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Abstract

It is proven that if G is a 3-connected claw-free graph which is also Z3-free (where Z3 is
a triangle with a path of length 3 attached), P6-free (where P6 is a path with 6 vertices)
or H1-free (where H1 consists of two disjoint triangles connected by an edge), then G is
hamiltonian-connected. Also, examples will be described that determine a finite family
of graphs L such that if a 3-connected graph being claw-free and L-free implies G is
hamiltonian-connected, then L ∈ L.
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Figure 1: Frequently used forbidden subgraphs.

1 Introduction

We use Bondy & Murty [2] for terminology and notation not defined here and consider
finite simple graphs only. A graph G with n ≥ 3 vertices is hamiltonian if G contains a cycle
of length n, and it is hamiltonian-connected if between each pair of vertices of G there is a
Hamilton path, i.e. a path on n vertices. If H is a given graph, then a graph G is called H-free
if G contains no induced subgraph isomorphic to H. The graph H is said to be a forbidden
subgraph.

We first describe some graphs that will be frequently used as forbidden subgraphs. Specif-
ically, we denote by Pk and Ck the path and the cycle on k vertices, by C the claw K1,3, by
B the bull, by D the deer, by H the hourglass, by N the net, by W the wounded, by Zk the
graph obtained by identifying a vertex of K3 with an endvertex of Pk+1, and by Hk the graph
obtained by joining two vertex disjoint triangles by a path of length k (see Figure 1).

The next result was obtained in Shepherd [8], and the following one in Faudree & Gould [6].
Note that in both cases 3-connectedness is assumed. This is natural since the forbidden sub-
graph conditons, being local conditions, do not imply 3-connectedness, and any hamiltonian-
connected graph (except K1,K2,K3) must be 3-connected.

Theorem 1 (Shepherd [8] )
If a 3-connected graph G is claw-free and N -free, then G is hamiltonian-connected.

Theorem 2 (Faudree & Gould [6] )
If a 3-connected graph G is claw-free and Z2-free, then G is hamiltonian-connected.

We will extend this collection of pairs of forbidden graphs ensuring hamiltonian-connectedness
of 3-connected graphs by proving the following result, which gives three new independent
forbidden pairs. The proof of the result is postponed to Section 2.

2



Theorem 3
If G is a 3-connected claw-free graph, then G is hamiltonian-connected if any of the following
holds.

(a) G is Z3-free,

(b) G is P6-free,

(c) G is H1-free.

Chen & Gould [4] recently announced they proved that every 3-connected claw-free graph
is hamiltonian-connected provided it is Z3-free, P6-free or W -free. In Bedrossian [1] all
forbidden pairs of connected graphs ensuring that a graph is hamiltonian are characterized,
and the same was done for pancyclicity. The same type of characterization was done for other
hamiltonian properties in Faudree & Gould [6]. A survey of results of this kind can be
found in Faudree [5]. Also, in [6] the following theorem was proved. It gives some context
to the previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness of
3-connected graphs.

Theorem 4 (Faudree & Gould [6] )
Let X and Y be connected graphs with X,Y 6= P3, and let G be a 3-connected graph. If G
being X-free and Y -free implies G is hamiltonian-connected, then, up to symmetry, X = K1,3,
and Y satisfies each of the following conditions.

(a) ∆(Y ) ≤ 3.

(b) A longest induced path in Y has at most 12 vertices.

(c) Y contains no cycles of length at least 4.

(d) All triangles in Y are vertex disjoint.

(e) Y is claw-free.

One implication of Theorem 4 is that there are only a finite number of forbidden pairs of graphs
implying hamiltonian-connected of 3-connected graphs. However, the gap between Theorem 4
and the positive results in Theorems 1, 2, and 3 is still substantial. The following result will
reduce, but not eliminate, that gap somewhat. The proof is postponed to Section 3.

Theorem 5
Let X and Y be connected graphs with X,Y 6= P3, and let G be a 3-connected graph. If G
being X-free and Y -free implies G is hamiltonian-connected, then X = K1,3, and Y satisfies
each of the following conditions.

3



(a) ∆(Y ) ≤ 3.

(b) The longest induced path in Y has at most 9 vertices.

(c) Y contains no cycles of length at least 4.

(d) The distance between two distinct triangles in Y is either 1 or at least 3.

(e) There are at most two triangles in Y .

(f) Y is claw-free.

2 Forbidden pairs that imply hamiltonian-connectedness

Since the proofs of the results in this section have many common features and have the same
basic structure, we will describe that structure in general, introduce some special notation,
and make some general observations that will be used throughout all of the proofs. This will
eliminate the need to do this in each individual situation.

In what follows, an (x, y)-path P is said to be maximal if there is no (x, y)-path Q such
that V (P ) ( V (Q).

The set up of most of the proofs in this section will be to consider a maximal (x, y)-path
P that is not a Hamilton path, between some pair of vertices x and y, and then show that P
can be extended, contradicting the maximality of P . The following lemma will be useful in
selecting such maximal paths.

Lemma 6
For any pair of vertices x and y in a 3-connected claw-free graph G, there is a maximal
(x, y)-path P such that N(x) ⊆ V (P ).

Proof Let P = x1x2 . . . xm with x = x1 and y = xm be a maximal (x, y)-path with the
property that it contains a maximum number of vertices of N(x). If N(x) ⊆ V (P ), then we
are done. Hence, we may assume there is a vertex z ∈ N(x) \ V (P ). We will exhibit an
(x, y)-path Q that contains (N(x) ∩ V (P )) ∪ {z}. This will give a contradiction, since any
maximal path (x, y)-path Q′ that contains the vertices of Q would have more vertices in N(x)
than P .

Since G is 3-connected, there exist three vertex disjoint (z, P )-paths, which will be denoted
by Q1, Q2 and Q3. We may assume that Q1 has endvertex x1. Let xr and xs (with 1 < r < s)
be the endvertices of Q2 and Q3, respectively. If z has more than three adjacencies on P ,
then select xr and xs to be the last two adjacencies of z on P . Let S be the set of vertices in
N(x) ∩ V (P ) that are not adjacent to z. Note that to avoid an induced claw centered at x,
the vertices in S form a complete graph. Also note that N(x)∩N(z)∩ V (P ) ⊆ x1

→
Pxr ∪ {xs}.
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If S ∩ xr+1
→
Pxs−1 = Ø, then Q = x1

→
Pxr
←
Q2z
→
Q3xs

→
Pxm is the required path, since this path

contains z as well as N(x) ∩ V (P ).
If S ∩ xr+1

→
Pxs−1 6= Ø, then select i and j such that xi is the smallest indexed vertex in

S ∩ xr+1
→
Pxs−1 and xj is the largest. It is possible that i = j. By the maximality of P and

since G is claw-free, x2xi ∈ E(G). Then Q = x1xj
←
Pxix2

→
Pxr
←
Q2z
→
Q3xs

→
Pxm is the required

path.

In the next proofs we start with a graph G that is 3-connected and claw-free, and for which
there is no Hamilton path between some pair of vertices x and y of G. By Lemma 6 we can
select a maximal (x, y)-path P = x1x2 . . . xm with x = x1 and y = xm such that N(x) ⊆ V (P ).
Since P is not a Hamilton path, there is a vertex z not on P . Since G is 3-connected, there
exist three vertex disjoint (z, P )-paths, and at least two of these paths will terminate in interior
vertices of P . Let xi, xj and xk (with 1 < i < j < k ≤ m) be the endvertices on P of these
paths and denote the paths by Qi, Qj and Qk respectively. We can choose z and the paths
Qi, Qj , Qk in such a way that

(i) |E(Qi)| = 1,

(ii) |E(Qj)| is minimum subject to (i),

(iii) |E(Qk)| is minimum subject to (i) and (ii).

