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1 Introduction

The notions of symmetry, conserved quantity and reduction belong to the most important tools in the
study of mechanical systems. Noether’s theorem for the Euler-Lagrange or Hamiltonian equations
states that there is a one-to-one correspondence between continuous symmetries of the system and
conserved quantities. This leads to the observation that the existence of a one-dimensional symmetry
action implies the possibility of reducing the equations by two dimensions; namely by restricting to
the level sets of the conserved quantity and then factoring out the symmetry, or, as can be shown to
lead to the same result, first factoring out the symmetry and then restricting to the level sets.
Classically this theory of reduction by symmetry has been very important in the actual solving of
Euler-Lagrange or Hamiltonian equations, but also turned out to be an indispensable tool in the
stability analysis, see e.g. [13, 1]. Also for simulation these notions have proved to be valuable since
reliable numerical integration routines ideally should respect the conserved quantities and symmetries.
On the other hand, modular or ’object-oriented’ modeling of (electro-)mechanical systems almost
invariably leads, at least in first instance, to mixed sets of differential and algebraic equations (DAE’s),
and in many situations one would prefer not to eliminate the constraints and reduce the system to
an ordinary Hamiltonian system (if this is possible at all!). In previous work, see e.g. [15, 16, 10, 4],
it has been shown how the underlying Hamiltonian structure of DAE’s can be made explicit using
the geometric notion of a Dirac structure. The question then comes up if, and how, the tools of
symmetries and reduction as used for ordinary, explicit, Hamiltonian equations can be extended to
such Hamiltonian DAE’s. This should be equally important for their stability analysis and should
also have important consequences for the choice of integration routines of such DAE’s and their
properties.
In this paper we will investigate the notion of symmetries of implicit generalized Hamiltonian systems.
We continue up on the results in [14]. Furthermore we will investigate the reduction possibilities of
implicit generalized Hamiltonian system and prove the analog of the ’classical’ reduction theorems
of symplectic and Poisson Hamiltonian systems in [1, 7, 9, 12]. The paper is organized as follows.
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In section 2 we will give an introduction to Dirac structures and implicit generalized Hamiltonian
systems. In section 3 we will investigate the notion of symmetries of an implicit generalized Hamil-
tonian system. We will state some important results obtained in [14] and will derive some new ones.
Furthermore we will introduce the notion of first integrals (or conserved quantities) and Casimir
functions which are important for the reduction process described in sections 4 and 5. In section 4
we will derive the basic results on reduction of Dirac structures and implicit generalized Hamiltonian
systems. We will combine these results in section 5 to derive our main result on reduction of implicit
generalized Hamiltonian systems. This result will generalize the ’classical’ reduction theorems of
explicit Hamiltonian systems described in [1, 7, 9, 12]. In section 6 we will take a closer look at a
specific Casimir function introduced in section 5. Finally, in section 7 we will specialize the main
reduction result of section 5 to implicit generalized Hamiltonian systems satisfying an additional
regularity assumption on the constraints, which makes these systems explicit in some sense. We will
compare the reduction result in this case with the ’classical’ explicit case. Conclusions are given in
section 8.

2 Implicit generalized Hamiltonian systems

In this section we will give an introduction to Dirac structures and implicit generalized Hamiltonian
systems. For more information we refer to [16, 10, 14, 3, 5]. Let X be an n-dimensional manifold
with tangent bundle TX and cotangent bundle T ∗X . Define TX ⊕T ∗X as the smooth vector bundle
over X with fiber at each x ∈ X given by TxX ×T ∗xX . Let X be a smooth vector field and α a smooth
one-form on X respectively. We say that the pair (X,α) belongs to a subspace D ⊂ TX ⊕ T ∗X ,
denoted (X,α) ∈ D, if (X(x), α(x)) ∈ D(x), ∀x ∈ X . Let D be a linear subspace of TX ⊕ T ∗X ,
that is, (X,α), (Y, β) ∈ D implies h1(X,α) + h2(Y, β) ∈ D for all h1, h2 ∈ C∞(X ). Define the linear
subspace D⊥ as follows

D⊥ = {(Y, β) ∈ TX ⊕ T ∗X | 〈α, Y 〉+ 〈β,X〉 = 0, ∀ (X,α) ∈ D},

where 〈·, ·〉 denotes the natural pairing between a one-form and a vector field on X .

Definition 1. [5] A generalized Dirac structure on X is a linear subspace D ⊂ TX ⊕T ∗X such that
D = D⊥.

Remark 1. In definition 1, TX , respectively T ∗X , is identified with the set of smooth vector fields,
respectively one-forms, on X . So a Dirac structure is a set of pairs (X,α), with X a smooth vector
field and α a smooth one-form on X , such that D is linear and D = D⊥.

From the condition D = D⊥ it follows that D is constant dimensional, with dimD(x) = n, ∀x ∈ X ,
see also [5].

Proposition 1. Let D be a generalized Dirac structure on an n-dimensional manifold X . Then D
is constant dimensional with dimD(x) = n, ∀x ∈ X .

Proof. (i) Assume that dimD(x0) = p > n for some x0 ∈ X . Because D is smooth then also
dimD(x) ≥ p > n, ∀x ∈ U , where U ⊂ X is some neighborhood of x0. But this implies that
dimD⊥(x) < n, ∀x ∈ U , which contradicts the fact that D(x) = D⊥(x).
(ii) Assume that dimD(x) < n, ∀x ∈ U , for some open subset U ⊂ X . Then there is an open subset
Ũ ⊂ U such that dimD⊥(x) > n, ∀x ∈ Ũ . This contradicts the fact that D(x) = D⊥(x).
(iii) Finally, assume that dimD(x) < n, ∀x ∈ A, where A ⊂ X contains no interior points (i.e.
A does not contain any open subset of X ), and there exists an open subset U ⊂ X , with U ∩ A
nonempty, such that dimD(x) = n, ∀x ∈ U \A. Note that this is the only case still remaining from
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(i) and (ii). Then dimD⊥(x) = dimD(x) = n, ∀x ∈ U \ A (because D⊥(x) = D(x)). Now, if D
looses dimension on A then D⊥ can only gain dimension on A, so dimD(x) ≥ n, ∀x ∈ A. Actually,
from the fact that D⊥ is smooth it follows that dimD⊥(x) = n, ∀x ∈ A. This however contradicts
the fact that D(x) = D⊥(x) (since dimD(x) < n, ∀x ∈ A). This ends the proof.

From proposition 1 it follows that D is a subbundle of TX ⊕ T ∗X . Since D = D⊥ it immediately
follows that for every pair (X,α) ∈ D

〈α,X〉 = 0. (1)

Proposition 1 has the following obvious but important consequence.

Proposition 2. Let D be a generalized Dirac structure. Then D⊥(x) = [D(x)]⊥, ∀x ∈ X . Here
[D(x)]⊥ means the pointwise perpendicular to D(x), i.e.

[D(x)]⊥ = {(w,w∗) ∈ TxX × T ∗xX | 〈v∗, w〉 + 〈w∗, v〉 = 0, ∀(v, v∗) ∈ D(x)}.

Proof. It immediately follows that D⊥(x) ⊂ [D(x)]⊥. Both D⊥(x) and [D(x)]⊥ are linear (over R)
subspaces of TxX × T ∗xX . Furthermore, since dimD(x) = n (= dimD⊥(x) since D = D⊥) it follows
that dim[D(x)]⊥ = n. This implies that D⊥(x) = [D(x)]⊥.

A generalized Dirac structure is called closed, or just a Dirac structure, if the following condition
holds.

Definition 2. A generalized Dirac structure D on an n-dimensional manifold X is called closed if

〈LX1α2,X3〉+ 〈LX2α3,X1〉+ 〈LX3α1,X2〉 = 0,

for all pairs (X1, α1), (X2, α2) and (X3, α3) in D.

Here LXα denotes the Lie derivative of a one-form α with respect to a vector field X. We have the
following theorem.

Theorem 3. [5, 3, 4] A generalized Dirac structure D on X is closed if and only if

([X1,X2], iX1dα2 − iX2dα1 + d〈α2,X1〉) ∈ D, ∀ (X1, α1), (X2, α2) ∈ D.

Example 1. Let ω be a nondegenerate two-form on X , then

D = {(X,α) ∈ TX ⊕ T ∗X | α = iXω}

is a generalized Dirac structure on X . D is closed if and only if dω = 0. This corresponds to a
symplectic structure (X , ω).

Example 2. Let J(x) : T ∗xX → TxX , x ∈ X , be a skew-symmetric vector bundle map, then

D = {(X,α) ∈ TX ⊕ T ∗X | X(x) = J(x)α(x), ∀x ∈ X}

is a generalized Dirac structure on X . This corresponds to a Poisson structure (X , {·, ·}), where J(x)
is the structure matrix of the Poisson bracket {·, ·}. D is closed if and only if the bracket satisfies
the Jacobi identity.
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Examples 1 and 2 show that the notion of a (generalized) Dirac structure is a generalization of the
classical symplectic and Poisson structures.

Corresponding to a generalized Dirac structure D on X we define the following (co-)distributions

G0 = {X ∈ TX | (X, 0) ∈ D},
G1 = {X ∈ TX | ∃ α ∈ T ∗X such that (X,α) ∈ D},
P0 = {α ∈ T ∗X | (0, α) ∈ D},
P1 = {α ∈ T ∗X | ∃ X ∈ TX such that (X,α) ∈ D}.

Define the annihilator of a smooth distribution L ⊂ TX as the smooth codistribution

ann L = {α ∈ T ∗X | 〈α,X〉 = 0, ∀ X ∈ L},

and the kernel of a smooth codistribution K ⊂ T ∗X as the smooth distribution

kerK = {X ∈ TX | 〈α,X〉 = 0, ∀ α ∈ K}.

It follows that by definition G0 = ker P1 and P0 = ann G1. Furthermore, we have that P1 ⊂ ann G0
and G1 ⊂ ker P0, with equality if and only if P1, respectively G1, is constant dimensional [4]. From
theorem 3 it follows that G0,G1 and P1 are involutive if D is closed (if G1 is constant dimensional it
follows that also P0 is involutive).

We have the following two important representations of a generalized Dirac structure.

Theorem 4. [4] Let D be a generalized Dirac structure on a manifold X .

(a) If G1 is constant dimensional, then there exists a skew-symmetric linear map ω(x) : G1(x) ⊂
TxX → (G1(x))∗ ⊂ T ∗xX , x ∈ X , with kernel G0, such that

D = {(X,α) ∈ TX ⊕ T ∗X | α(x) − ω(x)X(x) ∈ ann G1(x), ∀x ∈ X , X ∈ G1}. (2)

(b) If P1 is constant dimensional, then there exists a skew-symmetric linear map J(x) : P1(x) ⊂
T ∗xX → (P1(x))∗ ⊂ TxX , x ∈ X , with kernel P0, such that

D = {(X,α) ∈ TX ⊕ T ∗X | X(x)− J(x)α(x) ∈ ker P1(x), ∀x ∈ X , α ∈ P1}. (3)

Conversely, if D is defined as in (2) for some skew-symmetric linear map ω(x) : TxX → T ∗xX , x ∈ X ,
and constant dimensional distribution G1 ⊂ TX , respectively if D is defined as in (3) for some
skew-symmetric linear map J(x) : T ∗xX → TxX , x ∈ X , and constant dimensional codistribution
P1 ⊂ T ∗X , then D is a generalized Dirac structure on X .

Note that if G1 = TX and G0 = 0, then we are in the situation of example 1, whereas if P1 = T ∗X ,
then we are in the situation of example 2.

The set of admissible functions corresponding to a generalized Dirac structure D is defined as

AD = {H ∈ C∞(X ) | dH ∈ P1}.

There is a well defined generalized Poisson bracket on AD given by [4]

{H1,H2}D = 〈dH1,X2〉 = −〈dH2,X1〉,

where H1,H2 ∈ AD, i.e. (X1, dH1), (X2, dH2) ∈ D.

Now we will define the notion of an implicit generalized Hamiltonian system.
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Definition 3. [4] Let D be a (generalized) Dirac structure on a manifold X . Let H ∈ C∞(X ) be
a smooth function on X , called the Hamiltonian or energy function. Then the implicit (generalized)
Hamiltonian system corresponding to (X ,D,H) is defined by the specification

(ẋ, dH(x)) ∈ D(x), x ∈ X .

Usually we will use the terminology implicit (generalized) Hamiltonian system (X ,D,H), by which
we mean the implicit (generalized) Hamiltonian system corresponding to (X ,D,H) as defined in
definition 3.

Example 3. Consider the generalized Dirac structure in example 1, then the corresponding implicit
generalized Hamiltonian system is precisely the classical Hamiltonian system defined by the two-form
ω

dH = ω(XH , ·), (4)

where XH is the vector field corresponding to the solution x(t), i.e. ẋ = XH(x). D is closed if and
only if there exist local coordinates (q, p) for x for which the system (4) for an arbitrary Hamiltonian
H takes the form

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p),

which are just the classical canonical Hamiltonian equations.

Example 4. Consider the generalized Dirac structure in example 2, then the corresponding implicit
generalized Hamiltonian system is given by

ẋ = J(x)
∂H

∂x
(x). (5)

This is precisely the classical Hamiltonian dynamics given by the Poisson bracket, i.e. ẋ = {x,H}.
Again, D is closed if and only if there exist local coordinates (q, p, r) for x for which (5) for an
arbitrary Hamiltonian H takes the form

q̇ =
∂H

∂p
(q, p, r), ṗ = −∂H

∂q
(q, p, r), ṙ = 0.

Let us reflect on definition 3 a bit more. First we will define the concept of a solution of the implicit
(generalized) Hamiltonian system (X ,D,H).

Definition 4. A solution of the implicit (generalized) Hamiltonian system (X ,D,H) is defined as a
smooth time function x : I ⊂ R→ X such that

(XH , dH)(x(t)) ∈ D(x(t)), ∀t ∈ I,

where XH(x(t)) = ẋ(t), ∀t ∈ I, and where I is the interval of existence of x(t), i.e. the domain of x.

By (1) it follows that we have the usual invariance of the Hamiltonian, or conservation of energy,
along solutions

dH

dt
(x(t)) = 〈dH(x(t)),XH (x(t))〉 = 0, ∀t ∈ I.
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In general, the implicit generalized Hamiltonian system (X ,D,H) defines a mixed set of differential
and algebraic equations (DAE’s). Take for instance the Dirac structure given in (3). The correspond-
ing implicit generalized Hamiltonian system (X ,D,H), for any H ∈ C∞(X ), is given by

ẋ = J(x)
∂H

∂x
(x) + g(x)λ, (6)

0 = gT (x)
∂H

∂x
(x), (7)

where g(x) is any full rank matrix such that Im g(x) = G0(x) = ker P1(x). (6,7) defines a set of
DAE’s, where the algebraic equations are given by (7). The variables λ can be seen as Lagrange
multipliers, required to keep the constraint equations (7) to be satisfied for all time. In [4] it is shown
that (6,7) can be used to describe a mechanical system with kinematic constraints (the correspond-
ing Dirac structure is closed if and only if the constraints are holonomic [4]). In that case, λ can be
interpreted as the constraint forces.

In general, define the constraint manifold (corresponding to an implicit generalized Hamiltonian
system (X ,D,H))

Xc = {x ∈ X | dH(x) ∈ P1(x)}.

Then it follows that every solution x(t) of (X ,D,H) necessarily is contained in Xc. Notice that
not through every point of Xc there has to go a solution of (X ,D,H). Also notice that in general
the solutions of (X ,D,H) are not unique. This happens for instance if the Lagrange multipliers λ
in (6,7) are not uniquely determined. If λ is uniquely determined, then the solutions of (X ,D,H)
are unique. This is the case when the implicit generalized Hamiltonian system (X ,D,H) satisfies
assumption 5 (see next). In that case there goes through every point xc ∈ Xc a unique solution x(t)
of (X ,D,H), see proposition 6.

An implicit generalized Hamiltonian system (X ,D,H) can be reduced to an explicit generalized
Hamiltonian system on Xc provided the following assumption is satisfied.

Assumption 5. Consider the implicit generalized Hamiltonian system (X ,D,H), with D a general-
ized Dirac structure on X . Assume that P1 is constant dimensional, so that D can be represented as
in theorem 4b. Let G0(x) = Im g(x) = span {g1(x), . . . , gm(x)}, with g1, . . . , gm linearly independent
vector fields on X (note that G0 = ker P1 is constant dimensional because P1 is constant dimensional).
Assume that the m×m matrix [LgiLgjH(x)]i,j=1,...,m is invertible for all x ∈ Xc.

