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1 Introduction

We consider generalized semi-infinite problems,

(GSIP): min
x

FGSIP.x/ s.t.x ∈ MGSIP= {x ∈ IRn | G.x; y/ ≥ 0; for all y ∈ Y.x/}
where Y.x/ = {y ∈ IRm | g.x; y/ ≥ 0}:

For the special case, that the setY.x/ = Y does not depend on the variablex, this
problem is a common semi-infinite problem (SIP). Bilevel problems are of the form

(BL): min
x;y

F.x; y/ subject toG.x; y/ ≥ 0 andy is a solution of (1)

Q(x): min
y

f .x; y/ s.t. y ∈ Y.x/;

with Y.x/ defined as in (GSIP).

Throughout the paper we assumeFGSIP ∈ C. IRn; IR/; F ∈ C. IRn × IRm; IR/; G ∈
C. IRn× IRm; IRp/, g ∈ C. IRn× IRm; IRq/. We use the abbreviationJ = {1; : : : ; p}
and I = {1; : : : ;q} for the index sets of the constraintsG andg.

There is an extensive literature on bilevel optimization (see [15] and the references in
this book). Semi-infinite programming (SIP) is an important field of research as well
(cf. for example the survey article [6] with more than 300 references). Generalized
semi-infinite problems are studied only recently (cf. e.g. [7, 9, 11, 13, 14, 16, 17, 18,
19, 20, 22]).

Bilevel problems often arise as Operations Research problems in an economic con-
text. They can be interpreted as a game between two players. Player 1 (upper level
player) tries to minimize his object F depending on.x; y/ and player 2 (lower level
player) who for givenx choosesy as a solution of the lower level problemQ.x/. Ap-
plications of (SIP) and (GSIP) mostly appear in technical sciences. For applications
of (SIP) we refer to [6]. Applications of (GSIP) are e.g. themaneuverabilityprob-
lem in robotics, thereverse Chebyshev approximation(see e.g. [19]) and time minimal
control problems (see [11]).

In this paper we will show that there is a strong connection between bilevel and
generalized semi-infinite problems. Under certain assumptions (GSIP) can be seen as
a special instance of a (BL). We will discuss the connections but also the differences
between (GSIP) and (BL). The paper is organized as follows.

In Section 2 we study the structure of the feasible sets of (BL) and (GSIP) and
consider a natural condition under which (GSIP) becomes a special case of (BL). In
Section 3 we apply the so-calledlocal reduction approach. This technique leads to
optimality conditions for (BL)- and (GSIP)-problems and gives the basis for (Quasi-)
Newton methods for solving the problems. We then ask whether the regularity assump-
tions used in the reduction approach are natural, i.e. assumptions which are generic.
We analyze the difference between the structure of typical classes of (BL) problems
and the class of (GSIP). It appears that for classes of bilevel problems the regular-
ity assumptions are not generic. This shows that the regularity assumptions used in
bilevel programming are often not valid at the solution of (BL). The structural discus-
sion however leads to the conjecture, that for (GSIP) the regularity assumptions for the
‘reduction’ can be expected to hold generically.
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In Section 4 we give a detailed analysis of linear problems and prove the genericity
conjecture for linear generalized semi-infinite problems.

Section 5 briefly describes the Kuhn-Tucker approach from bilevel programming
for solving linear (GSIP) problems.

2 Relations between GSIP- and BL-problems

In this section we compare the structure of (GSIP) and (BL). We introduce some nota-
tion with x ∈ IRn; y ∈ IRm :

S.x/ = {y | y is a (global) solution ofQ.x/} set of solutions ofQ.x/
S = {.x; y/ | y ∈ S.x/} solution graph ofQ
MG = {.x; y/ | G.x; y/ ≥ 0} constrained set of upper level
X = {x | Y.x/ 6= ∅} .≡ dom Y/ domain of the mappingY
MBL = {.x; y/ | .x; y/ ∈ MG; y ∈ S.x/} feasible set of (BL)

We assume that the set-valued mappingY : IRn→ 2IRm
is uniformly compact onIRn,

i.e. for anyx ∈ IRn there exists a ballB².x/ = {x ∈ IRn | ||x− x|| ≤ ²}; ² > 0; such
that clos.∪x∈B².x/Y.x// is compact. Then, under our assumptions, the mappingY is
closed and upper semi-continuous in the sense of Berge and the setX .= dom Y/ is
a closed set. Moreover under this condition, the lower level problemsQ.x/; x ∈ X,
always have solutions.

Now we try to transform GSIP into a problem of bilevel type. Let us define

f .x; y/ := min
j

Gj.x; y/ : (2)

Consider the parametric problem

Q.x/ : min
y

f .x; y/ s.t. y ∈ Y.x/:

Then, forx ∈ IRn such thatY.x/ 6= ∅ we have f .x; y/ ≥ 0; ∀y ∈ Y.x/, if and only
if a solution y of Q.x/ (and thus all solutions) satisfiesf .x; y/ ≥ 0. Observe that
f .x; y/ ≥ 0 is equivalent with the inequalityG.x; y/ ≥ 0. Thus, forx with Y.x/ 6= ∅
the conditionx ∈ MGSIP is equivalent withx ∈ prx. MBLGSI P

/ where

MBLGSI P
= {.x; y/ | G.x; y/ ≥ 0 andy is a solution ofQ.x/ } :

Here, prx denotes the orthogonal projection onto the spaceIRn (x-variable). Summa-
rizing, the bilevel formulation of the generalized semi-infinite problem is given by

BLGSIP min FGSIP.x/ s.t. G.x; y/ ≥ 0 andy is a solution of

Q.x/: min
y

f .x; y/ s.t. y ∈ Y.x/ ; (3)

with the function f in (2). We have shown that ifY.x/ 6= ∅ holds for all x ∈ IRn,
then (GSIP) is equivalent with BLGSIP, i.e. the problem (GSIP) can be seen as a special
instance of a (BL).
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Note however that forS.x/= ∅, x belongs toMGSI P, (no constraints forx) but not
to prx.MBLGSI P/. With the set

M̂GSIP= {x ∈ domY | G.x; y/ ≥ 0 for (all) y ∈ S.x/} (4)

we actually haveMGSI P = M̂GSIP∪ .domY/c whereAc we denotes the complement
of the setA in the corresponding space. Thus, we have shown part (b) of the fol-
lowing lemma which provides different representations for the feasible sets of (GSIP)
and (BL). Part (c) has been shown in [14], whereas part (a) follows directly from the
definition.

Lemma 1 The following holds.

(a) MBL = MG∩ S.

(b) MGSIP= M̂GSIP∪ .domY/c = prx. MBLGSI P
/∪ .domY/c.

