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1 Introduction

We consider generalized semi-infinite problems,
(GSIP): rQinFGS.P(x) S.t.X€ Mgsp={Xe R"| G(x,y) > 0, forall y e Y(x)}
where Y(X) ={ye R™| g(x, y) > 0}.

For the special case, that the 8&iX) = Y does not depend on the variablethis
problem is a common semi-infinite problem (SIP). Bilevel problems are of the form

(BL): r&up F(x,y) subject toG(x, y) > 0 andy is a solution of @
Q(X): nllin f(x,y) s.t. yeY(x),
with Y (x) defined as in (GSIP).

Throughout the paper we assurgsr € C(R", R), F € C(R" x R™ IR), G ¢
C(IR" x IR™ IRP), g € C(IR" x IR™, IRY). We use the abbreviatiod = {1, ..., p}
andl = {1, ..., g} for the index sets of the constrainBandg.

There is an extensive literature on bilevel optimization (see [15] and the references in
this book). Semi-infinite programming (SIP) is an important field of research as well

(cf. for example the survey article [6] with more than 300 references). Generalized
semi-infinite problems are studied only recently (cf. e.g. [7, 9, 11, 13, 14, 16, 17, 18,
19, 20, 22)).

Bilevel problems often arise as Operations Research problems in an economic con-
text. They can be interpreted as a game between two players. Player 1 (upper level
player) tries to minimize his object F depending 0 y) and player 2 (lower level
player) who for giverx choosesy as a solution of the lower level proble@(x). Ap-
plications of (SIP) and (GSIP) mostly appear in technical sciences. For applications
of (SIP) we refer to [6]. Applications of (GSIP) are e.g. tm@aneuverabilityprob-
lem in robotics, theeverse Chebyshev approximati@ee e.g. [19]) and time minimal
control problems (see [11]).

In this paper we will show that there is a strong connection between bilevel and
generalized semi-infinite problems. Under certain assumptions (GSIP) can be seen as
a special instance of a (BL). We will discuss the connections but also the differences
between (GSIP) and (BL). The paper is organized as follows.

In Section 2 we study the structure of the feasible sets of (BL) and (GSIP) and
consider a natural condition under which (GSIP) becomes a special case of (BL). In
Section 3 we apply the so-callédcal reduction approach This technique leads to
optimality conditions for (BL)- and (GSIP)-problems and gives the basis for (Quasi-)
Newton methods for solving the problems. We then ask whether the regularity assump-
tions used in the reduction approach are natural, i.e. assumptions which are generic.
We analyze the difference between the structure of typical classes of (BL) problems
and the class of (GSIP). It appears that for classes of bilevel problems the regular-
ity assumptions are not generic. This shows that the regularity assumptions used in
bilevel programming are often not valid at the solution of (BL). The structural discus-
sion however leads to the conjecture, that for (GSIP) the regularity assumptions for the
‘reduction’ can be expected to hold generically.
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In Section 4 we give a detailed analysis of linear problems and prove the genericity
conjecture for linear generalized semi-infinite problems.

Section 5 briefly describes the Kuhn-Tucker approach from bilevel programming
for solving linear (GSIP) problems.

2 Relations between GSIP- and BL-problems

In this section we compare the structure of (GSIP) and (BL). We introduce some nota-
tion withx e R", ye IR™:

S(x) ={y|yisa(global) solution of)(x)} set of solutions dD(x)

S ={(X,y)|Yye S(X)} solution graph ofQ
Mg ={(XY)]|GKX Yy >0} constrained set of upper level
X ={X|Y(X) A0} (=domY) domain of the mappind

Mo, ={(%Y¥) | (XY) e Mg, ye S(x} feasible set of (BL)

We assume that the set-valued mapptglR” — 2R is uniformly compact orR",
i.e. for anyX € IR" there exists a baB,(X) = {x € R" | [[x—X|| < p}, p > 0, such
that clos(Uxes,x Y (X)) is compact. Then, under our assumptions, the mapirgy
closed and upper semi-continuous in the sense of Berge and tie(setlomY) is
a closed set. Moreover under this condition, the lower level probl@ng, x € X,
always have solutions.

Now we try to transform GSIP into a problem of bilevel type. Let us define

f(xy) = mjin Gj(x, y) . ()
Consider the parametric problem
QX): myin f(x,y) st yeY(X).

Then, forx € IR" such thatY(x) # ¥ we havef(x,y) > 0, Vy € Y(x), if and only
if a solution y of Q(x) (and thus all solutions) satisfiel(x, y) > 0. Observe that
f(x, y) > 0 is equivalent with the inequalit¢é(x, y) > 0. Thus, forx with Y(x) # ¢
the conditionx € Mgsp is equivalent withx € pr,( Mg, ,.) where

Mereer = {(X, Y) | G(X, Y) > 0 andy is a solution ofQ(x) } .

Here, pry denotes the orthogonal projection onto the spREgx-variable). Summa-
rizing, the bilevel formulation of the generalized semi-infinite problem is given by

BLgsip min Fgge(X) S.t. G(X, y) > 0 andy is a solution of
QX): m)jn f(x,y) st. yeYX), (3)

with the function f in (2). We have shown that ¥ (x) # @ holds for allx € IR",
then (GSIP) is equivalent with Bk, i.€. the problem (GSIP) can be seen as a special
instance of a (BL).



Note however that foB(x) = @, X belongs toMg s p, (N0 constraints fok) but not
to pry(Mpigg,p)- With the set

Mese= {x € domY | G(x, y) > 0 for (all) ye S(x)} (4)

we actually haveMgs|p = MesirU (domY)C where A¢ we denotes the complement

of the setA in the corresponding space. Thus, we have shown part (b) of the fol-
lowing lemma which provides different representations for the feasible sets of (GSIP)
and (BL). Part (c) has been shown in [14], whereas part (a) follows directly from the
definition.