For ` = i, j, k, the path Q` will be denoted by zv` · · ·u`x` realizing of course that the path
might be just an edge. For shortness we will use Q to denote the path xi

←
Qiz
→
Qjxj. By the way

the paths are chosen, we conclude that Q is an induced path except possibly for the edge xixj .
The maximality of P and G being claw-free implies that xi−1xi+1 ∈ E(G), for other-

wise there would be an induced claw centered at xi. Likewise, xj−1xj+1 ∈ E(G). Note
that j − i ≥ 4, for otherwise the path P could be extended; for example if j − i = 3, then
x1
→
Pxi−1xi+1xi

→
Qxjxj−1xj+1

→
Pxm is such a path. Also, observe that xixj−2 6∈ E(G), for other-

wise the path P can be extended to the path x1
→
Pxi−1xi+1

→
Pxj−2xi

→
Qxjxj−1xj+1

→
Pxm.

Select the smallest r1 with i < r1 < j such that xixr1 ∈ E(G), but xixr1+1 6∈ E(G). By
the previous remarks, such an r1 exists. Likewise, select the smallest s1 with j < s1 < k such
that xjxs1 ∈ E(G), but xjxs1+1 6∈ E(G). There are no edges between xi

→
Pxr1+1 and xj

→
Pxs1+1,

except possibly for xixj: the existence of any of the edges gives an extension of P ; for example, if
xr1+1xs1+1 ∈ E(G), then P can be extended to the path x1

→
Pxi−1xi+1

→
Pxr1xi

→
Qxjxs1

←
Pxj+1xj−1←

Pxr1+1xs1+1
→
Pxm. In the same way select a largest r2 with i < r2 < j such that xjxr2 ∈ E(G),

but xjxr2−1 6∈ E(G). By symmetry and the previous remarks, such an r2 exists. Also, if
xk 6= xm, in the same way an s2 associated with the vertex xk can be defined. Also, by a
symmetry argument we know that there are no edges between xr2−1

→
Pxj and xs2−1

→
Pxk except

possibly for xjxk.
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The proof of the next theorem is just an adaptation of the corresponding result for hamiltonicity
which appeared in Broersma & Veldman [3]. Lemma 6 made this adaptation much easier,
since it assured the existence of a maximal path P , a vertex z not on P , and two vertex disjoint
paths from z to the interior vertices of P .

Theorem 7
If a 3-connected graph G is claw-free and P6-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of P6. We choose a maximal (x, y)-path P = x1x2 . . . xm with x = x1 and y = xm subject
to the condition that N(x) ⊆ V (P ). We choose a vertex z ∈ V (G) \ V (P ) and three vertex
disjoint (z, P )-paths as in the general discussion. All of the notation and observations of the
general discussion are assumed.

If xixj ∈ E(G), then from the general observations we get that G[{xr1+1, xr1 , xi, xj , xs1 ,

xs1+1}] ∼= P6. Otherwise, the path xr1+1xr1xi
→
Qxjxs1 is an induced path with at least six

vertices. Hence in both cases G contains an induced P6.

The proof of the next theorem is also an adaptation of the corresponding result in Faudree

et al. [7] for hamiltonian graphs. However, in this case no restriction needs to be placed on
the order of the graph.

Theorem 8
If a 3-connected graph G is claw-free and Z3-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of Z3. We choose a maximal (x, y)-path P = x1x2 . . . xm with x = x1 and y = xm subject
to the condition that N(x) ⊆ V (P ). We choose a vertex z ∈ V (G) \ V (P ) and three vertex
disjoint (z, P )-paths as in the general discussion. All of the notation and observations of the
general discussion are assumed.

We first show that |E(Qj)| = 1. If |E(Qj)| ≥ 2, then xixj 6∈ E(G), since otherwise G[{xi;xi−1,

z, xj}] ∼= K1,3. But then G[{xi−1, xi+1, xi} ∪ V (Qj)] contains an induced Z3. Hence we may
assume E|(Qj)| = 1, i.e. zxj ∈ E(G).

Now assume xixi+2 ∈ E(G). To avoid G[{xi+1, xi+2, xi; z, xj , xj+1}] ∼= Z3, we have xixj ∈
E(G). But then G[{xi+1, xi+2, xi;xj, xs1 , xs1+1}] ∼= Z3. Hence xixi+2 6∈ E(G).

Next assume xjxj−2 ∈ E(G). Then we may assume j − i ≥ 5; otherwise obviously there
exists a (x, y)-path contradicting the choice of P . To avoid G[{xj−2, xj−1, xj; z, xi, xi−1}] ∼= Z3,
we have xixj ∈ E(G). But then G[{xj−1, xj+1, xj ;xi, xi+1, xi+2}] ∼= Z3, since xi+1xj−1 6∈
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E(G) (otherwise x1
→
Pxizxj , xj−2

←
Pxi+1xj−1xj+1

→
Pxm contradicts the choice of P ) and similarly

xi+2xj−1 6∈ E(G). Hence xjxj−2 6∈ E(G).

Case 1 j − i ≥ 5.
First we assume xixj 6∈ E(G). To avoidG[{xi−1, xi+1, xi; z, xj , xj−1}] ∼= Z3, we have xi+1xj−1 ∈
E(G). To avoid G[{xi+1;xi, xi+2, xj−1}] ∼= K1,3, we have xi+2xj−1 ∈ E(G) and by symme-
try xi+1xj−2 ∈ E(G). To avoid G[{xi+1;xi, xi+2, xj−2}] ∼= K1,3, we have xi+2xj−2 ∈ E(G).
But then G[{xj−2, xi+2, xi+1;xi, z, xj}] ∼= Z3. Hence we may assume xixj ∈ E(G). To avoid
G[{xi−1, xi+1, xi;xj , xj−1, xj−2}] ∼= Z3, we have xi+1xj−1 ∈ E(G) or xi+1xj−2 ∈ E(G). If
xi+1xj−1 ∈ E(G), then, to avoid G[{xj−1;xi+1, xj−2, xj}] ∼= K1,3, we also have xi+1xj−2 ∈
E(G). By symmetry we have xi+2xj−1 ∈ E(G). To avoid G[{xi+1;xi, xi+2, xj−2}] ∼= K1,3,
we have xi+2xj−2 ∈ E(G) and to avoid G[{xj−2, xi+2, xi+1;xi, xj , xj+1}] ∼= Z3, we have
xj−2xj+1 ∈ E(G). But then x1

→
Pxi−1xi+1xizxjxj−1xi+2

→
Pxj−2xj+1

→
Pxm contradicts the choice

of P .

Case 2 j − i = 4.

Case 2.1 xixj 6∈ E(G).
To avoid G[{xi−1, xi+1, xi; z, xj , xj−1}] ∼= Z3, we have xi+1xj−1 ∈ E(G), and similarly xi−1xj+1 ∈
E(G). To avoid G[{xj+1;xj, xj+2, xi−1}] ∼= K1,3, we have xi−1xj+2 ∈ E(G), since xjxj+2 6∈
E(G) (otherwise x1

→
Pxi−1xj+1xj−1

←
Pxizxjxj+2

→
Pxm contradicts the choice of P ).

If |E(Qk)| ≥ 2, then to avoid G[{xj−1, xi+2, xi+1;xi, z, vk}] ∼= Z3, we have xivk ∈ E(G),
and similarly xjvk ∈ E(G). But then vk contradicts the choice of z. Hence |E(Qk)| = 1, i.e.
zxk ∈ E(G).