Proposition 6. [14] Consider the implicit generalized Hamiltonian system (X ,D,H) and let as-
sumption 5 be satisfied. Then (X ,D,H) reduces to an explicit generalized Hamiltonian system on
Xc, denoted by (Xc,Dc,Hc), given by

ẋc = Jc(xc)
∂Hc

∂xc
(xc) =: XHc(xc), (8)

where xc ∈ Xc, Jc(xc) : T ∗xcXc → TxcXc and Hc : Xc → R denotes the restriction of H to Xc.

Proposition 6 becomes very transparent if we consider an implicit Hamiltonian system (X ,D,H),
i.e. with a generalized Dirac structure D which is closed. Then around every point x ∈ X there exist
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local coordinates (q, p, r, s) for which the system (X ,D,H) takes the form

q̇ =
∂H

∂p
(q, p, r, s),

ṗ = −∂H
∂q

(q, p, r, s),

ṙ = 0,

0 =
∂H

∂s
(q, p, r, s),

see [4]. Assuming that the system (X ,D,H) satisfies assumption 5 is equivalent in this case to
assuming that the matrix ∂2H

∂s2
(q, p, r, s) is nonsingular. Hence by the Implicit Function Theorem

we can locally express s in the coordinates q, p, r, that is, s = s(q, p, r). Defining the constrained
Hamiltonian Hc(q, p, r) = H(q, p, r, s(q, p, r)) the implicit Hamiltonian system (X ,D,H) becomes
the explicit Hamiltonian system

q̇ =
∂Hc

∂p
(q, p, r),

ṗ = −∂Hc

∂q
(q, p, r),

ṙ = 0.

3 Symmetries and first integrals

In this section we will investigate the notion of symmetry for implicit generalized Hamiltonian sys-
tems. We will recall some important results obtained in [14] and derive some new results. First, we
will recall some mathematical definitions and results that we will use extensively. These can all be
found e.g. in Abraham, Marsden and Ratiu [2], chapters 4 and 6. In the following all manifolds,
maps, vector fields and k-forms are assumed to be smooth. M and N are manifolds. X(M), respec-
tively X(N), is the space of vector fields on M , respectively on N . Ωk(M), respectively Ωk(N), is
the space of k-forms on M , respectively on N .

Definition 5. Let φ : M → N be a diffeomorphism and X ∈ X(M) a vector field on M . Then the
push-forward of X by φ is defined by φ∗X = Tφ ◦X ◦ φ−1 ∈ X(N), where Tφ is the tangent map of
the map φ.

If φ is not a diffeomorphism then the push-forward is not defined. In stead we can define the following

Definition 6. Let φ : M → N be a map. Two vector fields X ∈ X(M) and Y ∈ X(N) are said to be
φ-related, denoted by X ∼φ Y , if Tφ ◦X = Y ◦ φ.

The following proposition holds.

Proposition 7. Consider a map φ : M → N , and let X,Y ∈ X(M), X̄, Ȳ ∈ X(N) be vector fields
such that X ∼φ X̄ and Y ∼φ Ȳ . Then [X,Y ] ∼φ [X̄, Ȳ ], where [·, ·] is the usual Lie bracket of vector
fields.

Now, suppose M is a submanifold of N with the corresponding inclusion map ι : M → N , and let
X ∈ X(M) and Y ∈ X(N) be ι-related, X ∼ι Y , then from definition 6 it follows that at all points of
M ⊂ N , Y must be tangent to M (i.e. Y (x) = X(x) for all x ∈M). Then X is called the restriction
of Y to M .
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Definition 7. Let φ : M → N be a map and ω ∈ Ωk(N) a k-form on N . Then the pull-back of
ω by φ is defined by φ∗ω = Tφ∗ ◦ ω ◦ φ ∈ Ωk(M), where Tφ∗ is the adjoint of the map Tφ, i.e.
(φ∗ω)x(v1, . . . , vk) = ωφ(x)(Txφ · v1, . . . , Txφ · vk) where v1, . . . , vk ∈ TxM . Note that for the special
case of a 0-form on N , i.e. a function F : N → R, the pull-back is defined as φ∗F = F ◦ φ, which is
a function on M .

Note that φ need not to be a diffeomorphism for the pull-back to be defined.

Now, suppose M is a submanifold of N with the corresponding inclusion map ι : M → N , then a
k-form ω ∈ Ωk(N) induces a k-form on M by ωM = ι∗ω ∈ Ωk(M). We say that ωM is the restriction
of ω to M .
Now we will turn our attention to symmetries and first integrals of implicit generalized Hamiltonian
systems. The notion of symmetry of a generalized Dirac structure was defined in [5].

Definition 8. A vector field f ∈ TX is an (infinitesimal) symmetry of a generalized Dirac structure
D on X if (LfX,Lfα) ∈ D for all (X,α) ∈ D.

Analogously, a diffeomorphism φ : X → X is called a symmetry of D if

(φ∗X, (φ∗)−1α) ∈ D (9)

for all (X,α) ∈ D [14].

Example 5. Consider the generalized Dirac structure given in example 1. Then f ∈ TX is a
symmetry of D if and only if Lfω = 0 (see also [5], without proof).

Proof. From the fact that ω is nondegenerate (so the matrix ω̃(x) : TxX → T ∗xX , corresponding to
ω, is nonsingular [1]) it follows that:

G0 = 0, G1 = TX , P0 = 0, P1 = T ∗X .

Since Lf is a derivation the following holds [2],p.363-364:

Lf (ω(Y1, Y2)) = (Lfω)(Y1, Y2) + ω(LfY1, Y2) + ω(Y1, LfY2) (10)

for all Y1, Y2 ∈ TX .
Take (X,α) ∈ D, i.e. α = ω(X, ·), and suppose Lfω = 0. Then

(Lfα)(Y ) = iY Lfα = Lf iY α− i[f,Y ]α

= Lf (ω(X,Y ))− i[f,Y ]α

= ω(LfX,Y ) + ω(X,LfY )− i[f,Y ]α

= ω(LfX, ·)(Y ) + α(LfY )− i[f,Y ]α

= ω(LfX, ·)(Y )

for all Y ∈ TX , which shows that

Lfα = ω(LfX, ·)

and thus (LfX,Lfα) ∈ D. That means that f is a symmetry of D.
Conversely, let f be a symmetry of D. Then (LfX,Lfα) ∈ D, i.e. Lfα = ω(LfX, ·), for all
(X,α) ∈ D. Following the above derivation gives

Lf (ω(X,Y )) = ω(LfX,Y ) + ω(X,LfY )

for all Y ∈ TX , (X,α) ∈ D. By (10) this implies

(Lfω)(X,Y ) = 0

for all Y ∈ TX , (X,α) ∈ D, that is, for all Y ∈ TX , X ∈ G1 = TX . This implies Lfω = 0.
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Example 6. Consider the generalized Dirac structure given in example 2. Then f ∈ TX is a
symmetry of D if and only if f is canonical with respect to the Poisson bracket {·, ·}, i.e.

Lf{H1,H2} = {LfH1,H2}+ {H1, LfH2},

for all H1,H2 ∈ C∞(X ).

Proof. We have

G0 = 0, G1(x) = Im(J(x)), P0(x) = ker(J(x)), P1 = T ∗X .

The matrix J(x) : T ∗xX → TxX , x ∈ X defines a (2, 0)-tensor J : T ∗X × T ∗X → R. By definition

{H1,H2} = J(dH1, dH2)

for all H1,H2 ∈ AD = C∞(X ). Since Lf is a derivation [2],p.363-364:

Lf{H1,H2} = Lf (J(dH1, dH2))
= (LfJ)(dH1, dH2) + J(LfdH1, dH2) + J(dH1, LfdH2) (11)
= (LfJ)(dH1, dH2) + {LfH1,H2}+ {H1, LfH2}

(use LfdH = dLfH), for all H1,H2 ∈ C∞(X ). Taking H1,H2 = xi, xj, where xi, xj are local
coordinate functions on X , shows that f is canonical with respect to {·, ·} if and only if LfJ = 0.
Now we show that LfJ = 0 if and only if f is a symmetry of D.
Take (X,α) ∈ D, i.e. X = J(α, ·), and suppose LfJ = 0. Then

(LfX)[H] = ([f,X])[H] = f [X[H]]−X[f [H]]
= Lf (X[H]) −X[LfH]
= Lf (J(α, dH)) −X[LfH]
= J(Lfα, dH) + J(α,LfdH)−X[LfH]
= J(Lfα, ·)[H] + J(α, ·)[LfH]−X[LfH]
= J(Lfα, ·)[H]

for all H ∈ C∞(X ), showing that

LfX = J(Lfα, ·)

So (LfX,Lfα) ∈ D and that means that f is a symmetry of D.
Conversely, let f be a symmetry of D. Then (LfX,Lfα) ∈ D, i.e. LfX = J(Lfα, ·), for all
(X,α) ∈ D. Following the derivation above gives

Lf (J(α, dH)) = J(Lfα, dH) + J(α,LfdH)

for all H ∈ C∞(X ), (X,α) ∈ D. By (11) this implies

(LfJ)(α, dH) = 0

for all H ∈ C∞(X ), (X,α) ∈ D, that is, for all H ∈ C∞(X ), α ∈ P1 = T ∗X . Taking H = xi, i =
1, . . . , n shows that LfJ = 0.

The following proposition immediately follows from the definition.
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Proposition 8. [14] Let f be a symmetry of a generalized Dirac structure D, then LfGi ⊂ Gi,
LfPi ⊂ Pi, i = 0, 1.

The next proposition gives necessary and sufficient conditions for a vector field f to be a symmetry
of a generalized Dirac structure D.

Proposition 9. If the vector field f is symmetry of a generalized Dirac structure D, then

• f is canonical with respect to {·, ·}D, i.e.

Lf{H1,H2}D = {LfH1,H2}D + {H1, LfH2}D, ∀H1,H2 ∈ AD,

• LfGi ⊂ Gi, LfPi ⊂ Pi, i = 0, 1.

If P1 is constant dimensional and involutive then the converse is also true.

Proof. Take arbitrary (Xi, dHi) ∈ D, i = 1, 2. Because f is symmetry also (LfXi, LfdHi) =
(LfXi, dLfHi) ∈ D, i = 1, 2. Now,

Lf{H1,H2}D = Lf 〈dH1,X2〉 = 〈LfdH1,X2〉+ 〈dH1, LfX2〉
= {LfH1,H2}D + {H1, LfH2}D.

Now, suppose P1 is constant dimensional and involutive. Then ([11],p.66) P1 = span{dβi}, βi ∈
C∞(X ). First we prove that

if (X, dH) ∈ D, then (LfX,LfdH) ∈ D, ∀H ∈ AD. (12)

Take arbitrary H1,H2 ∈ AD i.e. (Xi, dHi) ∈ D, i = 1, 2. Since

Lf{H1,H2}D = Lf 〈dH1,X2〉 = 〈dLfH1,X2〉+ 〈dH1, LfX2〉
= {LfH1,H2}D + 〈dH1, LfX2〉

and

{LfH1,H2}D + {H1, LfH2}D = {LfH1,H2}D + 〈dH1,XLfH2〉

(because LfP1 ⊂ P1 we have LfdH2 = dLfH2 ∈ P1, i.e., (XLfH2, dLfH2) ∈ D) it follows from f
being canonical that

〈dH1,XLfH2 − LfX2〉 = 0

for arbitrary dH1 ∈ P1. Because P1 is spanned by exact one-forms it follows that XLfH2 = LfX2 +Z
with Z ∈ ker P1 = G0. Now (XLfH2 , LfdH2) = (LfX2 + Z,LfdH2) ∈ D and Z ∈ G0, i.e. (Z, 0) ∈ D,
imply (LfX2, LfdH2) ∈ D. Since H2 was arbitrary we have proved (12). Now, because P1 is spanned
by exact one-forms from (12) it follows easily that (X,α) ∈ D implies (LfX,Lfα) ∈ D and so f is a
symmetry of D.

An other version of proposition 9 is the following. Define {α1, α2} = 〈α1,X2〉 = −〈α2,X1〉 for
α1, α2 ∈ P1, i.e. (Xi, αi) ∈ D, i = 1, 2. Then we have

Proposition 10. f is a symmetry of D if and only if

• f is canonical with respect to {·, ·} i.e.

Lf{α1, α2} = {Lfα1, α2}+ {α1, Lfα2}

10



• LfGi ⊂ Gi, LfPi ⊂ Pi, i = 0, 1

Proof. Analogously to the proof of proposition 9.

The following proposition says that the set of symmetries of D is involutive.

Proposition 11. Let f1 and f2 both be symmetries of a generalized Dirac structure D. Then the
Lie bracket [f1, f2] is also a symmetry of D.

Proof. We have

L[f1,f2]X = [[f1, f2],X] = [[f1,X], f2]− [[f2,X], f1] = Lf1Lf2X − Lf2Lf1X,

and

L[f1,f2]α = Lf1Lf2α− Lf2Lf1α,

see [2], and the result immediately follows from definition 8.

Notice that the set of symmetries of D is not a distribution, because if f is a symmetry then
Hf,H ∈ C∞(X ) is not in general.
Now we will turn to the notion of symmetries, and correspondingly first integrals, of implicit (gener-
alized) Hamiltonian systems.

Definition 9. Consider the implicit generalized Hamiltonian system (X ,D,H), with D a generalized
Dirac structure on X . We call a nontrivial function P ∈ C∞(X ) a first integral for (X ,D,H) if

dP

dt
(x(t)) = 〈dP (x(t)),XH (x(t))〉 = 0,∀t ∈ I, (13)

for all solutions x(t) of (X ,D,H), i.e. with XH(x(t)) = ẋ(t).

Remark 2. Condition (13) can be difficult to check in practice. A sufficient condition for (13) to
hold is that

〈dP (x),XH (x) + G0(x)〉 = 0, ∀x ∈ Xc,

where XH(x) is arbitrary such that (XH(x), dH(x)) ∈ D(x), for every x ∈ Xc.

We recall the following two results.

Proposition 12. [14, 5, 3] Let D be a closed Dirac structure on X and f ∈ TX for which there
exists a F ∈ C∞(X ) such that (f, dF ) ∈ D. Then f is a symmetry of D.

Proposition 13. [14] Consider the implicit generalized Hamiltonian system (X ,D,H) with D a
generalized Dirac structure on X satisfying assumption 5. Let f ∈ TX for which there exists a
F ∈ C∞(X ) such that (f(x), dF (x)) ∈ D(x),∀x ∈ Xc. Furthermore, let f be a symmetry of H on
Xc, i.e. LfH(x) = 0,∀x ∈ Xc. Then LXHF = 0 on Xc, that is, F is a first integral.

We have the following proposition.

Proposition 14. Consider the implicit Hamiltonian system (X ,D,H), i.e. with closed Dirac struc-
ture D. Let P1, P2 ∈ C∞(X ) be two first integrals such that P1, P2 ∈ AD. Then {P1, P2}D is also a
first integral (with {P1, P2}D ∈ AD).
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Proof. P1, P2 ∈ AD, so there exist vector fields XP1 ,XP2 such that (XP1 , dP1), (XP2 , dP2) ∈ D.
Because D is closed, it follows from theorem 3 that ([XP1 ,XP2 ], d{P1, P2}D) ∈ D. Now

〈d{P1, P2}D(x(t)),XH (x(t))〉 = −〈dH(x(t)), [XP1 ,XP2 ](x(t))〉
= −i[XP1 ,XP2 ]dH(x(t))
= −LXP1

(iXP2
dH)(x(t)) + iXP2

(LXP1
dH)(x(t))

= iXP2
(d(iXP1

dH) + iXP1
d(dH))(x(t))

= 0,

for all solutions x(t) of (X ,D,H), where we used the fact that D = D⊥ and iXPkdH(x(t)) =
〈dH(x(t)),XPk (x(t))〉 = 0, k = 1, 2, because P1, P2 are first integrals. Thus, {P1, P2}D is also a first
integral of (X ,D,H). Note that we could also have used proposition 13 if assumption 5 is satisfied.

Definition 10. We will call a vector field f ∈ TX a symmetry of the implicit generalized Hamilto-
nian system (X ,D,H) if f is a symmetry of the generalized Dirac structure D (as in definition 8)
and f is a symmetry of H, i.e. LfH(x(t)) = 0 for all solutions x(t) of (X ,D,H), that is, f leaves
H invariant (along solutions).

Notice again that a sufficient condition for f to be a symmetry of H is that LfH(x) = 0, ∀x ∈ Xc.

We have the following proposition, corresponding to proposition 6.31 in [12].

Proposition 15. Consider the implicit Hamiltonian system (X ,D,H) and assume that D is closed.
Let P be a first integral such that P ∈ AD, i.e. there exists a vector field XP such that (XP , dP ) ∈ D.
Then XP is a symmetry of (X ,D,H). Furthermore, XP generates a one-parameter symmetry group
of (X ,D,H), i.e. the flow of XP .