Lemmal The following holds.
(@ Ms.=MgNnS.
(b) Mgsip= MagpU (domY)© = pr,( Mg.,.) U (domY)C.
(©) Mose= (pry (MEN'S)°

In view of Lemma 1a, sinc®/g is closed, the sel;, is closed ifSis closed. The set

Sis closed if the mapping is (lower semi-) continuous oX (= domY). In view

of Lemma 1b, sincédomY)® is open, the seMqsr Need not be closed, even when

pry, Mg, IS closed. For further details on the feasible set of (GSIP) we refer to [14].
Let be given(x, y), y € Y(x). We say that ay theLinear Independency Constraint

Quialification(LICQ) is satisfied for the lower level proble@(x) if

Dygi(x,y), iel(x,y):={iel]|gi(x,y) =0} are linearly independent.

At y € Y(x), the weakeMangasarian Fromovitz Constraint QualificatigMFCQ) is
said to hold forQ(x) if there exists a vectaf such that

Dygi(x,y)é >0, forall i el(x,y).
The next lemma lists some standard sufficient conditions for the continuity of
Lemma 2 Under our assumptions on the set valued mapping Y we have.
(&) Ifthe function @x, y) = Ax+ By— b is affine linear then Y is continuous on X.

(b) LetUc X be open. Let for any & U the function—g(x, y) be convex in y and
let for any xe U the Slater condition hold: There existzy y(x) € IR™ such
that g(x, y) > 0. Then Y is continuous on U.

(c) LetUc X be open. Let for any & U the condition (MFCQ) be fulfilled at all
y € Y(X). Then Y is continuous on U.

Lemma 2a shows that d is affine linear then the feasible det;, is closed (see also
Theorem 1 a). We give an example which shows that this need no more bedrise if
not affine linear.

Example 1. Consider the bilevel problem

min F(X,y) :=y—X subjecttox < 1and yis a solution of

Q(X): min f(Xx,y)=—x—y st —xy<0,0<y<2.
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Then,

{0} ifx<O
[0,2] if x>0

{0} ifx<O

Y(X):{ 2} if x>0

and S(X) = {
These mappings are not continuous at the peiat0. We findMg, = {(X,0) | X <

0} U{(x,2) | 0 < x < 1}. Obviously, Mg, is not closed and a global solution of (BL)
does not exist. A local minimizer i&,y) = (1, 2).

A similar counterexample is given for (GSIP).
Example 2. Consider the generalized semi-infinite problem

min F(X, y) ;= —x st.x<landG(x,y):=—x—y=>0 forallye Y(x)
whereY(X) ={ye R| —xy<0,0<y=<2}

Then, for the bilevel problem Bls we find with the set¥& (x), S(x) in Example 1,
Meisr = {(X,0) | X < O} and Mggip = prx Mgiq,, = (—00, 0). Again, Mggp is not
closed and a solution of (GSIP) does not exist.

In view of these negative examples it seems natural to assum¥ thabntinuous on
Mg, .

For (GSIP) we have to sharpen this condition slightly. Let be given a pognt
domY,i.e.Y(X) = @. Then, sincedomY)¢ is open, around the problem (GSIP) can
be regarded as an unconstrained problem, i.e. argulne problem does not have the
structure of a real ‘infinitely constrained problem’. Thus, to exclude this degenerate
situation, in the sequel, we will assume that

Mgse C int X  whereX = domY 5)

This condition can always be satisfied by adding to the original constr@int ap-
propriate extra conditions (such pg| < p). Remember that by the discussion above,
assumption (5) implies that the problem (GSIP) is a (BL) problem with the special
structure that lower level object function coincide with the the upper level constraint.
In addition to (5) we assume that(x) is continuous orMgge. A natural sufficient
condition for the continuity off is the condition (see Lemma 2(b)): For some open
setU we haveMggr C U and

for all x e U (MFCQ) is satisfied for aly € Y (x), (6)

This condition also implies (5).
In the following we are going to compare the structure of a general (BL) with the
structure of a (Bkg) satisfying (6).

3 Local reduction approach

A possible theoretical and practical approach for solving (BL) and (GSIP) is the so-
called local reduction. For (SIP) and (GSIP) this is a standard approach (see e.g. [6]
and [19]). Itis also used in bilevel programming (see e.g. [2]). The idea is to transform
the problem locally into a common finite optimization problem. Such a transformation
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is possible if certain regularity assumptions hold. Under these assumptions we obtain
a system of optimality conditions for a minimizer of (BL) and (GSIP) and the solution
can be computed by applying a (Quasi-) Newton method for solving this system of
equations.

In the present section we derive the optimality conditions and discuss the question
whether the regularity assumptions are natural conditions which can be expected to
hold at the solution in the generic case.

Local reduction for general (BL):Let be giverx € IR", y € S(X), (X,y) € Mg, i.e.
(X,y) is feasible for (BL). Let the following assumption hold.

Al There exist a neighborhodd(X) of X and aC!-functiony : U(X) — IR™ such
thaty(X) =y and for anyx € U (X) the vectory(x) is the (unique, global) solu-
tion of Q(x).

The following is a standard assumption in parametric optimization and sufficient for
Alg . (This assumption is often used in nonlinear bilevel programming see e.g. [2,
Assumpt. A2)).

A2, All problem functions of (BL) areC?-functions and at the unique solutigrof
Q(X) we have

(1) (LICQ) is satisfied and the Kuhn-Tucker condition with multipligys> O
(strict complementary slackness):

DLY(X. V.7 :=Dyf(X. ) — Y 7%Dygi(X.y)=0.
icl(Xy)
(2) A standard second order sufficient optimality condition on the Hessian
DILY(X, V., 7) of the Lagrange functioh Y is fulfilled.

Obviously, under Ag, , onU (X), the problem (BL) is equivalent with the so-called
locally reduced problem

BLx:  min F(x):= F(x, y(x))  subject toG(x) := G(X, y(x)) > 0.

BLx is a finite optimization problem and standard optimality conditions applied to this
problem lead to optimality conditions for (BL) as follows.

