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Abstract
It is proven that if G is a 3-connected claw-free graph which is also Zs-free (where Zs is
a triangle with a path of length 3 attached), Ps-free (where Ps is a path with 6 vertices)
or Hi-free (where H; consists of two disjoint triangles connected by an edge), then G is
hamiltonian-connected. Also, examples will be described that determine a finite family
of graphs £ such that if a 3-connected graph being claw-free and L-free implies G is

hamiltonian-connected, then L € L.
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Figure 1: Frequently used forbidden subgraphs.

1 Introduction

We use BONDY & MURTY [2] for terminology and notation not defined here and consider
finite simple graphs only. A graph G with n > 3 vertices is hamiltonian if G contains a cycle
of length n, and it is hamiltonian-connected if between each pair of vertices of G there is a
Hamilton path, i.e. a path on n vertices. If H is a given graph, then a graph G is called H-free
if G contains no induced subgraph isomorphic to H. The graph H is said to be a forbidden
subgraph.

We first describe some graphs that will be frequently used as forbidden subgraphs. Specif-
ically, we denote by P} and Cj, the path and the cycle on k vertices, by C the claw K 3, by
B the bull, by D the deer, by H the hourglass, by N the net, by W the wounded, by Zj the
graph obtained by identifying a vertex of K3 with an endvertex of Py,1, and by Hj, the graph
obtained by joining two vertex disjoint triangles by a path of length k (see Figure 1).

The next result was obtained in SHEPHERD [8], and the following one in FAUDREE & GOULD [6].
Note that in both cases 3-connectedness is assumed. This is natural since the forbidden sub-
graph conditons, being local conditions, do not imply 3-connectedness, and any hamiltonian-
connected graph (except K7, Ky, K3) must be 3-connected.

Theorem 1 ( SHEPHERD [8] )
If a 3-connected graph G is claw-free and N-free, then G is hamiltonian-connected.

Theorem 2 ( FAUDREE & GouLD [6])
If a 3-connected graph G is claw-free and Zs-free, then G is hamiltonian-connected.

We will extend this collection of pairs of forbidden graphs ensuring hamiltonian-connectedness
of 3-connected graphs by proving the following result, which gives three new independent
forbidden pairs. The proof of the result is postponed to Section 2.



Theorem 3
If G is a 3-connected claw-free graph, then G is hamiltonian-connected if any of the following
holds.

(a) G is Zs-free,
(b) G is Ps-free,

(c) G is Hy-free.

CHEN & GOULD [4] recently announced they proved that every 3-connected claw-free graph
is hamiltonian-connected provided it is Zs-free, Ps-free or W-free. In BEDROSSIAN [1] all
forbidden pairs of connected graphs ensuring that a graph is hamiltonian are characterized,
and the same was done for pancyclicity. The same type of characterization was done for other
hamiltonian properties in FAUDREE & GOULD [6]. A survey of results of this kind can be
found in FAUDREE [5]. Also, in [6] the following theorem was proved. It gives some context
to the previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness of
3-connected graphs.

Theorem 4 ( FAUDREE & GOULD [6])

Let X and Y be connected graphs with X,Y # P, and let G be a 3-connected graph. If G
being X-free and Y -free implies G is hamiltonian-connected, then, up to symmetry, X = K 3,
and Y satisfies each of the following conditions.

(a) A(Y) < 3.

(b) A longest induced path in'Y has at most 12 vertices.
(c) Y contains no cycles of length at least 4.

(d) All triangles in Y are vertex disjoint.

(e) Y is claw-free.

One implication of Theorem 4 is that there are only a finite number of forbidden pairs of graphs
implying hamiltonian-connected of 3-connected graphs. However, the gap between Theorem 4
and the positive results in Theorems 1, 2, and 3 is still substantial. The following result will
reduce, but not eliminate, that gap somewhat. The proof is postponed to Section 3.

Theorem 5

Let X and Y be connected graphs with X,Y # P3, and let G be a 3-connected graph. If G
being X-free and Y -free implies G is hamiltonian-connected, then X = K3, and Y satisfies
each of the following conditions.



(a) A(Y) <3.

(b) The longest induced path in' Y has at most 9 vertices.

(c) Y contains no cycles of length at least 4.

(d) The distance between two distinct triangles in Y is either 1 or at least 3.

(e) There are at most two triangles in Y.

(f) Y is claw-free.

2 Forbidden pairs that imply hamiltonian-connectedness

Since the proofs of the results in this section have many common features and have the same
basic structure, we will describe that structure in general, introduce some special notation,
and make some general observations that will be used throughout all of the proofs. This will
eliminate the need to do this in each individual situation.

In what follows, an (x,y)-path P is said to be maximal if there is no (z,y)-path @ such
that V(P) € V(Q).

The set up of most of the proofs in this section will be to consider a maximal (z,y)-path
P that is not a Hamilton path, between some pair of vertices x and y, and then show that P
can be extended, contradicting the maximality of P. The following lemma will be useful in

selecting such maximal paths.

Lemma 6
For any pair of vertices x and y in a 3-connected claw-free graph G, there is a maximal
(x,y)-path P such that N(z) C V(P).

Proof Let P = zyx2...2y, with x = 21 and y = x,, be a maximal (x,y)-path with the
property that it contains a maximum number of vertices of N(x). If N(z) C V(P), then we
are done. Hence, we may assume there is a vertex z € N(z) \ V(P). We will exhibit an
(x,y)-path @ that contains (N(xz) N V(P)) U {z}. This will give a contradiction, since any
maximal path (z,y)-path @' that contains the vertices of @ would have more vertices in N (z)
than P.