Proof. We have (XP (x(t)), dP (x(t))), (XH (x(t)), dH(x(t))) ∈ D for all solutions x(t) of (X ,D,H).
from D = D⊥ it follows that

〈dH(x(t)),XP (x(t))〉 + 〈dP (x(t)),XH (x(t))〉 = 0. (14)

Now because P is a first integral, from (13) it follows that LXPH(x(t)) = 〈dH(x(t)),XP (x(t))〉 = 0
for all solutions x(t) of (X ,D,H) so XP is a symmetry of H. Because (XP , dP ) ∈ D it follows from
proposition 12 that XP is a symmetry of D. Furthermore, from remark 14 [14] it is evident that the
flow φXPt of XP generates a one-parameter symmetry group of (X ,D,H).

From proposition 15 and proposition 13 we immediately get a generalization of theorem 6.33 in [12].
First we need the following.

Definition 11. Consider a generalized Dirac structure D on X . A nontrivial function C ∈ C∞(X ) is
called a Casimir function if C is a first integral of (X ,D,H), as in definition 9, for every H ∈ C∞(X ).

Proposition 16. Consider a generalized Dirac structure D on X and a function C ∈ AD, i.e.
(XC , dC) ∈ D. If XC ∈ G0, or equivalently dC ∈ P0, then C is a Casimir function. If P1 is constant
dimensional and involutive, the converse is also true.

Proof. Take arbitrary H ∈ C∞(X ). Like in (14) it follows that

〈dH(x(t)),XC (x(t))〉+ 〈dC(x(t)),XH (x(t))〉 = 0, (15)
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for all solutions x(t) of (X ,D,H). Suppose XC ∈ G0 = ker P1 then 〈dH(x(t)),XC(x(t))〉 = 0, and
from (15) it follows that C is a first integral of (X ,D,H). Conversely, suppose C is a Casimir
function. Because P1 is constant dimensional and involutive there exist local coordinates (y, s) =
(y1, . . . , yn−m, s1, . . . , sm) for X in which

P1 = span{dy1, . . . , dyn−m}.

C Casimir means that 〈dC(x(t)),XH (x(t))〉 = 0, for all solutions x(t) of (X ,D,H), for arbitrary
H ∈ C∞(X ). Take Hi(y, s) = yi, i = 1, . . . , n−m, then (Xc)H=yi = X because Hi = yi ∈ AD, which
implies that through each x ∈ X there goes a solution x(t) of (X ,D, yi). It follows from (15) that
〈dyi,XC〉 = 0, i = 1, . . . , n−m, which implies that XC ∈ ker P1 = G0.

Note that definition 11 and proposition 16 do not assume that the generalized Dirac structure is
closed. In proposition 17 we will assume that the generalized Dirac structure D is closed, this
implies that the codistribution P1 is involutive [4].

Proposition 17. Consider the implicit Hamiltonian system (X ,D,H) and assume that D is closed.
Furthermore, assume that assumption 5 is satisfied. If P ∈ AD is a first integral then the corre-
sponding vector field XP is a symmetry of (X ,D,H). Conversely, if XP ∈ TX is a symmetry of
(X ,D,H) such that (XP , dP ) ∈ D for some P ∈ C∞(X ), then P is a first integral. P̃ ∈ C∞(X ) is
a second function such that (XP , dP̃ ) ∈ D only if P̃ = P +C for some Casimir function C. If P1 is
constant dimensional then the converse is also true.

Proof. The first two statements are proved in proposition 15 and 13 respectively. Now suppose
(XP , dP ), (XP , dP̃ ) ∈ D, then it follows that (0, d(P̃ − P )) ∈ D or XP̃−P = 0 ∈ G0. Proposition 16
implies that P̃ − P = C is a Casimir function. Conversely, suppose that P̃ − P = C is a Casimir
function, i.e. XP̃−P = Z ∈ G0. Then (Z, d(P̃ −P )) ∈ D. Z ∈ G0 implies (Z, 0) ∈ D so it follows that
(0, d(P̃ − P )) ∈ D. Because also (XP , dP ) ∈ D it follows that (XP , dP̃ ) is also in D.

Remark 3. In this section we derived some results about symmetries and first integrals of Dirac
structures and implicit generalized Hamiltonian systems. For some converse results we assumed the
constant dimensionality and involutivity of P1. We want to remark that in the case of mechanical
systems with kinematic constraints AT (q)q̇ = 0, the codistribution P1 is always constant dimensional
and involutive [4].

4 Reduction

In this section we will derive some results on the reduction of generalized Dirac structures and
correspondingly implicit generalized Hamiltonian systems.

4.1 Reduction of Dirac structures

Investigating reduction of implicit Hamiltonian systems we begin by looking at reduction of Dirac
structures. Consider a manifold X and a generalized Dirac structure D on X . Let X̄ be a submanifold
of X , then D induces a generalized Dirac structure D̄ on X̄ . This can be seen by the following.
Assume that the distribution G1, corresponding to D, is constant dimensional, then by theorem 4a
there exists a skew-symmetric linear map ω(x) : G1(x) → G1(x)∗ such that the generalized Dirac
structure D can be written as

D = {(X,α) ∈ TX ⊕ T ∗X | α(x)− ω(x)X(x) ∈ ann G1(x), ∀x ∈ X , X ∈ G1}. (16)
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The reduced generalized Dirac structure D̄ on X̄ is now defined by restricting the map ω(x) to
G1(x̄) ∩ Tx̄X̄ , x̄ ∈ X̄ , giving the map ω̄(x̄), i.e.

D̄ = {(X̄, ᾱ) ∈ T X̄ ⊕ T ∗X̄ | ᾱ(x̄)− ω̄(x̄)X̄(x̄) ∈ ann (G1(x̄) ∩ Tx̄X̄ ),
X̄(x̄) ∈ G1(x̄) ∩ Tx̄X̄ , ∀x̄ ∈ X̄}, (17)

see also [3]. It follows from theorem 4a (assuming that G1(x̄) ∩ Tx̄X̄ is constant dimensional) that
D̄ is a generalized Dirac structure on X̄ . We will show that D̄ can also be written in terms of the
inclusion map ι : X̄ → X .

Proposition 18. Consider a manifold X and a generalized Dirac structure D on X with G1 constant
dimensional. Let X̄ be a submanifold of X , and assume that G1(x̄) ∩ Tx̄X̄ , x̄ ∈ X̄ , is constant
dimensional (on X̄ ). Then D induces a generalized Dirac structure D̄ on X̄ given by

D̄ = {(X̄, ᾱ) ∈ T X̄ ⊕ T ∗X̄ | ∃ X such that X̄ ∼ι X and ∃ α such that
ᾱ = ι∗α with (X,α) ∈ D}. (18)

Furthermore, if D is closed then also D̄ is closed.

Proof. Denote D̄ in (17) by D̄1 and D̄ in (18) by D̄2. We prove that D̄1 = D̄2.
D̄2 ⊂ D̄1: Let (X̄, ᾱ) ∈ D̄2. There exists a vector field X ∈ G1 such that X̄ ∼ι X. This means that
at points of X̄ , X is tangent to X̄ , so X̄(x̄) = X(x̄) ∈ G1(x̄)∩ Tx̄X̄ for all x̄ ∈ X̄ . Let ᾱ = ι∗α where
α(x) − ω(x)X(x) ∈ ann G1(x), ∀x ∈ X , i.e. (X,α) ∈ D, then

(ι∗α)(x̄)− ι∗(ωX)(x̄) ∈ ι∗(ann G1)(x̄), ∀x̄ ∈ X̄ ,

and so, because X̄ ∼ι X,

ᾱ(x̄)− ω̄(x̄)X̄(x̄) ∈ ι∗(ann G1)(x̄), ∀x̄ ∈ X̄

Now, because ι∗(ann G1)(x̄) ⊂ ann (G1(x̄) ∩ Tx̄X̄ ), ∀x̄ ∈ X̄ , we get

ᾱ(x̄)− ω̄(x̄)X̄(x̄) ∈ ann (G1(x̄) ∩ Tx̄X̄ ), ∀x̄ ∈ X̄ ,

which means that (X̄, ᾱ) ∈ D̄1.
D̄1 ⊂ D̄2: Let (X̄, ᾱ) ∈ D̄1. Then X̄(x̄) ∈ G1(x̄) ∩ Tx̄X̄ , ∀x̄ ∈ X̄ . Because G1 is a smooth subbundle
of TX it follows that X̄ can be extended to a vector field X ∈ G1 such that X̄ ∼ι X (one can use
the Smooth Tietze Extension Theorem ([2],theorem 5.5.9), note that X is not unique). There exists
an α such that (X,α) ∈ D, i.e. α(x)− ω(x)X(x) ∈ ann G1(x), ∀x ∈ X . Then, by the above,

(ι∗α)(x) − ω̄(x̄)X̄(x̄) ∈ ann (G1(x̄) ∩ Tx̄X̄ ), ∀x̄ ∈ X̄ , (19)

and so, by (17) and (19),

ᾱ(x̄)− (ι∗α)(x̄) ∈ ann (G1(x̄) ∩ Tx̄X̄ ) ⊂ T ∗x̄ X̄ , ∀x̄ ∈ X̄ , (20)

(note that the annihilation should be taken with respect to T ∗X̄ ). However, because X̄ is a subman-
ifold of X there exists (locally) a function F ∈ C∞(X ) such that X̄ = F−1(0), i.e. a level set of F .
G1(x̄) ∩ Tx̄X̄ consists of all vector fields X(x̄) ∈ G1(x̄) which are tangent to X̄ , so when we take the
annihilator with respect to T ∗X

T ∗x̄X ⊃ ann (G1(x̄) ∩ Tx̄X̄ ) = spanC∞(X ){dF}(x̄) + P0(x̄), ∀x̄ ∈ X̄ .
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Considered as an element of T ∗x̄ X̄ , that is taking the annihilation with respect to T ∗X̄ , dF (x̄) will
be zero, i.e. ι∗dF (x̄) = dι∗F (x̄) = d0 = 0, ∀x̄ ∈ X̄ . Furthermore, the elements of P0 will restrict to
elements of ι∗P0 ⊂ T ∗X̄ . Now (20) becomes

ᾱ(x̄)− (ι∗α)(x̄) ∈ ι∗P0(x̄), ∀x̄ ∈ X̄ .

This means that ᾱ = ι∗α+ ι∗α0 for some α0 ∈ P0. Define β = α+ α0 then ᾱ = ι∗β and (X,β) ∈ D
(because (X,α) ∈ D and (0, α0) ∈ D). Therefore (X̄, ᾱ) ∈ D̄2.

Now, assume that D is closed. Take arbitrary (X̄k, ᾱk) ∈ D̄, k = 1, 2, 3, then X̄k ∼ι Xk and
ᾱk = ι∗αk, with (Xk, αk) ∈ D for some Xk and αk, k = 1, 2, 3. Then,

〈LX̄1
ᾱ2, X̄3〉+ 〈LX̄2

ᾱ3, X̄1〉+ 〈LX̄3
ᾱ1, X̄2〉 =

〈LX̄1
ι∗α2, X̄3〉+ 〈LX̄2

ι∗α3, X̄1〉+ 〈LX̄3
ι∗α1, X̄2〉 =

〈ι∗LX1α2, X̄3〉+ 〈ι∗LX2α3, X̄1〉+ 〈ι∗LX3α1, X̄2〉 =
〈LX1α2,X3〉+ 〈LX2α3,X1〉+ 〈LX3α1,X2〉 = 0,

because D is closed. This shows that also D̄ is closed.

There is also a direct proof of proposition 18, without having to involve (16,17). We assume that X̄ is
a submanifold of X with dim X̄ < dim X , that is, X̄ is closed in X . Define D̄ as in (18). Because D
is a linear space, that is (Xi, αi) ∈ D, i = 1, 2, implies (X1, α1) + (X2, α2) = (X1 +X2, α1 +α2) ∈ D
and h(X1, α1) = (hX1, hα1) ∈ D, ∀h ∈ C∞(X ), it easily follows that this also holds for D̄. Thus,
for every point x̄ ∈ X̄ , D̄(x̄) is a linear subspace of Tx̄X̄ × T ∗x̄ X̄ . We make the assumption that
dim(D(x̄) ∩ Es(x̄)) = d, ∀x̄ ∈ X̄ , for some integer d (i.e. constant), where Es is defined as the
smooth bundle

Es = {(X,α) ∈ TX ⊕ T ∗X | X̄ ∼ι X for some X̄ ∈ T X̄ }, (21)

(the subscript s stands for submanifold). This assumption equals the condition in [3]. Courant [3]
calls X̄ under this assumption a clean submanifold of X .

Proposition 19. Assume that D(x̄)∩Es(x̄), x̄ ∈ X̄ , is constant dimensional on X̄ . Then D̄ defined
in (18) is a generalized Dirac structure on X̄ .

Proof. We begin by proving that D̄ = D̄⊥. The first inclusion, i.e. D̄ ⊂ D̄⊥, is easy. We prove the
second inclusion, i.e. D̄⊥ ⊂ D̄. Take an arbitrary pair (Ȳ , β̄) ∈ D̄⊥, that is

(Ȳ , β̄) ∈ T X̄ ⊕ T ∗X̄ s.t. 〈β̄, X̄〉+ 〈ᾱ, Ȳ 〉 = 0, ∀(X̄, ᾱ) ∈ D̄.

There exist Y ∈ TX such that Ȳ ∼ι Y and β ∈ T ∗X such that β̄ = ι∗β (because ι∗ is surjective).
Notice that this only defines Y and β at points x̄ ∈ X̄ ⊂ X . Now,

0 = 〈β̄, X̄〉+ 〈ᾱ, Ȳ 〉 = 〈ι∗β, X̄〉+ 〈ι∗α, Ȳ 〉 = (〈β,X〉 + 〈α, Y 〉) ◦ ι,

which means that

〈β,X〉(x̄) + 〈α, Y 〉(x̄) = 0

for all x̄ ∈ X̄ ⊂ X and all pairs (X,α) ∈ D for which X̄ ∼ι X for some X̄ ∈ T X̄ . Therefore

(Y, β)(x̄) ∈ [(D ∩Es)(x̄)]⊥ = [D(x̄) ∩Es(x̄)]⊥ = D(x̄) + [Es(x̄)]⊥ = D(x̄) + (0, ann Tx̄X̄ ) (22)
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for all x̄ ∈ X̄ ⊂ X , with Es defined as in (21) (and where we used the assumption on constant
dimensionality at the first equality, see e.g. [6]).

Consider

Ẽs = {(0, γ) ∈ TX ⊕ T ∗X | ι∗γ = 0},

then Ẽs is a smooth bundle. Indeed, Ẽs(x), x 6∈ X̄ , can locally (that is, in some neighborhood U ⊂ X
of x, U ∩ X̄ = ∅) be written as

Ẽs(x) = spanC∞(X ){(0, dx1), . . . , (0, dxn)},

where x1, . . . , xn are local coordinates for X around x. Consider a point x̄ ∈ X̄ . Because X̄ is a
submanifold of X there exist local coordinates x1, . . . , xm, xm+1, . . . , xn for X in some neighborhood
U of x̄ such that x1, . . . , xm are local coordinates for X̄. Then Ẽs(x) can be written as

Ẽs(x) = spanC∞(X ){f1(x)(0, dx1), . . . , fm(x)(0, dxm), (0, dxm+1), . . . , (0, dxn)},

for all x ∈ U , with f1, . . . , fm ∈ C∞(U) such that fi(x) = 0⇔ x ∈ X̄ .

Notice that Ẽs(x̄) = (0, ann Tx̄X̄ ) for all x̄ ∈ X̄ . Then (22) becomes

(Y, β)(x̄) ∈ D(x̄) + Ẽs(x̄), (23)

for all x̄ ∈ X̄ ⊂ X . Because D is also a smooth bundle (by definition), around every point x ∈ X
there exists a local basis (Xi, αi) ∈ D, i = 1, . . . , n, – where Xi and αi are locally (that is, around
x) smooth vector fields, respectively one-forms – such that locally

D = spanC∞(X ){(Xi, αi)}.

From (23) it follows that we can write

(Y, β)(x̄) =
n∑
i=1

hi(x̄)(Xi, αi)(x̄) +
n∑

j=m+1

gj(x̄)(0, dxj) (24)

for some functions hi, gj ∈ C∞(U), i = 1, . . . , n, j = m+1, . . . , n, U ⊂ X a neighborhood of x̄. Define

γ(x̄) =
n∑

j=m+1

gj(x̄)dxj ,

then from (24)

(Y, β − γ)(x̄) ∈ D(x̄), ∀x̄ ∈ X̄ ⊂ X .