(c) MGSIP=
(
prx .M

c
G∩ S/

)c
In view of Lemma 1a, sinceMG is closed, the setMBL is closed ifS is closed. The set
S is closed if the mappingY is (lower semi-) continuous onX .= domY/. In view
of Lemma 1b, since.dom Y/c is open, the setMGSIP need not be closed, even when
prx MBLGSI P

is closed. For further details on the feasible set of (GSIP) we refer to [14].
Let be given.x; y/; y∈ Y.x/. We say that aty theLinear Independency Constraint

Qualification(LICQ) is satisfied for the lower level problemQ.x/ if

Dygi.x; y/; i ∈ I .x; y/ := {i ∈ I | gi.x; y/ = 0} are linearly independent.

At y ∈ Y.x/, the weakerMangasarian Fromovitz Constraint Qualification(MFCQ) is
said to hold forQ.x/ if there exists a vector¾ such that

Dygi.x; y/¾ > 0; for all i ∈ I .x; y/:

The next lemma lists some standard sufficient conditions for the continuity ofY.

Lemma 2 Under our assumptions on the set valued mapping Y we have.

(a) If the function g.x; y/= Ax+ By− b is affine linear then Y is continuous on X.

(b) Let U⊂ X be open. Let for any x∈ U the function−g.x; y/ be convex in y and
let for any x∈ U the Slater condition hold: There exist y= y.x/ ∈ IRm such
that g.x; y/ > 0. Then Y is continuous on U.

(c) Let U⊂ X be open. Let for any x∈ U the condition (MFCQ) be fulfilled at all
y ∈ Y.x/. Then Y is continuous on U.

Lemma 2a shows that ifg is affine linear then the feasible setMBL is closed (see also
Theorem 1 a). We give an example which shows that this need no more be true ifg is
not affine linear.

Example 1. Consider the bilevel problem

min F.x; y/ := y− x subject tox≤ 1 and y is a solution of

Q(x): min f .x; y/ = −x− y s.t. − xy≤ 0; 0≤ y≤ 2 :
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Then,

Y.x/ =
{ {0} if x< 0

[0;2] if x≥ 0
and S.x/ =

{{0} if x< 0
{2} if x≥ 0

These mappings are not continuous at the pointx = 0. We findMBL = {.x;0/ | x <
0} ∪ {.x;2/ | 0≤ x ≤ 1}. Obviously,MBL is not closed and a global solution of (BL)
does not exist. A local minimizer is.x; y/ = .1;2/.
A similar counterexample is given for (GSIP).

Example 2. Consider the generalized semi-infinite problem

min F.x; y/ := −x s.t. x≤ 1 and G.x; y/ := −x− y≥ 0 for all y ∈ Y.x/

whereY.x/ = {y ∈ IR | − xy≤ 0; 0≤ y≤ 2}

Then, for the bilevel problem BLGSIP we find with the setsY.x/, S.x/ in Example 1,
MBLGSI P

= {.x;0/ | x < 0} and MGSIP= prx MBLGSI P
= .−∞;0/: Again, MGSIP is not

closed and a solution of (GSIP) does not exist.

In view of these negative examples it seems natural to assume thatY is continuous on
MBL.

For (GSIP) we have to sharpen this condition slightly. Let be given a pointx =∈
domY, i.e.Y.x/= ∅. Then, since.domY/c is open, aroundx the problem (GSIP) can
be regarded as an unconstrained problem, i.e. aroundx the problem does not have the
structure of a real ‘infinitely constrained problem’. Thus, to exclude this degenerate
situation, in the sequel, we will assume that

MGSIP⊂ int X whereX = domY (5)

This condition can always be satisfied by adding to the original constraintsG≥ 0 ap-
propriate extra conditions (such as|xi | ≤ ²). Remember that by the discussion above,
assumption (5) implies that the problem (GSIP) is a (BL) problem with the special
structure that lower level object function coincide with the the upper level constraint.
In addition to (5) we assume thatY.x/ is continuous onMGSIP. A natural sufficient
condition for the continuity ofY is the condition (see Lemma 2(b)): For some open
setU we haveMGSIP⊂ U and

for all x ∈ U (MFCQ) is satisfied for ally ∈ Y.x/; (6)

This condition also implies (5).
In the following we are going to compare the structure of a general (BL) with the

structure of a (BLGSIP) satisfying (6).

3 Local reduction approach

A possible theoretical and practical approach for solving (BL) and (GSIP) is the so-
called local reduction. For (SIP) and (GSIP) this is a standard approach (see e.g. [6]
and [19]). It is also used in bilevel programming (see e.g. [2]). The idea is to transform
the problem locally into a common finite optimization problem. Such a transformation
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is possible if certain regularity assumptions hold. Under these assumptions we obtain
a system of optimality conditions for a minimizer of (BL) and (GSIP) and the solution
can be computed by applying a (Quasi-) Newton method for solving this system of
equations.

In the present section we derive the optimality conditions and discuss the question
whether the regularity assumptions are natural conditions which can be expected to
hold at the solution in the generic case.

Local reduction for general (BL):Let be givenx ∈ IRn; y ∈ S.x/; .x; y/ ∈ MG, i.e.
.x; y/ is feasible for (BL). Let the following assumption hold.

A1BL There exist a neighborhoodU.x/ of x and aC1-function y : U.x/→ IRm such
that y.x/ = y and for anyx ∈ U.x/ the vectory.x/ is the (unique, global) solu-
tion of Q.x/.

The following is a standard assumption in parametric optimization and sufficient for
A1BL. (This assumption is often used in nonlinear bilevel programming see e.g. [2,
Assumpt. A2]).

A2BL All problem functions of (BL) areC2-functions and at the unique solutiony of
Q.x/ we have

(1) (LICQ) is satisfied and the Kuhn-Tucker condition with multipliers
 i > 0
(strict complementary slackness):

DyL y.x; y; 
/ := Dy f .x; y/−
∑

i∈ I .x;y/


 i Dygi.x; y/ = 0 :

(2) A standard second order sufficient optimality condition on the Hessian
D2

yL y.x; y; 
/ of the Lagrange functionL y is fulfilled.

Obviously, under A1BL, onU.x/, the problem (BL) is equivalent with the so-called
locally reduced problem

BLx: min
x

F̂.x/ := F.x; y.x// subject toĜ.x/ := G.x; y.x// ≥ 0:

BLx is a finite optimization problem and standard optimality conditions applied to this
problem lead to optimality conditions for (BL) as follows.