Suppose, the active gradientsDéj(i) = DyGj(X,y) + DyGj(X, Y7,
jedX :={je{l...,pl | Gj(Xy) =0} are linearly independent, where we set
7 = Dy(X). Then, a necessary optimality condition 0%, y) to solve (BL) is: There
exist multipliersﬁj > 0 such that

DF()— Y #DGj() = DxFXY)— ) %D:Gj(X.y) (7)
j€d(X) jedX®)
+ (DyFa,V)— > EijGj(XT/))ﬁ=0-
jed®)

Consider now the Kuhn-Tucker conditions for a solutioa: y(x) of Q(X),

gxy)=0 ielXY). (8)

H(X Y, y) =



Under assumption A2 , by applying the Implicit Function Theorem td = 0, it
follows that there exist a neighborhodt(x) of X and C1-functionsy(x), y(x) such
that H(X, y(X), y(X)) = 0, x € U(X) and y(x) is the solution function in Ad with
corresponding multipliep(x). By differentiating the relatiorH (x, y(x), y(x)) = 0
w.r.t. x we find

DxH(X,¥,7) + DyH(X, ¥, 7)1+ D,H(X.Y,7)6 =0,

whered = Dy(X). Altogether, in view of (7) (8), we obtain the following system
of equations for a solutiolx, y) of (BL) and the corresponding multipliers and their
derivatives(it, ¥, 7, 6):

DxF(X,¥) = > ujDxGj(x,y)
jed®)
+(DyF(x, y) — > ujDyGj(x, y))n=0
jedI®
DyLY(x,y,y) =0
gx,y)=0 ielXYy.

DXH(Xv y’ V)+ DyH(X» y’ V)77+ D)/H(Xv y’ V)QZ O

This is a system o+ m+ [J(X)| + |1 (X, ¥)| + n m+ n || (X, ¥)| equations for the
same number of unknowns vy, i, y, n, 6. To compute a solutioiiX, y) of (BL), we
could apply a (Quasi-) Newton procedure for solving the system (9).

We are now interested to know whether assumptiog, AZssential for the local
reduction - is a natural condition. We first give an illustrative example.

Example 2. Consider the bilevel problem

Py max F(X,y) :=X+Yy s.t. G(X, y) ;== x+ 2y — 8 < 0 andy solves
Q(X): max f(x,y) :=x+y st O0<y=<4.

Here, S(x) = {y(X) = 4} and the feasible set 8lg, = {(X,4) | X < 0}. The optimal
solutiony(x) = 4 of Q(x) is feasible w.r.tG > 0 only for x < 0. Hence, the solution
of (BL) is (X, y) = (0, 4) with value F (X, y) = f(X,y) = 4. Itis easily checked, that
at the solutiony(x) = 4 of Q(x) the conditions of Ag, (1) is fulfilled (the second order
condition (2) is superfluous sindg@(x) is a linear program).

Now let us consider the probleR obtained fromP; by only moving the condition
G > 0 to the lower level,

P,: max F(X,y) = X+Vy s.t. y solves
Q(X): max f(x,y)=x+y st 0<y=<4, x+2y—-8<0

Then for P, also the pointd(x,y) | y=4— 3, x € [0, 8]} become feasible and the
point (X, ) = (8, 0) is optimal (with a better valu€ (X, §) = f(X, §) = 8). However
now, for P, the solutiony = 0 of Q(X) does not fulfill the assumptions AZ1). The
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point ¥ = 0 is a degenerate vertex-solution of the linear prog@Rr). At y =0, even
the (MFCQ) is not valid forQ(X).

This example indicates, that the assumption, Ath particular (LICQ) only can hold

at a solution(X, y) if there are enough upper level constraints activesaty). In
particular, when (BL) does not possess ‘enough’ upper level constraintg, cA

not be valid and the ‘reduction approach’ may not be possible. Note, that a typical
bilevel model in operations research need not have any upper level constraints. In fact
viewing a (BL) in (1) as a game between an upper level player 1 and a lower level
player 2, the player 2 could accept the upper level constr@mntsO in his lower level
problemQ(x). In the example above, the strategy to pass the upper level constraints
to the lower level problem even leads to a better object value for both players. The
next Lemma shows that for the upper level player such a policy is always an advantage
(for the lower level player it may be advantageous but also unfavourable depending
whether his object is ‘similar’ or ‘adverse’ to the upper level object). L§t)(denote

the bilevel problem obtained from (BL) by passing the constraiits O to the lower

level constraintg) > 0 and letM,, denote the corresponding feasible set.

Lemma 3 Let be given a biIeveIBrobIem (2). Then we havg ™ M. and for the
solutions(X, y) of (BL), (X, ¥) of (BL), respectively, it follows &, ¥) < F(X,Y).

PROOF. Let (x, y) be feasible for (BL), i.eyis a solyvtion ofQ(x) andG(x, y) > 0.
Theny is also feasible for the lower level problem @ 1),

Q(X) : myin fx,y) st GXYy) >0, gxy) >D0.

Since the feasible séf(x) of Q(x) is contained in the feasible s¥t(x) of Q(x), y
must also be a solution @(x), i.e. (x, y) is feasible for BL). O

The situation for (GSIP) and its bilevel formulation B- (see (3)) is quite dif-
ferent. Letx be feasible for (GSIP). We define the set of active points

Yo(X) ={y € Y(X) | 1r<nji<np Gjx.y) =0}

Note thatx is feasible if and only iiG(X, y) > 0 for all y € Y(X). Thus forX € Mggp
every pointy € Yp(X) is a global solution ofQ(X). Suppose now that is a solution
of (GSIP) and thaly(X) = #. Then by continuity assumptions in Section 1, ngar
the problem (GSIP) is equivalent with the unconstrained problemy ige(x). We
exclude such a situation by assuming that in addition to (5) the following holds:

Yo(X) £ @ for any local solutiork of (GSIP)

Consequently, the bilevel problems Bl- related to generalized semi-infinite prob-
lems intrinsicly have at least one upper level constraint active in the solution. More-
over, typically in (GSIP) the degree of freedom in the variabli®erces’ the solutiorx

of BLsr t0 @ location such that as many active pointg Yo(X) occur, (i.e. solutions

y, of Q(x)) as the degree of freedom in the minimization model allows. This behavior
is illustrated with the following geometrical interpretation of (GSIP) (cf. also [19]):



Given the regiofMg = {(X, ¥) | G(X, y) > 0} in IR" x IR™. Then we have to fina
such that the set x Y(x) is contained inMg and such that some functionélx) is
maximized. Often the functiorfi (x) can be viewed as the volume of the ¥&Kk).

