: scheduling, list scheduling, complexity, parallel machines, setup times

Subject classification: 90B35

∗supported by the Deutsche Forschungsgemeinschaft, Project ‘Komplexe Maschinen-Schedulingprobleme’

1

1 Introduction

The concept of list scheduling - for a given list of jobs construct a corresponding schedule by
planning the jobs in the order of the list - has been widely used in the scheduling area. On the
one hand, several polynomial algorithms utilize such procedures (e.g. Smith’s rule [8] for problem
1||
∑
wjCj) and approximation heuristics are often based on priority lists (cf. e.g. Baker [1],

Graham [3]). On the other hand, list schedules may form the base of branch and bound methods
or local search algorithms: if the set of all schedules achieved by applying an efficient list scheduling
algorithm to all possible sequences of the jobs is a dominant set (i.e. contains at least one optimal
solution), we can restrict our considerations to these schedules and use the set of all possible job
sequences as solution space.

In this paper we present some complexity results which restrict the use of list scheduling for solving
a parallel machine scheduling problem where additionally precedence constraints and sequence-
dependent setup times are given and the makespan has to be minimized. This problem is denoted
by P |prec, sij|Cmax and can be stated as follows: given are n jobs with processing times p1, . . . , pn
which have to be processed on m parallel machines without preemption respecting a given set
of precedence constraints. Furthermore, if jobs i and j are processed consecutively on the same
machine, a setup of length sij has to be done on the machine between the two jobs. The goal is
to minimize the makespan, i.e. the maximal completion time of a job. The problem is NP-hard
in the strong sense since it generalizes the single-machine problem 1|sij |Cmax (traveling salesman
problem) and the classical parallel machine problem P ||Cmax. Some other complexity results for
scheduling problems with sequence-dependent setup times can be found in Monma & Potts [6].

We are interested in the described problem since it arises as a subproblem in a job-shop environment
where the jobs additionally have to be transported between the machines by transport robots (cf.
Knust [5]). A job-shop problem with transportation times is a generalization of the classical job-
shop problem and may be formulated as follows: We are given a set of machines and a set of jobs.
Each job consists of a chain of operations which have to be processed in this order. With each
operation a dedicated machine is associated on which the operation has to be processed without
preemption for a given duration. Each machine can process at most one operation at a time.
Additionally, transportation times are considered. They occur if a job changes from one machine
to another and depend on the jobs and the machines between which the transport takes place.
We assume that all these transport operations have to be done by a group of r identical transport
robots where each robot can handle at most one job at a time. Furthermore, if a robot moves
empty between two machines, empty moving times occur (depending on the machines between
which the move takes place), which may be regarded as sequence-dependent setup times on the
robots. The objective is to determine a feasible schedule which minimizes the makespan.

In Hurink & Knust [4] we studied the situation with a single transport robot (r = 1) and proposed
a two-level approach where on the first level machine orders for the job-shop machines are fixed and
on the second level a corresponding robot order is constructed by a tabu search procedure. The
resulting robot scheduling problem on the second level corresponds to the single-machine problem
1 | prec (lij), rj , sij | max {Cj + qj}, where prec (lij) indicates arbitrary non-negative finish-start
time-lags lij ≥ 0, sij stands for sequence-dependent setup times, rj for release dates, and Cj + qj
denotes for each job the sum of its completion time and its delivery time (tail) qj. In order to
generalize this two-stage approach to the situation with more than one robot, we have to deal with

2

the more complex subproblem P | prec (lij), rj , sij | max {Cj + qj}, where the r transport robots
correspond to r parallel identical machines.

Since this problem is a combination of a partitioning problem (assign the jobs to the machines)
and a sequencing problem (determine for each machine an order in which the jobs assigned to this
machine are executed), an optimization algorithm for it may be based on a two-stage approach
where first decisions for one of the subproblems are fixed and afterwards the remaining part of
the problem is treated. If we first assign the jobs to the machines, the remaining sequencing
problems on the machines still contain the traveling salesman problem, i.e. they are strongly NP-
hard. On the other hand, we could first treat the sequencing problem and try to determine an
optimal assignment afterwards. Thus, in this context we have to deal with the question whether
it is possible to design an efficient list scheduling algorithm which produces a dominant set of list
schedules. A positive answer to this question could lead to a solution approach for the considered
problem by using the set of all possible job sequences as solution space and the developed method
to generate corresponding schedules. However, in this paper we will show that a positive answer
to this question is very unlikely.