To avoid G[{xj−1, xi+2, xi+1;xi, z, xk}] ∼= Z3, we have xixk ∈ E(G) or xi+1xk ∈ E(G),
since xi+2xk 6∈ E(G) (otherwise to avoid G[{xk;xk−1, z, xi+2}] ∼= K1,3 also xi+2xk−1 6∈ E(G),
yielding a path which contradicts the choice of P ) and similarly xj−1xk 6∈ E(G). If xi+1xk ∈
E(G), then also xi+1xk−1 ∈ E(G) and to avoid G[{xi+1;xi, xi+2, xk−1}] ∼= K1,3, we have
xi+2xk−1 ∈ E(G), yielding a path which contradicts the choice of P . Hence xi+1xk 6∈ E(G)
and thus xixk ∈ E(G). But then G[{xk, z, xi;xi+1, xj−1, xj+1}] ∼= Z3, since xj+1xk 6∈ E(G)
(otherwise also xj+1xk−1 ∈ E(G) and hence x1

→
Pxi−1xj+2

→
Pxk−1xj+1

←
Pxizxk

→
Pxm contradicts

the choice of P ).

Case 2.2 xixj ∈ E(G).
First assume |E(Qk)| ≥ 2. If xiv ∈ E(G) for some vertex v ∈ V (Qk) \ {z, xk}, then, to
avoid G[{xi;xi−1, v, xj}] ∼= K1,3, also xjv ∈ E(G), which would contradict the choice of
z. Hence xiv 6∈ E(G) for every v ∈ V (Qk) \ {z, xk} and similarly xjv 6∈ E(G) for ev-
ery v ∈ V (Qk) \ {z, xk}. Hence G[{xi−1, xi+1, xi; z, vk, v+

k }] ∼= Z3, unless |E(Qk)| = 2 and
xi−1xk ∈ E(G), xixk ∈ E(G) or xi+1xk ∈ E(G). However, if xi−1xk ∈ E(G), then to avoid
G[{xk;xi−1, xk−1, vk}] ∼= K1,3, we have xi−1xk−1 ∈ E(G), yielding a path which contradicts
the choice of P . Hence xi−1xk 6∈ E(G) and similarly xixk 6∈ E(G). Finally, if xi+1xk ∈ E(G),
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then also xi+1xk−1 ∈ E(G) and G[{xi+1, xk−1, xk; vk, z, xj}] ∼= Z3. Hence xi+1xk 6∈ E(G) and
G[{xi−1, xi+1, xi; z, vk, v+

k }] ∼= Z3.
Now we may assume |E(Qk)| = 1, i.e. zxk ∈ E(G). To avoid G[{xi−1, xi+1, xi; z, xk, xk−1}] ∼=

Z3, we have xixk ∈ E(G), xi+1xk ∈ E(G) or xi+1xk−1 ∈ E(G). If xi+1xk ∈ E(G), then also
xi+1xk−1 ∈ E(G) and to avoid G[{xi+1;xi, xi+2, xk−1}] ∼= K1,3 we have xi+2xk−1 ∈ E(G),
yielding a path which contradicts the choice of P . Hence xi+1xk, xi+1xk−1 6∈ E(G). If
xixk ∈ E(G), then to avoid G[{xi;xi−1, xj , xk}] ∼= K1,3, we have xjxk ∈ E(G). However, then
G[{z, xk, xj ;xj−1, xi+2, xi+1}] ∼= Z3 if xi+1xj−1 6∈ E(G) and G[{z, xk, xj ;xj−1, xi+1, xi−1}] ∼=
Z3 if xi+1xj−1 ∈ E(G).

The following result gives a pair of forbidden graphs that implies a graph is hamiltonian-
connected in the presence of 3-connectedness but does not imply a graph is hamiltonian in the
presence of 2-connectedness.

Theorem 9
If a 3-connected graph G is claw-free and H1-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of H1. We choose a maximal (x, y)-path P = x1x2 . . . xm with x = x1 and y = xm subject
to the condition that N(x) ⊆ V (P ). We choose a vertex z ∈ V (G) \ V (P ) and three vertex
disjoint (z, P )-paths as in the general discussion. All of the notation and observations of the
general discussion are assumed.

We claim that we can choose z in such a way that |E(Qj)| = 1, and that |E(Qk)| = 1 if
xk 6= xm. Suppose |E(Qj)| ≥ 2 and consider z and the successor vj of z on Qj . By the choice
of z, xivj 6∈ E(G). Since G is 3-connected, claw-free and zv+

j 6∈ E(G), there exists a triangle
T containing z and vj or there exists a triangle T containing vj and v+

j . We distinguish a
number of cases.

Case a.1 z, vj and a vertex of Qk are in a common triangle.
Let t ∈ V (Qk) \ {z} be the third vertex of T . By the choice of Qk, we have t = vk. If vk 6= xk,
then G[{xi−1, xi+1, xi; z, vj , vk}] ∼= H1, since xivj 6∈ E(G) (otherwise vj contradicts the choice
of z) and xit 6∈ E(G) (otherwise t contradicts the choice of z). Hence vk = xk.

To avoid G[{xi−1, xi+1, xi; z, vj , xk}] ∼= H1, we must have at least one of xkxi−1, xkxi and
xi+1xk in E(G). Then, since xi−1xk 6∈ E(G) (otherwise to avoid G[{xk;xi−1, z, xk−1}] ∼=
K1,3, we have xi−1xk−1 ∈ E(G) yielding a path x1

→
Pxi−1xk−1

←
Pxizxk

→
Pxm which contradicts

the choice of P ) and xixk 6∈ E(G) (otherwise to avoid G[{xk;xi, vj , xk−1}] ∼= K1,3, we have
xixk−1 ∈ E(G), also yielding a path which contradicts the choice of P ), we get xi+1xk ∈ E(G),
implying also xi+1xk−1 ∈ E(G).

If vjxj ∈ E(G) (i.e. |E(Qj)| = 2), then to avoid G[{xj−1, xj+1, xj ; vj , z, xk}] ∼= H1, we
similarly have that xj+1xk ∈ E(G), and get a contradiction since G[{xk;xi+1, xj+1, z}] ∼= K1,3.
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Hence we may assume vjxj 6∈ E(G) and thus v+
j 6∈ V (P ) (where v+

j is the successor of vj onQj).
Since vjv++

j 6∈ E(G), there exists a triangle T ′ containing vj and v+
j or there exists a triangle

T ′ containing v+
j and v++

j . Note that v+
j xk 6∈ E(G) (otherwise G[{xk; z, v+

j , xk−1}] ∼= K1,3).

(i) Suppose vj and v+
j are in a common triangle T ′ with some vertex t′. Then t′ 6∈

{xi, xj , xk, z}, while also t′ 6∈ V (P ) \ {xi, xj , xm}; otherwise if t′ ∈ x1
→
Pxi−1, then vj

contradicts the choice of z, if t′ ∈ xi+1
→
Pxj−1, then the path zvjt′ contradicts the choice

of Qj, and if t′ ∈ xk+1
→
Pxm, then the paths zxk and zvjt

′ contradict the choice of Qj
and Qk. Hence t′ 6∈ V (P ) ∪ {z}. To avoid G[{xi+1, xk−1, xk; vj , v+

j , t
′}] ∼= H1, we have

xkt
′ ∈ E(G), and to avoid G[{xk;xk−1, z, t

′}] ∼= K1,3, we have zt′ ∈ E(G). But then
G[{xi−1, xi+1, xi; z, t′, vj}] ∼= H1, since xit′ 6∈ E(G);otherwise t′ contradicts the choice of
z.

(ii) If v+
j is not in a common triangle with vj, then there exists a triangle T ′ containing v+

j and
v++
j . Again let t′ be the third vertex of T ′. If t′ = xk, then G[{xk; z, v+

j , xk−1}] ∼= K1,3.