Y2
Figure 1: lllustration of a (GSIP) at the solutigh

Figure 1 illustrates the situation of such a problem at the sol&ioh(GSIP). The
different pointsy,, ¥», Y3 Where the seY (X) touches the sdty | G(X, y) = 0} are the
solutions of the lower level probler®(X), i.e. Yo(X) = {V1, ¥, Y3}. So typically in
semi-infinite optimization we have to admit different solutiongix).

Local reduction for (GSIP):In semi-infinite optimization the local reduction is a stan-
dard technique. As motivated above, because of the special structure of (GSIP), in
contrast to the general (BL) case, at a solufiaf (GSIP) typically different solutions
of Q(X) must be considered, i.&(X) need not to be a singleton.

Let be givenX € Mggp and letYy(X) consist of finitely many pointsyp(X) =
(%, ..., ¥}, r > 1. We make the following assumption.

Algse There exist a neighborhoddi(X) of X andr C1-functionsy' : U(X) — IR™, such
thaty' (X) = ', and for anyx € U (X) the values/ (x), | =1, ... ,r, include all
(global) solution ofQ(x).

As in the (BL) case we give a natural sufficient condition forg4:l



A2 All problem functions of (GSIP) ar€2-functions. Let fory € Yo (X) be defined
Jy:={jeJ|GjX Yy =0}andforj e Jy,

Qi(X): min Gj(X,y) st yeYX).
Forally € Yo(X) and allj € Jy we have

(1) (LICQ) is satisfied al for Q;(X) and the Kuhn-Tucker condition with
multipliersy; > 0 (strict complementary slackness).

(2) A standard second order sufficient optimality conditioly fir Q; (X).

Under A2, the setYy(X) must be finiteYo(X) = {Y', | = 1,...,r}, and locally in
a neighborhoodU (X) of X, the problem (GSIP) is equivalent with thecally reduced
problem

GSIR: min Fesp(X) s.t. Gj(X) :=Gj(x. ¥ () =0, je Iy, I=1,....1.

Again GSIR is a finite optimization problem and optimality conditions of finite op-
timization applied to this problem lead to optimality conditions for (GSIP). We only
give the conditions for the cage= 1 (see also [7], [19]; the modification to the case
p > 1is straightforward).

Similar to (7) withYo(X) = {Y, | =1, ..., r} we obtain forp = 1 the optimality
condition (puttingy' = y'(x)),

DFosi(¥) — Y _ i (Dxe<x, y') + DyG(x, y')Dy') =0 (10)
I=1

with multipliers ; > 0. For (GSIP) however the equations simplify. Consider the
Kuhn-Tucker condition foQ(x) at the solutions/":

DyG(x, YD = > #(0Dygi(x y)
iel(Xy)
andgi(x, y') =0, i € (X, V). By differentiating the relatiom; (x, y' (x)) = 0 we find
Dxgi(x, Y') = —Dygi(x, y") Dy and

DyG(x. ¥)Dy = Y #Dygix, y)Dy == > yDxgi(x.y).
iel (X ¥) iel (%Y

Substituting in (10) we obtain the following system of optimality conditions:

r
DFGS.p<x>—Zm(DXG<x, Y)— D vDxgi(x y')) =0
=1 el (%)
Gx,y) = 0 I=1,....r
andforl =1,...,r (12)
DyG(x,¥)— > ¥Dygixy) = 0
iel(Xy)
gxy) = 0 iel®xy)

10



This system consists df :=n+r + > |_;(m+ |1 (X, ¥)|) equations for the< un-
knownsx € R", ;1 € R, y' € R™, ' ¢ RI®Y)I | =1 ... r. In[21] it has been
shown that under the assumptionAgat a solutionx of (GSIP) and the additional
assumptions that the gradierf®,G(x, y') — Yielxy) ¥iDxgi(x, y)), I=1,....r,

are linearly independent, the Jacobian of (11) is regular at the sol@ian, 7, . . . |
¥,7"). Hence, to solve (GSIP) numerically, we can apply a (Quasi) Newton method
to (11). See e.q. [6] for solving common (SIP) problems by Newton methods.

Note that in contrast to equation (9) for the (BL)-problems the optimality condition
(11) for BLssp does not contain the derivativéy', Dy' as unknowns. The reason is
that for the problem Bks» the upper level constrain(; coincide with the lower level
objects. So only the information of the value function@fx) is really needed in the
upper level and not the full information about the solutig).

We are now going to discuss the question whether the assumptiQroA22.¢»
for the local reduction can be expected to hold generically at a solution. By a generic
subsefS of a problem seP we roughly mean a subset which is open and dengk in
(in some appropriate topology).

For the problemP, of Example 2 the assumption (LICQ) in A2(even (MFCQ))
is not valid. This negative behavior is stable w.r.t. smooth nonlinear (small) perturba-
tions. Hence we can state.

For the general class of (BL) problems the assumptiop A&2not generic at

a local solution(X,y). For typical classes of bilevel problems, in particular
problems without upper level constraints, (LICQ) or even (MFCQ) will not be
satisfied at the solutiog of Q(X). For such problems we cannot expect a ‘nice’
system of optimality conditions fo¢xX, y) which can be solved with smooth
methods. Consequently in this situation the ‘reduction approach’ can only be
used with caution.