The remainder of the paper is organized as follows. In Section 2 we review different versions of
common list scheduling algorithms for parallel machine problems. In Section 3 we consider the
problem P |sij|Cmax without additional precedence constraints, but with a given job sequence π.
We show that for an arbitrary number of machines the problem of finding a best schedule in
which job πj does not start its execution earlier than job πi for all i < j is strongly NP-hard
and that the problem remains ordinary NP-hard for a fixed number m of machines (even for
m = 2). A pseudo-polynomial algorithm for problem Pm|sij|Cmax with a given starting time
order π is presented in Section 4. Some consequences of these results for the possibilities of using
list scheduling algorithms for the considered problem are discussed in Section 5. The paper ends
with some concluding remarks.

2 List scheduling algorithms

As mentioned in the Introduction, the concept of list scheduling has been widely used in the
scheduling area. In order to apply this concept successfully, an efficient list scheduling algorithm
has to be designed which produces a dominant set of schedules. In this section we focus on different
versions of parallel machine problems and consider some possibilities for list scheduling algorithms.

Given a list of all jobs, a standard list scheduling algorithm constructs a schedule for the parallel
machine problem P ||Cmax as follows: schedule the next job of the list on a machine which is
available first (i.e. where the job starts its processing as early as possible). Obviously, this list
scheduling algorithm is polynomial and the set of all schedules obtained in this way is a dominant
set. If in addition precedence constraints are given, only lists which are compatible with the
precedences are considered (i.e. if i → j holds, i is placed before j in the list). It is easy to see
that the described list scheduling algorithm still produces a dominant set of schedules. If, on the
other hand, sequence-dependent setup times sij are considered, Schutten [7] has shown that the
list scheduling algorithm also produces a dominant set for problem P |sij|Cmax if in each step the
considered job is processed on a machine where it starts its processing (not its setup) as early as
possible. However, in the case where setup times and precedence constraints are given, the result
of Schutten cannot be generalized as the following example shows.

3

Example: Given are 2 machines and 4 jobs with unit processing times. The setup times are given
by

s = (sij)i,j=1,... ,4 =

0 10 1 10

10 0 0 2
10 10 0 10
10 10 10 0

 .

1 s13 3

2 s24 4

The optimal solution is achieved by scheduling jobs 1 and 3 on one machine in this order and jobs
2 and 4 on the other machine in that order. This solution can be calculated by the list scheduling
algorithm using the sequence π = (1, 2, 4, 3) or π = (2, 1, 4, 3). All other sequences lead to schedules
with larger makespans.

If we now add a precedence constraint 3 → 4, the optimal solution remains feasible (job 4 starts
directly after job 3 finishes). However, since the sequences π = (1, 2, 4, 3) and π = (2, 1, 4, 3) are
no longer valid, the set of all list schedules does not contain the optimal solution anymore. 2

This example shows that for problem P |prec, sij |Cmax another list scheduling algorithm has to
be used in order to obtain a dominant set of schedules. A class of schedule generation schemes
which is often used for different scheduling problems works as follows: Given a permutation π, a
schedule is constructed in which job πj does not start its execution earlier than job πi for all i < j.
Sprecher & Drexl [9] used such a procedure in a branch and bound algorithm (generating a so-
called “precedence tree”) for the resource-constrained project scheduling problem (RCPSP). Carlier
& Neron [2] showed that for multi-processor flow-shop problems a so-called “strict scheduling
algorithm” produces a dominant set of schedules.

In the following section we will deal with the question whether such an approach is also possible for
problem P |prec, sij |Cmax. We will show that it is NP-hard to determine a schedule with minimal
makespan where the starting times respect a given order π.

3 NP-hardness results

In this section we will consider the parallel machine problem P |sij|Cmax with sequence-dependent
setup times sij , no precedence relations, and a given job list π. We are interested in a schedule
with minimal makespan where job πj does not start its execution earlier than job πi for all i < j.

Theorem 1 : For problem P |sij|Cmax it is NP-hard in the strong sense to determine a schedule
with minimal makespan where the starting times respect a given order π.

Proof: To prove the NP-hardness we will reduce the strongly NP-hard problem 3-PARTITION
(3-PART) to the decision version of the given problem.

3-PART: Given are 3r positive number a1, . . . , a3r with
3r∑
i=1

= rb and b
4 < ai <

b
2 for i = 1, . . . , 3r.