Suppose, the active gradientsDĜj.x/ = DxGj.x; y/ + DyGj.x; y/�;
j ∈ J.x/ := { j ∈ {1; : : : ; p} | Gj.x; y/ = 0} are linearly independent, where we set
� = Dy.x/. Then, a necessary optimality condition for.x; y/ to solve (BL) is: There
exist multipliers¼ j ≥ 0 such that

DF̂.x/−
∑

j∈J.x/

¼ j DĜj.x/ = DxF.x; y/−
∑

j∈J.x/

¼ j DxGj.x; y/ (7)

+
(

DyF.x; y/−
∑

j∈J.x/

¼ j DyGj.x; y/

)
� = 0:

Consider now the Kuhn-Tucker conditions for a solutiony= y.x/ of Q.x/,

H.x; y; 
/ := DyL y.x; y; 
/= 0
gi .x; y/ = 0 i ∈ I .x; y/:

(8)
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Under assumption A2BL , by applying the Implicit Function Theorem toH = 0, it
follows that there exist a neighborhoodU.x/ of x andC1-functionsy.x/; 
.x/ such
that H.x; y.x/; 
.x// = 0; x ∈ U.x/ and y.x/ is the solution function in A1BL with
corresponding multiplier
.x/. By differentiating the relationH.x; y.x/; 
.x// = 0
w.r.t. x we find

DxH.x; y; 
/+ DyH.x; y; 
/ �+ D
H.x; y; 
/ � = 0 ;

where� = D
.x/. Altogether, in view of (7) (8), we obtain the following system
of equations for a solution.x; y/ of (BL) and the corresponding multipliers and their
derivatives.¼; 
; �; �/:

DxF.x; y/− ∑
j∈J.x/

¼ j DxGj.x; y/

+(DyF.x; y/− ∑
j∈J.x/

¼ j DyGj.x; y/
)
� = 0

Gj.x; y/ = 0 j ∈ J.x/

DyL y.x; y; 
/= 0

gi.x; y/ = 0 i ∈ I .x; y/:

DxH.x; y; 
/+ DyH.x; y; 
/ �+ D
H.x; y; 
/ � = 0

(9)

This is a system ofn+m+ |J.x/| + |I .x; y/| + n m+ n |I .x; y/| equations for the
same number of unknownsx; y; ¼; 
; �; �. To compute a solution.x; y/ of (BL), we
could apply a (Quasi-) Newton procedure for solving the system (9).

We are now interested to know whether assumption A2BL - essential for the local
reduction - is a natural condition. We first give an illustrative example.

Example 2. Consider the bilevel problem

P1 : max F.x; y/ := x+ y s.t. G.x; y/ := x+ 2y− 8≤ 0 andy solves

Q(x): max f .x; y/ := x+ y s.t. 0≤ y≤ 4 :

Here,S.x/ = {y.x/ = 4} and the feasible set isMBL = {.x;4/ | x ≤ 0}. The optimal
solution y.x/ = 4 of Q.x/ is feasible w.r.t.G≥ 0 only for x≤ 0. Hence, the solution
of (BL) is .x; y/ = .0;4/ with valueF.x; y/ = f .x; y/ = 4. It is easily checked, that
at the solutiony.x/= 4 of Q.x/ the conditions of A2BL(1) is fulfilled (the second order
condition (2) is superfluous sinceQ.x/ is a linear program).

Now let us consider the problemP2 obtained fromP1 by only moving the condition
G≥ 0 to the lower level,

P2 : max F.x; y/ = x+ y s.t. y solves

Q(x): max f .x; y/ = x+ y s.t. 0≤ y≤ 4; x+ 2y− 8≤ 0

Then for P2 also the points{.x; y/ | y = 4− x
2; x ∈ [0;8]} become feasible and the

point .x̂; ŷ/ = .8;0/ is optimal (with a better valueF.x̂; ŷ/ = f .x̂; ŷ/ = 8). However
now, for P2 the solutionŷ= 0 of Q.x̂/ does not fulfill the assumptions A2BL(1). The
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point ŷ= 0 is a degenerate vertex-solution of the linear programQ.x̂/. At ŷ= 0, even
the (MFCQ) is not valid forQ.x̂/.

This example indicates, that the assumption A2BL (in particular (LICQ) only can hold
at a solution.x̂; ŷ/ if there are enough upper level constraints active at.x̂; ŷ/. In
particular, when (BL) does not possess ‘enough’ upper level constraints, A2BL can
not be valid and the ‘reduction approach’ may not be possible. Note, that a typical
bilevel model in operations research need not have any upper level constraints. In fact
viewing a (BL) in (1) as a game between an upper level player 1 and a lower level
player 2, the player 2 could accept the upper level constraintsG≥ 0 in his lower level
problemQ.x/. In the example above, the strategy to pass the upper level constraints
to the lower level problem even leads to a better object value for both players. The
next Lemma shows that for the upper level player such a policy is always an advantage
(for the lower level player it may be advantageous but also unfavourable depending
whether his object is ‘similar’ or ‘adverse’ to the upper level object). Let (B̃L) denote
the bilevel problem obtained from (BL) by passing the constraintsG≥ 0 to the lower
level constraintsg≥ 0 and letM̃BL denote the corresponding feasible set.

Lemma 3 Let be given a bilevel problem (1). Then we have MBL ⊂ M̃BL and for the
solutions.x; y/ of (BL), .x̃; ỹ/ of (B̃L), respectively, it follows F.x̃; ỹ/ ≤ F.x; y/.

PROOF. Let .x; y/ be feasible for (BL), i.e.y is a solution ofQ.x/ andG.x; y/ ≥ 0.
Theny is also feasible for the lower level problem of (̃BL),

Q̃.x/ : min
y

f .x; y/ s.t. G.x; y/ ≥ 0; g.x; y/ ≥ 0:

Since the feasible set̃Y.x/ of Q̃.x/ is contained in the feasible setY.x/ of Q.x/, y
must also be a solution of̃Q.x/, i.e. .x; y/ is feasible for (̃BL). 2

The situation for (GSIP) and its bilevel formulation BLGSIP (see (3)) is quite dif-
ferent. Letx be feasible for (GSIP). We define the set of active points

Y0.x/ = {y ∈ Y.x/ | min
1≤ j≤p

Gj.x; y/ = 0}:

Note thatx is feasible if and only ifG.x; y/ ≥ 0 for all y ∈ Y.x/. Thus forx ∈ MGSIP

every pointy ∈ Y0.x/ is a global solution ofQ.x/. Suppose now thatx is a solution
of (GSIP) and thatY0.x/ = ∅. Then by continuity assumptions in Section 1, nearx
the problem (GSIP) is equivalent with the unconstrained problem minx FGSIP.x/. We
exclude such a situation by assuming that in addition to (5) the following holds:

Y0.x/ 6= ∅ for any local solutionx of (GSIP):

Consequently, the bilevel problems BLGSIP related to generalized semi-infinite prob-
lems intrinsicly have at least one upper level constraint active in the solution. More-
over, typically in (GSIP) the degree of freedom in the variablex ’forces’ the solutionx
of BLGSIP to a location such that as many active pointsyl ∈ Y0.x/ occur, (i.e. solutions
yl of Q.x/) as the degree of freedom in the minimization model allows. This behavior
is illustrated with the following geometrical interpretation of (GSIP) (cf. also [19]):
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Given the regionMG = {.x; y/ | G.x; y/ ≥ 0} in IRn× IRm. Then we have to findx
such that the setx× Y.x/ is contained inMG and such that some functionalf .x/ is
maximized. Often the functionf .x/ can be viewed as the volume of the setY.x/.

y1 Y.x/

y2

y3

Figure 1: Illustration of a (GSIP) at the solutionx.