As indicated above, the special class of bilevel problemgBtelated to (GSIP) may
have a better genericity behavior. For the sub-class of common semi-infinite problems
it has been shown in [10] that Ag- is generically fulfilled at each local solution. A
similar genericity analysis for (GSIP) has not yet been done. In [16] some particular
results are obtained. It has been proven for example that generically for (GSIP) the
number Yy (X)| of lower level local minima at a solutioxis bounded by, |Yo(X)| < n.

We will show for the linear case in the next section that generi¢a@gx)| = n holds.

We formulate the

Conjecture: In the class Bkgr (appropriately defined) the assumptions
A2.4p holds generically at a solutignof a (GSIP) problem. In particular gener-
ically, all local minimay,, | =1,...,r, of Q(X) are non-degenerate minima.

In the next section this conjecture is proven for the special case of linear problems (see
Theorem 3). We also will present a detailed analysis of the negative results for the
general class of linear bilevel problems.

Summarizing, roughly speaking, generically for classes of general (BL) problems
from operational research, at a solutiGn y), the minimizery of Q(X) will be a
unique minimizer but (LICQ) (or even (MFCQ)) will not be satisfiedyatn contrast,
for (GSIP) generically we expect at a solution different minimigeof Q(X) but each
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solution will be non-degenerate, such that a smooth approach for solving (GSIP) is
possible.

To analyze the difference between (BL) and (GSIP) in the next section, we have to
modify the bilevel formulation of (GSIP) in (3). In the formulation (3), when the upper
level contains different (smooth) constraints, i.epit> 1, then the object function
f(X, y) = mini<j<p Gj(X, y) is not aCl-function (only Lipschitz-continuous). To
transform (GSIP) into a smooth (BL) we consider the following generalization of the
bilevel problem (3),

(BL): rg(u)r/w FX,y) st.GXVY1,...,¥)>0andforl=1,...,r (12)
yi solves Q(X): rr;in fix,y) st gy =0,
|

wherex € R", y=(y1,...,¥%), 1 € R™,1=1,...,r,and the functions are defined
accordingly. This problem can be seen as a game between an upper level player and
r different lower level players with different lower level problem®),. The problem
BLssir (@and (GSIP)) can be written as
(BLgsip): min Fgse(X) St.G (X, ) >0 1=1...,p where (13)
yi solvesQj (x): n;in Gi(x, 1) st gx,y)>0.
|

This represents a bilevel problem (12) with the special conditipns G;, m = m,
r = pandg' = g not depending oh

4 Linear problems

In this section we are concerned with linear (GSIP) and (BL), i.e. all problem functions
are affine linear. We describe the structure of the feasible sets and analyze which kind
of regularity can be expected at a soluti®ny) of (BL) or at a solutiorx of (GSIP).
We will show that a general (BL) and the special case of a bilevel problegy,BL
arising from (GSIP) may have different generic behavior.
We consider the following linear bilevel problem (cf. (12)) wite= (y1, ..., Yr) €

R™ yye R™, I =1,...,r, mp=mg +---+m,

(LBL):  min ¢fx+dJy subjectto (14)

AoX+ Bogy—bg>0 andforl =1,...,r, Yy is asolution of
Qi (X): rr}in o' x+d'y st Ax+By —b >0.
|
Here,co € R", dy € R™, Agis ap x n-matrix, By is ap x mg-matrix, A, areq, x n-
matrices,B; areq x mi-matrices etc. A linear (GSIP) is of the form
(LGSIP): minclx  s.t. Agx+ By —bp >0 forallyin Y(x)
where Y(xX) = {y e R™| Ax+ By—b > 0}.
Let in the sequel?, bP denote the rows ofg, By, respectively and le? be the
components obg. Then (LGSIP) can be written in the form of a (LBL),
(BLis):  min cgx s.t.Gi(x, y) == @)X+ () Ty =g >0, 1=1,....p,
andforl =1,..., p, Y is a solution of
Qi (X): rr;lin @)"x+ ®)Ty; st. Ax+ By —b>0.
|

12



with Ay = A, B, = B, b = b not depending ohand p = r. We have to complete our
notation. Withy = (y1, ..., y;) we definefod =1,...,r:

Yi(X) ={y1 € R™, (ye R™) | Ax+ By —b >0} feasible set of)(x)

Yi ={X Yy, (X Y)) |y € Yi(x)} the graph ofY; (x)

SX) ={yi € R™, (ye IR™) |y solvesQ(x)} set of solutions d®, (x)
Mg ={(XY)|G(XY):= Aox+ Byy— by > 0} upper level constraints
X =Ny domY; (= Ni{x| Yi(x) #@})

Meem = Mg N (MiY)) the semi-feasible set
S ={xyY)IveSX,I=1...,r} the solution graph

Mo, ={XY)|(XY) € McnNS feasible set of (LBL)

We will regard the set¥|(x), S(x) as sets ilR™ or as sets ifR™ depending on the
context. We introduce the following assumptions.

AL The setsS (x) are compact subsets &8™,1 =1,....r, for all x e R". This
assumption in particular implies th&, (x) always has a vertex solution (if
S (X) # 9).

AL, The polyhedrorM,,, C IR" x IR™ is bounded (thus compact).

Recall that forY (x) the Slater condition is said to hold if there exigts- §(x) € IR™
such thatAx+ By — b > 0 (see Lemma 1(b)). In view of our regularity assumption
(6) for (LGSIP) we consider the following assumption.

AL 3 For (LGSIP) let the Slater condition be satisfied forxake Mgge. (Then in
particular, (LGSIP) is equivalent with LBlgs.)

The following theorem contains the main results on the structure of the feasible set and
the solution of a (LBL).

Theorem 1 For (LBL) the following holds.

(@) The feasible set M= M., S consist of a union of finitely many face' of
the polyhedron M,

MBL - Ull(<=l fk.
In particular, Mg, is a closed set in Rx IR™,
(b) If no upper level constraints are present, then the sgtid/path-wise connected.

If the assumptions Aland AL, hold then we have.