Since G is 3-connected, there exist three vertex disjoint (z, P)-paths, which will be denoted
by Q1, Q2 and Q3. We may assume that ()1 has endvertex x;. Let x, and zs (with 1 <r < s)
be the endvertices of ()2 and (3, respectively. If z has more than three adjacencies on P,
then select x, and =4 to be the last two adjacencies of z on P. Let S be the set of vertices in
N(x) N V(P) that are not adjacent to z. Note that to avoid an induced claw centered at x,
the vertices in S form a complete graph. Also note that N(z) "N (z)NV(P) C :cll?xr U{zs}.



IfSn x,url]?xs,l =@, then Q = $1?$T§2263$s?£6m is the required path, since this path
contains z as well as N(z) NV (P).

Irfsn xrﬂﬁxs,l =% (@, then select 7 and j such that x; is the smallest indexed vertex in
SN xr+1]3>x5_1 and x; is the largest. It is possible that ¢ = j. By the maximality of P and
since G is claw-free, zoz; € E(G). Then Q = xlxjﬁxixgﬁxrggzagxsﬁxm is the required
path. [ |

In the next proofs we start with a graph GG that is 3-connected and claw-free, and for which
there is no Hamilton path between some pair of vertices x and y of G. By Lemma 6 we can
select a maximal (x,y)-path P = z122 ...z, with x = z1 and y = x,, such that N(z) C V(P).
Since P is not a Hamilton path, there is a vertex z not on P. Since G is 3-connected, there
exist three vertex disjoint (z, P)-paths, and at least two of these paths will terminate in interior
vertices of P. Let z;, x; and x;, (with 1 < i < j < k < m) be the endvertices on P of these
paths and denote the paths by @Q;, @); and @)} respectively. We can choose z and the paths
Qi, Qj, Qr in such a way that

(i) [E@)] =1,
(i) |E(Q;)| is minimum subject to (i),
(ii) |E(Qp)| is minimum subject to (i) and (ii).

For ¢ = i, j,k, the path @, will be denoted by zvy - - - uyx, realizing of course that the path
might be just an edge. For shortness we will use () to denote the path xzazz@xj By the way
the paths are chosen, we conclude that @ is an induced path except possibly for the edge z;x;.

The maximality of P and G being claw-free implies that z;_1z;1+1 € E(G), for other-
wise there would be an induced claw centered at x;. Likewise, x; 1241 € E(G). Note
that j—1>4, for otherwise the path P could be extended; for example if j — ¢ = 3, then
lexZ 1x,+1szxjx] 1x]+1me is such a path. Also observe that mzx] 2 & E(G ) for other-
wise the path P can be extended to the path lexZ 1xz+1Px] gszxe] 1x]+1Pa:m

Select the smallest r1 with ¢ < r; < j such that z;z,, € E(G), but z;x,,+1 € E(G). By
the previous remarks, such an rq exists. Likewise, select the smallest s; with j < s1 < k such
that z;xs, € E(G), but 225,41 € E(G). There are no edges between l‘iﬁl’rl+1 and l’jﬁl‘sl+1,
except possibly for z;z;: the existence of any of the edges givgs an extergion of_]?; for e(icample, if
Tri41Ts,+1 € E(G), then P can be extended to the path @1 Px;_ 1241 P, 2iQx s Prjf17-1
<f_)l'7-1+1l’31+1ﬁl’m. In the same way select a largest ro with ¢ < ro < j such that z;z,, € E(G),
but z;z,,—1 ¢ E(G). By symmetry and the previous remarks, such an ry exists. Also, if
Tr # Tm, in the same way an sy associated with the vertex xp can be defined. Also, by a
symmetry argument we know that there are no edges between xm_ll?xj and xsrlﬁxk except
possibly for z;xy.



The proof of the next theorem is just an adaptation of the corresponding result for hamiltonicity
which appeared in BROERSMA & VELDMAN [3]. Lemma 6 made this adaptation much easier,
since it assured the existence of a maximal path P, a vertex z not on P, and two vertex disjoint
paths from z to the interior vertices of P.

Theorem 7

If a 3-connected graph G is claw-free and Ps-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of Ps. We choose a maximal (x,y)-path P = z1z2. .. 2, with z = 1 and y = x,, subject
to the condition that N(xz) C V(P). We choose a vertex z € V(G) \ V(P) and three vertex
disjoint (z, P)-paths as in the general discussion. All of the notation and observations of the
general discussion are assumed.

If z;2; € E(G), then from the general obserlations we get that G[{zy 1,2, Ti, 5, s,
Ts 41} = Ps. Otherwise, the path z, 12, z;Qxjz,, is an induced path with at least six
vertices. Hence in both cases G contains an induced Fs. [ |

The proof of the next theorem is also an adaptation of the corresponding result in FAUDREE
ET AL. [7] for hamiltonian graphs. However, in this case no restriction needs to be placed on
the order of the graph.

Theorem 8
If a 3-connected graph G is claw-free and Zs-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of Z3. We choose a maximal (z,y)-path P = 125 ... 2, with x = x; and y = x,, subject
to the condition that N(z) C V(P). We choose a vertex z € V(G) \ V(P) and three vertex
disjoint (z, P)-paths as in the general discussion. All of the notation and observations of the

general discussion are assumed.

We first show that |E(Q;)| = 1. If [E(Q;)| > 2, then z;z; ¢ E(G), since otherwise G[{x;; x;_1,
z,xj}] =2 Ky 3. But then G[{z;_1,zi11,2;} UV(Q;)] contains an induced Zs. Hence we may
assume E|(Q;)| =1, ie. zz; € E(G).