Hence t′ 6= xm and also t′ 6∈ {xi, z}. If t′ ∈ x1
→
Pxi−1 or t′ ∈ xk+1

→
Pxm we easily get

contradictions with the chosen path system. If t′ ∈ xi+1
→
Pxj−1, then also v++

j = xj ,
giving a contradiction since v+

j contradicts the choice of z. Hence t′ 6∈ V (P ) ∪ {z}.
Now G[{t′, v++

j , v+
j ; vj , z, xk}] ∼= H1 unless v++

j xk ∈ E(G) and v++
j = xj . But then

G[{xk;xi+1, xj , vj}] ∼= K1,3.

Case a.2 z, vj are in a common triangle T with some vertex t, and Case a.1 does not apply.
Then, by the choice of z, V (T )∩V (P ) = Ø. To avoid G[{xi−1, xi+1, xi; z, vj , t}] ∼= H1, we have
xit ∈ E(G). To avoid G[{z;xi, vj , vk}] ∼= K1,3 (with possibly vk = xk), we have xivk ∈ E(G),
since vjvk 6∈ E(G); otherwise we would be in Case a.1. To avoid G[{xi;xi−1, t, vk}] ∼= K1,3, we
have tvk ∈ E(G). If vjxj ∈ E(G), then G[{xj−1, xj+1, xj ; vj , z, t}] ∼= H1. Hence v+

j 6= xj. We
use that v+

j is in a triangle with vj or with v++
j .

(i) Suppose v+
j and vj are in a common triangle T ′ with some vertex t′.

Clearly, t′ 6= z, xi. We easily see that t′ 6∈ x1
→
Pxk−1. Now suppose t′ = xk. Then

G[{xk;xk−1, v
+
j , uk}] ∼= K1,3, unless v+

j uk ∈ E(G) and uk 6= z, vk. To avoid G[{xk;xk−1,

vj , uk}] ∼= K1,3, we have vjuk ∈ E(G). Then G[{xi, vk, t; vj , uk, xk}] ∼= H1, unless vkuk ∈
E(G). But then G[{z, t, vk ;uk, v+

j , xk}] ∼= H1. Hence t′ 6= xk. If t′ ∈ xk+1
→
Pxm, then

to avoid G[{xi, vk, t; vj , v+
j , t
′}] ∼= H1, we have vkt

′ ∈ E(G). But then vk = xk or
vkxk ∈ E(G). In both cases we easily obtain path systems contradicting the chosen path
system. Hence t′ 6∈ V (P ).

If t′ 6∈ V (P ), then consider G[{v+
j , t
′, vj ; t, xi, vk}] (with possibly vk = xk). If t′ 6∈ V (Qk),

then to avoid an induced H1, we have tt′ ∈ E(G). But then G[{xi−1, xi+1, xi; t, vj , t′}] ∼=
H1. Hence t′ ∈ V (Qk) \ {z, vk}. Then to avoid an H1, we have t′ = v+

k . Then v+
k 6= xk;
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otherwise G[{xk;xk−1, v
+
k , u

+
j }] ∼= K1,3. Considering G[{v+

k ; vk, v++
k , vj}], we get that

vjv
++
k ∈ E(G). To avoid G[{v+

k ; vk, v++
k , v+

j }] ∼= K1,3, we have v+
j v

++
k ∈ E(G). But then

G[{xi, vk, t; vj , v+
j , v

++
k }] ∼= H1.

(ii) If v+
j is not in a common triangle with vj, then considering a triangle T with V (T ) =

{v+
j , v

++
j , t′}, we easily obtain that G[{z, t, vj ; v+

j , v
++
j , t′}] ∼= H1.

Case b z and vj are not in a common triangle.
Hence vj and v+

j are in a triangle T with some vertex t. Note that to avoid G[{z;xi, vj , vk}] ∼=
K1,3, we have xivk ∈ E(G) with possibly vk = xk.

(i) First suppose t 6∈ V (P ). Using that no induced claw is centered at xi and that zv+
j 6∈

E(G), we obtain G[{xi, vk, z; vj , v+
j , t}] ∼= H1 unless t = v+

k . If t = v+
k , then v+

k 6= xk; oth-
erwiseG[{xk;xk−1, vj , vk}] ∼= K1,3 (using vjvk 6∈ E(G)). ConsideringG[{v+

k ; vk, v++
k , v+

j }],
with possibly xk = v++

k , we get v+
j v

++
k ∈ E(G). Now G[{xi, z, vk; v+

k , v
+
j , v

++
k }] ∼= H1,

unless v+
j = xj and xixj ∈ E(G). But then G[{xi;xi+1, z, xj}] ∼= K1,3.

(ii) Now suppose t ∈ V (P ). If t = xk, then vk 6= xk (since z and vj are not in a common
triangle). No induced claw centered at xk gives that G[{xi, vk, z; vj , v+

j , xk}] ∼= H1,
unless v+

j = xj and xixj ∈ E(G); in the latter case G[{z, vk , xi;xj, xj−1, xj+1}] ∼= H1.

Hence t 6= xk. If t ∈ x1
→
Pxk−1, then vj contradicts the choice of z. If t ∈ xk+1

→
Pxm

(assuming xk 6= xm), and v++
j 6= xj, then to avoid G[{xi, vk, z; vj , v+

j , t}] ∼= H1, we have

vkt ∈ E(G). But then G[{t; t−, vk, vj}] ∼= K1,3. If t ∈ xk+1
→
Pxm (assuming xk 6= xm),

and v++
j = xj, then to avoid G[{xi, vk, z; vj , xj, t}] ∼= H1 we have xixj ∈ E(G) or

xit ∈ E(G), both giving an induced claw as contradiction, or vkt ∈ E(G). In the latter
case G[{t; t−, vk, vj}] ∼= K1,3.

We now show that |E(Qk)| = 1 if xk 6= xm. This is not difficult if xixj 6∈ E(G): consider any
neighbor z′ of z in V (G)\V (P ). Then, considering G[{z; z′, xi, xj}], to avoid an induced claw,
we get that one of z′xi and z′xj is an edge. But then considering G[{xj−1, xj+1, xj ; z, z′, xi}]
or G[{xi−1, xi+1, xi; z, z′, xj}] we obtain both edges. This implies all vertices in the component
of G− V (P ) containing z have xi and xj as neighbors. Hence we can choose a vertex z with
three neighbors on P .

Now assume xixj ∈ E(G), and assume xk 6= xm and |E(Qk)| ≥ 2. Then z has no third
neighbor on P . Let p denote the successor of z on Qk. Since δ ≥ 3, p is in a triangle by
claw-freeness. If pxi or pxj is an edge, then both edges are in; otherwise we obtain a claw
induced by {xi; p, xi+1, xj} or {xj ; p, xj+1, xi}. But then we contradict the choice of z. Hence
pxi, pxj 6∈ E(G). We distinguish four subcases.

(i) p and z are in a common triangle with a vertex t 6∈ V (P ). Clearly, by the choice of Qk,
t 6∈ V (Qk). To avoid G[{p, t, z;xi, xi+1, xi−1} ∼= H1], we have txi ∈ E(G), and similarly
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txj ∈ E(G). Suppose first that xk = p+. To avoid G[{z, t, p;xk, xk−1, xk+1}] ∼= H1, we
have txk ∈ E(G) (Note that zxk 6∈ E(G) by yhe choice of z). But then t contradicts the
choice of z (since zxi, zxj , zxk ∈ E(G)). Hence we may assume p+ 6= xk. We use that
p+ is in a common triangle with p or p++.