(c) The solution of (LBL) occurs at a vertex of some fate k€ {1, ..., K}, and
thus at a vertex of I,

(d) The value functions (X) := miny ey x ¢/ X+ dTy; of Q(x), | =1,...,rare
convex and Lipschitz continuous on dom Y

13



PROOF. (For a proof of (a) and (c) for the case= 1 we refer e.qg. to [15]). For
completeness we give a proof for the general casel.
(@) The setM,,, is a polyhedron inR" x IR™. Let f° be ad-dimensional face of
Mo With d > 1 (i.e. f0is not a vertex). Letx?, y°) be a point in the relative interior
of % and let(x°, y°) belong toMg, . We now show that the whole fadé belongs to
Mg, . Then, since every point d¥l.., which is not a vertex is contained in the relative
interior of some face oM., the proof is completed.

Let (xt, y}) e 0 be arbitrary. Sincéx?, y°) is a point in the relative interior of
f0 there exists a pointx?, y?) in % such that with some, 0 < A < 1,

0O, ¥ =2t yh + (1= )08, yP). (15)

Given any point(xt, y) in Y, i.e.y; € Y (x}), we consider
OC, ¥) =203 + (L= 1) 08, ).

It follows y; € Y (X°). Since(X?, y°) € Mg, i.e.y? are solutions of; (x°), in view of
(15) we have,

d'y? = adTyt + @ - 0)d'y2 < dTyf = AdTy + @ — 1)dTy?

anddy} < dy;. This implies thaty{ are solutions of; (x*) and (x*, y*) € M.
(b) See [21] for = 1. The generalization to> 1 is not difficult.
(c) Inview of (a) the feasible sé¥ls, consists of the union of facel, ... , fK of the

compact seM,,,, (cf. AL>). A solution of (LBL) exists and must be contained in some
of these faces saf°. Thus the problem (LBL) can be replaced by the problem

min X+ dly st (xy) e fl

Since fX is a bounded polyhedron the minimum is attained at a veiXey) of fko.
Since % is a face ofM,., the point(X, ) is also a vertex oM.,

(d) See[15]. O

Note that the seM,g , as the union of faces of the polyhedrdfy.,, is typically
a non-convex set. The same holds fof Pl ., Which may have re-entrant corners
(see e.g. [16]).

From Theorem 1 in view of Lemma 1(b) and usingsAke directly obtain the follow-
ing corollary for(BL.sgpe). Recall thatF;s,» does not depend opand thatM qg- is a
subset ofR".

Corollary 1 Let be given (LGSIP) satisfying AL Then the feasible set M, =
prx Mg .- IS the subset of the polyhedrony¥l... given by a union of polyhedra
pry fX k=1, ..., K. In particular, M sgp is closed.

PROOF. We have only to note that the projection of the polyhebita,, f¥ are again
polyhedra. O

We are now going to describe the structural difference between a general (LBL)
and a problem (Blesp)-
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Theorem 2 Let (X, y) be a vertex solution of (LBL) in (14), i.€X,V) is a vertex of
M.rr Suppose, for the number p of upper level constraints we havenp Then at
least one of the solutiorg of Q (X), sayy,,, does not fulfill the condition (LICQ)
for Q,(X) (or even not (MFCQ)), i.€y,, is a degenerate vertex solution of the linear
problem Q,(X).

PROOF. If (LICQ) is satisfied afy; € R™ for Q,(X), then at mosin of the inequal-
ities AX+ Bjy, — by > 0 can be activel(= 1, ...,r). Together with maximallyp
active constraints in the upper level, the number of active constraintX fgy is less
than or equal tp + Z[Zl m = p+ My < N+ My. ConsequentlyX, y) cannot be a
vertex of the polyhedrom,,,in IR" x IR™, a

In view of Theorem 2, when the numbpiof constraints > 0 in the upper level is
too small, the regularity assumption A41) in Section 2 cannot hold. (Note that this
situation is stable under small smooth nonlinear perturbations.) In the extreme case, a
general (BL) may have no constraints in the upper level fi.e. 0). By definition, as
we have discussed in Section 2, aBkalways has at least one upper level constraint.
This difference makes the generalized semi-infinite problems behave better. We give
an illustrative example.

Consider the (BL) without constraints in the upper level,

max X + y subject toy is a solution of
Q(X): myax2y st. 0<y<ix, 2y+x-1<0

Here, the feasible séf,, is given by the uniorf! U f2 of the facesf! = {(x, y) |ly=
Ix, 0<x<3land f2={(x,y) |2y+x—1=0, 1 <x < 1} of M, The solution
is attained at the vertekx,y) = (1,0). At the solutiony of the one-dimensional
problem Q(X) two lower level constrainty = 0, 2y + X — 1 = 0 are active. Thusy
is a degenerate vertex ¥i(X). SinceY (X) = {y} consists only of one point, the Slater
condition (MFCQ) is not valid.

Consider a similar (LGSIP) problem.

max X st Yy+x—-1<1 foraller(x)::{y|O§y§%x}

x>0

with the bilevel formulation

max X s.t. 2+ x—1<0 andyis a solution of

x>0

[EEY

QX): myax2y st. O<y< EX'

(The conditionx > 0 is added to yield the assumption A) Here, the feasible set
May gqp CONSists of the facd! = {(x, y) | y = $x, 0 < X < 3} of M., The solution
of BL gsp IS attained at the verte,y) = (%,2%). In contrast to the solution of the
(LBL) above, here, at the solutiopof Q(X) only one lower level constraintg = %x
is active andy is a non-degenerate vertex Q(X) . The solutiorx = % of (GSIP) is a
vertex of the feasible set My = pry f1 =0, %].
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We no show that the regularity properties of this example hold generically in
(LGSIP). We have to introduce some definitions and facts from genericity theory.