Because of (24) (Y, β − γ) can be locally, that is in some neighborhood U ⊂ X of every x̄, extended
to a smooth pair (Ye, βe) defined on U such that

Ye(x̄) = Y (x̄), βe(x̄) = β(x̄)− γ(x̄), ∀x̄ ∈ U ∩ X̄ ,

and (Ye, βe)(x) ∈ D(x), ∀x ∈ U . Indeed, take

(Ye, βe)(x) =
n∑
i=1

hi(x)(Xi, αi)(x), x ∈ U.
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Then, by the Smooth Tietze Extension Theorem ([2],theorem 5.5.9), (Y, β − γ) can be globally
extended to a pair

(Y ′, β′) ∈ D (25)

such that

Y ′(x̄) = Y (x̄), β′(x̄) = β(x̄)− γ(x̄), ∀x̄ ∈ X̄ ⊂ X

(the proof relies on a partition of unity on X ). It follows that

Y ′ ∼i Ȳ (26)

and

ι∗β′ = ι∗(β − γ) = ι∗β − 0 = β̄, (27)

where we used that ι∗β′ only depends on the definition of β′ in the points x̄ ∈ X̄ ⊂ X . Now (25,26,27)
imply that (Ȳ , β̄) ∈ D̄. So we have proved that D̄⊥ ⊂ D̄. So D̄ = D̄⊥. Smoothness of the pairs
(X̄, ᾱ) ∈ D̄ comes from smoothness of D, and thus D̄ is a generalized Dirac structure on X̄ .

Remark 4. With respect to the comparison of propositions 18 and 19 we remark that (i) G1 and
G(x̄)∩Tx̄X̄ , x̄ ∈ X̄ , constant dimensional imply D(x̄)∩Es(x̄), x̄ ∈ X̄ , constant dimensional, and (ii)
G1 and D(x̄)∩Es(x̄), x̄ ∈ X̄ , constant dimensional imply G(x̄)∩ Tx̄X̄ , x̄ ∈ X̄ , constant dimensional.

Consider a manifold X and a generalized Dirac structure D on X . Consider a symmetry Lie group
G of D, that is, every g ∈ G induces an action φg : X → X on X , which is a diffeomorphism,
and φg is a symmetry of the generalized Dirac structure D. Equivalently, let G be the Lie algebra
corresponding to G, then for every ξ ∈ G the infinitesimal generator ξX , i.e. the vector field on X
generated by ξ ∈ G (see for instance [7, 12]), is an (infinitesimal) symmetry of D as in definition
8. Then the generalized Dirac structure D on X induces a generalized Dirac structure D̂ on the
quotient space X̂ = X/G of G-orbits on X . Throughout we assume that X̂ = X/G has a manifold
structure. The usual assumption made is that G acts freely and properly on X (which is a sufficient
condition, see [1]). Furthermore, in proposition 20 we need the following assumptions. Let V denote
the distribution spanned by the infinitesimal generators of G. Assume that V + G0 is constant
dimensional. Furthermore, define the smooth bundle

Eq = {(X,α) ∈ TX ⊕ T ∗X | α = π∗α̂ for some α̂ ∈ T ∗X̂ }, (28)

(the subscript q stands for quotient manifold). We assume that D ∩Eq is constant dimensional (on
X ).

Proposition 20. [14] Consider a manifold X and a generalized Dirac structure D on X . Let G be
a symmetry Lie group of D and assume that V + G0 and D ∩Eq are constant dimensional. Then D
induces a generalized Dirac structure D̂ on X̂ = X/G given by

D̂ = {(X̂, α̂) ∈ T X̂ ⊕ T ∗X̂ | ∃ Xsuch that X ∼π X̂ and (X,α) ∈ D
where α = π∗α̂}.

Here, π : X → X̂ = X/G is the projection map. Furthermore, if D is closed then also D̂ is closed.
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Proof. We show that D̂ is a generalized Dirac structure. The first inclusion D̂ ⊂ D̂⊥ is easy. We
prove the second inclusion, D̂⊥ ⊂ D̂. Take an arbitrary pair (Ŷ , β̂) ∈ D̂⊥, that is

(Ŷ , β̂) ∈ T X̂ ⊕ T ∗X̂ s.t. 〈β̂, X̂〉+ 〈α̂, Ŷ 〉 = 0, ∀(X̂, α̂) ∈ D̂. (29)

Let Y ∈ TX be such that Y ∼π Ŷ and define β = π∗β̂, then (29) becomes

0 = 〈β̂, X̂〉+ 〈α̂, Ŷ 〉 = (〈β,X〉 + 〈α, Y 〉) ◦ π,

which means that

〈β,X〉 + 〈α, Y 〉 = 0 (30)

for all (X,α) ∈ D for which X ∼π X̂ and α = π∗α̂ for some X̂ ∈ T X̂ , α̂ ∈ T ∗X̂ . Now consider an
arbitrary (X,α) ∈ D with α = π∗α̂ for some α̂ ∈ T ∗X̂ . Since G is a symmetry group

(LξXX,LξXπ
∗α̂) ∈ D,

for all infinitesimal generators ξX , ξ ∈ G. Since LξX π
∗α̂ = 0, this yields

LξXX ∈ G0, ∀ξX , ξ ∈ G. (31)

Furthermore, by proposition 8, LξXG0 ⊂ G0. Take an arbitrary v =
∑

i hi(ξi)X ∈ V , where {ξi}i is a
basis of G and hi ∈ C∞(X ), then by (31)

[X, v] =
∑
i

hi[X, (ξi)X ] +
∑
i

LXhi (ξi)X ∈ G0 + V,

so

[X,V ] ⊂ V + G0.

Analogously, it follows that

[G0, V ] ⊂ V + G0.

Now, since V +G0, is constant dimensional we have the following properties (see [6, 11] for the analog
in controlled invariant distributions)

(a) there exist Z1, . . . , Zk which span G0 such that [Zi, V ] ⊂ V , which implies that Zi ∼π Ẑi for
some Ẑi ∈ T X̂ , i = 1, . . . , k,

(b) there exists a Z ∈ G0 such that [X + Z, V ] ⊂ V , which implies that X + Z ∼π X̂ for some
X̂ ∈ T X̂ .

Take an arbitrary Z ∈ G0 such that Z ∼π Ẑ for some Ẑ ∈ T X̂ , then by (30) it follows that

〈π∗β̂, Z〉 = 0.

Therefore

〈π∗β̂, Zi〉 = 0, i = 1, . . . , k,

and since Z1, . . . , Zk span G0

〈π∗β̂,G0〉 = 0. (32)
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Now take any pair (X,α) ∈ D for which there exists an α̂ ∈ T ∗X̂ such that α = π∗α̂. Then by (b)
there exists a Z ∈ G0 (so (X + Z,α) ∈ D) such that X + Z ∼π X̂ for some X̂ ∈ T X̂ , and so by (30)

〈β,X + Z〉+ 〈α, Y 〉 = 0,

which by (32) and the fact that β = π∗β̂ implies

〈β,X〉 + 〈α, Y 〉 = 0. (33)

Thus we have shown that (30), or (33), holds for all (X,α) ∈ D such that α = π∗α̂ for some α̂ ∈ T ∗X̂ .
Hence

(Y, β) ∈ (D ∩Eq)⊥ = D +E⊥q , (34)

where we used the constant dimensionality of D ∩Eq. We claim that

E⊥q = {(X̃, 0) ∈ TX ⊕ T ∗X | X̃ ∼π 0}. (35)

Indeed, the inclusion ⊃ is obvious, while for the reverse inclusion we note that if (X̃, α̃) is such that

〈α̃,X〉+ 〈α, X̃〉 = 0,

for all (X,α) ∈ Eq, then (taking X = 0) 〈α, X̃〉 = 0 for all α = π∗α̂, α̂ ∈ T ∗X̂ , and thus X̃ ∼π 0.
Hence

0 = 〈α̃,X〉+ 〈α, X̃〉 = 〈α̃,X〉,

for all X ∈ TX , implying that α̃ = 0. This proves the claim. By (34,35) there exists a vector field
Ỹ ∈ TX , with Ỹ ∼π 0, such that (Y + Ỹ , β) ∈ D. Since Y + Ỹ ∼π Ŷ this implies that (Ŷ , β̂) ∈ D̂.
This shows that D̂⊥ ⊂ D̂. So D̂ = D̂⊥, which means that D̂ is a generalized Dirac structure on X̂ .
For the proof that the closedness of D implies the closedness of D̂ we refer to [14].

Remark 5. Take F̂1, F̂2 ∈ AD̂, i.e. (X̂1, dF̂1), (X̂2, dF̂2) ∈ D̂. Then (X1, dF1), (X2, dF2) ∈ D for
Xj ∼π X̂j and Fj = F̂j ◦ π, j = 1, 2. So the bracket of admissible functions becomes

{F̂1, F̂2}D̂(x̂) = 〈dF̂2, X̂1〉(x̂) = 〈dF2,X1〉(x) = {F1, F2}D(x),

where π(x) = x̂. Equivalently

{F̂1, F̂2}D̂ ◦ π = {F̂1 ◦ π, F̂2 ◦ π}D. (36)

4.2 Reduction of implicit generalized Hamiltonian systems

In this section we will investigate the reduction possibilities of implicit Hamiltonian systems. We
begin by stating the analogies of propositions 19, 20.

Consider an implicit generalized Hamiltonian system (X ,D,H). Let P ∈ C∞(X ) be a first integral
of (X ,D,H) as in definition 9, and consider the level set X̄ = {x ∈ X | P (x) = a} for some a ∈ R
such that X̄ ∩Xc is nonempty. Then every solution of (X ,D,H) starting in X̄ will remain in X̄ . We
can describe these solutions by using the induced Dirac structure on X̄ .

Proposition 21. Consider the assumptions described above. Let D(x̄) ∩Es(x̄), x̄ ∈ X̄ , be constant
dimensional on X̄ , where Es is defined in (21). Then every solution of (X ,D,H) lying in X̄ is a
solution of the implicit generalized Hamiltonian system (X̄ , D̄, H̄), where D̄ is the generalized Dirac
structure induced by D, see proposition 19, and H̄ = ι∗H, i.e. the Hamiltonian H restricted to X̄ .
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Proof. Let x(t) be a solution of the implicit generalized Hamiltonian system (X ,D,H) contained in
X̄ , i.e.

(XH , dH)(x(t)) ∈ D(x(t)), for all t ∈ I,

where XH(x(t)) = ẋ(t) and I ⊂ R is the interval of existence of x(t). Because P is a first integral it
follows that XH(x(t)) is tangent to X̄ at all times t, see also (13). Define XH̄ such that

Tx̄(t)ι ·XH̄(x̄(t)) = XH(x(t)), ∀t ∈ I, (37)

where ι(x̄(t)) = x(t). Take arbitrary (Ȳ , β̄) ∈ D̄. There exist (Y, β) ∈ D such that Ȳ ∼ι Y and
β̄ = ι∗β. Then

(〈dH̄, Ȳ 〉+ 〈β̄,XH̄〉) (x̄(t)) = (〈ι∗dH, Ȳ 〉+ 〈ι∗β,XH̄〉) (x̄(t)) = (〈dH, Y 〉+ 〈β,XH 〉) (x(t)) = 0,

where in the last step we used that (XH , dH)(x(t)) ∈ D(x(t)) = D⊥(x(t)) = [D(x(t))]⊥, ∀t ∈ I, by
proposition 2. This shows that

(XH̄ , dH̄)(x̄(t)) ∈ [D̄(x̄(t))]⊥ = D̄⊥(x̄(t)) = D̄(x̄(t)), ∀t ∈ I,

which implies that x̄(t) is a solution of (X̄ , D̄, H̄). (Note that by (37) ˙̄x(t) = XH̄(x̄(t)).)

This proposition can be easily extended to the case where we consider the level set X̄ = {x ∈ X |
P1(x) = a1, . . . , Pr(x) = ar, (a1, . . . , ar) ∈ Rr} of r independent first integrals P1, . . . , Pr ∈ C∞(X )
of (X ,D,H).

Proposition 21 says that every solution of (X ,D,H) lying in X̄ is a solution of (X̄ , D̄, H̄). However, in
general, (X̄ , D̄, H̄) will generate more solutions, i.e. solutions that do not correspond to any solution
of (X ,D,H). This can be seen most easily in the classical case of reduction of a Hamiltonian system
on a symplectic manifold N to a submanifold M of N . Consider a symplectic manifold N , i.e. a
manifold N with a closed, nondegenerate, 2-form ω. On N the Hamiltonian system, with Hamiltonian
function H ∈ C∞(N), is given by the Hamiltonian vector field XH ∈ TN defined by

dH = ω(XH , ·) (38)

[1, 7]. The Hamiltonian system on N projects to a Hamiltonian system on a submanifold M ⊂ N
by defining the new Hamiltonian to be H̄ = ι∗H and the corresponding 2-form to be ω̄ = ι∗ω. Note
that ω̄ is again a closed 2-form on M but in general it will be degenerate, meaning that it has a
nontrivial kernel (we call M presymplectic). The ’new’ Hamiltonian system on M is now given by
the Hamiltonian vector field XH̄ ∈ TM defined by

dH̄ = ω̄(XH̄ , ·). (39)

Now, every solution of the Hamiltonian system defined by (38) lying in M (i.e. where XH ∈ TM)
is a solution of the Hamiltonian system defined by (39) (note that (38) and XH ∈ TM imply (39)).
However, due to the fact that ω̄ has a nontrivial kernel, the Hamiltonian system defined by (39)
generates more solutions than only those coming from solutions of (38). Indeed, if XH ∈ TM is a
solution of (38) then XH̄ = XH + Y is a solution of (39) for every Y ∈ TM that lies in the kernel of
ω̄.
An example where the above cannot happen, is when we restrict a Hamiltonian system on a Poisson
manifold to a level set of a Casimir function. Then the solutions of the restricted system will all
correspond to solutions of the original system. More generally we can say the following.
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Proposition 22. Consider an implicit generalized Hamiltonian system (X ,D,H). Let C ∈ C∞(X )
be a Casimir function of (X ,D,H), as in definition 11, and assume that dC ∈ P0. Consider the
level set X̄ = {x ∈ X | C(x) = a} for some a ∈ R such that X̄ ∩ Xc is nonempty. Then the
solutions of (X ,D,H) lying in X̄ are exactly the solutions of the implicit generalized Hamiltonian
system (X̄ , D̄, H̄), where D̄ is the generalized Dirac structure induced by D, see proposition 19, and
H̄ = ι∗H, i.e. the Hamiltonian H restricted to X̄ .

Proof. First note that since dC ∈ P0 = ann G1, D(x̄)∩Es(x̄) = D(x̄), x̄ ∈ X̄ , is constant dimensional
on X̄ . See the proof of proposition 21 to conclude that every solution x(t) of (X ,D,H) is a solution
of (X̄ , D̄, H̄).

Now, let x̄(t) be a solution of (X̄ , D̄, H̄), i.e.

(XH̄ , dH̄)(x̄(t)) ∈ D̄(x̄(t)), for all t ∈ I,

where XH̄(x̄(t)) = ˙̄x(t). Define

XH(x(t)) = Tx̄(t)ι ·XH̄(x̄(t)), ∀t ∈ I, (40)

where x(t) = ι(x̄(t)). Take arbitrary (Y, β) ∈ D. Because dC ∈ P0 it follows that 〈dC, Y 〉(x) =
0, ∀x ∈ X . This means that Y is tangent to X̄ . Define Ȳ ∈ T X̄ such that

Tx̄ι · Ȳ (x̄) = Y (ι(x̄)), ∀x̄ ∈ X̄ ,

and β̄ = ι∗β. Then

(〈dH, Y 〉+ 〈β,XH〉) (x(t)) =
〈dH(ι(x̄(t))), Tx̄(t)ι · Ȳ (x̄(t))〉+ 〈β(ι(x̄(t))), Tx̄(t)ι ·XH̄(x̄(t))〉 =
(〈ι∗dH, Ȳ 〉+ 〈ι∗β,XH̄〉) (x̄(t)) =
(〈dH̄, Ȳ 〉+ 〈β̄,XH̄〉) (x̄(t)) = 0,

where in the last step we used that (XH̄ , dH̄)(x̄(t)) ∈ D̄(x̄(t)) = D̄⊥(x̄(t)) = [D̄(x̄(t))]⊥, ∀t ∈ I.
This shows that

(XH , dH)(x(t)) ∈ [D(x(t))]⊥ = D⊥(x(t)) = D(x(t)), ∀t ∈ I.

Since ẋ(t) = XH(x(t)) by (40) this means that x(t) is a solution of (X ,D,H).

Of course, this proposition can also be easily extended to the case of multiple independent Casimir
functions.