Now assume z;z;2 € E(G). To avoid G[{zit1, ZTit2, Ti; 2,2, 41} = Z3, we have z;x; €
E(G). But then G[{zy1, Tit2, Ti; 5, Ts,, Ts, 11} = Z3. Hence z;xi40 € E(G).

Next assume z;z;_» € E(G). Then we may assume j — 4 > 5; otherwise obviously there
exists a (x, y)-path contradicting the choice of P. To avoid G[{xj_2,xj_1,2;; 2, Ts, Ti—1}] = Z3,
we have z;x; € FE(G). But then G[{z;—1,%j41,%); 2, Tiv1, Tiga}| = Z3, since xip1x-1 &



E(G) (otherwise xll?:ciz:cj, ﬂfj72Fl’i+1l’j71$j+1Fxm contradicts the choice of P) and similarly
Ti42T5—-1 € E(G) Hence TjT5-2 ¢ E(G)

Case 1 j—1i>5.

First we assume z;x; ¢ E(G). To avoid G[{xi—1, Tit1, i 2,25, j—1}] = Z3, we have z; 121 €
E(G). To avoid G[{zjt1; i, Tit2,xj—1}] = K3, we have z;402,_1 € E(G) and by symme-
try zip1zj_9 € E(G). To avoid G{xit1; i, Tite, xj—2}] = Ky 3, we have z;102; 9 € E(G).
But then G[{z;_2,Zit2, Tit1;®i, 2,2} = Z3. Hence we may assume z;z; € E(G). To avoid
Gl{zi—1,Tiy1, s xj, 1,252} = Zs, we have zj12j1 € E(G) or zip1zj_2 € E(G). If
zip1zj—1 € E(G), then, to avoid G[{z;_1;%it1,2j-2,2;}] = K13, we also have z; 112 o €
E(G). By symmetry we have z;10x;1 € E(G). To avoid G{xit1;2s, Tiyo,xj—2}] = K3,
we have ;197 2 € E(G) an_d) to avoid G[{xj,g,xlqi, xi+1;xi,ﬁ,xj+1}] >~ Zs3, we have
zj_oxj41 € E(G). But then x1 Pxj_12i412:222j_1Ti42P2j_ox 41 P2y, contradicts the choice
of P.

Case 2 j —i=4.

Case 2.1 z;z; € E(G).

To avoid G{wi_1,Tiy1, % 2,25, xj-1}] = Z3, we have z; 12,1 € E(G), and similarly z; 1211 €
E(G). To avoid G[{xj+1;xj,a:j+2,£i_1}] = KL?,, we have z;_12j42 € E(G), since zjzjo &
E(G) (otherwise x1Px;_1xj412j—1 Priza;xji 2Py, contradicts the choice of P).

If |E(Qk)| > 2, then to avoid G[{z;_1,Tit2, Tit1; T4, 2,V }] = Z3, we have z;v, € E(G),
and similarly x;v, € E(G). But then vy contradicts the choice of z. Hence |E(Qj)| = 1, i.e.
zzy € E(G).

To avoid G[{z;_1,Zit2, Tit1;Ti, 2,2} = Z3, we have z;x, € E(G) or zipz, € E(G),
since ;07 & E(G) (otherwise to avoid G[{zk;zk_1,2, Tiy2}] = K13 also zipex,—1 € E(G),
yielding a path which contradicts the choice of P) and similarly z;_iz, € E(G). If zj412) €
E(G), then also zj1125-1 € E(G) and to avoid G[{zit1; i, Tit2, xp—1}] = Ki3, we have
Tipoxr—1 € E(G), yielding a path which contradicts the choice of P. Hence z; 112 & E(Q)
and thus z;x, € E(G). But then G[{zy, 2,2 Tip1, -1, 2j41}] = Z3, since zj 12, € E(G)
(otherwise also zj112,—1 € E(G) and hence xlin_lxjHka,lxﬁlﬁxizxkﬁxm contradicts
the choice of P).

Case 2.2 z;z; € E(G).

First assume |E(Qg)| > 2. If z;v € E(G) for some vertex v € V(Qg) \ {z,zx}, then, to
avoid G{z;;xi—1,v,2;}] = K3, also z;u € E(G), which would contradict the choice of
z. Hence z;v ¢ E(G) for every v € V(Q) \ {2z,2;} and similarly z;v ¢ E(G) for ev-
ery v € V(Qk) \ {#,z4}. Hence G{w;_1, i1, %2, v, v) }| = Z3, unless |E(Qx)| = 2 and
i1z € E(G), xixy € E(G) or zip1x, € E(G). However, if z;_12, € E(G), then to avoid
Gl{zk; wi1, xp—1, v }] = K13, we have ;12,1 € E(G), yielding a path which contradicts
the choice of P. Hence z;_17) ¢ E(G) and similarly z;z; ¢ E(G). Finally, if z;112, € E(G),



then also zj1125—1 € E(G) and G[{xit1, Tk—1, Tk; Vg, 2,2} = Z3. Hence z;12; € E(G) and
GU®mi—1, i1, 25 2, vg, v} }] = Zs.

Now we may assume |E(Qy)| = 1, i.e. zxy € E(G). To avoid G[{xi_1, Ti+1, xi; 2, Tk, Tpe—1 }] =
Zs, we have z;zy, € E(Q), ziy1zr € E(G) or ;41251 € E(G). If zjp1z, € E(G), then also
zit12,—1 € E(G) and to avoid G{xit1; i, Tit2, xx—1}] = K13 we have z; 02,1 € E(G),
yielding a path which contradicts the choice of P. Hence z;i12k, 1121 € FE(G). If
zixy, € E(G), then to avoid G[{x;; x;—1,xj, 1 }] = K13, we have z;x, € E(G). However, then
Gz, xk, T Tj-1, Tig2, Tipr1 }] = Z3 if w251 € E(G) and G{z, 2k, Tj; Tj—1, Tig1, Tio1}] =
Zs if xip1xj_1 € E(G). [ ]

The following result gives a pair of forbidden graphs that implies a graph is hamiltonian-
connected in the presence of 3-connectedness but does not imply a graph is hamiltonian in the
presence of 2-connectedness.