Figure 1 illustrates the situation of such a problem at the solutionx of (GSIP). The
different pointsy1; y2; y3 where the setY.x/ touches the set{y | G.x; y/ = 0} are the
solutions of the lower level problemQ.x/, i.e. Y0.x/ = {y1; y2; y3}. So typically in
semi-infinite optimization we have to admit different solutions ofQ.x/.

Local reduction for (GSIP):In semi-infinite optimization the local reduction is a stan-
dard technique. As motivated above, because of the special structure of (GSIP), in
contrast to the general (BL) case, at a solutionx of (GSIP) typically different solutions
of Q.x/ must be considered, i.e.Y0.x/ need not to be a singleton.

Let be givenx ∈ MGSIP and let Y0.x/ consist of finitely many points,Y0.x/ =
{y1; : : : ; yr}, r ≥ 1. We make the following assumption.

A1GSIP There exist a neighborhoodU.x/ of x andr C1-functionsyl : U.x/→ IRm, such
that yl .x/= yl ; and for anyx ∈ U.x/ the valuesyl .x/; l = 1; : : : ; r , include all
(global) solution ofQ.x/.

As in the (BL) case we give a natural sufficient condition for A1GSIP.
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A2GSIP All problem functions of (GSIP) areC2-functions. Let fory ∈ Y0.x/ be defined
Jy := { j ∈ J | Gj.x; y/ = 0} and for j ∈ Jy,

Qj.x/ : min Gj.x; y/ s.t. y ∈ Y.x/ :

For all y ∈ Y0.x/ and all j ∈ Jy we have

(1) (LICQ) is satisfied aty for Qj.x/ and the Kuhn-Tucker condition with
multipliers
 i > 0 (strict complementary slackness).

(2) A standard second order sufficient optimality condition aty for Qj.x/.

Under A2GSIP the setY0.x/ must be finite,Y0.x/ = {yl ; l = 1; : : : ; r}, and locally in
a neighborhoodU.x/ of x, the problem (GSIP) is equivalent with thelocally reduced
problem

GSIPx : min FGSIP.x/ s.t. Ĝl
j.x/ := Gj.x; yl .x// ≥ 0; j ∈ Jyl ; l = 1; : : : ; r:

Again GSIPx is a finite optimization problem and optimality conditions of finite op-
timization applied to this problem lead to optimality conditions for (GSIP). We only
give the conditions for the casep= 1 (see also [7], [19]; the modification to the case
p> 1 is straightforward).

Similar to (7) withY0.x/ = {yl ; l = 1; : : : ; r} we obtain forp= 1 the optimality
condition (puttingyl = yl .x/),

DFGSIP.x/−
r∑

l=1

¼l

(
DxG.x; yl /+ DyG.x; yl /Dyl

)
= 0 (10)

with multipliers ¼l ≥ 0. For (GSIP) however the equations simplify. Consider the
Kuhn-Tucker condition forQ.x/ at the solutionsyl :

DyG.x; yl / =
∑

i∈ I .x;yl /


 l
i .x/Dygi.x; yl /

andgi.x; yl /= 0; i ∈ I .x; yl /. By differentiating the relationgi .x; yl .x//= 0 we find
Dxgi.x; yl / = −Dygi.x; yl /Dyl and

DyG.x; yl /Dyl =
∑

i∈ I .x;yl /


 l
i Dygi.x; yl /Dyl = −

∑
i∈ I .x;yl /


 l
i Dxgi.x; yl / :

Substituting in (10) we obtain the following system of optimality conditions:

DFGSIP.x/−
r∑

l=1

¼l

(
DxG.x; yl /−

∑
i∈ I .x;yl /


 l
i Dxgi.x; yl /

)
= 0

G.x; yl / = 0 l = 1; : : : ; r

and forl = 1; : : : ; r (11)

DyG.x; yl /−
∑

i∈ I .x;yl /



j
i Dygi.x; yl / = 0

gi.x; yl / = 0 i ∈ I .x; yl /
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This system consists ofK := n+ r +∑r
l=1

(
m+ |I .x; yl /|) equations for theK un-

knownsx ∈ IRn; ¼l ∈ IR; yl ∈ IRm; 
 l ∈ IR| I .x;yl /|; l = 1; : : : ; r . In [21] it has been
shown that under the assumption A2GSIP at a solutionx of (GSIP) and the additional
assumptions that the gradients

(
DxG.x; yl /−∑i∈ I .x;yl / 


j
i Dxgi .x; yl /

)
; l = 1; : : : ; r ,

are linearly independent, the Jacobian of (11) is regular at the solution.x; y1; 
1; : : : ;

yr ; 
r /. Hence, to solve (GSIP) numerically, we can apply a (Quasi) Newton method
to (11). See e.g. [6] for solving common (SIP) problems by Newton methods.

Note that in contrast to equation (9) for the (BL)-problems the optimality condition
(11) for BLGSIP does not contain the derivativesDyl ; D
 l as unknowns. The reason is
that for the problem BLGSIP the upper level constraintsGj coincide with the lower level
objects. So only the information of the value function ofQ.x/ is really needed in the
upper level and not the full information about the solutiony.x/.

We are now going to discuss the question whether the assumption A2BL or A2GSIP

for the local reduction can be expected to hold generically at a solution. By a generic
subsetS of a problem setP we roughly mean a subset which is open and dense inP
(in some appropriate topology).

For the problemP2 of Example 2 the assumption (LICQ) in A2BL (even (MFCQ))
is not valid. This negative behavior is stable w.r.t. smooth nonlinear (small) perturba-
tions. Hence we can state.

For the general class of (BL) problems the assumption A2BL is not generic at
a local solution.x; y/. For typical classes of bilevel problems, in particular
problems without upper level constraints, (LICQ) or even (MFCQ) will not be
satisfied at the solutiony of Q.x/. For such problems we cannot expect a ‘nice’
system of optimality conditions for.x; y/ which can be solved with smooth
methods. Consequently in this situation the ‘reduction approach’ can only be
used with caution.

As indicated above, the special class of bilevel problems BLGSIP related to (GSIP) may
have a better genericity behavior. For the sub-class of common semi-infinite problems
it has been shown in [10] that A2GSIP is generically fulfilled at each local solution. A
similar genericity analysis for (GSIP) has not yet been done. In [16] some particular
results are obtained. It has been proven for example that generically for (GSIP) the
number|Y0.x/| of lower level local minima at a solutionx is bounded byn, |Y0.x/| ≤ n.
We will show for the linear case in the next section that generically|Y0.x/| = n holds.
We formulate the

Conjecture: In the class BLGSIP (appropriately defined) the assumptions
A2GSIP holds generically at a solutionx of a (GSIP) problem. In particular gener-
ically, all local minimayl ; l = 1; : : : ; r , of Q.x/ are non-degenerate minima.