To state the analog of proposition 20 we first need the following

Definition 12. We will call a vector field f ∈ TX a strong symmetry of the implicit generalized
Hamiltonian system (X ,D,H) if f is a symmetry of the generalized Dirac structure D (as in definition
8) and f leaves H invariant everywhere, i.e. LfH(x) = 0, ∀x ∈ X (note the difference with definition
10). G is called a strong symmetry Lie group of (X ,D,H) if G is a symmetry Lie group of D (as in
proposition 20) and every infinitesimal generator ξX , ξ ∈ G, leaves H invariant everywhere.
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Proposition 23. [14] Consider an implicit generalized Hamiltonian system (X ,D,H). Let G be a
strong symmetry Lie group of (X ,D,H) and assume that V +G0 and D∩Eq are constant dimensional.
Then (X ,D,H) projects to the implicit generalized Hamiltonian system (X̂ , D̂, Ĥ), where X̂ = X/G,
D̂ is the generalized Dirac structure induced by D, see proposition 20, and the Hamiltonian Ĥ is such
that H = Ĥ ◦ π (note that G leaves H invariant so Ĥ is well defined).
More explicitly: Every solution x̂(t) of (X̂ , D̂, Ĥ) is (locally) the projection under π of a solution x(t)
of (X ,D,H). Conversely, let x(t) be a solution of (X ,D,H) along a projectable vector field XH ,
that is, assume that there exists a vector field X ∈ TX such that X ∼π X̂ for some X̂ ∈ T X̂ and
X(x(t)) = XH(x(t)), ∀t ∈ I, then x(t) can be projected to a solution x̂(t) of (X̂ , D̂, Ĥ).

Proof. Let x̂(t) be a solution of (X̂ , D̂, Ĥ), i.e.

(XĤ , dĤ)(x̂(t)) ∈ D̂(x̂(t)), for all t ∈ I,

where XĤ(x(t)) = ˙̂x(t) and I ⊂ R is the interval of existence of x̂(t). Define Â = {x̂(t) | t ∈ I},
and assume that Â is a closed subset of X̂. If this is not the case, for instance if x̂(t) converges
asymptotically to an equilibrium point, then by defining Â on any closed interval I ′ ⊂ I (i.e. by
considering x̂(t) only “locally”) Â can be made into a closed subset of X̂. Then it follows that

(XĤ , dĤ)(x̂) ∈ D̂(x̂), ∀x̂ ∈ Â.

Because D̂ is a smooth bundle the pair (XĤ , dĤ) can be locally extended to a pair in D̂, and
therefore also, by the Smooth Tietze Extension Theorem [2], globally extended to a pair (X̂, α̂) ∈ D̂.
By definition of D̂ there exists a pair (X,α) ∈ D where

X ∼ρ X̂, α = ρ∗α̂. (41)

Because

ρ∗α̂(x) = α̂(ρ(x))(Txρ ·) = dĤ(ρ(x))(Txρ ·) = ρ∗dĤ(x) = dH(x),

for all x ∈ X such that ρ(x) = x̂ ∈ Â, it follows that (X, dH)(x) ∈ D(x) for all x ∈ X such that
ρ(x) = x̂ ∈ Â. Equivalently, let x(t) be such that ẋ(t) = X(x(t)), then ρ(x(t)) = x̂(t) (because of
(41)), and

(XH , dH)(x(t)) ∈ D(x(t)), for all t ∈ I,

where we wrote XH for X. This means that x(t) is a solution of the implicit generalized Hamiltonian
system (X ,D,H).

Conversely, let x(t) be a solution of (X ,D,H), i.e.

(XH , dH)(x(t)) ∈ D(x(t)), for all t ∈ I,

where XH(x(t)) = ẋ(t) and I ⊂ R is the interval of existence of x(t). Assume that x(t) is the flow of
a projectable vector field, that is, assume that there exists a vector field X ∈ TX such that X ∼π X̂
for some X̂ ∈ T X̂ and X(x(t)) = XH(x(t)), ∀t ∈ I.
Take arbitrary (Ŷ , β̂) ∈ D̂. There exist (Y, β) ∈ D such that Y ∼π Ŷ and β = π∗β̂. Let x̂(t) =
π(x(t)), then

(〈dĤ, Ŷ 〉+ 〈β̂, X̂〉) (x̂(t)) =
〈dĤ(x̂(t)), Tx(t)π · Y (x(t))〉 + 〈β̂(x̂(t)), Tx(t)π ·X(x(t))〉 =
(〈dH, Y 〉+ 〈β,X〉) (x(t)) =
(〈dH, Y 〉+ 〈β,XH〉) (x(t)) = 0,
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where in the last step we used that (XH , dH)(x(t)) ∈ D(x(t)) = D⊥(x(t)) = [D(x(t))]⊥, ∀t ∈ I.
This shows that

(dĤ,XĤ)(x̂(t)) ∈ [D̂(x̂(t))]⊥ = D̂⊥(x̂(t)) = D̂(x̂(t)), ∀t ∈ I,

where we wrote XĤ for X̂. From the fact that X ∼π X̂ it follows that ˙̂x(t) = XĤ(x̂(t)), ∀t ∈ I, so
x̂(t) is a solution of (X̂ , D̂, Ĥ).

Remark 6. When assumption 5 is satisfied, it can be shown that x(t) always is the flow of a
projectable vector field, see section 7.

Example 7. In proposition 23 we needed the assumption that a solution of (X ,D,H) is a solution
along a projectable vector field XH in order to project to a solution of the reduced system (X̂ , D̂, Ĥ).
In general, not every solution of (X ,D,H) projects to a solution of (X̂ , D̂, Ĥ). This can be seen in
this example. Consider the following generalized Dirac structure on X = R3

D = {(X,α) ∈ TX ⊕ T ∗X | X ∈ ker P1, α ∈ P1},

with

P1 = spanC∞(X ) {dx3}, i.e. G1 = G0 = ker P1 = spanC∞(X ) {
∂

∂x1
,
∂

∂x2
}.

Take an arbitrary pair (X,α) = (h1
∂
∂x1

+ h2
∂
∂x2

, h3dx3) ∈ D, with h1, h2, h3 ∈ C∞(X ). Then it can
easily be calculated that

(L ∂
∂x1

X,L ∂
∂x1

α) = ((L ∂
∂x1

h1)
∂

∂x1
+ (L ∂

∂x1
h2)

∂

∂x2
, (L ∂

∂x1
h3) dx3) ∈ D,

so ∂
∂x1

is a symmetry of D. Let the Hamiltonian function be of the form H(x1, x2, x3) = Ĥ(x3), then
also L ∂

∂x1
H = 0, so ∂

∂x1
is a strong symmetry of (X ,D,H). An arbitrary solution x(t) of (X ,D,H)

is the flow along a vector field

XH(x1, x2, x3) = h1(x1, x2, x3)
∂

∂x1
+ h2(x1, x2, x3)

∂

∂x2
, (42)

with h1, h2 ∈ C∞(X ). However, the vector field XH in (42) will only project to a vector field X̂ = XĤ

on X/ ∂
∂x1
' R2 if it has the form

XH(x1, x2, x3) = h1(x1, x2, x3)
∂

∂x1
+ h2(x2, x3)

∂

∂x2

(note the difference, h2 should not depend on x1). In that case

XĤ = h2(x2, x3)
∂

∂x2
.

The reduced generalized Dirac structure is

D̂ = {(X̂, α̂) ∈ T X̂ ⊕ T ∗α̂ | X̂ ∈ ker P̂1, α̂ ∈ P̂1},

with

P̂1 = spanC∞(X̂ ){dx3}, i.e. Ĝ1 = Ĝ0 = ker P̂1 = spanC∞(X̂ ) {
∂

∂x2
},

and (XĤ , dĤ) ∈ D̂. With respect to remark 6, note that assumption 5 is not satisfied.

Now, after these preliminaries, we are ready to investigate what is going to be the main result of our
work.

23



5 Main result

In this section we will derive our main result on reduction of implicit generalized Hamiltonian sys-
tems. This result will generalize the ’classical’ reduction theorems of explicit Hamiltonian systems
described in [1, 7, 9, 12].

Consider an implicit generalized Hamiltonian system (X ,D,H) on an n-dimensional manifold X ,
with generalized Dirac structure D and Hamiltonian function H ∈ C∞(X ). Suppose the system
has r independent first integrals Pi ∈ C∞(X ), i = 1, . . . , r, and suppose there exist corresponding
independent vector fields XPi ∈ TX , i.e. (XPi , dPi) ∈ D, i = 1, . . . , r, such that each XPi is a strong
symmetry of (X ,D,H). We assume that Pi and XPi satisfy the following conditions

{Pi, Pj}D =
r∑

k=1

ckijPk, (43)

and

[XPi ,XPj ] =
r∑

k=1

ckijXPk , (44)

where ckij ∈ R are constants, i, j = 1, . . . , r.

Remark 7. Note that in the case of a Poisson structure on X , which satisfies the Jacobi identity
(i.e. which is closed), (43) implies (44) (in the case of a symplectic structure on X , (43) and (44) are
equivalent). However, in the case of a Dirac structure (i.e. which is closed) on X (43) implies only
[XPi ,XPj ] =

∑r
k=1 c

k
ijXPk + Zij where Zij ∈ G0.

Because of condition (44) there exists an r-dimensional Lie group G with corresponding Lie algebra
G for which the infinitesimal generators (ξi)X = XPi , i = 1, . . . , r, where {ξ1, . . . , ξr} is a basis of G
[12]. It follows that G is a strong symmetry Lie group of (X ,D,H). Let {µ1, . . . , µr} be a basis of
G∗. We define the following map from X to G∗, also called momentum map [12, 1, 7],

P (x) =
r∑
i=1

Pi(x)µi.

Proposition 24. The momentum map P is Ad∗-equivariant, that is,

P (φg(x)) = Ad∗g(P (x)),

for all x ∈ X , g ∈ G, where Ad∗ is the coadjoint action corresponding to the Lie group G.

Proof. The proof equals the proof in [12], see also [1, 7], we only have to consider the bracket of
admissible functions {·, ·}D in stead of the Poisson bracket {·, ·}.

Now we will describe the reduction possibilities of the implicit generalized Hamiltonian system
(X ,D,H) admitting the strong symmetry Lie group G corresponding to the the first integrals
P1, . . . , Pr. There are two ways, which in a sense are dual, to reduce the Hamiltonian system.
The first one is to begin by reducing the Hamiltonian system to a level set P−1(µ) of the first in-
tegrals, using proposition 21. At this point the resulting implicit generalized Hamiltonian system
will have some symmetry remaining from the symmetry group G, however, in general it will not be
the whole group G but only a subgroup Gµ of G. Then we can use proposition 23 to further reduce
the Hamiltonian system to an implicit generalized Hamiltonian system on the quotient manifold
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P−1(µ)/Gµ. The second way to reduce the implicit generalized Hamiltonian system (X ,D,H) is by
beginning to reduce the Hamiltonian system to an implicit generalized Hamiltonian system on the
quotient manifold X/G, as in proposition 23. The resulting Hamiltonian system will have some first
integrals (actually these will be Casimir functions) remaining from P1, . . . , Pr which we can use to
further reduce the Hamiltonian system to a level set of these first integrals, proposition 21. The main
result of our work will state that these two ways of reducing the implicit generalized Hamiltonian
system (X ,D,H) will result in the same reduced implicit generalized Hamiltonian system (up to
diffeomorphism). This is a generalization of the classical reduction theorems of [1, 7, 9, 12].

Reduction first using the first integrals, then a remaining symmetry group

Consider the implicit generalized Hamiltonian system (X ,D,H) with corresponding independent first
integrals P1, . . . , Pr and strong symmetry Lie group G as described previously. Because P1, . . . , Pr
are first integrals the solutions of (X ,D,H) will live on some level set X̄ = {x ∈ X | P1(x) =
a1, . . . , Pr(x) = ar, (a1, . . . , ar) ∈ Rr}, X̄ ∩ Xc nonempty. Note that by using the momentum map
P we can denote this level set by X̄ = P−1(µ) for some µ ∈ G∗. Using proposition 21, assuming
D(x̄) ∩ Es(x̄), x̄ ∈ X̄ , is constant dimensional on X̄ , we can reduce the Hamiltonian system to an
implicit generalized Hamiltonian system (P−1(µ), D̄, H̄) on P−1(µ), where D̄ is the generalized Dirac
structure induced by D, and H̄ = ι∗1H is the Hamiltonian function on P−1(µ), ι1 : P−1(µ) → X
being the inclusion map. Consider the subgroup

Gµ = {g ∈ G | Ad∗g(µ) = µ}, (45)

or equivalently

Gµ = {g ∈ G | φg(P−1(µ)) ⊂ P−1(µ)}.

Gµ is a subgroup of G and therefore a Lie group itself.

Lemma 25. Gµ is a strong symmetry Lie group of (P−1(µ), D̄, H̄).

Proof. Consider X̄ = (ξµ)P−1(µ) for some ξµ ∈ Gµ. Then X̄ is ι1-related to X = (ξµ)X . Now, let
(Ȳ , β̄) ∈ D̄, then Ȳ ∼ι1 Y and β̄ = ι∗1β, (Y, β) ∈ D, see (18). By proposition 7, LX̄ Ȳ = [Ȳ , X̄] ∼ι1
[Y,X] = LXY . Furthermore

LX̄ β̄ = LX̄ι
∗
1β = ι∗1LXβ.

Now, X is a symmetry of D which means that (LXY,LXβ) ∈ D, and it follows that also (LX̄ Ȳ , LX̄ β̄)∈
D̄, so X̄ is a symmetry of D̄. Because

LX̄H̄1 = LX̄ι
∗
1H = ι∗1LXH = 0,

X̄ is a strong symmetry of (P−1(µ), D̄, H̄).

Gµ is called the residual symmetry group. Now we can use proposition 23 (in theorem 28 we
will show that the assumptions of proposition 23 are satisfied) to further reduce the Hamiltonian
system (P−1(µ), D̄, H̄) to an implicit generalized Hamiltonian system (P−1(µ)/Gµ, ˆ̄D, ˆ̄H) on the
quotient manifold P−1(µ)/Gµ, where ˆ̄D is the generalized Dirac structure induced by D̄, and ˆ̄H is
the Hamiltonian function on P−1(µ)/Gµ, with H̄ = ˆ̄H ◦ πµ, where πµ : P−1(µ)→ P−1(µ)/Gµ is the
projection map.
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Reduction first using the symmetry group, then the remaining first integrals

Again, consider the same implicit generalized Hamiltonian system (X ,D,H) with corresponding
independent first integrals P1, . . . , Pr and strong symmetry Lie group G as we started with in the
reduction process described above. Contrary to starting with reduction to a level set of the first
integrals, as we did above, we will now reduce the Hamiltonian system (X ,D,H) by first reducing
it to the quotient manifold X/G. Assume that V + G0 and D ∩Eq are constant dimensional. Using
proposition 23 this gives us an implicit generalized Hamiltonian system (X/G, D̂, Ĥ) on X/G, where
D̂ is the generalized Dirac structure induced by D, and Ĥ is the Hamiltonian function on X/G, with
H = Ĥ ◦ π. Here, π : X → X/G is the projection map.
Consider the quotient manifold Ĝ∗ = G∗/G of coadjoint orbits Oµ in G∗, along with the projection
map $ : G∗ → Ĝ∗. A coadjoint orbit is defined as

Oµ = {Ad∗g(µ) | g ∈ G}, µ ∈ G∗. (46)

Define the map P̂ : X/G→ Ĝ∗ by [7]

P̂ ◦ π = $ ◦ P. (47)

Then P̂ is well defined, because take arbitrary x̂ ∈ X/G and x1, x2 ∈ X such that π(x1) = π(x2) = x̂.
This means that x1 = φg(x2) for some g ∈ G. Then

P (x1) = P (φg(x2)) = Ad∗g(P (x2))

by Ad∗-equivariance of P (proposition 24). This implies that

P (x1) ∈ OP (x2),

and therefore that

$(P (x1)) = $(P (x2)),

so P̂ (x̂) is well defined. Furthermore P̂ is a conserved quantity along solutions of (X/G, D̂, Ĥ).
Indeed, let x̂(t) be a solution of (X/G, D̂, Ĥ). Then there exists (locally) a solution x(t) of (X ,D,H)
such that π(x(t)) = x̂(t), see proposition 23. The corresponding vector fields are related, i.e. XH ∼π
XĤ . Then

〈dP̂ ,XĤ〉(x̂(t)) = 〈π∗dP̂ ,XH〉(x(t)) = 〈d(P̂ ◦ π),XH〉(x(t)) =
= 〈d($ ◦ P ),XH 〉(x(t)) = d$(〈dP,XH 〉)(x(t)) = 0, (48)

where the last step follows from the fact that P is a first integral of (X ,D,H). Actually, P̂ is a
Casimir function, because take arbitrary Ĥ ∈ C∞(X/G), then Ĥ corresponds to a G-invariant func-
tion H ∈ C∞(X ), by H = Ĥ ◦ π, for which again P will be a first integral, and so by (48) P̂ will
be conserved along solutions of (X/G, D̂, Ĥ). In section 6 we will elaborate a bit more on the map
P̂ . In particular we will show that “locally dP̂ ∈ P̂0”. Using proposition 22 (see also section 6)
we can restrict the Hamiltonian system (X/G, D̂, Ĥ) to an implicit generalized Hamiltonian system
(P̂−1(µ̂), ¯̂

D,
¯̂
H) on a level set P̂−1(µ̂) of P̂ , for some µ̂ ∈ Ĝ∗ (to be consistent with the procedure

above we should take µ̂ = $(µ)). Here, ¯̂
D is the generalized Dirac structure induced by D̂, ¯̂

H = ι∗2Ĥ
is the Hamiltonian function on P̂−1(µ̂) and ι2 : P̂−1(µ̂)→ X/G is the inclusion map.