Theorem 9
If a 3-connected graph G is claw-free and Hi-free, then G is hamiltonian-connected.

Proof Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path
between some pair of vertices x and y of G. We will show that G must contain an induced
copy of Hy. We choose a maximal (x,y)-path P = zqxs ...y, with z = 21 and y = x,, subject
to the condition that N(z) C V(P). We choose a vertex z € V(G) \ V(P) and three vertex
disjoint (z, P)-paths as in the general discussion. All of the notation and observations of the
general discussion are assumed.

We claim that we can choose z in such a way that |E(Q;)| = 1, and that |[E(Q)| = 1 if
T) # T Suppose |E(Q;)| > 2 and consider z and the successor v; of z on @;. By the choice
of z, z;u; ¢ E(G). Since G is 3-connected, claw-free and zv;r ¢ E(G), there exists a triangle
T containing z and v; or there exists a triangle 1" containing v; and v;r. We distinguish a

number of cases.

Case a.l z,v; and a vertex of (J; are in a common triangle.

Let t € V(Qy) \ {2} be the third vertex of T'. By the choice of Q, we have t = vi. If v, # x,
then G[{z;—1,xit1,zi; 2,05, v, }] = Hy, since z;v; € E(G) (otherwise v; contradicts the choice
of z) and z;t ¢ F(G) (otherwise t contradicts the choice of z). Hence vy = x.

To avoid G[{x;—1,Tit1,2s; 2, v, Tk }] = Hy, we must have at least one of xyz;—1, zxx; and
ziy1xk in E(G). Then, since x;_1xp ¢ FE(G) (otherwise to avoid G[{xp;xi—1,2,x5_1}] =
K 3, we have x; 1251 € E(G) yielding a path mlﬁxi_lxk,lﬁxﬂxkﬁxm which contradicts
the choice of P) and z;z;, ¢ E(G) (otherwise to avoid G[{zy;x;,vj,xp—1}] = K13, we have
rixp—1 € E(G), also yielding a path which contradicts the choice of P), we get x; 112 € E(G),
implying also z;1125_1 € E(G).

If vjx; € E(G) (i.e. |[E(Q;)] = 2), then to avoid G[{xj_1,2j41,%j;v), 2,2} = Hy, we
similarly have that z; 112, € E(G), and get a contradiction since G[{zy; Zit1, %11, 2} = K1 3.



Hence we may assume vjz; ¢ E(G) and thus U]'-F ¢ V(P) (where U]'-F is the successor of v; on Q);).

Since vjvj'-H ¢ E(Q), there exists a triangle 7" containing v; and v;r or there exists a triangle
T’ containing v;r and v;r+. Note that U;—{Bk ¢ E(G) (otherwise G[{xzy; z,vj,xk,l}] = K 3).

(i)

(if)

Suppose v; and v;-r are in a common triangle 77 with some vertex t’. Then t' &
{xi,z;, xp, 2z}, while also ¢ & V(P) \ {zi,z;,xm}; otherwise if ¢’ € xlﬁa}i_l, then v;
contradicts the choice of z, if t/ € xi+1ﬁa}j_1, then the path zv;t’ contradicts the choice
of Qj;, and if ¢ € xkﬂﬁxm, then the paths zxj and zv;t’ contradict the choice of Q;
and Q. Hence t' ¢ V(P)U{z}. To avoid G[{xiﬂ,xk,l,xk;vj,v;r,t'}] >~ H,, we have
zit’ € E(G), and to avoid G[{zy;xk_1,2,t'}] = Ki 3, we have zt' € E(G). But then
Gl{zi—1, ®it1, xi; 2,1, vj}] = Hy, since z;t’ ¢ E(G);otherwise ¢’ contradicts the choice of

zZ.

If v;-r is not in a common triangle with v;, then there exists a triangle 7" containing v;-r and

’U;-FJF. Again let t' be the third vertex of T". If ¢’ = xy, then G[{zy; z,v;-r,xk_l}] = K 3.
— —

Hence t' # x,, and also t' & {x;,2}. If ¢ € x1Px;—1 or t' € xpy1Px,, we easily get

N
contradictions with the chosen path system. If ¢ € ;41 Pxj_;, then also UJJ-FJF = xj,

giving a contradiction since v;-r contradicts the choice of z. Hence t' ¢ V(P) U {z}.

Now G[{t’,v;rJr,v;r;vj,z,xk}] >~ H; unless ’U;-FJFQS'k € E(G) and v;-rJr = ;. But then

Gk mir1, x5, v} = Ky 3.

Case a.2 z, vj are in a common triangle 7" with some vertex ¢, and Case a.1 does not apply.
Then, by the choice of z, V(T)NV(P) = @. To avoid G[{x;—1, Tit1, Ts; 2,5, t}] = Hy, we have
zit € E(G). To avoid G[{z;x;,vj,v}] = Ky 3 (with possibly v, = x}), we have z;v;, € E(G),
since vjvy ¢ E(G); otherwise we would be in Case a.1. To avoid G[{z;; x;—1,t, v }] = K1 3, we
have tv, € E(G). If vjx; € E(G), then G[{z;j_1,xj4+1,2;;v5, 2, t}] = Hy. Hence vj # x;. We

++

use that v]'-F is in a triangle with v; or with v;™".