In the next section this conjecture is proven for the special case of linear problems (see
Theorem 3). We also will present a detailed analysis of the negative results for the
general class of linear bilevel problems.

Summarizing, roughly speaking, generically for classes of general (BL) problems
from operational research, at a solution.x; y/, the minimizery of Q.x/ will be a
unique minimizer but (LICQ) (or even (MFCQ)) will not be satisfied aty. In contrast,
for (GSIP) generically we expect at a solution different minimizeryl of Q.x/ but each

11



solution will be non-degenerate, such that a smooth approach for solving (GSIP) is
possible.

To analyze the difference between (BL) and (GSIP) in the next section, we have to
modify the bilevel formulation of (GSIP) in (3). In the formulation (3), when the upper
level contains different (smooth) constraints, i.e. ifp > 1, then the object function
f .x; y/ = min1≤ j≤p Gj.x; y/ is not aC1-function (only Lipschitz-continuous). To
transform (GSIP) into a smooth (BL) we consider the following generalization of the
bilevel problem (3),

(BL): min
x;y

F.x; y/ s.t. G.x; y1; : : : ; yr / ≥ 0 and for l = 1; : : : ; r (12)

yl solves Ql .x/: min
yl

fl .x; yl / s.t. gl .x; yl / ≥ 0;

wherex ∈ IRn, y= .y1; : : : ; yr /; yl ∈ Rml ; l = 1; : : : ; r , and the functions are defined
accordingly. This problem can be seen as a game between an upper level player and
r different lower level players withr different lower level problemsQl . The problem
BLGSIP (and (GSIP)) can be written as

(BLGSIP): min FGSIP.x/ s.t. Gl .x; yl / ≥ 0 l = 1; : : : ; p where (13)

yl solvesQl .x/: min
yl

Gl .x; yl / s.t. g.x; yl / ≥ 0:

This represents a bilevel problem (12) with the special conditionsfl = Gl , ml = m,
r = p andgl = g not depending onl .

4 Linear problems

In this section we are concerned with linear (GSIP) and (BL), i.e. all problem functions
are affine linear. We describe the structure of the feasible sets and analyze which kind
of regularity can be expected at a solution.x; y/ of (BL) or at a solutionx of (GSIP).
We will show that a general (BL) and the special case of a bilevel problem BLGSIP

arising from (GSIP) may have different generic behavior.
We consider the following linear bilevel problem (cf. (12)) withy= .y1; : : : ; yr / ∈

IRm0, yl ∈ IRml ; l = 1; : : : ; r; m0 = m1+ · · · +mr ,

(LBL): min cT
0 x+ dT

0 y subject to (14)

A0x+ B0y− b0 ≥ 0 and forl = 1; : : : ; r , yl is a solution of

Ql .x/: min
yl

cT
l x+ dT

l yl s.t. Al x+ Bl yl − bl ≥ 0:

Here,c0 ∈ IRn; d0 ∈ IRm0, A0 is a p× n-matrix, B0 is a p×m0-matrix, Al areql × n-
matrices,Bl areql ×ml -matrices etc. A linear (GSIP) is of the form

(LGSIP): min cT
0 x s.t. A0x+ B0y− b0 ≥ 0 for all y in Y(x)

where Y.x/ = {y ∈ IRm | Ax+ By− b≥ 0}:
Let in the sequela0

l ; b0
l denote the rows ofA0; B0, respectively and letþ0

l be the
components ofb0. Then (LGSIP) can be written in the form of a (LBL),

(BLLGSIP): min cT
0 x s.t. Gl.x; y/ := .a0

l /
Tx+ .b0

l /
T yl − þ0

l ≥ 0; l = 1; : : : ; p;

and forl = 1; : : : ; p, yl is a solution of

Ql .x/: min
yl

.a0
l /

Tx+ .b0
l /

T yl s.t. Ax+ Byl − b≥ 0:

12



with Al = A; Bl = B; bl = b not depending onl andp= r . We have to complete our
notation. Withy= .y1; : : : ; yr / we define forl = 1; : : : ; r :

Yl .x/ = {yl ∈ IRml ; .y ∈ IRm0/ | Al x+ Bl yl − bl ≥ 0} feasible set ofQl .x/
Yl = {.x; yl /; ..x; y// | yl ∈ Yl .x/} the graph ofYl .x/
Sl .x/ = {yl ∈ IRml ; .y ∈ IRm0/ | yl solvesQl .x/} set of solutions ofQl .x/
MG = {.x; y/ | G.x; y/ := A0x+ B0y− b0 ≥ 0} upper level constraints
X = ∩l domYl .= ∩l {x | Yl .x/ 6= ∅}/
Msem = MG∩ .∩l Yl / the semi-feasible set
S = {.x; y/ | yl ∈ Sl .x/; l = 1; : : : ; r} the solution graph
MBL = {.x; y/ | .x; y/ ∈ Msem∩ S} feasible set of (LBL)

We will regard the setsYl .x/; Sl .x/ as sets inIRml or as sets inIRm0 depending on the
context. We introduce the following assumptions.

AL 1 The setsSl .x/ are compact subsets ofIRml , l = 1; : : : ; r , for all x ∈ Rn. This
assumption in particular implies thatQl .x/ always has a vertex solution (if
Sl .x/ 6= ∅).

AL 2 The polyhedronMsem⊂ IRn× IRm0 is bounded (thus compact).

Recall that forY.x/ the Slater condition is said to hold if there existsỹ= ỹ.x/ ∈ IRm

such thatAx+ Bỹ− b > 0 (see Lemma 1(b)). In view of our regularity assumption
(6) for (LGSIP) we consider the following assumption.

AL 3 For (LGSIP) let the Slater condition be satisfied for allx ∈ MGSIP. (Then in
particular, (LGSIP) is equivalent with LBLGSIP.)

The following theorem contains the main results on the structure of the feasible set and
the solution of a (LBL).

Theorem 1 For (LBL) the following holds.

(a) The feasible set MBL = Msem∩ S consist of a union of finitely many faces fk of
the polyhedron Msem,

MBL = ∪K
k=1 f k:

In particular, MBL is a closed set in Rn× IRm0.

(b) If no upper level constraints are present, then the set MBL is path-wise connected.

If the assumptions AL1 and AL2 hold then we have.

(c) The solution of (LBL) occurs at a vertex of some face fk0; k0 ∈ {1; : : : ; K}, and
thus at a vertex of Msem

(d) The value functionsvl .x/ := minyl∈Yl .x/ c
T
l x+ dT

l yl of Ql .x/, l = 1; : : : ; r are
convex and Lipschitz continuous on dom Yl .
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PROOF. (For a proof of (a) and (c) for the caser = 1 we refer e.g. to [15]). For
completeness we give a proof for the general caser ≥ 1.
(a) The setMsem is a polyhedron inIRn× IRm0. Let f 0 be ad-dimensional face of
Msem, with d≥ 1 (i.e. f 0 is not a vertex). Let.x0; y0/ be a point in the relative interior
of f 0 and let.x0; y0/ belong toMBL. We now show that the whole facef 0 belongs to
MBL. Then, since every point ofMsem which is not a vertex is contained in the relative
interior of some face ofMsem, the proof is completed.