Consider the two reduction procedures described above.
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Lemma 26. There exists a diffeomorphism ψ from P−1(µ)/Gµ to P̂−1(µ̂), with µ̂ = $(µ), such that
the following diagram commutes:

X
ι1 ↗ ↘ π

P−1(µ) X/G
πµ ↓ ↑ ι2

P−1(µ)/Gµ ψ −→ P̂−1(µ̂)

(49)

Proof. The proof is based on [7]. First we prove that there exists a diffeomorphism ψ : P−1(µ)/Gµ →
π(P−1(µ)). Note that P−1(µ) is a submanifold of X so π(P−1(µ)) makes sense and is a subspace of
X/G (formally, we should write π(ι1(P−1(µ))) in stead of π(P−1(µ))).
Now, define ψ : P−1(µ)/Gµ → π(P−1(µ)) as follows: Let ˆ̄x ∈ P−1(µ)/Gµ. There exists an x̄ ∈
P−1(µ) such that πµ(x̄) = ˆ̄x. Define ψ(ˆ̄x) = π(x̄). To see that ψ is well defined, let x̄′ ∈ P−1(µ)
be another element such that πµ(x̄′) = ˆ̄x. Then there exists a g ∈ Gµ such that φg(x̄) = x̄′ and
it follows that π(x̄) = π(x̄′), so ψ is well defined. We have to proof that ψ is a diffeomorphism.
The fact that ψ is surjective is trivial. Now, let ˆ̄x1, ˆ̄x2 ∈ P−1(µ)/Gµ be such that ψ(ˆ̄x1) = ψ(ˆ̄x2).
Then ψ(ˆ̄x1) = π(x̄1) and ψ(ˆ̄x2) = π(x̄2) for x̄1, x̄2 ∈ P−1(µ) with πµ(x̄1) = ˆ̄x1 and πµ(x̄2) = ˆ̄x2. So
π(x̄1) = π(x̄2) and therefore there exists a g ∈ G such that φg(x̄1) = x̄2. From Ad∗-equivariance of
P , proposition 24, it follows that g ∈ Gµ. Indeed,

Ad∗g(µ) = Ad∗g(P (x̄1)) = P (φg(x̄1)) = P (x̄2) = µ,

and comparing with (45) gives that g ∈ Gµ. But φg(x̄1) = x̄2 for some g ∈ Gµ implies that
πµ(x̄1) = πµ(x̄2) and so ˆ̄x1 = ˆ̄x2. That means that ψ is injective. So ψ is bijective and because we
assume that all maps are smooth it follows that ψ is a diffeomorphism.
Secondly, we prove that π(P−1(µ)) = P̂−1(µ̂). π(P−1(µ)) ⊂ P̂−1(µ̂) is easy and follows directly from
(47). We prove the converse inclusion. Take arbitrary x̂ ∈ P̂−1(µ̂) ⊂ X/G and let x ∈ X be such
that π(x) = x̂. Then by (47)

$(µ) = µ̂ = P̂ (π(x)) = $(P (x)),

which implies that µ ∈ OP (x), so there exists a g ∈ G such that Ad∗g(P (x)) = µ by (46). However, by
Ad∗-equivariance of P this means that P (φg(x)) = µ, so φg(x) ∈ P−1(µ). Furthermore π(φg(x)) =
π(x) = x̂. This proves the converse inclusion.

Remark 8. A nice interpretation of P̂−1(µ̂) is given in the fact that it is equivalent to the quotient
space P−1(Oµ)/G, as can be easily seen. Lemma 26 then states that P−1(µ)/Gµ is diffeomorphic to
P−1(Oµ)/G, which is the famous Orbit Reduction Theorem [8].

Main result

Definition 13. Let M and N be two manifolds, and let τ : M → N be a diffeomorphism. Let DM

be a (generalized) Dirac structure on M and let DN be a (generalized) Dirac structure on N . Then
τ is called a Dirac isomorphism if

(X,α) ∈ DM ⇐⇒ (τ∗X, (τ∗)−1α) ∈ DN . (50)

In this case we call DM and DN isomorphic, denoted by DM
∼= DN .
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Remark 9. Let DM and DN be isomorphic. It is very easy to prove that DM is closed if and only
if DN is closed.

Note that by (9) every symmetry φ : X → X of a generalized Dirac structure D is a Dirac isomor-
phism.

Recall the two possible reduction procedures described above. The first one starts with the reduction
of (X ,D,H) to a level set of the first integrals, and after factoring out the residual symmetry group
results in the implicit generalized Hamiltonian system (P−1(µ)/Gµ, ˆ̄D, ˆ̄H). The second one starts
with the reduction of (X ,D,H) by factoring out the symmetry group, and after restriction to the level
set of the remaining Casimirs results in the implicit generalized Hamiltonian system (P̂−1(µ̂), ¯̂

D,
¯̂
H).

In lemma 26 it is shown that there exists a diffeomorphism ψ : P−1(µ)/Gµ → P̂−1(µ̂).

Theorem 27. ψ is a Dirac isomorphism. That is, ˆ̄D and ¯̂
D are isomorphic, ˆ̄D ∼= ¯̂

D.

Proof. First, notice that it is sufficient to prove that

( ˆ̄X, ˆ̄α) ∈ ˆ̄D =⇒ (ψ∗ ˆ̄X, (ψ∗)−1 ˆ̄α) ∈ ¯̂
D. (51)

For assume that (51) holds. Being Dirac structures, ˆ̄D and ¯̂
D are (pointwise) linear spaces. Define

ψ( ˆ̄D) := {(ψ∗ ˆ̄X, (ψ∗)−1 ˆ̄α) | ( ˆ̄X, ˆ̄α) ∈ ˆ̄D}.

Since ψ∗ and ψ∗ are linear mappings, ψ( ˆ̄D) is also a linear space. By (51), ψ( ˆ̄D) ⊂ ¯̂
D. However,

because ψ is a diffeomorphism the map (ψ∗·, (ψ∗)−1·) is a bijection. Therefore

dim ψ( ˆ̄D)(¯̂x) = dim ˆ̄D(ˆ̄x) = dim P−1(µ)/Gµ = dim P̂−1(µ̂) = dim ¯̂
D(¯̂x),

∀ ¯̂x ∈ P̂−1(µ̂), ˆ̄x = ψ−1(¯̂x), and it follows that actually ψ( ˆ̄D) = ¯̂
D. (50) now follows immediately.

We prove (51). Suppose ( ˆ̄X, ˆ̄α) ∈ ˆ̄D, we prove that (ψ∗ ˆ̄X, (ψ∗)−1 ˆ̄α) ∈ ¯̂
D⊥ = ¯̂

D.

The pair ( ˆ̄X, ˆ̄α) ∈ ˆ̄D corresponds to pairs

• (X̄, ᾱ) ∈ D̄ with X̄ ∼πµ ˆ̄X, ᾱ = π∗µ ˆ̄α,

• (X,α) ∈ D with X̄ ∼ι1 X, ᾱ = ι∗1α.

Now, take an arbitrary pair ( ¯̂
Y ,

¯̂
β) ∈ ¯̂

D. This corresponds to pairs

• (Ŷ , β̂) ∈ D̂ with ¯̂
Y ∼ι2 Ŷ ,

¯̂
β = ι∗2β̂,

• (Y, β) ∈ D with Y ∼π Ŷ , β = π∗β̂.

Well, for arbitrary ¯̂x ∈ Ĵ−1(µ̂) we calculate

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) + 〈 ¯̂β, ψ∗ ˆ̄X〉(¯̂x) (52)

First we work out the first term in the above equation. By definition

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) = 〈 ˆ̄α(ˆ̄x), T ¯̂xψ

−1 · ¯̂
Y (¯̂x)〉 (53)
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where ˆ̄x = ψ−1(¯̂x) (and note that (ψ∗)−1 = (ψ−1)∗). Now, T ¯̂xψ
−1 · ¯̂

Y (¯̂x) is a tangent vector to
J−1(µ)/Gµ at the point ˆ̄x. Because πµ and therefore Tπµ is surjective, there exists a point x̄ ∈ J−1(µ),
such that πµ(x̄) = ˆ̄x, and a tangent vector Z̄(x̄) ∈ Tx̄J−1(µ) such that

T ¯̂xψ
−1 · ¯̂

Y (¯̂x) = Tx̄πµ · Z̄(x̄). (54)

Then (53) becomes

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) = 〈 ˆ̄α(ˆ̄x), Tx̄πµ · Z̄(x̄)〉

= 〈π∗µ ˆ̄α(x̄), Z̄(x̄)〉
= 〈ᾱ(x̄), Z̄(x̄)〉
= 〈ι∗1α(x̄), Z̄(x̄)〉
= 〈α(x), Tx̄ι1 · Z̄(x̄)〉, (55)

where x = ι1(x̄).
Because ψ is a diffeomorphism Tψ−1 = (Tψ)−1 is invertible. Then (54) becomes

¯̂
Y (¯̂x) = T ˆ̄xψ · Tx̄πµ · Z̄(x̄).

This implies

Ŷ (ι2(¯̂x)) = T ¯̂xι2 ·
¯̂
Y (¯̂x)

= T ¯̂xι2 · T ˆ̄xψ · Tx̄πµ · Z̄(x̄)
= Txπ · Tx̄ι1 · Z̄(x̄), (56)

where we used the commutativity of diagram (49), ι2 ◦ψ◦πµ = π ◦ ι1, which implies Tι2 ◦Tψ◦Tπµ =
Tπ ◦ Tι1. Because also

Ŷ (ι2(¯̂x)) = Txπ · Y (x) (57)

(note that again by commutativity ι2(¯̂x) = π(x)), we get the following from (56,57)

Txπ · Tx̄ι1 · Z̄(x̄) = Txπ · Y (x),

which implies that

Tx̄ι1 · Z̄(x̄) = Y (x) + Y0(x), (58)

where Y0(x) ∈ ker Txπ. Plugging (58) into (55) gives

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) = 〈α(x), Y (x) + Y0(x)〉. (59)

However, α(x) maps ker Txπ to zero. Indeed,

kerTπ = spanC∞(X ) {XPj},

i.e. the distribution spanned by the symmetry vector fields, and

〈α(x),
∑

fj(x)XPj (x)〉 = −〈
∑

fj(x)dPj(x),X(x)〉

= −
∑

fj(x)〈dPj(x),X(x)〉
= 0, (60)
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where we used that (X,α) ∈ D and (XPj , dPj) ∈ D so

〈α,XPj 〉+ 〈dPj ,X〉 = 0,

(D = D⊥), and X̄ ∼ι1 X which gives that

〈dPj(x),X(x)〉 = 0

(because X̄ is tangent at J−1(µ), i.e. the common level set of Pj, j = 1, . . . , r). From (60) it follows
that

〈α(x), Y0(x)〉 = 0,

so (59) becomes

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) = 〈α(x), Y (x)〉. (61)

Now we will work out the second term of (52), which is a bit easier.

〈 ¯̂β, ψ∗ ˆ̄X〉(¯̂x) = 〈ι∗2β̂, ψ∗ ˆ̄X〉(¯̂x)

= 〈β̂(ι2(¯̂x)), T ¯̂xι2 · ψ∗ ˆ̄X(¯̂x)〉
= 〈β̂(ι2(¯̂x)), T ¯̂xι2 · T ˆ̄xψ · ˆ̄X(ˆ̄x)〉
= 〈β̂(ι2(¯̂x)), T ¯̂xι2 · T ˆ̄xψ · Tx̄πµ · X̄(x̄)〉

and now using commutativity gives
= 〈β̂(ι2(¯̂x)), Txπ · Tx̄ι1 · X̄(x̄)〉
= 〈π∗β̂(x), Tx̄ι1 · X̄(x̄)〉
= 〈β(x),X(x)〉. (62)

Using (61,62) our original equation (52) becomes

〈(ψ∗)−1 ˆ̄α, ¯̂
Y 〉(¯̂x) + 〈 ¯̂β, ψ∗ ˆ̄X〉(¯̂x) = 〈α(x), Y (x)〉+ 〈β(x),X(x)〉 = 0, (63)

because (X,α), (Y, β) ∈ D which by D = D⊥ implies that

〈α, Y 〉+ 〈β,X〉 = 0.

Note that ( ¯̂
Y ,

¯̂
β) ∈ ¯̂

D and ¯̂x ∈ Ĵ−1(µ̂) where arbitrarily chosen, so (63) proves that (ψ∗ ˆ̄X, (ψ∗)−1 ˆ̄α) ∈
¯̂
D⊥ = ¯̂

D. This ends the proof.

Theorem 28. Consider the implicit generalized Hamiltonian system (X ,D,H). Suppose the system
has r independent first integrals P1, . . . , Pr, satisfying (43), and corresponding independent vector
fields XP1 , . . . ,XPr , satisfying (44), which generate a strong symmetry Lie group G of (X ,D,H).
Assume that D(x̄) ∩ Es(x̄), x̄ ∈ P−1(µ), is constant dimensional on P−1(µ), and that V + G0 and
D ∩ Eq are constant dimensional on X . Then, using the two reduction procedures described above,
the implicit generalized Hamiltonian system (X ,D,H) reduces to implicit generalized Hamiltonian
systems on the manifolds P−1(µ), P−1(µ)/Gµ, X/G and P̂−1(µ̂) in diagram (49). The solutions of
(P−1(µ)/Gµ, ˆ̄D, ˆ̄H), respectively (P̂−1(µ̂), ¯̂

D,
¯̂
H), are just the projections under πµ, respectively π, of

certain solutions of (X ,D,H) (i.e., the solutions along projectable vector fields, see proposition 23).
Furthermore, the reduced Hamiltonians satisfy ˆ̄H = ¯̂

H ◦ ψ and the solutions of the two systems are
diffeomorphic, that is, ˆ̄x(t) is a solution of (P−1(µ)/Gµ, ˆ̄D, ˆ̄H) if and only if ψ(ˆ̄x(t)) is a solution of
(P̂−1(µ̂), ¯̂

D,
¯̂
H).
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Proof. Because D(x̄)∩Es(x̄), x̄ ∈ P−1(µ), is constant dimensional on P−1(µ), the system (X ,D,H)
can be reduced to the implicit generalized Hamiltonian system (P−1(µ), D̄, H̄), using proposition
19. Let V̄µ denote the distribution on P−1(µ) spanned by the infinitesimal generators of Gµ. Let
Ḡ0 be the distribution as defined in section 2 corresponding to the generalized Dirac structure D̄.
Finally, let Ēq be the bundle as defined in (28) corresponding to P−1(µ). We show that constant
dimensionality of V + G0 and D ∩ Eq on X implies constant dimensionality of V̄µ + Ḡ0 and D̄ ∩ Ēq
on P−1(µ).
First note that V̄µ ⊂ Ḡ0, because take arbitrary X̄ ∈ V̄µ, then X̄ ∼ι1 X =

∑
i hiXPi , hi ∈ C∞(X ),

for some X ∈ V (because Gµ is the Lie subgroup of symmetries of G that leave the level set P−1(µ)
invariant, i.e. that are tangent to this level set). Because (X,

∑
i hidPi) ∈ D this implies that

(X̄, ι∗1
∑
i

hidPi) = (X̄,
∑
i

(hi ◦ ι1) d(Pi ◦ ι1)) = (X̄,
∑
i

(hi ◦ ι1) · 0) = (X̄, 0) ∈ D̄,

and so X̄ ∈ Ḡ0. Furthermore, by definition of D̄, Ḡ0 consists of all X̄ ∈ TP−1(µ) such that X̄ ∼ι1
X ∈ G1 with (X,α) ∈ D such that ι∗1α = 0. This means X̄ ∼ι1 X ∈ G0 or X̄ ∼ι1 X ∈ V (note that
if X ∈ G0 then 〈dPi,X〉 = 0, i = 1, . . . , r, so X is tangent to the level set P−1(µ)). Concluding we
get that

V̄µ + Ḡ0 = Ḡ0 = V̄µ + G0|P−1(µ),

where G0|P−1(µ) denotes the set of all vector fields in G0 restricted to P−1(µ). Now, since V + G0 is
constant dimensional on X , it follows that V̄µ + G0|P−1(µ) is constant dimensional on P−1(µ) (since
the only elements in V + G0 that do not lie in TP−1(µ) are the elements of the (r−m)-dimensional
distribution V̄ ◦µ ∈ TX , where V (x̄) = V̄µ(x̄) ⊕ V̄ ◦µ (x̄), ∀x̄ ∈ P−1(µ), and m = dimGµ). Thus,
Ḡ0 = V̄µ + Ḡ0 is constant dimensional on P−1(µ). Since Ḡ0 and V̄µ + Ḡ0 are constant dimensional
it follows that also ann(V̄µ) ∩ P̄1 is constant dimensional on P−1(µ), where P̄1 is the co-distribution
corresponding to D̄ as defined in section 2. From Ḡ0 and ann(V̄µ) ∩ P̄1 constant dimensional it
immediately follows that also D̄ ∩ Ēq is constant dimensional on P−1(µ). So the assumptions of
proposition 23 are satisfied and we can reduce the system (P−1(µ), D̄, H̄) further to the implicit
generalized Hamiltonian system (P−1(µ)/Gµ, ˆ̄D, ˆ̄H). This proves the first part of the theorem.