+

i) Suppose v and v; are in a common triangle 7" with some vertex t'.
J

J

Clearly, t' # z,z;. We easily see that t' ¢ xlﬁxk_l. Now suppose t' = z;. Then
G{zy; xk_l,v;-r,uk}] = K 3, unless v;-ruk € E(G) and uy, # z,vg. To avoid G[{xg; k_1,
vj,up}] = K13, we have vju, € E(G). Then G[{x;,vg, t;vj, ug, x5 }] = Hy, unless vyuy, €
E(G). But then G[{z,t,vk;uk,v;r,xk}] >~ Hy. Hence t' # zp. If t' € x;H_lFxm, then
to avoid G[{w;, v, t; vj,v;-r,t’}] ~ H,, we have vpt’ € E(G). But then vy = zy or
vgxg € E(G). In both cases we easily obtain path systems contradicting the chosen path
system. Hence t' ¢ V(P).

If t' ¢ V(P), then consider G[{v;-r,t’,vj; t,xi, v }] (with possibly vy = ). If t/ € V(Qx),
then to avoid an induced Hy, we have tt' € E(G). But then G[{z;_1, zit1, i t,vj,t'}] =
H;. Hence t' € V(Qg) \ {2, v} Then to avoid an Hi, we have t' = v;". Then v} # xy;



otherwise G{wg; Tp—1, v} u ] 1 = Ky 3. Considering G[{v};vy, v T, v;}], we get that
vvi T € B(G). To avoid G[{vk sup, v T, vl ] & Ky 3, we have vjv,j“F € E(G). But then

? .7
[{.%'Z,Uk,t U]a _7 , U +}]

(i) If v+ is not in a common triangle with v;, then considering a triangle 7" with V(T) =
e o ++ ~
{vj",v] ", '}, we easily obtain that G[{z,t,vj;v ] v Y] = Hy.

Case b z and v; are not in a common triangle.
~

Hence v; and v;-r are in a triangle 7" with some vertex t. Note that to avoid G[{z; x;,v;, vy }]
K 3, we have z;v;, € E(G) with possibly vy = .

(i) First suppose t ¢ V(P). Using that no induced claw is centered at x; and that ZUJ'-F &
E(G), we obtain G[{z;, vg, z;vj,v;f,t}] >~ Hy unlesst = U,j. Ift = U,j, then v,j # xp; oth-
erwise G{zg; xr_1,vj, v }] = Ki 3 (using vju, € E(G)). Considering G[{U,j;vk,v,j'F7 ]+ ]

with possibly ), = v}, we get v; toft e B(G). Now G[{z;, z,vg; v} v ; vl vty

unless v;-r = x; and z;x; € E(G). But then G{z;;xi41,2, 25} = Ky 3.

(ii) Now suppose t € V(P). If t = x, then v, # x}, (since z and v; are not in a common
triangle). No induced claw centered at zj gives that G[{x;, vk, 2; vj,v;-r,xk}] >~ Hy,
unless v;-r = z; and z;x; € E(G); in the latter case G[{z, v, Ts; x5, xj-1,Tj41}] = Hy.
Hence t # xp. If t € xlﬁxk,l, then v; contradicts the choice of z. If t € xkﬂﬁxm
(assuming xy # ), and v;r+ # xj, then to avoid G[{z;, v, ; Uj,?);—,t}] >~ Hy, we have
vt € E(G). But then G[{t;t, v, v;}] =2 Ki3. If t € xk+1]3>xm (assuming zp # ),
and v;r+ = z;, then to avoid G[{z;,vs,z;v;,2;,t}] = H; we have z;2; € E(G) or
zit € E(G), both giving an induced claw as contradiction, or vyt € E(G). In the latter
case G[{t;t™, vk, v;}] = K 3.

We now show that |E(Qy)| =1 if 2, # xp,. This is not difficult if z;2; ¢ E(G): consider any
neighbor 2’ of z in V(G)\ V(P). Then, considering G[{z; ', z;,x;}], to avoid an induced claw,
we get that one of z'z; and 2'z; is an edge. But then considering G[{z;_1, 41, 2;; 2, 2/, i }]
or G{wi—1, 41,243 2,2, x;}] we obtain both edges. This implies all vertices in the component
of G — V(P) containing z have x; and z; as neighbors. Hence we can choose a vertex z with
three neighbors on P.

Now assume x;z; € E(G), and assume xj, # 2, and |E(Qx)| > 2. Then z has no third
neighbor on P. Let p denote the successor of z on ;. Since 6 > 3, p is in a triangle by
claw-freeness. If pr; or px; is an edge, then both edges are in; otherwise we obtain a claw
induced by {z;;p, zit1,2;} or {z;;p, xj11,2;}. But then we contradict the choice of z. Hence
pxi, pr; € E(G). We distinguish four subcases.

(i) p and z are in a common triangle with a vertex ¢t ¢ V(P). Clearly, by the choice of Q,
t ZV(Qk). To avoid G[{p,t,z;x;, xit1,zi—1} = Hi|, we have tz; € E(G), and similarly
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(iv)

tx; € E(G). Suppose first that z, = p™. To avoid G[{z,t,p; xk, Tp—1, Tk+1}] = Hi, we
have tzy, € E(G) (Note that zzy & E(G) by yhe choice of z). But then ¢ contradicts the
choice of z (since zx;, zzj, zz, € E(G)). Hence we may assume p™ # xj. We use that
pT is in a common triangle with p or p™+.