(a) p and p+ are in a common triangle with some vertex t′. Similar arguments as for p
show p+xi, p

+xj 6∈ E(G). If t′ 6∈ V (P ), then the choice of z implies t′xi, t′xj 6∈ E(G)
and t′z 6∈ E(G); if t′ ∈ V (P ), then also t′z 6∈ E(G). Now to avoid G[{t′, p+, p; z, xi,
xj}] ∼= H1, we conclude that t′ ∈ V (P ) and that t′ is adjacent to xi or xj . Both
cases yield a claw induced by {xi; z, xk, xi+1} or {xj ; z, xk, xj+1}, a contradiction.

(b) p and p+ are not in a common triangle. Hence p+ and p++ are in a common triangle
with some vertex t′. Using the choice of z and Qk, to avoid G[{z, t, p; p+, p++, t′}] ∼=
H1, we have t′t ∈ E(G), hence t′ 6∈ V (P ). To avoid G[{t; t′, p, xi}] ∼= K1,3, we
conclude that xit′ ∈ E(G), and similarly xjt′ ∈ E(G), contradicting the choice of z.

(ii) p and z are in a common triangle with a vertex t ∈ V (P ). Together with pxi, pxj 6∈ E(G)
we contradict the assumption that z has no third neighbor on P .

(iii) p and z are not in a common triangle, but p and p+ are in a common triangle with
a vertex t 6∈ V (P ). Clearly, the assumption implies tz 6∈ E(G), and by the choice of
Qk, zp+ 6∈ E(G). Hence also txi, txj 6∈ E(G). As before pxi, pxj 6∈ E(G) and similarly
p+xi, p

+xj 6∈ E(G) unless p+ = xk. To avoid G[{t, p+, p; z, xi, xj}] ∼= H1, we conclude
p+ = xk and xkxi or xkxj is an edge. This yields a claw induced by {xi;xi+1, xk, z} or
{xj ;xj+1, xk, z}.

(iv) p and z are not in a triangle, and p and p+ are not in a triangle with some vertex of
V (G)\V (P ). Hence p and p+ are in a common triangle with some vertex t ∈ V (P ). Since
pxi, pxj 6∈ E(G), the choice of Qk implies p+ ∈ V (P ). Consider G[{xi, xj , z; p, xk, t}].
If xixk ∈ E(G), then G[{xk; p, xj , xj−1}] ∼= K1,3. By similar arguments, to avoid
an H1, we conclude t = xm and txi or txj is an edge. If txi ∈ E(G), we obtain
G[{xi−1, xi+1, xi; t, p, xk}] ∼= H1; the case txj ∈ E(G) is similar.

Case 1 xixj 6∈ E(G).
Since zxi, zxj , zxk ∈ E(G) and xixj 6∈ E(G), claw-freeness implies xixk ∈ E(G) or xjxk ∈
E(G).

First assume xixk ∈ E(G). If also xjxk ∈ E(G), then to avoid G[{xk;xi, xj , xk−1}] ∼= K1,3,
we have xixk−1 ∈ E(G) or xjxk−1 ∈ E(G), both contradicting the choice of P . So xjxk 6∈
E(G). If xkxj−1 ∈ E(G), then also xk−1xj−1 ∈ E(G), contradicting the choice of P . Hence
xk−1xj−1, xkxj−1 6∈ E(G). To avoid G[{xi, xk, z;xj , xj−1, xj+1}] ∼= H1, we have xkxj+1 ∈
E(G), and hence also xk−1xj+1 ∈ E(G). Since xixk−1 6∈ E(G), we have xi−1xk 6∈ E(G).
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Since xi−1xk 6∈ E(G), we have xi−1xj+1 6∈ E(G) (otherwise G[{xj+1, xi−1, xj , xk}] ∼= K1,3). If
xi+1xk−1 ∈ E(G), then x1

→
Pxizxj

←
Pxi+1xk−1

←
Pxj+1xk

→
Pxm contradicts the choice of P . Hence

xi+1xk−1 6∈ E(G). To avoid G[{xi−1, xi+1, xi;xk, xk−1, xj + 1}] ∼= H1, we have xi+1xk ∈ E(G).
But then G[{xk, xi+1, z, xk−1}] ∼= K1,3, a contradiction. We conclude that xixk 6∈ E(G) and
xjxk ∈ E(G).

To avoid G[{xi−1, xi+1, xi; z, xj , xk}] ∼= H1, we have xi+1xk ∈ E(G) and hence also xi+1xk−1 ∈
E(G). This also implies xk = xm. By the choice of P , we have xixi+2 6∈ E(G). To avoid
G[{xi+1;xi, xi+2, xk}] ∼= K1,3, we have xi+2xk ∈ E(G) and to avoid G[{xi+1;xi, xi+2, xk−1}] ∼=
K1,3, we have xi+2xk−1 ∈ E(G). If xkxj+1 ∈ E(G), then G[{xk;xi+1, xj+1, z}] ∼= K1,3. If
xi+1xj−1 ∈ E(G), then x1

→
Pxi+1xj−1

←
Pxi+2xk−1

←
Pxjzxk contradicts the choice of P . To avoid

G[{xi+1, xi+2, xk;xj , xj−1, xj+1}] ∼= H1, we have xi+2xj−1 ∈ E(G) \ E(P ) (i.e. xi+3 6= xj−1).
If xi+1xi+3 ∈ E(G), then x1

→
Pxizxj

→
Pxk−1xi+2xj−1

←
Pxi+3xi+1xk contradicts the choice of P .

Hence xi+1xi+3 6∈ E(G), implying xi+3xj−1 ∈ E(G) (otherwise G[{xi+2;xi+1, xi+3, xj−1}] ∼=
K1,3). If xixi+3 ∈ E(G), then x1

→
Pxi−1xi+1xixi+3

→
Pxj−1xi+2xk−1

←
Pxjzxk contradicts the choice

of P , and if xi−1xi+3 ∈ E(G) so does x1
→
Pxi−1xi+3

→
Pxk−1xi+2xi+1xizxk. If xi−1xi+2 ∈

E(G), then, to avoid G[{xi+2;xi−1, xi+3, xk−1}] ∼= K1,3, we have xi+3xk−1 ∈ E(G) and
x1
→
Pxi+2xj−1

←
Pxi+3xk−1

←
Pxjzxk contradicts the choice of P . Hence G[{xi−1, xi+1, xi;xi+2, xi+3,

xj−1}] ∼= K1,3.

Case 2 xixj ∈ E(G).
To avoid G[{xi−1, xi+1, xi;xj , xj−1, xj+1}] ∼= H1, we have either xi−1xj+1 ∈ E(G) or xi+1xj−1 ∈
E(G), since the other edges are not present by standard arguments.

Case 2.1 xi−1xj+1 ∈ E(G).
To avoid G[{xj+1;xj , xj+2, xi−1}] ∼= K1,3, we have xi−1xj+2 ∈ E(G), since xi−1xj 6∈ E(G)
(standard) and xjxj+2 6∈ E(G) (otherwise x

→
Pxi−1xj+1xj−1

←
Pxizxjxj+2

→
Py contradicts the

choice of P ).
We first show zxk ∈ E(G). Assuming the contrary we have vk 6= xk. Since δ ≥ 3 and G is

claw-free, vk belongs to a triangle.

Case a There exists a triangle T containing vk and z.
Let q be the third vertex of T .

Case a.1 q 6∈ V (P ).
If xivk ∈ E(G), then, to avoid G[{xi;xi+1, xj , vk}] ∼= K1,3, also xjvk ∈ E(G), which contradicts
the choice of z (vk would have been a better choice). Hence, to avoid G[{xi−1, xi+1, xi; z, vk, q}] ∼=
H1, we have xiq ∈ E(G). But then G[{xj+1, xj+2, xi−1;xi, z, q}] ∼= H1.