Does there exist a partition I1, . . . , Ir of the index set {1, . . . , 3r} such that |Ij | = 3 and
∑
i∈Ij

ai = b

for j = 1, . . . , r ?

4

Given an arbitrary instance of 3-PART, an instance of problem P |sij |Cmax with a given starting
time order π is constructed as follows:

Let c := (m+ 1)b+ 1, let the number of machines be given by m := r, and let the number of jobs
be n := 3r2. For simplicity of notation, we denote the 3r2 jobs by pairs (i, j) with i = 1, . . . , 3r
and j = 1, . . . , r. The processing times of the jobs (1, j) for j = 1, . . . , r are given by

p(1,j) :=

{
a1 if j = 1
0 otherwise

and the processing times of the remaining jobs (i, j) for i = 2, . . . , 3r and j = 1, . . . , r are defined
as

p(i,j) :=

{
c− b+ ai if j = 1
c− jb if j ≥ 2.

The setup times between two jobs (i, j), (k, l) are given by

s(i,j),(k,l) :=

lb if k = i+ 1
c+ b+ 1 if k = 1
(l + 1)b+ 1 otherwise.

We ask for a schedule in which the starting times respect the lexicographic order

π := ((1, 1), . . . , (1,m), (2, 1), . . . , (2,m), (3, 1), . . . , (3r,m))

with a makespan Cmax ≤ y := (3r − 1)c+ b. We show that 3-PART has a feasible solution if and
only if a schedule respecting π with Cmax ≤ y exists.

To do this, we first calculate the sum of the processing time of a job and the setup time preceding
this job. Assume that two jobs (i, j) and (k, l) are scheduled consecutively on the same machine.
Then we have

s(i,j),(k,l) + p(k,l) =

c+ ak if k = i+ 1 and l = 1
c if k = i+ 1 and l ≥ 2
c+ b+ 1 + ak if k 6= i+ 1 and l = 1
c+ b+ 1 otherwise.

(3.1)

Now assume that I1, . . . , Ir is a feasible solution of 3-PART. We construct a corresponding schedule
for the jobs (i, j) with i = 1, . . . , 3r and j = 1, . . . , r of the instance of P |sij |Cmax as follows: If
i ∈ Ij , schedule job (i, 1) on the i-th position on machine Mj and schedule the jobs (i, 2), . . . , (i,m)
on the i-th position of the other machines Mk, k 6= j, in an arbitrary way.

The construction of such a schedule is illustrated by an example in Figure 1, where we have
r = m = 3 and assume that I1 = {1, 4, 6}, I2 = {2, 5, 8}, I3 = {3, 7, 9} is a solution of 3-PART.

Let us consider an arbitrary machine Mk and denote by (i1, j1), . . . , (i3r , j3r) the job sequence on
Mk in the resulting schedule. We assume that all jobs are processed consecutively and that no
idle times on the machines occur due to the order π. Later on we will show that this assumption

5

(1, 1)

a1

s = 2b (2, 2)

c− 2b

s = 2b (3, 2)

c− 2b

s = b (4, 1)

c− b+ a4

s = 2b (5, 2)

c− 2b

s = 2b (9, 2)

c− 2b

(1, 2)

0

s = b (2, 1)

c− b+ a2

s = 3b (3, 3)

c− 3b

s = 2b (4, 2)

c− 2b

s = b (5, 1)

c− b+ a5

s = 3b (9, 3)

c− 3b

(1, 3)

0

s = 3b (2, 3)

c− 3b

s = b (3, 1)

c− b+ a3

s = 3b (4, 3)

c− 3b

s = 3b (5, 3)

c− 3b

s = b (9, 1)

c− b+ a9

s ss

s ss

s ss

Figure 1: Schedule derived from a solution of 3-PART with r = m = 3

is valid since job πj does not start before job πi for all i < j, i.e. the starting time order π is
respected in the schedule.

Based on the assignment, we have iq = q for q = 1, . . . , 3r and, thus, for the completion time CMk
of machine Mk we get

CMk = p(1,j1) +
3r∑
q=2

(s(q−1,jq−1),(q,jq) + p(q,jq))

= (3r − 1)c+
∑

{q|jq=1}
aiq = (3r − 1)c+

∑
i∈Ik

ai

due to the second case in (3.1). Since I1, . . . , Ir forms a feasible partition, this value is equal to
(3r − 1)c + b = y and the resulting schedule satisfies Cmax =

m
max
k=1
{CMk } ≤ y.