Let .x1; y1/ ∈ f 0 be arbitrary. Since.x0; y0/ is a point in the relative interior of
f 0 there exists a point.x2; y2/ in f 0 such that with some½; 0< ½ < 1,

.x0; y0/ = ½.x1; y1/+ .1− ½/.x2; y2/: (15)

Given any point.x1; y/ in ∩l Yl , i.e. yl ∈ Yl .x1/, we consider

.x0; y∗/ := ½.x1; y/+ .1− ½/.x2; y2/:

It follows y∗l ∈ Yl .x0/. Since.x0; y0/ ∈ MBL, i.e. y0
l are solutions ofQl .x0/, in view of

(15) we have,

dT
l y0

l = ½dT
l y1

l + .1− ½/dT
l y2

l ≤ dT
l y∗l = ½dT

l yl + .1− ½/dT
l y2

l

anddT
l y1

l ≤ dT
l yl . This implies thaty1

l are solutions ofQl .x1/ and.x1; y1/ ∈ MBL.

(b) See [21] forr = 1. The generalization tor > 1 is not difficult.

(c) In view of (a) the feasible setMBL consists of the union of facesf 1; : : : ; f K of the
compact setMsem (cf. AL2). A solution of (LBL) exists and must be contained in some
of these faces sayf k0. Thus the problem (LBL) can be replaced by the problem

min
x;y

cT
0 x+ dT

0 y s.t. .x; y/ ∈ f k0:

Since f k0 is a bounded polyhedron the minimum is attained at a vertex.x; y/ of f k0.
Since f k0 is a face ofMsem the point.x; y/ is also a vertex ofMsem.

(d) See [15]. 2

Note that the setMLBL , as the union of faces of the polyhedronMsem, is typically
a non-convex set. The same holds for prx MBLLGSI P

which may have re-entrant corners
(see e.g. [16]).

From Theorem 1 in view of Lemma 1(b) and using AL3 we directly obtain the follow-
ing corollary for.BLLGSIP/. Recall thatFGSIP does not depend ony and thatMLGSIP is a
subset ofIRn.

Corollary 1 Let be given (LGSIP) satisfying AL3. Then the feasible set MLGSIP =
prx MBLLGSI P

is the subset of the polyhedron prx Msem. given by a union of polyhedra
prx f k; k= 1; : : : ; K. In particular, MLGSIP is closed.

PROOF. We have only to note that the projection of the polyhedraMsem, f k are again
polyhedra. 2

We are now going to describe the structural difference between a general (LBL)
and a problem (BLLGSIP).
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Theorem 2 Let .x; y/ be a vertex solution of (LBL) in (14), i.e..x; y/ is a vertex of
Msem. Suppose, for the number p of upper level constraints we have p< n. Then at
least one of the solutionsyl of Ql .x/, say yl0, does not fulfill the condition (LICQ)
for Ql0.x/ (or even not (MFCQ)), i.e.yl0 is a degenerate vertex solution of the linear
problem Ql0.x/.

PROOF. If (LICQ) is satisfied atyl ∈ IRml for Ql .x/, then at mostml of the inequal-
ities Al x+ Bl yl − bl ≥ 0 can be active (l = 1; : : : ; r). Together with maximallyp
active constraints in the upper level, the number of active constraints for.x; y/ is less
than or equal top+∑r

l=1 ml = p+m0 < n+m0. Consequently.x; y/ cannot be a
vertex of the polyhedronMsem in IRn× IRm0. 2

In view of Theorem 2, when the numberp of constraintsG≥ 0 in the upper level is
too small, the regularity assumption A2BL (1) in Section 2 cannot hold. (Note that this
situation is stable under small smooth nonlinear perturbations.) In the extreme case, a
general (BL) may have no constraints in the upper level (i.e.p= 0). By definition, as
we have discussed in Section 2, a BLGSIP always has at least one upper level constraint.
This difference makes the generalized semi-infinite problems behave better. We give
an illustrative example.

Consider the (BL) without constraints in the upper level,

max x+ y subject to y is a solution of

Q(x): max
y

2y s.t. 0≤ y≤ 1
2x ; 2y+ x− 1≤ 0

Here, the feasible setMLBL is given by the unionf 1∪ f 2 of the facesf 1= {.x; y/ |y=
1
2x; 0≤ x≤ 1

2} and f 2 = {.x; y/ |2y+ x− 1= 0; 1
2 ≤ x≤ 1} of Msem. The solution

is attained at the vertex.x; y/ = .1;0/. At the solutiony of the one-dimensional
problemQ.x/ two lower level constraintsy= 0; 2y+ x− 1= 0 are active. Thus,y
is a degenerate vertex ofY.x/. SinceY.x/ = {y} consists only of one point, the Slater
condition (MFCQ) is not valid.

Consider a similar (LGSIP) problem.

max
x≥0

x s.t. 2y+ x− 1≤ 1 for all y ∈ Y.x/ := {y | 0≤ y≤ 1
2

x}

with the bilevel formulation

max
x≥0

x s.t. 2y+ x− 1≤ 0 andy is a solution of

Q(x): max
y

2y s.t. 0≤ y≤ 1
2

x :

(The conditionx ≥ 0 is added to yield the assumption AL3.) Here, the feasible set
MBLLGSIP consists of the facef 1 = {.x; y/ | y= 1

2x; 0≤ x≤ 1
2} of Msem. The solution

of BLLGSIP is attained at the vertex.x; y/ = .1
2;

1
2/. In contrast to the solution of the

(LBL) above, here, at the solutiony of Q.x/ only one lower level constrainty = 1
2x

is active andy is a non-degenerate vertex ofQ.x/ . The solutionx= 1
2 of (GSIP) is a

vertex of the feasible set MLGSIP= prx f 1 = [0; 1
2].
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We no show that the regularity properties of this example hold generically in
(LGSIP). We have to introduce some definitions and facts from genericity theory.

Firstly we define the problem set for (LBL) and BLLGSIP. Let us fix the vector
s= .n; r; p;m1;q1; : : : ;mr;qr /. A problem (LBL) in (14) can be seen as an element
from

Ps= {P= .Al ; Bl ;bl ; cl ;dl ; l = 0; : : : ; r /} ;

where the dimensions ofAl ; Bl etc. are defined bys. The setPs can be identified with
IRK, where

K := .n+ 1/p+
r∑

l=1

n+ .p+ 2/ml + .n+ml + 1/ql :

For BLLGSIP in view of Al = A; Bl = B;ml = m;ql = q andr = p we definesGSIP=
.n; p;m;q/ and the corresponding set of BLLGSIP problems

PsGSIP= {PGSIP= .A0; B0; A; B;b;b0; c0/} ≡ IRKGSIP

with KGSIP := .n+m+ 1/.p+ q/+ n.
In the sequel, by a generic subsetV of IRK we mean a set which is open and

has a complementV c = IRK \V of measure zero (notation¼.V c/ = 0). Note that
¼.V c/ = 0 implies that the setV is dense inIRK. For definitions and details in
genericity and stratification theory we refer to [3].