Case a.2 q ∈ V (P ).
By the way xk was chosen, we have q = xi or q = xj. If q = xi, thenG[{xj+1, xj+2, xi−1;xi, z, vk}] ∼=
H1. If q = xj , then, to avoid G[{xj ;xi, vk, xj+1}] ∼= K1,3, we have xivk ∈ E(G), giving the
same H1 as a contradiction.
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Case b Every triangle T containing vk does not contain z.
Let q1 and q2 be the two other vertices of T . If q1, q2 6∈ V (P ), thenG[{xi, xj , z; vk, q1, q2}] ∼= H1;
otherwise, if for example q1z ∈ E(G), there would be a triangle T containing vk and z, and
if q1xi ∈ E(G), then G[{xi; z, q1, xi+1} ∼= K1,3. Also, if q1 ∈ V (P ) (and/or q2 ∈ V (P )), then
G[{xi, xj , z; vk, q1, q2}] ∼= H1; otherwise, if for example q1xj ∈ E(G), then G[{q1;xj , vk, q−1 }] ∼=
K1,3.

Case 2.1.1 x1 6= xi−1.
To avoid G[{xi−1;xi−2, xi, xi+1}] ∼= K1,3, we have xi−2xj+1 ∈ E(G), and to avoid G[{xi−1;xi−2,

xi, xi+2}] ∼= K1,3, we have xi−2xj+2 ∈ E(G). But then G[{xi, z, xj ;xj+1, xj+2, xi−2}] ∼= H1.

Case 2.1.2 x1 = xi−1.

Case 2.1.2.1 xk 6= xm.
To avoid G[{xi, xj , z;xj , xj−1, xj+1}] ∼= H1, we have xixk ∈ E(G) or xjxk ∈ E(G). First
assume xjxk ∈ E(G). To avoid G[{xj−1, xj+1, xj ;xk, xk−1, xk+1}] ∼= H1, we have xj−1xk+1 ∈
E(G) or xj+1xk−1 ∈ E(G). However, if xj−1xk+1 ∈ E(G), then x1xj+2

→
Pxk−1xj+1

←
Pxizxkxk+1

contradicts the choice of P ; if xj−1xk+1 ∈ E(G), so does x1xj+1
→
Pxkzxjxi

→
Pxj−1xk+1. Hence

xixk ∈ E(G). To avoid G[{xi−1, xi+1, xi;xk, xk−1, xk+1}] ∼= H1, we have xi+1xk−1 ∈ E(G)
or xi−1xk+1 ∈ E(G). However, if xi−1xk−1 ∈ E(G), then x1xj+1

→
Pxk−1xi+1

→
Pxjxizxk

→
Pxm; if

xi−1xk+1 ∈ E(G), then G[{x1;xi, xj+1, xk+1}] ∼= K1,3.

Case 2.1.2.2 xk = xm.
We distinguish between the cases that xjxk ∈ E(G) and xjxk 6∈ E(G).

Case 2.1.2.2.a xjxm ∈ E(G).
To avoid G[{x1, xj+2, xj+1;xj , z, xm}] ∼= H1, we have xj+2xm ∈ E(G), since x1xm 6∈ E(G)
(standard) and xj+1xm 6∈ E(G) (otherwise also xj+1xm−1 ∈ E(G), giving a path x1xj+2

→
Pxm−1

xj+1
←
Pxizy which contradicts the choice of P ) while the other possible edges are not present

by standard arguments.
First assume xj+3 6= xm−1. To avoid G[{xm;xm−1, xj+2, z}] ∼= K1,3, we have xj+2xm−1 ∈

E(G), and to avoid G[{xj+2;x1, xj+3, xm−1}] ∼= K1,3, we have xj+2xm−1 ∈ E(G). But then
G[{xi+2, xi, x1;xj+2, xj+3, xm−1}] ∼= H1, since x1xj+3 6∈ E(G) (otherwise x1xj+3

→
Pxm−1xj+2

←
P

xizxm contradicts the choice of P ), xixj+3 6∈ E(G) (otherwise x1xj+2xm−1
←
Pxj+3xi

→
Pxj−1xj+1

xjzxm contradicts the choice of P ), xi+1xj+3 6∈ E(G) (otherwise x1xj+1xj+2xm−1
←
Pxj+3xi+1

→
P

xjxizxm contradicts the choice of P ) and xi+1xm−1 6∈ E(G) (otherwise x1xj+1
→
Pxm−1xi+1

→
Pxj

xizxm contradicts the choice of P ), while the other possible edges are not present by standard
arguments.

Hence we may assume that xj+3 = xm−1. Let p ∈ V (G) \ {xj+2, xm} be a neighbor of
xj+3. We first show that we can choose p on P . Suppose there does not exist such a vertex
p on P and let T be a triangle containing p and containing a maximum number of vertices of
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P . Let q1 and q2 be the other vertices of T . To avoid G[{xj+3;xj+2, xm, p}] ∼= K1,3, we have
xj+3y ∈ E(G).

If V (T ) ∩ V (P ) = Ø, then G[{q1, q2, p;xj+3, xj+2, xm} ∼= H1.
If |V (T ) ∩ V (P )| = 2, then q1 6= xj+3 (since q2 is a neighbor of q1 it would have been

possible to choose p on P ) and q2 6= xj+3 (similar). But then p contradicts the choice of z.
If |V (T ) ∩ V (P )| = 1, let q1 be the vertex not on P and let q2 be the vertex on P .

One easily shows that q2 6∈ {x1, xi, xi+1, xj−1, xj , xj+1, xj+2, y} by obtaining (x, y)-paths con-
tradicting the choice of P . If q2 = xj+3, then G[{x1, xj+1, xj+2; q2, q1, p}] ∼= H1. If q2 ∈
xi+2
→
Pxj−2, then to avoid G[{q2; q−2 , q++, q1}] ∼= K1,3, we have q−2 q

+
2 ∈ E(G). However, then

G[{q2, q1, p;xj+3, xj+2, xm}] ∼= H1, since q2xj+2 6∈ E(G) (otherwise x1
→
Pq−2 q

+
2
→
Pxj+2q2pxj+3xm

contradicts the choice of P ), q2xj+3 6∈ E(G) by assumption and q2xm 6∈ E(G) (otherwise also
q2xj+3 6∈ E(G) by a standard observation).

Hence we may assume that we can choose p on P , and one easily shows that p ∈ xi+2
→
Pxj−2.

To avoid G[{p; p−, p+, xj+3}] ∼= K1,3, we have p−p+ ∈ E(G), since p−xj+3 6∈ E(G) (otherwise
x1xj+2

←
Ppxj+3p

−←Pxizxm contradicts the choice of P ) and p+xj+3 6∈ E(G) (similar). We
may assume that pxj+2 6∈ E(G) (otherwise by considering the path x1

→
Pp−p+→Pxj+2pxj+3xm

we are back in the case that xj+3 6= xm−1) and pxm 6∈ E(G) (similar). Hence, to avoid
G[{xj+3; p, xj+2, xm}] ∼= K1,3, we have xj+2xm ∈ E(G). However, then G[{p−, p+, p;xj+3,

xj+2, xm}] ∼= H1, since p−xj+2 6∈ E(G) (otherwise x1xj+1
←
Ppxj+3xj+2p

−←Pxizxm contradicts
the choice of P ), p−xm 6∈ E(G) (otherwise also p−xj+3 ∈ E(G)), p+xj+2 6∈ E(G) (otherwise
x1xj+1xj+2p

+→Pxjzxi
→
Ppxj+3xm contradicts the choice of P ) and p+xm 6∈ E(G) (otherwise also

p+xj+3 ∈ E(G)).