To state that the schedule is a feasible solution for the given problem it remains to show that the
starting times respect the order π = ((1, 1), . . . , (1,m), (2, 1), . . . , (2,m), (3, 1), . . . , (3r,m)).

Let Sji denote the starting time of job (i, j) in the given schedule. For i = 1 we have S1
1 = 0 ≤

S2
1 = 0 ≤ . . . ≤ Sm1 = 0. Now we consider i ≥ 2. Since job (i, j) is scheduled on the i-th position

on a machine, we get
Sji ≥ (i− 2)c+ sh,(i,j) = (i− 2)c + jb,

where h denotes the predecessor of job (i, j) on its machine and

Sji ≤ (i− 2)c + sh,(i,j) + b = (i− 2)c+ (j + 1)b.

Thus, we get
S1
i ≤ S2

i ≤ . . . ≤ Smi .

Since, furthermore

Smi ≤ (i− 2)c+ (m+ 1)b = (i− 1)c − 1 < (i− 1)c+ b ≤ S1
i+1,

6

we can conclude that the constructed schedule respects π and, thus, is a feasible solution for the
considered parallel machine problem.

Conversely, assume that problem P |sij |Cmax has a solution respecting π with Cmax ≤ y = (3r −
1)c + b. First, we consider a schedule on a single machine Mk. Let (i1, j1), . . . , (iQ, jQ) be the
sequence of jobs scheduled on Mk. In three steps we will show that

• exactly Q = 3r jobs are processed on Mk,

• the first job (i1, j1) is a job of the type (1, j), and

• all first indices iq of the jobs (iq, jq) are numbered consecutively, i.e. iq = q holds for
q = 1, . . . , Q.

For the completion time CMk of machine Mk we get

CMk ≥ p(i1,j1) +
Q∑
q=2

(s(iq−1,jq−1),(iq,jq) + p(iq,jq)).

• Due to (3.1) we have CMk ≥ p(i1,j1) + (Q − 1)c. Thus, since the given schedule satisfies
Cmax ≤ (3r−1)c+ b, at most 3r jobs are processed on each machine (i.e. Q ≤ 3r). However,
since the total number of jobs to be scheduled on the m machines is given by 3rm, exactly
3r jobs have to be processed on each machine (i.e. Q = 3r).

• If we now assume that for the first job (i1, j1) we have i1 6= 1, this induces

CMk ≥ (3r − 1)c+ p(i1,j1) ≥ (3r − 1)c+ c−mb = (3r − 1)c+ b+ 1,

which is a contradiction. Since we have exactly m jobs of type (1, j), on each machine first
a job (1, j) and afterwards 3r − 1 other jobs are processed (i.e. i1 = 1).

• Next, assume that the indices iq−1, iq of two consecutive jobs (iq−1, jq−1) and (iq, jq) are not
numbered consecutively, i.e. we have iq 6= iq−1 + 1. Due to (3.1) this yields

CMk ≥ (3r − 1)c + b+ 1,

which is a contradiction. Therefore, we have iq = q for q = 1, . . . , 3r, which implies

CMk = (3r − 1)c+
∑

{q|jq=1}
aiq .

From CMk ≤ y = (3r − 1)c + b we now can conclude
∑

{q|jq=1}
aiq ≤ b for each machine. However,

since
3r∑
i=1

ai = mb and since each job (i, 1) for i = 1, . . . , 3r is scheduled on one of the m machines,

we get
∑

{q|jq=1}
aiq = b. Thus, if we associate with machine Mk the set Ik = {iq|jq = 1}, we obtain

a feasible solution for problem 3-PART. 2

The above theorem shows that problem P |sij|Cmax with a given starting time order π is NP-hard
in the strong sense if the number of machines is arbitrary. The next theorem shows that for a fixed
number m of machines (even for m = 2) the problem stays NP-hard.

7

Theorem 2 : For problem P2|sij |Cmax it is NP-hard to determine a schedule with minimal
makespan respecting a given starting time order π.

Proof: One way to prove the NP-hardness is to reduce the NP-hard problem PARTITION to
the decision version of problem P2|sij |Cmax in a similar way as presented in Theorem 1. However,
a more direct way (using less ‘dummy’ jobs) to prove the NP-hardness is to reduce the NP-hard
problem EVEN-ODD-PARTITION (EO-PART) to the decision version of the given problem.