For the second part, lemma 26 states that there exists a diffeomorphism ψ which makes the diagram
(49) commuting, that is π ◦ ι1 = ι2 ◦ ψ ◦ πµ. Take arbitrary ˆ̄x ∈ P−1(µ)/Gµ and let x̄ ∈ P−1(µ) be
such that πµ(x̄) = ˆ̄x, then

ˆ̄H(ˆ̄x) = H̄(x̄) = ι∗1H(x̄) = ι∗1(π∗Ĥ)(x̄) = Ĥ ◦ π ◦ ι1(x̄)
= Ĥ ◦ ι2 ◦ ψ ◦ πµ(x̄) = Ĥ ◦ ι2 ◦ ψ(ˆ̄x) = ι∗2Ĥ ◦ ψ(ˆ̄x)

= ¯̂
H ◦ ψ(ˆ̄x),

proving that ˆ̄H = ¯̂
H ◦ ψ.

For proving that the solutions of the two reduced systems are diffeomorphic we use that ψ is a Dirac
isomorphism and the fact that ˆ̄H = ψ∗ ¯̂

H. First notice that ψ is a Dirac isomorphism implies that
ψ is pointwise an isomorphism between the two linear spaces ˆ̄D(ˆ̄x) and ¯̂

D(ψ(ˆ̄x)). Now, let ˆ̄x(t) be a
solution of (P−1(µ)/Gµ, ˆ̄D, ˆ̄H), i.e.

(X ˆ̄H
, d ˆ̄H)(ˆ̄x(t)) ∈ ˆ̄D(ˆ̄x(t)), for all t ∈ I,

where X ˆ̄H
(ˆ̄x(t)) = ˙̄̂x(t) and I is the interval of existence of ˆ̄x(t). Because ψ is pointwise an isomor-

phism it follows that

(X ¯̂
H
, d

¯̂
H)(ψ(ˆ̄x(t))) ∈ ¯̂

D(ψ(ˆ̄x(t))), for all t ∈ I,
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where we defined

X ¯̂
H

(ψ(ˆ̄x(t))) = T ˆ̄x(t)ψ ·X ˆ̄H
(ˆ̄x(t)). (64)

Because of (64) it follows that d
dtψ(ˆ̄x(t)) = X ¯̂

H
(ψ(ˆ̄x(t))), which implies that ψ(ˆ̄x(t)) is a solution of

(P̂−1(µ̂), ¯̂
D,

¯̂
H). The converse statement is proven in the same way.

Example 8. Consider the Dirac structure given in example 1 (with D closed), and the Hamiltonian
system (X ,D,H) corresponding to a function H ∈ C∞(X ). Assuming the conditions in theorem 28
are satisfied, the system reduces to Hamiltonian systems on P−1(µ)/Gµ and P̂−1(µ̂). The correspond-
ing Dirac structure ˆ̄D, respectively ¯̂

D, is again a symplectic structure on P−1(µ)/Gµ, respectively
P̂−1(µ̂).

Proof. The Dirac structure D is given by

D = {(X,α) ∈ TX ⊕ T ∗X | α = ω(X, ·)}.

Now, the induced Dirac structure D̄ on P−1(µ) is defined as (where we use some shorthand notation)

D̄ = {(X̄, ᾱ) | X̄ ∼ι1 X, ᾱ = ι∗1α for some (X,α) ∈ D}
= {(X̄, ᾱ) | X̄ ∼ι1 X, ᾱ = ι∗1α for some X,α s.t. α = ω(X, ·)}. (65)

Now, α = ω(X, ·) implies

ᾱ = ι∗1α = ι∗1(ω(X, ·)) = (ι∗1ω)(X̄, ·),

where in the last step we used that X̄ ∼ι1 X. So (65) becomes

D̄ = {(X̄, ᾱ) | ᾱ = (ι∗1ω)(X̄, ·)}.

Notice that this indeed defines a presymplectic structure on P−1(µ) (because ι∗1ω has a nontrivial
kernel given by the distribution spanned by Gµ, [1]). Reduction by using the residual symmetry
group Gµ gives the Dirac structure

ˆ̄D = {( ˆ̄X, ˆ̄α) | ∃X̄ s.t. X̄ ∼πµ ˆ̄X and (X̄, π∗µ ˆ̄α) ∈ D̄}

= {( ˆ̄X, ˆ̄α) | ∃X̄ s.t. X̄ ∼πµ ˆ̄X and π∗µ ˆ̄α = (ι∗1ω)(X̄, ·)}. (66)

Now, the fact that Gµ spans the kernel of ι∗1ω implies that there exists a 2-form ωµ on P−1(µ)/Gµ
such that ι∗1ω = π∗µωµ, [1]. Then (66) becomes

ˆ̄D = {( ˆ̄X, ˆ̄α) | ∃X̄ s.t. X̄ ∼πµ ˆ̄X and π∗µ ˆ̄α = (π∗µωµ)(X̄, ·)}

= {( ˆ̄X, ˆ̄α) | π∗µ ˆ̄α = π∗µ(ωµ( ˆ̄X, ·))}

= {( ˆ̄X, ˆ̄α) | ˆ̄α = ωµ( ˆ̄X, ·)},

where in the second step we used that X̄ ∼πµ ˆ̄X and in the third step the fact that π∗µ is injective.
Furthermore, the fact that ωµ is nondegenerate follows from ω being nondegenerate, [1]. Therefore
ˆ̄D defines a symplectic structure on P−1(µ)/Gµ. Because ˆ̄D and ¯̂

D are isomorphic, ¯̂
D also defines a

symplectic structure on P̂−1(µ̂).

This example shows that theorem 28 is a generalization of the classical (symplectic) reduction theo-
rems described in [1, 7].
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Example 9. Consider the Dirac structure given in example 2 (with D closed), and the Hamiltonian
system (X ,D,H) corresponding to a function H ∈ C∞(X ). Assuming the conditions in theorem
28 are satisfied, the system reduces to Hamiltonian systems on P−1(µ)/Gµ and P̂−1(µ̂). The corre-
sponding Dirac structure ˆ̄D, respectively ¯̂

D, is again a Poisson structure on P−1(µ)/Gµ, respectively
P̂−1(µ̂).

Proof. The Dirac structure D is given by

D = {(X,α) ∈ TX ⊕ T ∗X | X = J(α, ·)}.

J is the structure matrix of the corresponding Poisson bracket {·, ·} = {·, ·}D. The reduced Dirac
structure D̂ on X/G is defined as (where we use some shorthand notation)

D̂ = {(X̂, α̂) | ∃X s.t. X ∼π X̂ and (X,π∗α̂) ∈ D}
= {(X̂, α̂) | ∃X s.t. X ∼π X̂ and X = J(π∗α̂, ·)}. (67)

By (36) the bracket on X/G is defined by

{F̂1, F̂2}D̂ ◦ π = {F̂1 ◦ π, F̂2 ◦ π}D,

for all F̂1, F̂2 ∈ AD̂2
. Now, take arbitrary F̂ ∈ C∞(X/G), then (X,π∗dF̂ ) = (J(π∗dF̂ , ·), π∗dF̂ ) ∈ D.

Let (ξ)X , ξ ∈ G, be any symmetry vector field generated by G, then

(L(ξ)X (J(π∗dF̂ , ·)), L(ξ)X (π∗dF̂ )) = ([J(π∗dF̂ , ·), (ξ)X ], 0) ∈ D,

so [J(π∗dF̂ , ·), (ξ)X ] ∈ G0 = 0 which implies that J(π∗dF̂ , ·) ∼π X̂ for some X̂ ∈ T (X/G). From this
we can conclude that AD̂ = C∞(X/G).
Then {·, ·}D̂ defines a skew-symmetric matrix Ĵ(x̂) : T ∗x̂ (X/G) → Tx̂(X/G), x̂ ∈ X/G, by taking
as the (i, j)-th element Ĵij = {x̂i, x̂j}D̂, with x̂i, x̂j the coordinate functions on X/G. Denote the
corresponding (2,0)-tensor by Ĵ : T ∗(X/G) × T ∗(X/G)→ C∞(X/G).

Now, let X be such that X = J(π∗α̂, ·), then X ∼π X̂ for some X̂ ∈ T (X/G) (see the argument
above, L(ξ)X (π∗α̂) = 0 for an arbitrary symmetry (ξ)X , ξ ∈ G, generated by G). We prove that
X̂ = Ĵ(α̂, ·). Indeed, take an arbitrary G-invariant function F ∈ C∞(X ), then F = F̂ ◦ π for some
F̂ ∈ C∞(X/G) and

LXF = X[F ] = J(π∗α̂, dF ) = J(π∗
∑
i

ĥidx̂i, dF )

=
∑
i

(ĥi ◦ π) J(d(x̂i ◦ π), d(F̂ ◦ π))

=
∑
i

(ĥi ◦ π) {x̂i ◦ π, F̂ ◦ π}D

=
∑
i

(ĥi ◦ π) {x̂i, dF̂}D̂ ◦ π

=
∑
i

(ĥi ◦ π) Ĵ(dx̂i, dF̂ ) ◦ π

= Ĵ(
∑
i

ĥidx̂i, dF̂ ) ◦ π

= Ĵ(α̂, dF̂ ) ◦ π
= X̂ ′[F̂ ] ◦ π = LX̂′F̂ ◦ π,
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where we defined X̂ ′ = Ĵ(α̂, ·). So

LX(F̂ ◦ π) = (LX̂′F̂ ) ◦ π (68)

for arbitrary F̂ ∈ C∞(X/G). This implies that X ∼π X̂ ′, see for instance ([2],proof of theorem
4.2.8). Because also X ∼π X̂ it follows that X̂ = X̂ ′, and so X̂ = Ĵ(α̂, ·). Now (67) becomes

D̂ = {(X̂, α̂) | X̂ = Ĵ(α̂, ·)}.

This defines a Poisson structure on X/G. Reducing the system to a level set P̂−1(µ̂) of the Casimir
function P̂ gives the Dirac structure

¯̂
D = {( ¯̂

X, ¯̂α) | ¯̂
X ∼ι2 X̂, ¯̂α = ι∗2α̂ for some (X̂, α̂) ∈ D̂}

= {( ¯̂
X, ¯̂α) | ¯̂

X ∼ι2 X̂, ¯̂α = ι∗2α̂ for some X̂, α̂ s.t. X̂ = Ĵ(α̂, ·)}. (69)

Define a Poisson bracket {̃·, ·} on P̂−1(µ̂) as follows. Take arbitrary ¯̂
F 1,

¯̂
F 2 ∈ C∞(P̂−1(µ̂)) and let

F̂1, F̂2 ∈ C∞(X/G) be such that ¯̂
F j = F̂j ◦ ι2, j = 1, 2. Then define

˜{ ¯̂
F 1,

¯̂
F 2} = {F̂1, F̂2}D̂ ◦ ι2. (70)

To see that {̃·, ·} is well defined note that

{F̂1, F̂2}D̂ ◦ ι2 = Ĵ(dF̂1, dF̂2) ◦ ι2
= X̂1[F̂2] ◦ ι2
= (LX̂1

F̂2) ◦ ι2
= ι∗2(LX̂1

F̂2)

= L ¯̂
X1

(ι∗2F̂2)

= L ¯̂
X1

¯̂
F 2, (71)

where X̂1 = Ĵ(dF̂1, ·), and where we used that ¯̂
X1 ∼ι2 X̂1 for some ¯̂

X1, because every X̂ ∈ Ĝ1 ⊂
T (X/G) is tangent to the level set P̂−1(µ̂) of the Casimir function P̂ . Now, let F̂3 ∈ C∞(X/G) be
another function such that ¯̂

F 1 = F̂3 ◦ ι2. Then ι∗2dF̂1 = ι∗2dF̂3, so γ̂ := dF̂3 − dF̂1 ∈ ker ι∗2. Because

(ker ι∗2)(¯̂x) = (spanC∞(X/G) {dP̂})(¯̂x), ∀ ¯̂x ∈ P̂−1(µ̂),

it follows that

X̂3(¯̂x) = Ĵ(dF̂3, ·)(¯̂x) = Ĵ(¯̂x)(dF̂1(¯̂x) + γ̂(¯̂x), ·) = Ĵ(dF̂1, ·)(¯̂x) = X̂1(¯̂x), (72)

for all ¯̂x ∈ P̂−1(µ̂), where

Ĵ(¯̂x)(γ̂(¯̂x), ·) = Ĵ(¯̂x)(h(¯̂x)dP̂ (¯̂x), ·) = h(¯̂x)X̂P̂ (¯̂x) = 0,

because X̂P̂ ∈ Ĝ0 = 0. (72) implies that ¯̂
X1 does not depend on the choice of extending ¯̂

F 1. Then

(71) clearly shows that
˜{ ¯̂
F 1,

¯̂
F 2} does not depend on the choice of F̂1 and F̂2, so {̃·, ·} is well defined.
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{̃·, ·} defines a skew-symmetric matrix ¯̂
J(¯̂x) : T ∗¯̂x P̂

−1(µ̂)→ T ¯̂xP̂
−1(µ̂), ¯̂x ∈ P̂−1(µ̂), by taking as the

(i, j)-th element ¯̂
J ij = ˜{ ¯̂xi, ¯̂xj}, with ¯̂xi, ¯̂xj the coordinate functions on P̂−1(µ̂). Denote the corre-

sponding (2,0)-tensor by ¯̂
J : T ∗P̂−1(µ̂)× T ∗P̂−1(µ̂)→ C∞(P̂−1(µ̂)).

Now let X̂ = Ĵ(α̂, ·), then ¯̂
X ∼ι2 X̂ for some ¯̂

X ∈ T P̂−1(µ̂). We prove that ¯̂
X = ¯̂

J(ι∗2α̂, ·) = ¯̂
J( ¯̂α, ·).

Using the same derivation that led to (68), we can prove that

L ¯̂
X′

(F̂ ◦ ι2) = (LX̂F̂ ) ◦ ι2,

for all F̂ ∈ C∞(X/G), where we defined ¯̂
X ′ = ¯̂

J( ¯̂α, ·). This implies that ¯̂
X ′ ∼ι2 X̂. Because also

¯̂
X ∼ι2 X̂, it follows that ¯̂

X = ¯̂
X ′, and so ¯̂

X = ¯̂
J( ¯̂α, ·). Then (69) becomes

¯̂
D = {( ¯̂

X, ¯̂α) | ¯̂
X = ¯̂

J( ¯̂α, ·)}. (73)

We see that ¯̂
D defines a Poisson structure on P̂−1(µ̂). Because ˆ̄D and ¯̂

D are isomorphic, ˆ̄D also
defines a Poisson structure on P−1(µ)/Gµ.

Remark 10. From (73) it is immediately clear that A ¯̂
D

= C∞(P̂−1(µ̂)). Then from (71) and (73)

it follows that the bracket defined in (70) equals the bracket {·, ·} ¯̂
D

induced by ¯̂
D.

This example shows that theorem 28 is a generalization of the classical (Poisson) reduction theorems
described in [9, 12].

Finally, note that the reduced system on P−1(µ) does not represent a classical Poisson system, but it
is described by an implicit generalized Hamiltonian system, with a Dirac structure as the underlying
geometric structure. This was already noticed in [3].

6 The Casimir function P̂

In this section we will take a closer look at the map P̂ introduced in the second reduction procedure in
the previous section. In particular we will show that “locally dP̂ ∈ P̂0”, which allows us to moderate
the proof of proposition 22 a little bit such that the result still holds in case X̄ = P̂−1(µ̂) (as is the
case in the reduction procedure in theorem 28).