(a) p and p™ are in a common triangle with some vertex #’. Similar arguments as for p
show pta;,pte; & E(G). Ift' ¢ V(P), then the choice of z implies t'z;,t'z; ¢ E(G)
and 'z € E(QG); if t' € V(P), then also t'z ¢ E(G). Now to avoid G[{t',p*,p; z, z;,
z;}| = Hy, we conclude that ¢ € V(P) and that ¢’ is adjacent to z; or ;. Both
cases yield a claw induced by {z;; z, i, zi41} or {x;; 2, 2, z41}, a contradiction.

(b) pand p* are not in a common triangle. Hence p™ and p™ are in a common triangle
with some vertex '. Using the choice of z and Qg, to avoid G[{z,t,p;pT,pT+,t'}] =
Hy, we have t't € E(G), hence t' ¢ V(P). To avoid G[{t;t,p,x;}] = K3, we
conclude that z;t' € E(G), and similarly z;t' € E(G), contradicting the choice of z.

p and z are in a common triangle with a vertex ¢t € V/(P). Together with pz;, pz; ¢ E(G)
we contradict the assumption that z has no third neighbor on P.

p and z are not in a common triangle, but p and p* are in a common triangle with
a vertex t ¢ V(P). Clearly, the assumption implies tz ¢ F(G), and by the choice of
Q. zpT € E(G). Hence also tz;,tx; ¢ E(G). As before pz;, pr; ¢ E(G) and similarly
pTzi,ptz; ¢ E(G) unless p™ = zy. To avoid G[{t,p",p; z,x;,x;}] = Hy, we conclude
pt =

{zji 41, o, 2}

x), and xx; or xpx; is an edge. This yields a claw induced by {x;; 41, 2k, 2} or

p and z are not in a triangle, and p and p' are not in a triangle with some vertex of
V(G)\V (P). Hence p and p™ are in a common triangle with some vertex ¢t € V(P). Since
pxi,pr; ¢ E(G), the choice of Q) implies p* € V(P). Consider G[{x;,z;,z;p, g, t}].
If z;2, € E(G), then G{xy;p,xj,x;-1}] = Ki3. By similar arguments, to avoid
an Hy, we conclude t = x,, and tx; or tx; is an edge. If tz; € FE(G), we obtain
G{wi—1,Tiy1,2;t,p, 2} = Hy; the case tx; € E(G) is similar.

Case 1 z;z; € E(G).
Since zwj, zzj, 2z, € E(G) and x;z; ¢ E(G), claw-freeness implies z;x, € E(G) or zjx), €
E(G).

First assume ;2 € E(G). If also xzjz;, € E(G), then to avoid G[{xy; zi, zj, xp—1}] = K1 3,
we have z;x,_1 € E(G) or zjxp_1 € E(G), both contradicting the choice of P. So xjx;, &
E(G). If zpzj—1 € E(G), then also z;_12j_1 € E(G), contradicting the choice of P. Hence
Tp_1xi—1,2pxj—1 € E(G). To avoid G[{x;,x, z;xj,xj—1,2j41}] = Hy, we have xpxjqq €
E(G), and hence also zj_12j41 € E(G). Since z;x,—1 ¢ E(G), we have x;_1x, € E(G).
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Since z;_1z;, € E(G), we have ;1241 € E(G) (otherwise G[{zjy1,xi—1,2;, x5} = K1 3). If
Tiy1xk—1 € E(Q), then xlﬁxizxjﬁxiﬂxk,l(]?xjﬂxkﬁxm contradicts the choice of P. Hence
ziv1xp—1 € E(G). To avoid G[{x;_1, Tit1, Ti; Tk, Tp—1,2) + 1}] = Hy, we have ;12 € E(G).
But then G[{z,xit1,2, xr—1}] = Ki 3, a contradiction. We conclude that z;x; ¢ E(G) and
T;jT) € E(G)

To avoid G[{zi—1, Tiy1,xi; 2, ¢, 2, }| = Hi, we have z; 12, € E(G) and hence also z; 12,1 €
E(G). This also implies z = z,,. By the choice of P, we have z;z;y2 ¢ E(G). To avoid
Gl{xis1; @i, Tiye, i} = K1 3, we have x; 402, € E(G) and to avoid Gl{xiy1; %, Tiye, Tp—1}] =
K 3, we have x;1015_1 €_>E(G). If(_xkijrl EE(G), then G[{xy;xit1,xj41,2}] = Kig. If
rip1xj—1 € E(G), then o1 Prip12j1Pripoxy_1 Prjzx), contradicts the choice of P. To avoid
GUTit1, Tivo, T Tj, Tj—1, Tjq1 }] = fi}’ we have Tiyalj-1 € E(G)\ E(P) (ie. xi3 # xj_1).
If xi11243 € E(G), then x1PrzajPry_ 12402 j—1 Pxip3x;417, contradicts the choice of P.
Hence x;117i43 ¢ E(G), implyigg; Tip3Tj—1 € ELG) (otherwisef[{:ciw;:cl-H,xiJrg,xj,l}] o
Ki3). f x5 € E(G), then 21 Pz xip 12213 Pxj 12102, Prjzx), contradicts the choice
of P, and if z;_12,43 € E(G) so does xlﬁxi 1xi+3ﬁxk,1xi+2xi+1xﬂxk. If ;12540 €
E(G), then, to avoid G[{athg,acZ 1,Zit3, Th—1}] = K3, we have z;4375,1 € E(G) and
lexZJrgx] 1ﬁxl+3xk 1Px] zxy, contradicts the choice of P. Hence G[{x;—1, Tit1, i; Tit2, Tit3,
zj-1}] = Ki3.