EO-PART: Given are 2r positive number a1, . . . , a2r with
2r∑
i=1

= 2b. Does there exist a partition

of the index set {1, . . . , 2r} into two disjoint sets I1 and I2 such that
∑
i∈I1

ai =
∑
i∈I2

ai = b and the

indices 2j − 1 and 2j belong to different sets for j = 1, . . . , r ?

Given an arbitrary instance of EO-PART, an instance of problem P |sij|Cmax with a fixed starting
time order π is constructed as follows:

Let c := 3b and let the number of jobs be defined by n := 2r. The processing times of the jobs are
given by

pi :=

c− b+ ai if i = 2j − 1 for some j ∈ {2, . . . , r}
b+ ai if i = 2j for some j ∈ {2, . . . , r}
ai if i = 1, 2

and the setup times between jobs k and l by

skl :=

b if k ∈ {2j − 1, 2j} and l = 2j + 1 for some j ∈ {1, . . . , r − 1}
c− b if k ∈ {2j − 1, 2j} and l = 2j + 2 for some j ∈ {1, . . . , r − 1}
c+ b+ 1 otherwise

(cf. Figure 2).

We ask for a schedule respecting the order π := (1, . . . , n) with a makespan Cmax ≤ y := (r−1)c+b.
We show that EO-PART has a feasible solution if and only if a schedule respecting π with Cmax ≤ y
exists.

Assume that I1, I2 is a solution of EO-PART and that Ii = {i1, . . . , ir} with ij < ij+1 for j =
1, . . . , r − 1 and i = 1, 2. We construct a solution of problem P2|sij |Cmax by scheduling on
Mi (i = 1, 2) the jobs corresponding to Ii in the order (i1, . . . , ir). Due to the assumption that
the indices 2j − 1 and 2j belong to different sets, for j = 1, . . . , r, we know that for ik = 2j + 1 or
ik = 2j + 2 we have ik−1 ∈ {2j − 1, 2j} for k = 2, . . . , r and i = 1, 2. Thus, for ik with k ≥ 2 we
have

sik−1,ik + pik = c+ aik .

As a result we get for the makespan of this schedule:

Cmax = max {C1r , C2r} =
2

max
i=1
{pi1 +

r∑
k=2

(sik−1,ik + pik)}

= (r − 1)c+
∑
k∈Ii

ak = (r − 1)c+ b = y,

where Ci denotes the completion time of job i in the schedule.

It remains to show that in the constructed schedule the starting times respect the order π =
(1, . . . , n). We do this by showing that

8

2j − 1 2j + 1-b

c− b+ a2j−1 c− b+ a2j+1

2j 2j + 2-
c− b

b+ a2j+2b+ a2j

@
@
@
@
@
@
@R�

�
�
�
�
�
��
b

6

?

c+ b+ 1

6

?

2j + 3-b

c− b+ a2j+1

2j + 4-
c− b

b+ a2j+2

@
@
@
@
@
@
@R�

�
�
�
�
�
��
b

6

?

c+ b+ 1

- �

�-

c+ b+ 1

c− b c− b

Figure 2: Definition of processing and setup times

• job 2j + 1 starts after job 2j for j = 2, . . . , r − 1 and

• job 2j starts after job 2j − 1 for j = 2, . . . , r.

Jobs 1 and 2 both start at time 0 and, thus, job 3 obviously starts after job 2. Now we consider
the case j ≥ 2. If jobs 2j and 2j + 1 belong to the same set Ii, they are scheduled on the same
machine, i.e. the starting times clearly satisfy S2j+1 ≥ S2j. Otherwise we have 2j + 1 = ij+1 and
2j = ij, where {i1, . . . , ir} with ij < ij+1 denotes the complement of the set Ii.

• The starting time S2j+1 of job 2j + 1 is given by

S2j+1 = Sij+1 = pi1 +
j∑

k=2
(sik−1,ik + pik) + sij ,2j−1

= (j − 1)c+
j∑

k=1
aik + b ≥ (j − 1)c+ b.

Furthermore, we have

S2j = Sij = pi1 +
j−1∑
k=2

(sik−1,ik
+ pik) + sij−1,2j−2

= (j − 2)c+
j∑

k=1
aik + c− b ≤ (j − 1)c + b− b = (j − 1)c.

Thus, job 2j + 1 starts after job 2j for j = 2, . . . , r − 1.