Recall that the momentum map was defined as P : X → G∗

P (x) =
r∑
i=1

Pi(x)µi, (74)

where {µ1, . . . , µr} is a basis of G∗, and P1, . . . , Pr are the first integrals of the implicit generalized
Hamiltonian system (X ,D,H). Define the quotient manifold Ĝ∗ = G∗/G of coadjoint orbits Oµ in
G∗, and the corresponding projection map $ : G∗ → Ĝ∗. Define the map P̂ : X/G→ Ĝ∗ by

P̂ ◦ π = $ ◦ P, (75)

where π : X → X/G is the projection map. It was shown in section 5 that P̂ is well defined.
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Example 10. Consider an abelian r-dimensional strong symmetry Lie group G of the implicit gen-
eralized Hamiltonian system (X ,D,H), with corresponding first integrals P1, . . . , Pr which are in
involution, i.e.

{Pi, Pj}D = 0, i, j = 1, . . . , r. (76)

Since G is abelian, i.e. g1 · g2 = g2 · g1 for all g1, g2 ∈ G where · is the group multiplication in G, it
follows that the map ag : G→ G, g ∈ G, defined by

ag = Rg−1 ◦ Lg = Lg ◦Rg−1 , i.e. ag(g1) = g · g1 · g−1 ∀g1 ∈ G,

is the identity, i.e. ag(g1) = g1, ∀g1 ∈ G. Therefore also the adjoint map Adg : G = TeG→ G = TeG
defined by Adg = Teag (i.e. the tangent of the map ag at the identity element e ∈ G) is the identity
map, and consequently the coadjoint map (action) Ad∗g : G∗ → G∗, which is the dual of the map Adg,
also equals the identity map. So Ad∗g = I : G∗ → G∗, I(µ) = µ ∀µ ∈ G∗, for every g ∈ G. This implies
that the coadjoint orbits Oµ in G∗, defined by (46), are just the points in G∗, i.e. Oµ = {µ}, ∀µ ∈ G∗.
Therefore in the case of an abelian symmetry Lie group G, Ĝ∗ = G∗ (after identification of the set
{µ} with the point µ), so the projection $ is the identity map.
The momentum map P : X → G∗ is defined as in (74). Then by (75), P̂ : X/G→ G∗ satisfies

P̂ ◦ π =
r∑
i=1

Pi µi,

which implies that

P̂ =
r∑
i=1

P̂i µi,

with P̂i ∈ C∞(X/G) such that P̂i ◦ π = Pi, i = 1, . . . , r (note that by (76) it follows that every Pi is
invariant under the action of G). Since (XPi , dPi) ∈ D and XPi ∼π 0 it follows that (0, dP̂i) ∈ D̂, so
dP̂i ∈ P̂0, i = 1, . . . , r. This implies that P̂1, . . . , P̂r are Casimirs functions of (X/G, D̂, Ĥ), and we
can use proposition 22 to further reduce the system to an implicit generalized Hamiltonian system
(P̂−1(µ̂), ¯̂

D,
¯̂
H) on the level set P̂−1(µ̂), where µ̂ = $(µ) = µ (note that this is exactly a level set of

P̂1, . . . , P̂r).

Now we return to the general case. Let P̂ be defined as in (75). Because G∗ is the dual of the Lie
algebra G = TeG, which is a vector space (over R), also G∗ is a vector space (over R). Therefore G∗ is
globally isomorphic to Rr via some isomorphism ϕ : G∗ → Rr. Since Ĝ∗ = G∗/G is a manifold (under
the appropriate assumptions on G) it is locally diffeomorphic to Rm, where m is the dimension of
Ĝ∗, via some diffeomorphism ϕ̂U : U ⊂ Ĝ∗ → Rm. Consider a local chart (U, ϕ̂U ) of Ĝ∗, then (75)
implies

ϕ̂U ◦ P̂ ◦ π(x) = ϕ̂U ◦$ ◦ ϕ−1 ◦ ϕ ◦ P (x), ∀x ∈W ⊂ X , (77)

where W is such that P̂ ◦ π(W ) ⊂ U . Now, since ϕ̂U ◦ $ ◦ ϕ−1 : Rr → Rm is a projection, it is a
linear map and therefore it can be described by a matrix [Proj] ∈ Rm×r. Note that ϕ ◦ P is exactly
the r-vector of first integrals, i.e.

ϕ ◦ P (x) = [P1(x), . . . , Pr(x)]T .

36



Then (77) becomes

ϕ̂U ◦ P̂ ◦ π(x) = [Proj][P1(x), . . . , Pr(x)]T

=

 c11P1(x) + · · ·+ c1rPr(x)
...

cm1P1(x) + · · ·+ cmrPr(x)

 , (78)

for some constants cij ∈ R, i = 1, . . . ,m, j = 1, . . . , r. Now, ϕ̂U ◦ P̂ defines the m-vector

ϕ̂U ◦ P̂ (x̂) = [P̂1(x̂), . . . , P̂m(x̂)]T ,

where P̂i ∈ C∞(W/G), i = 1, . . . ,m. By (78) it follows that

π∗dP̂i = ci1dP1 + · · ·+ cirdPr, i = 1, . . . ,m.

Now, take an arbitrary pair (Ŷ , β̂) ∈ D̂. Then

〈dP̂i, Ŷ 〉(x̂) = 〈π∗dP̂i, Y 〉(x) = 〈
r∑
j=1

cijdPj , Y 〉(x) = −〈β,
r∑
j=1

cijXPj 〉(x) = −〈β̂, 0〉(x̂) = 0, (79)

∀x̂ ∈ W/G, where x ∈ W, π(x) = x̂, i = 1, . . . ,m, since Y ∼π Ŷ , β = π∗β̂, with (Y, β) ∈ D, and∑
j cijXPj ∼π 0. So locally dP̂i ∈ ann Ĝ1 = P̂0, i = 1, . . . ,m. (79) is what we meant saying that

“locally dP̂ ∈ P̂0”.

Now consider the implicit generalized Hamiltonian system (X/G, D̂, Ĥ) in the reduction procedure of
theorem 28. The map P̂ is a Casimir function by (48) (or more correctly, by (79)). As in proposition
22 we want to conclude that the solutions of (X/G, D̂, Ĥ) lying in P̂−1(µ̂) are exactly the solutions
of the reduced system (P̂−1(µ̂), ¯̂

D,
¯̂
H). Since it is in general not true that dP̂ ∈ P̂0 we cannot use

proposition 22 directly. However, since (79) holds, and since the level set P̂−1(µ̂) is locally given by
the level set of P̂1, . . . , P̂m, we can conclude that for every pair (Ŷ , β̂) ∈ D̂ it holds that Ŷ is tangent
to P̂−1(µ̂). Then we can copy the rest of the proof of proposition 22 to conclude that the solutions
of (X/G, D̂, Ĥ) lying in P̂−1(µ̂) are exactly the solutions of the reduced system (P̂−1(µ̂), ¯̂

D,
¯̂
H).

7 The explicit generalized Hamiltonian system

In this section we will take a closer look at the reduction procedure in theorem 28 in case the implicit
generalized Hamiltonian system (X ,D,H) satisfies assumption 5. The motivation for this is as
follows. Considering the reduction procedure in theorem 28 notice that we made some assumptions.

(i) To define the generalized Dirac structure D̄ on the submanifold P−1(µ), we needed the as-
sumption that D(x̄) ∩Es(x̄), x̄ ∈ P−1(µ), is constant dimensional on P−1(µ).

(ii) To define the generalized Dirac structure D̂ on the quotient manifold X/G, we needed the
assumption that V + G0 and D ∩Eq are constant dimensional on X .

(iii) Finally, concerning proposition 23 about reduction of an implicit generalized Hamiltonian sys-
tem (X ,D,H) to an implicit generalized Hamiltonian (X̂ , D̂, Ĥ) on a quotient manifold X̂, we
needed the assumption of projectability of a solution x(t) to show that it reduces to a solution
x̂(t) of (X̂ , D̂, Ĥ).
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These three assumptions are new with respect to the assumptions made in the classical reduction
theorems of [1, 7, 9, 12]. Indeed, considering the reduction of classical explicit Hamiltonian systems
like in examples 8 and 9, these three assumptions are void. For take an explicit Hamiltonian system
defined with respect to a symplectic structure as in example 8. Because G1 = TX is constant
dimensional, see example 5, G1(x̄) ∩ Tx̄X̄ = Tx̄X̄ , x̄ ∈ X̄ , is constant dimensional on X̄ , which
implies that D(x̄) ∩ Es(x̄), x̄ ∈ X̄ , is constant dimensional on X̄ , see remark 4. Also, since G0 = 0,
V + G0 = V is constant dimensional (with dimV = r = dimG). Furthermore, since P1 = T ∗X ,
ann(V )∩P1 = ann(V ) is constant dimensional, and together with G0 constant dimensional this implies
that D ∩ Eq is constant dimensional on X . Finally, the vector field XH̄ ∈ TP−1(µ), corresponding
to a solution x̄(t) of (P−1(µ), D̄, H̄) coming from a solution x(t) of (X ,D,H), is projectable to a
vector field on P−1(µ)/Gµ [1, 7]. Note that the reduced Hamiltonian system (X/G, D̂, Ĥ) on X/G
is not a symplectic system anymore, so the reduction procedures in [1, 7] do not include the system
(X/G, D̂, Ĥ). However, (X/G, D̂, Ĥ) is a Poisson system, and in [9, 12] it is proved that every
solution of (X ,D,H) projects to a solution of (X/G, D̂, Ĥ).
With respect to the second classical example, consider an explicit Hamiltonian system defined on a
Poisson structure as in example 9. Just as in the symplectic case G0 = 0 and P1 = T ∗X (see example
6) imply that V + G0 and D ∩Eq are constant dimensional on X . Furthermore, in [9, 12] it is shown
that every solution x(t) of (X ,D,H) projects to a solution x̂(t) of (X/G, D̂, Ĥ). Again note that
the reduced Hamiltonian system (P−1(µ), D̄, H̄) on P−1(µ) is not a Poisson system anymore, and
therefore is not included in the reduction procedures in [9, 12]. Under assumption (i), the reduced
system on P−1(µ) can be described as an implicit generalized Hamiltonian system on P−1(µ). In [3]
it is shown that assumption (i) is equivalent to the condition that every point x̄ ∈ P−1(µ) lies on an
orbit (of the group action on X corresponding to G) of principal type.

We saw in proposition 6 that, assuming the implicit generalized Hamiltonian system (X ,D,H)
satisfies assumption 5, the system can be reduced to an explicit generalized Hamiltonian system
(Xc,Dc,Hc) given by (8) (where the generalized Dirac structure Dc is defined by the structure ma-
trix Jc). Then considering the examples above we would expect that the assumptions (ii) and (iii)
are again automatically satisfied (because (X ,D,H) is in essence the explicit system (Xc,Dc,Hc)).
Note that we already saw in the Poisson case that we cannot expect assumption (i) to be satisfied
in general. Here we will investigate the contents of assumptions (ii) and (iii) if the system (X ,D,H)
satisfies assumption 5.

Consider the implicit generalized Hamiltonian system (X ,D,H) and assume that assumption 5 is
satisfied. Assumption (ii) says that V + G0 and D ∩ Eq should be constant dimensional. Since V
is constant dimensional and by assumption 5 also G0 = ker P1 is constant dimensional V + G0 will
be constant dimensional as well if and only if V ∩ G0 is constant dimensional. Consider a strong
symmetry XPi of (X ,D,H), then by ([14], proposition 17) XPi will be tangent to Xc, so XPi(xc) ∈
TxcXc, ∀xc ∈ Xc. Furthermore, by assumption 5 it follows that G0(xc)∩TxcXc = 0, ∀xc ∈ Xc, see also
([14], proposition 17). Because V is the distribution spanned by the symmetries XPi , i = 1, . . . , r,
which generate the Lie group G, we have that

V (xc) ∩ G0(xc) = 0, ∀xc ∈ Xc,

which implies that V + G0 is constant dimensional on Xc. Secondly, since P1 is constant dimensional
by assumption 5, ann(V + G0) = ann(V ) ∩ P1. Now, V + G0 constant dimensional on Xc implies
ann(V )∩P1 constant dimensional on Xc and it follows that also D∩Eq is constant dimensional on Xc.

Assumption (iii) says that a solution x(t) of (X ,D,H) should be projectable in order to reduce to
a solution x̂(t) of (X/G, D̂, Ĥ). Take an arbitrary solution x(t) of (X ,D,H), i.e. ẋ(t) = XH(x(t))
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where XH(xc) ∈ TxcXc, ∀xc ∈ Xc, is the unique vector field on Xc (by assumption 5, i.e. the vector
field corresponding to the explicit system (8)) corresponding to H. By ([14],proposition 17)

[(ξ)X ,XH ](xc) = 0, ∀xc ∈ Xc, (80)

for all symmetries (ξ)X , where ξ ∈ G. This implies that

[V,XH ](xc) ∈ V (xc), ∀xc ∈ Xc,

which implies that XH is projectable on Xc to a vector field X̂ on Xc/G. Using the Smooth Tietze
Extension Theorem we can extend XH to a vector field X ∈ TX which is projectable to a vector
field on X/G.
Furthermore, a solution x̄(t) of (P−1(µ), D̄, H̄), coming from a solution x(t) of (X ,D,H), should
be projectable in order to reduce to a solution ˆ̄x(t) of (P−1(µ)/Gµ, ˆ̄D, ˆ̄H). Consider an arbitrary
solution x(t) of (X ,D,H) in P−1(µ), i.e. ẋ(t) = XH(x(t)). By proposition 21, XH̄ ∼ι1 XH .
Consider an arbitrary symmetry (ξ)X̄ ∈ V̄µ, where ξ ∈ Gµ (note that Gµ is a Lie subalgebra of G),
then (ξ)X̄ ∼ι1 (ξ)X . Then by proposition 7 and (80) it follows that

[(ξ)X̄ ,XH̄ ](x̄c) = 0, ∀x̄c ∈ Xc ∩ P−1(µ).

This implies that

[V̄µ,XH̄ ](x̄c) ∈ V̄µ(x̄c), ∀x̄c ∈ Xc ∩ P−1(µ),

which implies that XH̄ is projectable on Xc ∩ P−1(µ) to a vector field ˆ̄X on (Xc ∩ P−1(µ))/Gµ.
Using the Smooth Tietze Extension Theorem we can extend XH̄ to a vector field on P−1(µ) which
is projectable to a vector field on P−1(µ)/Gµ. We conclude that the solutions of (X ,D,H) and
(P−1(µ), D̄, H̄) all satisfy the projectability assumption.

What we concluded above is quite interesting and also quite understandable. Consider the implicit
generalized Hamiltonian system (X ,D,H) and assume that assumption 5 is satisfied. Then the
system reduces to the explicit generalized Hamiltonian system (Xc,Dc,Hc) given by (8). The solutions
of the implicit system (X ,D,H) are exactly the solutions of the explicit system (Xc,Dc,Hc), so, like
in the classical cases in examples 8 and 9, they should always be projectable to solutions on the
reduced systems. As we showed above, this is indeed the case (assumption (iii) is always satisfied).
On the other hand however, we could not show that assumption (i) and (ii) are always satisfied.
Indeed, even in the classical case of a Poisson structure on X , we need assumption (i) to describe the
reduced system on P−1(µ) as an implicit generalized Hamiltonian system. Although for the explicit
Hamiltonian system (Xc,Dc,Hc), so for the reduced generalized Dirac structure Dc, assumption (ii)
is always satisfied, like in examples 8 and 9, this is in general not the case for the original generalized
Dirac structure D. We could only show that V + G0 and D ∩Eq are constant dimensional on Xc.

8 Conclusions

In this paper we studied the notion of symmetry for implicit generalized Hamiltonian systems, as
defined in [5, 14]. We derived some results concerning symmetries, first integrals and Casimir func-
tions. Furthermore, we investigated the possibilities of reducing an implicit generalized Hamiltonian
system on a manifold X to a system on a submanifold of X , e.g. a level set of first integrals,
or a quotient manifold X/G, where G is a strong symmetry Lie group of the implicit generalized
Hamiltonian system. We proved that, under some assumptions, these reduced systems are again im-
plicit generalized Hamiltonian systems. Finally, we investigated the reduction of implicit generalized
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Hamiltonian systems, having a strong symmetry Lie group generated by first integrals. It turns out
that first reducing the system to a level set of the first integrals and then factoring out the remaining
symmetries is equivalent to first factoring out the symmetry group and then reducing the system
to a level set of the remaining first integrals (which are now Casimir functions). This is our main
result, and is a generalization of the classical reduction theorems for (explicit) symplectic and Poisson
Hamiltonian systems described in [1, 7, 9, 12]. The general setting, using the geometric notion of
a Dirac structure and correspondingly implicit generalized Hamiltonian systems, makes the theory
applicable to mechanical systems with nonholonomic constraints, and in general to interconnected
multibody systems, as well as electromechanical systems which can be described in this Hamiltonian
format.
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