Case 2 z;x; € E(G).
To avoid G[{CEZ',h Tit1, Ly L, Tj—1, $j+1}] = Hl, we have either Ti—1Tj541 S E(G) O Xj41%5—-1 S
E(G), since the other edges are not present by standard arguments.

Case 2.1 z;_12;41 € E(G).
To avoid G{xji1;2), x40, Ti—1}] = K13, we have zi—1Zj+2 € E(G), since z;_1x; ¢ E(G)
(standard) and zjzj12 ¢ E(G) (otherwise xPx, 1T54125— 1lezx]x]+2?y contradicts the
choice of P).

We first show zzy, € E(G). Assuming the contrary we have vy # x. Since § > 3 and G is
claw-free, v, belongs to a triangle.

Case a There exists a triangle T containing v; and z.
Let ¢ be the third vertex of T.

Case a.1 ¢ ¢ V(P).
If z;u, € E(G), then, to avoid G[{z; xi11, x5, vi }| = K13, also zjv, € E(G), which contradicts
the choice of z (v would have been a better choice). Hence, to avoid G[{x;—1, xit1, Ti; 2, Vg, q}] =

Hy, we have x;q € E(G). But then G[{x11,2jy2, Ti—1; 24, 2,q}] = H;.
Case a.2 ¢ € V(P).

By the way xj, was chosen, we have ¢ = z; or ¢ = x;. If ¢ = x4, then G[{zj 1, xj42, Tim1; 23, 2, v }] =

H,. If ¢ = xj, then, to avoid G[{z;;x;, vk, j11}] = K13, we have x;u, € E(G), giving the
same H; as a contradiction.
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Case b Every triangle T' containing v, does not contain z.

Let ¢1 and g2 be the two other vertices of T'. If g1, g2 & V (P), then G[{x;, xj, z; vk, q1, q2}] = Hi;
otherwise, if for example g1z € E(G), there would be a triangle T’ containing vy and z, and
if g1z; € E(G), then G{z;; 2z, q1,zi41} = K1 3. Also, if ¢; € V(P) (and/or g2 € V(P)), then
Gl{zi, zj, 2,05, q1, g2 }) = Hy; otherwise, if for example ¢1z; € E(G), then G[{q1;x;,vi, q; }] =
K.

Case 2.1.1 I 75 Ti—1-
To avoid G[{xi,1;$i,2, TLi, l’iJrl}] = K173, we have Ti—2Tj541 € E(G), and to avoid G[{Cﬂifl; Ti—2,
.’L’i,ﬂ’qurg}] = K173, we have Lj—2L 542 € E(G) But then G[{.’L’Z, Z,%j;$j+1,$j+2,$i,2}] = Hl.

Case 2.1.2 1 =T;—-1-

Case 2.1.2.1 xp # .

To avoid G[{z;,xj,z;2j,xj-1,zj41}] = Hi, we have ;2 € E(G) or zjz, € E(G). First
assume z;x; € E(G). To avoid G[{z;_1,Tj41, %55 Tk, Tp—1, Tht1}] = Hg we havegj_lxkﬂ €
E(G) or zji1x,—1 € E(G). However, if ;12441 € E(G), then a:gj+ngk;1xj+1Pxizxkxk+1
contradicts the choice of P; if z;_ 12541 € E(G), so does z1z;41PxpzajxiPrj_1xp11. Hence
iz € E(G). To avoid G[{x;—1,Tit1, % Tk, Th—1, Thy1}] = Hi, we have zj1z_1 € E(G)
or x;_1xk+1 € E(G). However, if x;_ 12,1 € E(G), then xlijrlka_lxiHﬁxjxizxkﬁxm; if
zi—1Zp11 € E(G), then G[{z1; 2, 41, Tpyr }] = K 3.

Case 2.1.2.2 z;, = .
We distinguish between the cases that z;z;, € E(G) and zjz, & E(G).

Case 2.1.2.2.a zjz,, € E(G).

To avoid G{x1,xj42,Tj41;%j,2,Tm}] = Hi, we have z; 0z, € E(G), since x12y, ¢HE(G)
(standard) and zj 112, € E(G) (otherwise also ;12,1 € E(G), giving a path 212 20Pxmy,—1
xj+11§xizy which contradicts the choice of P) while the other possible edges are not present
by standard arguments.

First assume zj13 # p—1. To avoid G{@m;Tm—1,%j42, 2} = K1 3, we have zj19xm,_1 €
E(G), and to avoid G[{z;t2;%1,2j4+3, Tm—1}] = K13, we have £j102m,—1 € E(Ci) But theg
G{it2, Ti, 15 Tjq2, Tj43, Tm—1}] = Hy, since z12j43 ¢ F(G) (otherwise :cngrngﬂ,lxjHP
Tz, contradicts the choice of P), z;2;43 ¢ E(G) (otherwise $1$j+2$m,1P$j+3ﬂzp$j,1$j+_1>
x ;2% contradicts the choice of P), z;112j43 ¢ E(G) (otherwise xlijrlxijm;lijJrgxiﬂ)P
xj2; 2%y, contradicts the choice of P) and xj412m—1 € E(G) (otherwise x12j41 Pm—12i41Px;
x;zxy, contradicts the choice of P), while the other possible edges are not present by standard
arguments.

Hence we may assume that ;43 = 2;,—1. Let p € V(G) \ {zj42,2m} be a neighbor of
xj+3. We first show that we can choose p on P. Suppose there does not exist such a vertex
pon P and let T be a triangle containing p and containing a maximum number of vertices of
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P. Let q; and g2 be the other vertices of T'. To avoid G[{xj;3;j12, Tm,p}| = K13, we have
zj+3y € E(G).

IfV(T)NV(P) =0, then Gl{q1,q2,D; Tj4+3,Tjt2, Tm } = Hi.