Firstly we define the problem set for (LBL) and BLe. Let us fix the vector
s=(n,r,p,M,0q,...,M, q). Aproblem (LBL) in (14) can be seen as an element
from

S:{P:(AhBl?bl’Cladl’ |:Os~~-7r)}7

where the dimensions d%, B, etc. are defined by. The sePs can be identified with
IRX, where

r
Ki=M+Dp+Y n+(p+2m+ (n+m+1q .
I=1

For BLggp in vView of Al = A, B =B, m =m, g = qandr = p we definessgp =
(n, p, m, g) and the corresponding set of BL;» problems

Pscsip = {Pesie = (Ao, Bo, A, B, b, by, cp)} = IRKesP

with Kegp:= (n+m+1)(p+q) +n.

In the sequel, by a generic subdétof IR we mean a set which is open and
has a complement ¢ = IRK \ V of measure zero (notatio(V ¢) = 0). Note that
w(V €) = 0 implies that the seV¥ is dense inRX. For definitions and details in
genericity and stratification theory we refer to [3].

The whole genericity analysis can be based on the following general result (see [3]
for a proof).

Lemma4 Leth: RX — IR be a polynomial function, k& 0. Then the solution
set T1(0) = {w € IRX | h(w) = 0} is a closed set of measure zero. Equivalently the
complemenY = IRK \ h—1(0) is a generic set in IR.

This lemma will be used in a way indicated in the following lemma.

Lemma5 Let \f denote the set of redl x|)-matrices, V= {A = (&j)i j=1,....I
| aj € R} = R'". Then, the set ¥= {A e V| | detA = 0} is a closed set of measure
zero in IR, Equivalently the setV= \; \ V of regular matrices is generic in IR

Proof. In view of the Laplace expansion d&t= }_ . signt ai 1) & () the
mappingh : R — IR, h(A) = detA, is a polynomial. Sincé(l) = 1 we haveh = 0
(I denotes the unit matrix). The result now follows from Lemma 4. O

In the proofs later on we tacitly make use of the following simple facts:

If V is a generic subset ifRY, then IR x V is generic inIR® x IRY. Let
Vi, ..., V; be generic subsets dR9. Then the intersectio’V = N/_,V; is
generic inlRY,

We give the first genericity result.
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Lemma 6 The problem sePs (or Pgsgp) contains a generic subsét such that for
any problem P i/ the following holds.

(a) All vertices of the semi-feasible setM of P are non-degenerate. All local
solutions of P are locally unique and occur at vertices gf MAll local solutions
have different object values. In particular, the problem P has a unique global
(vertex-) solution.

(b) For any xe X and I, if Q(x) has a solution, then this solution (x) is unique
and occurs at a vertex of ).

Proof. (a) Forr =1, the result is proven in [21, Th.3(a),(c)]. The generalization
to the case > 1 is not difficult (we have only to take care of the fact that now the
problem matrices have block-structure).

(b) Choosex € X arbitrarily andl € {1, ..., r}. Consider the lower level problem

QX): n;in dy st.By <b-AX
|

Supposey; is a solution ofQ,(X). Then there exist, Iy c {1,...,q}, || = m (by
Caratheodory’s Theorem), 9 u, € IRI"! such that

ul (B, = —d, (Bhjyi=0m);j—(A);X, jel. (16)

Here (By),, denotes the sub-matrix @ only containing the rows with indices ih.
Generically,[l;| = mj, i.e. we can assumd&y | = my. In fact, if [I;] < m then in view of
ul (B))), = —d the (|I}] + 1) x (||| + 1)-matrix (assume for brevity = {1, ..., |||}
and we denote the elementsBfby (B))jj)

B:= [(B|)ij |i=ji,...,\||\+1 E)] with b= (d)y, ..., (d|)||l|+1)T

L.

would satisfy detB) = 0 which can generically be avoided.

Since generically (withlj] = my) the matrix (By),,, is regular, a solutiory, of
Qi (X) is generically a vertex of the polyhedrofi(x). Sinceu, > 0 this solution is
unique. O

For the analysis of (LGSIP) we define the set

Pésp = {P €Psssp | the assumption Aphold} .

It is not difficult to show that the problem sif .. is open inlRcsr.

The next theorem describes the difference between general (BL) and (GSIP) prob-
lems (see also Theorem 2). It shows that for Bl., in the generic cas&, upper level
constraints must be active at a solutioof (LGSIP) and that the regularity assumption
A2, s In Section 3 holds.
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Theorem 3 The problem seP{ _ contains a generic subs&t such that for any
BL,ssi» problem P inV the following holds.

If P has a local solution(X,y) (vertex solution see Lemma 6) then, precisely
n upper-level constraints are active, i.e. there exist n indices in the index set J

{1,...,p},say =1, ..., n such that with the solutiorg of Q (X) we have
@)X+ O)Ty - =0, I=1...,n

These solutiong, are nondegenerate-vertices (i.e. (LICQ) holds). Moreover the local
solutionx of (LGSIP) is attained at a vertex of pM.,

In particular, if p < n holds, then generically Bks»and the corresponding (LGSIP)
does not have a solution, i.e. the problem is unbounded.

PROOF. First we show that generically at leastonstraints must be active at the
local solution(X, y) of BL,gge OF the local solutiorx of (LGSIP).
Suppose thak < n points are active ak. This means there are < n vertex

solutionsy, of Q;(X), sayl =1, ..., k, active, i.e. we have
@)%+ Oy, —p°=0, 1=1....k (17)
@)X+ ®OH'y —p2>0, I=k+1,...,p

We show that then generically Alis violated (see the definition &% ).
With the value functiory, (x) of Q,(x), the local solutiorx of (LGSIP) must be a
local minimizer of the problem,

min ¢gx st () =0, l=1,...,k (18)

Consider the optimality conditions (Kuhn-Tucker- and Complementary conditions) for

the solutionsy, of Q,(X),
M (AX+ By —b) = 0. (19)

Generically the solutiony, of Q;(X) are unique (cf. Lemma 6(b)). LdD, denote
the set of Lagrange multipliers, satisfying (19). Suppose Alis satisfied (Slater
condition). Then by a well-known theorem (see e.g. [12]) the value functica® di-
rectionally differentiable and with the Lagrange functloh(x, y, 2) := (a2x + by —
BHT — i (Ax+ By — by the directional derivativdu; (X, d) := limyo 2HI=u®
is given by

D (X, d) = max DyL'(X, i, 1/)d = max(@® — ATx))Td.
reD rMebD
Choosing oné. € D; arbitrarily (e.g. the multiplie, = —(BJ)~'b{; see (16) in the
proof of Lemma 6(b)). then obviously
(aio — ATX|)Td < Dy (X, d).