• Since the jobs 2j − 1, 2j are scheduled on different machines, the previous formulas imply

S2j ≥ (j − 2)c+ 0 + c− b = (j − 1)c − b

9

and
S2j−1 ≤ (j − 2)c+ b+ b = (j − 2)c+ 2b.

Due to c = 3b we obtain

S2j ≥ (j − 1)c− b ≥ (j − 2)c + 3b− b ≥ S2j−1

and, thus, job 2j starts after job 2j − 1 for j = 2, . . . , r.

Conversely, assume that problem P |sij|Cmax has a solution respecting π = (1, . . . , n) with Cmax ≤
y = (r − 1)c + b. Let Ii = {i1, . . . , ini} be the set of jobs processed on machine Mi (i = 1, 2) in
the order (i1, . . . , ini). Since the schedule respects π, we must have ij < ij+1 for j = 1, . . . , ni and
i = 1, 2.

For the completion time CMi of machine Mi in the given schedule we get

CMi ≥ pi1 +
ni∑
j=2

sij−1,ij + pij ≥ pi1 + (ni − 1)c.

Since we have Cmax ≤ (r − 1)c + b for this schedule, this implies ni ≤ r and thus ni = r for
i = 1, 2. Furthermore, if two jobs 2j − 1, 2j are processed on the same machine Mi, we get
CMi ≥ (r − 1)c + b+ 1, which is a contradiction. Thus, for j = 1, . . . , r the indices 2j − 1 and 2j
belong to different sets Ii.

Since the jobs 2j − 1 and 2j are assigned to different machines, we know that for k ≥ 2 the
predecessor of job ik = 2j + 1 or ik = 2j + 2 is a job from the set {2j − 1, 2j} and, thus,
sik−1,ik +pik = c+aik . Therefore, for the completion time CMi of machine Mi in the given schedule
we have

CMi ≥
∑
j∈Ii

aj + (r − 1)c for i = 1, 2.

Since the makespan of the given schedule is at most (r − 1)c+ b, this implies∑
j∈Ii

aj ≤ b for i = 1, 2.

From
2r∑
j=1

aj = 2b we now can conclude
∑
j∈Ii

aj = b for i = 1, 2 and therefore I1, I2 is a feasible

solution for EO-PART. 2

Since the reduction presented in the above theorem starts from the ordinary NP-hard problem
EVEN-ODD-PARTITION, the theorem only states that problem Pm|sij|Cmax is NP-hard in the
ordinary sense. In the following section we will show that it is unlikely to expect that the problem
is NP-hard in the strong sense, since a pseudo-polynomial dynamic programming algorithm to
solve the problem is presented.

In the literature it is often assumed that setup times satisfy a triangle inequality (also in the job-
shop application such an inequality is satisfied, cf. Hurink & Knust [4]). The setup times satisfy
the so-called weak triangle inequality if

sih + ph + shj ≥ sij

10

for all jobs i, j, h holds. If we have even sih + shj ≥ sij for all i, j, h, the strong triangle inequality
holds.

Obviously, the setup times in the example in Section 2 satisfy the strong triangle inequality.
Furthermore, it is easy to see that the defined setup and processing times of the instances in the
previous two NP-hardness proofs satisfy the weak triangle inequality. For the instances in Theorem
1 the inequality ŝ := s(ij),(k,l) + p(k,l) + s(k,l),(g,h) ≥ s(i,j),(g,h) can be shown as follows.

• If g = i+ 1, we have ŝ ≥ s(k,l),(g,h) = (h+ 1)b+ 1 > hb = s(i,j),(g,h),

• if g = k + 1, we get ŝ ≥ s(ij),(k,l) + p(k,l) ≥ c ≥ (m+ 1)b+ 1 ≥ (h+ 1)b+ 1 = s(i,j),(g,h),

• and in all other cases we obtain ŝ ≥ s(k,l),(g,h) = s(i,j),(g,h).

For the instances in Theorem 2 analogously the inequality sih + ph + shj ≥ sij can be shown (cf.
Figure 2).

Note that both instances can be modified in such a way that even the strong triangle inequality
holds (by adding a large constant to all setup times and adjusting the threshold value y appropri-
ately). Thus, also in this case the problems remain NP-hard.