Case 2.1.2.2.b xjxm 6∈ E(G).
Let p ∈ V (G) \ {z, xm−1} be a neighbor of xm. We first show that we can choose p on P .
Suppose there does not exist such a vertex p on P . To avoid G[{xm;xm−1, z, p}] ∼= K1,3, we
have pz ∈ E(G). If pxi ∈ E(G), then G[{p, z, xi;xi−1, xj+1, xj+2}] ∼= H1. Hence we have
pxi 6∈ E(G). Since xi−1xk−1 6∈ E(G), also xi−1xk 6∈ E(G), and since xi+1xk−1 6∈ E(G), also
xi+1xk 6∈ E(G). To avoid G[{xi−1, xi+1, xi; z, p, xk}] ∼= H1, we have xixk ∈ E(G). However,
then G[{xm, xi, xm−1, p}] ∼= K1,3.

Hence we may assume that we can choose p on P . If xixm ∈ E(G), then to avoid
G[{xi, xi+1, xj , xm}] ∼= K1,3, we have xi+1xm ∈ E(G), and hence also xm−1xi+1 ∈ E(G), yield-
ing a path x1xj+1

→
Pxm−1xi+1

→
Pxjxizxm, contradicting the choice of P . Hence xixm, xi+1xm 6∈

E(G). If xi−1xm ∈ E(G), then also xi−1xm−1 ∈ E(G), a contradiction. Hence xi−1xm 6∈ E(G),
and similarly xj−1xm 6∈ E(G). If xj+1xm ∈ E(G), then also xj+1xm−1 ∈ E(G), yielding a
contradicting path x1xj+2

→
Pxm−1xj+1

←
Pxizxm. The above observations leave two cases for the

location of p.

(i) p ∈ xi+2
→
Pxj−2. We choose p ∈ N(xk) as close to xj−1 as possible. To avoid G[{xm; p, z,

xm−1}] ∼= K1,3, we have pxm−1 ∈ E(G). To avoid G[{xi, xj , z;xm, xm−1, p}] ∼= H1, we
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have pxi ∈ E(G) or pxj ∈ E(G). If pxi ∈ E(G), then also px1 ∈ E(G) (otherwise
G[{xi;x1, p, z}] ∼= K1,3). Since pxm−1 ∈ E(G), the choice of P implies p+x1 6∈ E(G). To
avoid G[{p;x1, p

+, xm}] ∼= K1,3, we have p+xm ∈ E(G), contradicting the choice of P .
Next assume pxj ∈ E(G). Then p+ 6= xj−1. To avoid G[{p; p+, xj , xm}] ∼= K1,3 we have
p+xj ∈ E(G), and to avoid G[{xj , p, z, xj+1}] ∼= K1,3, we have p+xj+1 ∈ E(G). However,
then x1

→
Ppxm−1

←
Pxj+1p

+→Pxjzxm contradicts the choice of P .

(ii) p ∈ xj+2
→
Pxk−2. We choose p ∈ N(xk) as close to xj+1 as possible. We again have

pxm−1 ∈ E(G) and pxi ∈ E(G) or pxj ∈ E(G). If pxi ∈ E(G), then to avoid
G[{p;xi, p−, xm}] ∼= K1,3, we have p−xi ∈ E(G) and p 6= xj+2. To avoid G[{xi; z, xi+1, p

−}] ∼=
K1,3, we have xi+1p

− ∈ E(G). But then x1xj+1
→
Pp−xi+1

→
Pxjzxip

→
Pxm contradicts the

choice of P .

If pxj ∈ E(G), then also pxj−1, pxj+1 ∈ E(G). If p− = xj+1, then x1xj+1xjzxi
→
Pxj−1p

→
Pxm

contradicts the choice of P . If p− 6= xj+1, then to avoid G[{p;xj , p−, xm}] ∼= K1,3, we
have p−xj ∈ E(G), and to avoid G[{xj ;xj−1, z, p

−}] ∼= K1,3, also p−xj−1 ∈ E(G). But
then x1xj+1

→
Pp−xj−1

←
Pxizxjp

→
Pxk contradicts the choice of P .

Case 2.2 xi−1xj+1 6∈ E(G) (hence xi+1xj−1 ∈ E(G)).

Case 2.2.1 j − i ≥ 5.
To avoid G[{xi+1;xi, xi+2, xj−1}] ∼= K1,3, we have xi+2xj−1 ∈ E(G), since xixi+2 6∈ E(G) (con-
tradicting path: x1

→
Pxi−1xi+1xj−1

←
Pxi+2xizxj

→
Pxm). By symmetry, we also have xi+1xj−2 ∈

E(G). To avoid G[{xi+1;xi, xi+2, xj−2}] ∼= K1,3, we have xi+2xj−2 ∈ E(G). However, then
G[{xi, z, xj ;xj−1, xj−2, xi+2}] ∼= H1.

Case 2.2.2 j − i = 4.
We use that xi+2 has a neighbor p 6∈ {xi−1, xi, xi+1, xi+2, xj−1, xj , xj+1}.

We first show we can choose p ∈ V (P ). Supposing this is not the case consider a triangle
T containing p. Let q1 and q2 be the other vertices of T . First suppose V (T ) ∩ V (P ) = Ø.
If q1xi+2 ∈ E(G), then G[{xi−1, xi, xi+1;xi+2, p, q1}] ∼= H1. Hence q1xi+2, q2xi+2 6∈ E(G).
But then G[{q1, q2, p;xi+2, xi+1, xj−1}] ∼= H1. Hence |V (T ) ∩ V (P )| ≥ 1. Let q1 denote a
neighbor of p in (V (P ) ∩ V (T )) \ {xi+2}. Then xi+2q1 6∈ E(G) by assumption. If xj−1q ∈
E(G), then also xj−1q

−
1 ∈ E(G) (otherwise G[{q1; q−1 , xj−1, p}] ∼= K1,3), and we easily find a

path contradicting the choice of P . A similar observation shows xi+1q1 6∈ E(G). But then
G[{xi+1, xj−1, xi+2; p, q1, q2}] ∼= H1.

Hence we can choose p ∈ V (P ). If xi+2 has two successive neighbors on P , it is obvious
that we can find a path contradicting the choice of P . Hence, if p− and p+ exist, we get that
p−p+ ∈ E(G). We deal with the cases that p ∈ {x1, xm} later.

To avoid G[{xi+1, xj−1, xi+2; p, p−, p+}] ∼= H1, we have xi+1p ∈ E(G) or xj−1p ∈ E(G). If
xi+1p ∈ E(G) and p ∈ xj+1

→
Pxm−1, then by considering the path x1

→
Pxi+1pxi+2

→
Pp−p+→Pxm,

we are back in Case 2.2.1. But then G[{xi+1, xj−1, xi+2; p, p−, p+}] ∼= H1.
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Now suppose p = xm. Then xm 6= xk, since otherwise G[{xm;xi+2, z, xm−1] ∼= K1,3. Note
that xk 6= xm−1 (otherwise x

→
Pxi−1xi+1xizxk

←
Pxi+2xm contradicts the choice of P ). To avoid

G[{xi, xj , z;xk, xk−1, xk+1}] ∼= H1, we have xixk ∈ E(G) or xjxk ∈ E(G). First assume
xjxk ∈ E(G). Like in the beginning of Case 2, we have xj−1xk+1 ∈ E(G) or xj+1xk−1 ∈ E(G).
If xj−1xk+1 ∈ E(G), also xj−2xk+1 ∈ E(G). However, since xj−2 = xi+2 this contradicts the
fact that xk 6= xm−1. If xj+1xk−1 ∈ E(G), then like in the beginning of this case, we have
k − j = 4. To avoid G[{xi+1, xi+2, xj−1;xj+1, xj+2, xj+3}] ∼= H1, we have xi+1xj+3 ∈ E(G).
But then G[{xi−1, xi, xi+1;xj+3, xj+1, xj+2}] ∼= H1. Hence we may assume that xjxk 6∈ E(G)
and xixk ∈ E(G). But then G[{xi;xi−1, xj , xk}] ∼= K1,3.