Generically we can assume that the vect:@rs(a1O —ATA), I1=1,...k (k<n)are
linearly independent. Thus, there is a soluttbaf

cd=-1, @-AT)Td=1 I=1,...k
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This implies that for = X+ td, t > 0 small, we haveel x; < ¢S and in view of
(X)) =0

(%) = v (X) + tDv (X, d) + o(t) > t(&® — ATx)Td + o(t) > 0,

| =1, ...k, contradicting the fact thatis a local solution of (18).

We now show thak = n must be valid. In view of Lemma 6(a) generically the
local solutionz:= (X, yy, ..., ¥i) iS @ non-degenerate vertex of the semi-feasible set
Meem C IR™K™ of the problem

(LBLY): mincix stG(xy) :=a’x+bly—p2>0 1=1 ... Kk
andforl =1,...,k, vV isa solution of
Qi (X): n;in @)"x+ Oy, s.t. Ax+By—b>0.
|

Thusn + kmconstraints must be active m So for the numbelN, of active constraints
we must have

k
Na:n+km:k+2|l||.
=1
Usingk > nand|l;| = m(y, are vertices of); (X)) we findk < n, |I}| <m, i.e.
k=n and [lj|=m I=1,... k.

In view of Lemma 5 generically thémx m)-matricesB,, are regular. Thus (LICQ) is
fulfilled generically.

We now show that generically the solutimiis attained at a vertex of pMg,,.. The
Kuhn-Tucker condition for the solutiong of Q,(X) read,

B;Il-)q =h? , M > 0.

Generically we must havi > 0 (see the proof of Lemma 6(b)). By standard sensi-
tivity analysis it follows that locally neax the solutionsy; (x) of Q;(x), | =1,...,n,
(k = n) with y; (X) =y, are given by

Ax+ B yi() —by, =0 or yi(x) = Bj(b, — AyX).

By substituting this solution into (17) we see that a pointearX is feasible if and
only if

(@7 — ) TB AYx— (87— BB Ty) 20, 1=1,....n.  (20)

Generically the vectorga’) ™ — (b?)TBﬂlbh, | =1,...n, must be linearly indepen-
dent. Thus the inequalities in (20) define the verte&of the polyhedron gr M.

O
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5 Algorithm for linear GSIP

In the preceding sections we have seen that (GSIP) can be regarded as a special in-
stance of a bilevel problem. Because of the special structure of (GSIP) not all ap-
proaches for semi-infinite programming are appropriate for general (BL) problems
(for example the reduction approach). However any method for bilevel problems can
be used to solve the bilevel formulation of (GSIP) problems. We refer to [15] for a
survey of methods for solving (BL) (for the case- 1).
Here we only consider the linear case and briefly outline the generalization fo
(r lower level players) of an algorithm due to Bard and Moore (cf. [1]) which is based
on a so-called Kuhn-Tucker approach. With this method, also (LGSIP) can be solved.
Consider the necessary and sufficient Kuhn-Tucker optimality conditions for a so-
lution y; of the linear program@Q; (x): Introducing slack variables; € R with the
Lagrange multiplier vectors| € IR% these conditions are,

AX+ By —b —vy =0
k|T Bi—d =0
M>0, v >0

AlTv| =0 (complementarity conditiohs

It follows that (X, y) is a solution of (LBL) (cf. (14)) if and only if with slack vectors
v; and multipliersi; the point(X, ¥) solves the optimization problem

I‘Qi)ll‘l CoX+dly st Aox+ Boy —bp >0

andforl =1,...,r AX+By —b—vy=0
)\|TB|—d|=O (21)

As=0 v=0

k;rv|=O

Apart from the complementarity condition§v| = 0 this problem is linear.

A branch and bound method to solve (21) is as follows. We define g; +
...+ q, the vectorsA := (A1,...,Ar), V= (v1,...,v) in IRY and the index set
K:={1,...,q}. Inviewof A, V > 0, the complementarity conditiod ™V in (21)is
equivalent withA;V; = 0 for alli € K. For given index setk™, K= Cc K, Kt N K™ =
¢ we define the sets

AKKP) ={A>0]A =0 ieK, V(K)I={V=0[Vi=0,iecK}.

For any pairA, V with A € A(K"),V e V(K™) let LBL(K*, K™) denote the prob-
lem obtained by replacing in the (LBL) problem (21) the complementarity condition
AV = 0 by the conditionsA € A(K™), V € V(K™). The problems LBILK™, K™)

are linear programs and for the right choicekof, K~ the solution of LBL(K™, K™)
coincides with the solution of (LBL). The idea of the Bard/Moore algorithm is to ex-
amine in a branch and bound search all possible choicks oK~ (see [1] for further
details):

The algorithm starts withlKt = K~ = @. Obviously, the value of LBLY, @) (a relax-
ation of (LBL)) gives a lower bound for the value of (LBL).
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BRANCH AND BOUND ALGORITHM:
start: Putk=0, K =¥, Ky =, val= cc.

stepk — k+ 1: GivenK,", K, try to calculate a solutior¥, y¥, A, VKof LBL (K,", K;)
with value vai.

1.

3.
4,

If LBL (K,", K) is infeasible or if val > val goto 3.
If AjV; =0foralli € K put val =val, goto 3.

. (Branching w.r.t.A) Select an indexx € K\ Kk+ such thata;, Vi, > 0, put

Kb = K¢ U i), K, = K¢, goto 4.
Perform backtracking (see [1]) for details), goto 4.

k+1— k.

With this methods problems of size uprie= m = 100 (forr = 1) can be solved (cf.
[1] , [4] for numerical experiments.)
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