4 A pseudo-polynomial algorithm

In this section we will provide a pseudo-polynomial algorithm for problem Pm|sij|Cmax with a

given starting time order π. Let T ≤
n∑
j=1

(pj +
n∑
i=1

sij) denote an upper bound for the optimal

makespan, which is pseudo-polynomially bounded with respect to the input length of the instance.
The key issue of the dynamic programming algorithm is the observation that for adding job πk to
a partial schedule of the jobs π1, . . . , πk−1 we only need to know the finishing times of all machines
M1, . . . ,Mm and the jobs which are scheduled last on them. Following this observation, the stages
of the dynamic program can be chosen as follows:

(k, t1, . . . , tm, l1 . . . , lm)

where

k ∈ {1, . . . , n} denotes the number of scheduled jobs,
tj ∈ {0, . . . , T} for j = 1, . . . ,m denotes the completion time of the last job on Mj ,
lj ∈ {1, . . . , n} for j = 1, . . . ,m denotes the last job on Mj .

For a stage (k, t1, . . . , tm, l1 . . . , lm) we will set f(k, t1, . . . , tm, l1 . . . , lm) := 1 if a feasible schedule
of the jobs π1, . . . , πk exists

• which respects the order π,

• where job lj is scheduled last on machine j (lj = 0 indicates that no job is scheduled on
machine j), and

11

• where job lj completes at time tj (if lj = 0, tj must be zero too).

Otherwise, f(k, t1, . . . , tm, l1 . . . , lm) will be defined as 0. Following this definition, we may restrict
the considerations to stages (k, t1, . . . , tm, l1 . . . , lm) with:

• lj ∈ {0, π1, . . . , πk}, i.e. the last jobs belong to the set of scheduled jobs,

• lj 6= li if lj 6= 0, i.e. on different machines different jobs are scheduled last,

• tj = 0 if lj = 0, i.e. the completion time of Mj is 0 if no job is scheduled on it,

• πk ∈ {l1, . . . , lm}, i.e. the job πk added in the stage is scheduled last on a machine,

• ti − pli ≤ tj − plj if li precedes lj in π, i.e. the starting time of job li is not larger than the
starting time of job lj .

Stages fulfilling these conditions will be called feasible stages. It is straightforward to see that the
number of stages is bounded by n(T + 1)mnm, which is pseudo-polynomially bounded in the input
length of the instance.

Now, assume that for a fixed value of k all the f -values for all feasible stages of the form
(k − 1, t′1, . . . , t

′
m, l
′
1 . . . , l

′
m) are known. Based on these values, the f -value of a feasible stage

(k, t1, . . . , tm, l1 . . . , lm) can be calculated as follows:

f(k, t1, . . . , tm, l1 . . . , lm) = 1 if and only if job πk can be added to the partial schedule as a last
job, i.e. if a feasible stage (k − 1, t1, . . . , tj−1, t

′
j, tj+1, . . . , tm, l1 . . . , lj−1, l

′
j , lj+1, . . . , lm) exists

with

• t′j ≤ tj − pπk − sl′jπk (sl′jπk = 0 if l′j = 0), i.e. job πk can be scheduled last on Mj , and

• f(k − 1, t1, . . . , tj−1, t
′
j , tj+1, . . . , tm, l1 . . . , lj−1, l

′
j , lj+1, . . . , lm) = 1.

Calculating this value takes an effort of at most O(Tn).

If, initially, we define f(0, 0, . . . , 0, 0, . . . , 0) = 1, we can calculate successively the f -values of
all feasible states in O(nm+2Tm+1) and, thus, in pseudo-polynomial time. The makespan of a
best schedule is then given by the value

m
max
j=1
{tj} of a feasible stage (n, t1, . . . , tm, l1 . . . , lm) with

f(n, t1, . . . , tm, l1 . . . , lm) = 1.

5 Consequences for list scheduling

In Section 2 we discussed two different ways of using list scheduling to deal with the subproblem
resulting after fixing a sequence π of the jobs for problem P |prec, sij |Cmax.

• consider the jobs in the order π and schedule them such that they start processing as early
as possible,

12

• schedule the jobs such that their starting times respect the order π.

The example in Section 2 shows that the first possibility does not lead to a dominant set. The
results of Sections 3 and 4 indicate that it is hard to find an efficient method for the second
possibility. It seems that a negative answer to the second possibility already would imply a negative
answer to the first possibility. However, this must not be the case. As mentioned in Section 2,
Schutten [7] showed that for problem P |sij|Cmax the set of list schedules calculated with the first
possibility is a dominant set, whereas our results from Section 3 state that the problem of finding
a best schedule respecting a given starting time order is NP-hard. The reason for this is that the
list scheduling algorithm using a sequence π does not necessarily result in a schedule where the
starting times respect π, however, for the optimal sequence the list scheduling algorithm will give
the optimal solution.