The whole genericity analysis can be based on the following general result (see [3]
for a proof).

Lemma 4 Let h : IRK → IR be a polynomial function, h6≡ 0. Then the solution
set h−1.0/ = {w ∈ IRK | h.w/ = 0} is a closed set of measure zero. Equivalently the
complementV = IRK \ h−1.0/ is a generic set in IRK.

This lemma will be used in a way indicated in the following lemma.

Lemma 5 Let Vl denote the set of real.l× l /-matrices, Vl = {A = .aij /i; j=1;::: ;l

| aij ∈ IR} ≡ IRl ·l . Then, the set V0l = {A ∈ Vl | detA= 0} is a closed set of measure
zero in IRl ·l . Equivalently the set Vrl = Vl \ V0

l of regular matrices is generic in IRl ·l .

Proof. In view of the Laplace expansion detA =∑³∈5l
sign³ a1 ³.1/ · · ·al ³.l / the

mappingh : IRl ·l → IR, h.A/ = detA, is a polynomial. Sinceh. I / = 1 we haveh 6≡ 0
(I denotes the unit matrix). The result now follows from Lemma 4. 2

In the proofs later on we tacitly make use of the following simple facts:

If V is a generic subset inIRq, then IRs× V is generic in IRs× IRq. Let
V1; : : : ;Vr be generic subsets ofIRq. Then the intersectionV = ∩r

i=1Vi is
generic inIRq.

We give the first genericity result.
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Lemma 6 The problem setPs (or PsGSIP) contains a generic subsetV such that for
any problem P inV the following holds.

(a) All vertices of the semi-feasible set Msem of P are non-degenerate. All local
solutions of P are locally unique and occur at vertices of Msem. All local solutions
have different object values. In particular, the problem P has a unique global
(vertex-) solution.

(b) For any x∈ X and l, if Ql .x/ has a solution, then this solution yl .x/ is unique
and occurs at a vertex of Yl .x/.

Proof. (a) For r = 1, the result is proven in [21, Th.3(a),(c)]. The generalization
to the caser > 1 is not difficult (we have only to take care of the fact that now the
problem matrices have block-structure).

(b) Choosex ∈ X arbitrarily andl ∈ {1; : : : ; r}. Consider the lower level problem

Ql .x/ : min
yl

dl yl st. Bl yl ≤ bl − Al x; :

Supposeyl is a solution ofQl .x/. Then there existIl , Il ⊂ {1; : : : ;ql }, |Il | ≤ ml (by
Caratheodory’s Theorem), 0< ul ∈ IR| Il | such that

uT
l .Bl / Il = −dT

l ; .Bl / j yl = .bl / j − .Al / j x; j ∈ Il : (16)

Here.Bl / Il denotes the sub-matrix ofBl only containing the rows with indices inIl .
Generically,|Il | ≥ml , i.e. we can assume|Il | =ml . In fact, if |Il |< ml then in view of
uT

l .Bl / Il =−dT
l the.|Il |+1/× .|Il |+1/-matrix (assume for brevityIl = {1; : : : ; |Il |}

and we denote the elements ofBl by .Bl /i j )

B̂ := [.Bl /i j | i=1;::: ;|Il |+1
j=1;::: ;|Il |

b̂] with b̂ := ..dl /1; : : : ; .dl /| Il |+1/
T

would satisfy det.B̂/ = 0 which can generically be avoided.
Since generically (with|Il | = ml ) the matrix .Bl / Il , is regular, a solutionyl of

Ql .x/ is generically a vertex of the polyhedronYl .x/. Sinceul > 0 this solution is
unique. 2

For the analysis of (LGSIP) we define the set

P r
sGSIP

= {P ∈ PsGSIP | the assumption AL3 hold } :

It is not difficult to show that the problem setP r
s GSIP is open inIRKGSIP.

The next theorem describes the difference between general (BL) and (GSIP) prob-
lems (see also Theorem 2). It shows that for BLLGSIP, in the generic case,n upper level
constraints must be active at a solutionx of (LGSIP) and that the regularity assumption
A2LGSIP in Section 3 holds.
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Theorem 3 The problem setP r
sGSIP

contains a generic subsetV such that for any
BLLGSIP problem P inV the following holds.

If P has a local solution.x; y/ (vertex solution see Lemma 6) then, precisely
n upper-level constraints are active, i.e. there exist n indices in the index set J=
{1; : : : ; p}, say l= 1; : : : ;n such that with the solutionsyl of Ql .x/ we have

.a0
l /

Tx+ .b0
l /

T yl − þ0
l = 0; l = 1; : : : ;n:

These solutionsyl are nondegenerate-vertices (i.e. (LICQ) holds). Moreover the local
solutionx of (LGSIP) is attained at a vertex of prx Msem.

In particular, if p< n holds, then generically BLLGSIPand the corresponding (LGSIP)
does not have a solution, i.e. the problem is unbounded.

PROOF. First we show that generically at leastn constraints must be active at the
local solution.x; y/ of BLLGSIP or the local solutionx of (LGSIP).

Suppose thatk < n points are active atx. This means there arek < n vertex
solutionsyl of Ql .x/, sayl = 1; : : : ; k, active, i.e. we have

.a0
l /

Tx+ .b0
l /

T yl − þ0
l = 0; l = 1; : : : ; k (17)

.a0
l /

Tx+ .b0
l /

T yl − þ0
l > 0; l = k+ 1; : : : ; p:

We show that then generically AL3 is violated (see the definition ofP r
sGSIP

).
With the value functionvl .x/ of Ql .x/, the local solutionx of (LGSIP) must be a

local minimizer of the problem,

min cT
0 x s.t. vl .x/ ≥ 0; l = 1; : : : ; k: (18)

Consider the optimality conditions (Kuhn-Tucker- and Complementary conditions) for
the solutionsyl of Ql .x/,

BT½l − b0
l = 0

½T
l .Ax+ Byl − b/ = 0:

(19)

Generically the solutionsyl of Ql .x/ are unique (cf. Lemma 6(b)). LetDl denote
the set of Lagrange multipliers½l satisfying (19). Suppose AL3 is satisfied (Slater
condition). Then by a well-known theorem (see e.g. [12]) the value functionsvl are di-
rectionally differentiable and with the Lagrange functionL l .x; y; ½/ := .a0

l x+ b0
l y−

þ0
l /

T − ½T
l .Ax+ By− b/ the directional derivativeDvl .x;d/ := lim t↓0 vl .x+td/−vl .x/

t
is given by

Dvl .x;d/ = max
½l∈Dl

DxL l .x; yl ; ½l /d= max
½l∈Dl

.a0
l − AT½l /

Td:

Choosing one½l ∈ Dl arbitrarily (e.g. the multiplier½l = −.BT
Il
/−1b0

l ; see (16) in the
proof of Lemma 6(b)). then obviously

.a0
l − AT½l /

Td ≤ Dvl .x;d/:

Generically we can assume that the vectorsc0; .a0
l − AT½l /; l = 1; : : :k; (k< n) are

linearly independent. Thus, there is a solutiond of

cT
0 d= −1 ; .a0

l − AT½l /
Td= 1; l = 1; : : :k:
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This implies that forxt = x+ td; t > 0 small, we havecT
0 xt < cT

0 x and in view of
vl .x/ = 0

vl .xt / = vl .x/+ tDvl .x;d/+ o.t/ ≥ t.a0
l − AT½l /

Td+ o.t/ > 0;

l = 1; : : : k; contradicting the fact thatx is a local solution of (18).
We now show thatk = n must be valid. In view of Lemma 6(a) generically the

local solutionz := .x; y1; : : : ; yk/ is a non-degenerate vertex of the semi-feasible set
Msem⊂ IRn+km of the problem

(LBL k): min cT
0 x s.t. Gl .x; y/ := a0

l x+ b0
l y− þ0

l ≥ 0; l = 1; : : : ; k;

and forl = 1; : : : ; k, yl is a solution of

Ql .x/: min
yl

.a0
l /

Tx+ .b0
l /

T yl s.t. Ax+ Byl − b≥ 0:

Thusn+ kmconstraints must be active inz. So for the numberNa of active constraints
we must have

Na = n+ km= k+
k∑

l=1

|Il | :

Usingk≥ n and|Il | ≥ m (yl are vertices ofQl .x/) we findk≤ n; |Il | ≤ m, i.e.

k= n and |Il | = m; l = 1; : : : ; k :

In view of Lemma 5 generically the.m×m/-matricesBIl are regular. Thus (LICQ) is
fulfilled generically.

We now show that generically the solutionx is attained at a vertex of prx Msem. The
Kuhn-Tucker condition for the solutionsyl of Ql .x/ read,

BT
Il½l = b0

l ; ½l ≥ 0:

Generically we must have½l > 0 (see the proof of Lemma 6(b)). By standard sensi-
tivity analysis it follows that locally nearx the solutionsyl .x/ of Ql .x/; l = 1; : : : ;n,
(k= n) with yl .x/ = yl are given by

AIl x+ BIl yl .x/− bIl = 0 or yl .x/ = B−1
Il .bIl − AIl x/:

By substituting this solution into (17) we see that a pointx nearx is feasible if and
only if(

.a0
l /

T − .b0
l /

T B−1
Il AIl

)
x− (þ0

l − .b0
l /

T B−1
Il bIl

) ≥ 0; l = 1; : : : ;n: (20)

Generically the vectors.a0
l /

T − .b0
l /

T B−1
Il

bIl ; l = 1; : : :n; must be linearly indepen-
dent. Thus then inequalities in (20) define the vertexx of the polyhedron prx Msem.

2
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5 Algorithm for linear GSIP

In the preceding sections we have seen that (GSIP) can be regarded as a special in-
stance of a bilevel problem. Because of the special structure of (GSIP) not all ap-
proaches for semi-infinite programming are appropriate for general (BL) problems
(for example the reduction approach). However any method for bilevel problems can
be used to solve the bilevel formulation of (GSIP) problems. We refer to [15] for a
survey of methods for solving (BL) (for the caser = 1).

Here we only consider the linear case and briefly outline the generalization tor > 1
(r lower level players) of an algorithm due to Bard and Moore (cf. [1]) which is based
on a so-called Kuhn-Tucker approach. With this method, also (LGSIP) can be solved.

Consider the necessary and sufficient Kuhn-Tucker optimality conditions for a so-
lution yl of the linear programQl .x/: Introducing slack variablesvl ∈ Rql with the
Lagrange multiplier vectors½l ∈ IRql these conditions are,

Al x+ Bl yl − bl − vl = 0

½T
l Bl − dl = 0

½l ≥ 0; vl ≥ 0

½T
l vl = 0 (complementarity conditions)

It follows that .x; y/ is a solution of (LBL) (cf. (14)) if and only if with slack vectors
vl and multipliers½l the point.x; y/ solves the optimization problem

min
x;y

cT
0 x+ dT

0 y s.t. A0x+ B0y− b0 ≥ 0

and forl = 1; : : : ; r Al x+ Bl yl − bl − vl = 0
½T

l Bl − dl = 0
½l ≥ 0; vl ≥ 0

½T
l vl = 0

(21)

Apart from the complementarity conditions½T
l vl = 0 this problem is linear.

A branch and bound method to solve (21) is as follows. We defineq := q1 +
: : :+ qr , the vectors3 := .½1; : : : ; ½r /, V := .v1; : : : ; vr / in IRq and the index set
K := {1; : : : ;q}. In view of3; V ≥ 0, the complementarity condition3TV in (21) is
equivalent with3i Vi = 0 for all i ∈ K. For given index setsK+; K− ⊂ K; K+∩ K− =
∅ we define the sets

3.K+/ = {3 ≥ 0 | 3i = 0; i ∈ K+}; V.K−/ = {V ≥ 0 | Vi = 0; i ∈ K−}:

For any pair3; V with 3 ∈ 3.K+/, V ∈ V.K−/ let LBL.K+; K−/ denote the prob-
lem obtained by replacing in the (LBL) problem (21) the complementarity condition
3V = 0 by the conditions3 ∈ 3.K+/, V ∈ V.K−/. The problems LBL.K+; K−/
are linear programs and for the right choice ofK+; K− the solution of LBL.K+; K−/
coincides with the solution of (LBL). The idea of the Bard/Moore algorithm is to ex-
amine in a branch and bound search all possible choices ofK+; K− (see [1] for further
details):

The algorithm starts withK+ = K− = ∅. Obviously, the value of LBL.∅;∅/ (a relax-
ation of (LBL)) gives a lower bound for the value of (LBL).
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BRANCH AND BOUND ALGORITHM:

start: Putk= 0; K+0 = ∅; K−0 = ∅, val=∞.

stepk→ k+ 1: GivenK+k ; K−k , try to calculate a solutionxk; yk;3k;Vk of LBL .K+k ; K−k /
with value valk.

1. If LBL .K+k ; K−k / is infeasible or if valk ≥ val goto 3.
If 3i Vi = 0 for all i ∈ K put val = valk, goto 3.

2. (Branching w.r.t.3) Select an indexik ∈ K \ K+k such that3ik Vik > 0, put
K+k+1 = K+k ∪ {ik}, K−k+1= K−k , goto 4.

3. Perform backtracking (see [1]) for details), goto 4.

4. k+ 1→ k.

With this methods problems of size up ton= m= 100 (for r = 1) can be solved (cf.
[1] , [4] for numerical experiments.)
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