For the final subcase suppose {x1} = N(xi+2) \ {xi+1, xj−1}. By the choice of P , N(x1) ⊆
V (P ) and x2 6= xi−1. All neighbors of x1 except for possibly xi+1, xi+2, xj−1 are also neighbors
of x2, otherwise we obtain an induced claw centered at x1. If x1xi ∈ E(G), then x2xi ∈ E(G)
and to avoid G[{xi;x2, z, xi+1}] ∼= K1,3, we have x2xi+1 ∈ E(G), contradicting the choice of
P . Hence x1xi 6∈ E(G) and similarly x1xj 6∈ E(G).

If x1xi+1 ∈ E(G), then G[{x1, xi+1, xi+2;xi, z, xj}] ∼= H1; if x1xj−1 ∈ E(G), then G[{x1,

xi+2, xj−1;xj , xi, z}] ∼= H1. Now assume x1xi+1, x1, xj−1 6∈ E(G). Hence x1 has some neighbor
q 6= xi, xi+1, xi+2, xj−1, xj which is also a neighbor of x2. To avoidG[{q, x2, x1;xi+2, xi+1, xj−1}] ∼=
H1, we have qxi+1 ∈ E(G) or qxj−1 ∈ E(G).

First suppose q ∈ x3
→
Pxi−1 and qxi+1 ∈ E(G). Then to avoid G[{xi+1; q, xi, xi+2}] ∼=

K1,3, we have qxi ∈ E(G). To avoid G[{x1, x2, q;xi, z, xj}] ∼= H1, we have qxj ∈ E(G).
But then G[{q;x2, xi+1, xj}] ∼= K1,3. Next suppose q ∈ x3

→
Pxi−1 and qxi+1 6∈ E(G). Then

qxj−1 ∈ E(G) and to avoid G[{xj−1; q, xi+2, xj}] ∼= K1,3, we have qxj ∈ E(G). To avoid
G[{x1, x2, q;xj , z, xi}] ∼= H1, we have qxi ∈ E(G). But then G[{q;x2, xi, xj−1}] ∼= K1,3.

We now may assume q 6∈ x3
→
Pxi−1, hence q ∈ xj+1

→
Pxm. We choose q as close to xm as

possible, and deal with the subcase qxj−1 ∈ E(G) first.
If q = xm, then, as before, we can repeat the previous cases with xj , xk instead of xi, xj ,

and obtain an induced H1, unless xk = xm; but in the latter case G[{xm;x2, uk, xj−1}] ∼=
K1,3. Hence q 6= xm. To avoid G[{x1, x2, q;xj−1, xj , xj+1}] ∼= H1, we have qxj ∈ E(G) or
qxj+1 ∈ E(G), both implying qxj+1 ∈ E(G). To avoid G[{q;x1, xj+1, q

+}] ∼= K1,3, we have
xj+1q

+ ∈ E(G), yielding x1xi+2xj−1xjzxixi+1xi−1
←
Px2q

←
Pxj+1q

+→Pxm, a contradiction. For the
remaining case we assume qxj−1 6∈ E(G), hence qxi+1 ∈ E(G). By similar arguments as before
we may assume q 6= xm. To avoid G[{q; q+, x1, xi+1}] ∼= K1,3, we have xi+1q

+ ∈ E(G). If
q+ = xm, then by similar arguments as before xm = xk and x1xi+2

→
Pxk−1x2

→
Pxi−1xi+1xizQkxk

gives a contradiction. In the final case the path P ′ = x1xi+2
→
Pqx2

→
Pxi+1q

+→Pxm has the same
properties as P , also with respect to the choice of z. But z has two internal vertices xi′ and xj′
of P ′ with j′− i′ ≥ 5 as neighbors, so repeating the above arguments with respect to P ′, xi′ , xj′
we will obtain an induced H1. This completes the proof of Theorem 9.
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3 Possible forbidden pairs and hamiltonian-connectedness

We start by defining eight graphs which are 3-connected but not hamiltonian-connected. Let
m ≥ 4 be an integer, Mi be a Km in which three vertices xi, yi and zi are marked and
M = ∪8

i=1Mi.

• G1 = Km,m.

• G2 is obtained from a cycle C = x1x2 . . . x2m, by adding the edges xixm+i (i = 1, . . . ,m).

• G3 is an arbitrary 3-connected C4-free bipartite graph.

• G4 is obtained from M1 by adding two vertices a and b and all (six) edges between a, b

and x1, y1, z1.

• G5 is obtained from a cycle C = x1x2 . . . x6m by adding the edges x3i−2x3i (i = 1, . . . , 2m)
and the edges x3i−1x3m+3i−1 (i = 1, . . . ,m).

• G6 is obtained from a cycle C = x1x2 . . . x4m by adding the edges x2i−1x2i+1 (i =
1, . . . , 2m− 1), x4m−1x1 and x2ix2m+2i (i = 1, . . . ,m).

• G7 is obtained from G5 by replacing every triangle x3i−2x3i−1x3i (i = 1, . . . , 2m) by the
graph G′ of Figure 2.

• G8 is obtained from M by indentifying each vertex xi with yi+1 (i = 1, . . . , 7), x8 with
y1 and each vertex zi with zi+4 (i = 1, . . . , 4).
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Figure 2: The graph G′.

Since the graphs G1, . . . G8 are not hamiltonian-connected, each of them must contain an
induced copy of either X or Y . The graphs G1, G2, G3, G4 all contain a claw, but the last four
graphs G5, G6, G7, G8 are all claw-free.
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We will first show that one of the graphsX or Y must beK1,3. Assume that this is not true.
Assume, without loss of generality, that X ⊂ G1. Then X must either contain an induced C4

or it must be a generalized claw K1,r for r ≥ 4. First consider the case when C4 ⊂ X. Then
Y must be an induced subgraph of both G3 and G4, since neither of these graphs contains an
induced C4. However, the only induced subgraph common to both G3 and G4 is the claw K1,3.
If X = K1,r for r ≥ 4, then Y must be an induced subgraph of both G2 and G4, since neither
of these graphs has an induced K1,4. Again, the only induced subgraph common to both G2

and G4 is the claw K1,3. Therefore, without loss of generality, we can assume that X = K1,3.
Since G5, G6, G7, G8 are all claw-free, Y must be an induced subgraph of each of these

graphs. Since G5 is claw-free and ∆(G5) = 3, Y must satisfy both (a) and (f). There is no
induced P10 in G8, so (b) is satisfied. The shortest induced cycle in G5 besides C3 is a C8,
the longest induced cycle in G8 is a C8, and G6 contains no induced C8. Thus (c) is satisfied.
In G5 the distance between distinct triangles is either one or at least three. This implies that
(d) is satisfied. The graph G7 does not contain an induced copy of the graph S obtained from
a P5 by placing a triangle on the first and third edge (S is an H1 with an edge attached to
a vertex of degree two). Therefore, if Y contains three triangles, then each pair of triangles
would have to be at distance at least three. This would imply an induced P10, which is not
true. Thus (e) is satisfied. This completes the proof of Theorem 5.

4 Open question

The obvious question is the following.

Question A
What is the characterization of those pairs of connected graphs X and Y such that being
X-free and Y -free implies that a 3-connected graph is hamiltonian-connected?

A simpler question, but one that is critical to answering Question A is the following.

Question B
What is the largest k such that a 3-connected claw-free and Pk-free graph is hamiltonian-
connected?
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