It still remains open whether another type of list scheduling algorithm is able to produce a dominant
set in an efficient way. However, a closer look at the proof of Theorem 1 indicates that this is very
unlikely. If we may use precedences in the instance of the scheduling problem corresponding to an
arbitrary instance of 3-PART, we may change the instance in the proof of Theorem 1 as follows:

Replace each job (i, j) by two jobs (i, j)s and (i, j)p which are linked by a precedence constraint
(i, j)s → (i, j)p and which have processing times p(i,j)s := 0 and p(i,j)p := p(i,j). The setup times
between two jobs (i, j) and (k, l) are transfered to the jobs (i, j)p and (k, l)s and setup times
between jobs (i, j)s and (k, l)p are defined such that

s(i,j)s,(k,l)p :=

{
0 if (i, j) = (k, l)
∞ otherwise.

This forces that job (i, j)p has to be scheduled immediately after job (i, j)s on the same machine
in each schedule of finite length. Since the setup time between these two jobs is 0, each feasible
schedule of the new instance with finite length is also a feasible schedule of the instance used in
the proof of Theorem 1 and vice versa.

If we now introduce precedence constraints

(1, 1)s → . . .→ (1,m)s → (2, 1)s → . . .→ (2,m)s → (3, 1)s → . . .→ (3r,m)s

each feasible schedule with finite length will respect the sequence π given in the proof of Theorem
1. However, in the new instance only the decisions for the jobs (i, j)s are relevant (the p-jobs
have to be processed immediately behind the corresponding s-job on the same machine). Since the
precedence constraints allow just one sequence for these jobs, only one relevant sequence is available
for list scheduling and, thus, if list scheduling would result in a dominant set, the application of
the algorithm to only one sequence would solve an NP-hard problem.

6 Conclusions

The considered parallel machine problem P |prec, sij |Cmax is a combination of a partitioning and
a sequencing problem. Thus, a possible optimization algorithm for it may be based on a two-stage
approach where first decisions for one of the subproblems are fixed and afterwards the remaining

13

part of the problem is treated. This raises the question whether fixing decisions for the partition
part or the sequencing part leads to easy solvable remaining subproblems. Obviously, fixing the
partition part leads to an NP-hard subproblem generalizing the traveling salesman problem. In
this paper we focused on the opposite approach where the sequencing part is fixed first.

The presented results show that it is unlikely that an efficient list scheduling algorithm exists which
leads to a dominant set of schedules. As a consequence, larger instances of the parallel machine
problem with precedence constraints and sequence-dependent setup times cannot be solved by con-
sidering only the decisions for one of its two parts as solution space and solving the corresponding
remaining subproblem afterwards. For alternative methods, one either has to develop solution
approaches which consider both parts of the solutions simultaneously or one has to relax the goal
of solving the resulting subproblems to optimality. Developing such methods is the topic of further
research.

References

[1] Baker, K.R. [1974] Introduction to sequencing and scheduling, Wiley, New York.

[2] Carlier, J., Neron, E. [2000] An exact method for solving the multi-processor flow-shop,
to appear in RAIRO.

[3] Graham, R.L. [1969] Bounds on multiprocessing timing anomalies, SIAM Journal Applied
Mathematics 17, 416-429.

[4] Hurink, J., Knust, S. [1999] A tabu search algorithm for scheduling a single robot in a
job-shop environment, Osnabrücker Schriften zur Mathematik, Reihe P, Nr. 213, to appear in
Discrete Applied Mathematics.

[5] Knust, S. [1999] Shop-scheduling problems with transportation, Ph.D. thesis, Fachbereich
Mathematik/Informatik Universität Osnabrück.

[6] Monma, C.L., Potts, C.N. [1989] On the complexity of scheduling with batch setup times,
Operations Research 37, 798-804.

[7] Schutten, J.M.J [1996] List scheduling revisited, Operations Research Letters 18, 167-170.

[8] Smith, W.E. [1956] Various optimizers for single-stage production, Naval Res. Logist.
Quart. 3, 59-66.

[9] Sprecher, A., Drexl, A. [1998] Solving multi-mode resource-constrained project schedul-
ing problems by a simple, general and powerful sequencing algorithm, European Journal of
Operational Research 107, 431-450.

14