If |[V(T)NV(P)| = 2, then 1 # z;43 (since g2 is a neighbor of ¢; it would have been
possible to choose p on P) and g2 # xj43 (similar). But then p contradicts the choice of z.

If |V(T)NV(P)] = 1, let ¢; be the vertex not on P and let g, be the vertex on P.
One easily shows that g2 & {1, %, Tit1,2j—1, %5, Tj41,Zj42,y} by obtaining (x,y)-paths con-
tradicting the choice of P. If ¢o = xj43, then G[{x1,2j41,%j42;q2,q1,p}] = Hi. If o €
xiHﬁxj,g, then to avoid G[{g2;¢5 ,q++, ¢1}] = K13, we have g, ¢5 €_>E(G)._>H0wever, then
Gl{a2, q1,p; 243, Tjy2, Tm}] = Hi, since qaxjyo & E(G) (otherwise 1 Pqy g3 Pij4oqopjys2m
contradicts the choice of P), gaxj43 ¢ E(G) by assumption and g2, € E(G) (otherwise also
@23 € E(G) by a standard observation). .

Hence we may assume that we can choose p on P, and one easily shows that p € x;12Pz;_.
To avoid G[{p;p~,pT,xj1+3}] = K13, we have p~pT € E(G), since p~z,43 ¢ E(G) (otherwise
xlxﬁg(]?pxﬁgp*(]?xizxm contradicts the choice of P) and p*zji3 ¢ E(G) (similar). We
may assume that pzj o ¢ E(G) (otherwise by considering the path xlﬁp*p+1?xj+gpa:j+3xm
we are back in the case that =13 # %m,—1) and px,, ¢ E(G) (similar). Hence, to avoid
G{xjt3;p,Tjs2, 2m}] = Ki3, we have zj40m, € E(QG). Eowever, thenHG[{p*,er,p; Tj43,
Tjt2,Tm}] = Hy, since p~xjio & E(G) (otherwise x1xj11Ppxjyszjiop~ Priza, contradicts
the choice of P), p~xy, € E(G) (otherwise also p~ ;43 € E(G)), ptzji2 ¢ E(G) (otherwise
xlxj+1xj+2p+?xjzxi?pxﬁrgxm contradicts the choice of P) and p*x,, ¢ E(G) (otherwise also
prajis € B(G)).

Case 2.1.2.2.b z;z,, € E(G).

Let p € V(G) \ {#,&m—1} be a neighbor of x,,. We first show that we can choose p on P.
Suppose there does not exist such a vertex p on P. To avoid G[{@;Tm—1,2,p}] = K13, we
have pz € E(G). If pz; € E(G), then G/{p, z,xi;xi—1,j41,Tj42}] = Hi. Hence we have
pr; € E(G). Since x;_1x_1 € E(G), also z;_1z; ¢ E(G), and since z; 11251 ¢ E(G), also
vz € E(G). To avoid Gl{x;—1,Tit1,%i; 2, p, xk}| = Hy, we have z;xp, € E(G). However,
then G{@y,, zi, Tm—1,p}] = K1 3.

Hence we may assume that we can choose p on P. If x;x, € E(G), then to avoid
Gl{zi, zit1, x5, xmﬂ = K 3, we have z;i 1z, € E(G), and hence also z,,—1z;+1 € E(G), yield-
ing a path z12;11Pxp,_1741PrjT;22,,, contradicting the choice of P. Hence x;%y,, Tiy12m &
E(G). If x;—1xy, € E(G), then also z;_1x,—1 € E(G), a contradiction. Hence x;_12,, &€ E(G),
and similarly ;12 ¢ E_()G) If j41Zm € E(G), then also zj11xm-1 € E(G), yielding a
contradicting path x12j4 2Py, 1741 P22, The above observations leave two cases for the
location of p.

(i) pe xi+2]3>a:j_2. We choose p € N(xy) as close to zj_1 as possible. To avoid G[{zn;p, z,
Tm—1}] = K13, we have pr,,—1 € E(G). To avoid G[{z;,xj, 2; Tm, Tm—1,p}] = Hi, we
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have pz; € E(G) or px; € E(G). If px; € E(G), then also pz1 € E(G) (otherwise
G[{zi;x1,p, 2}] = K1 3). Since pxm—1 € E(G), the choice of P implies ptzy ¢ E(G). To
avoid G[{p;z1,p", xm}] = K13, we have p*z,, € E(G), contradicting the choice of P.
Next assume pz; € E(G). Then pt # z;_1. To avoid G[{p;p", z;,zm}] = K13 we have
pTaj e E(G), arii to avog G[{zj,p,z,xj41}] = K13, we have pTaj 11 € E(G). However,
then lepxm_lij+1p+Pa:jza:m contradicts the choice of P.

(i) p € xj+21?xk,2. We choose p € N(xj) as close to zj1; as possible. We again have
PTm—1 € E(G) and px; € E(G) or pr; € E(G). If px; € E(G), then to avoid
Gl{p;zi,p~,zm}] = Ki 3, we have p~x; € E(G) and_;)o # Tj42; To avo_i)d GHzi;z,xig1, 07} =
K13, we have z;1p~ € E(G). But then x12j11Pp~xi11 Prjza;pPx,, contradicts the
choice of P.

Ifpr; € E(G), then also pxj_1,pxjt1 € E(G). If p~ = x41, then xlijrlszxinj,lp]?xm
contradicts the choice of P. If p~ # x;41, then to avoid G[{p;z;,p™,xm}] = K13, we
have p~x; € E(G), and to avoid G[{z;;z;_1,2,p" }] = Ky 3, also p~x;_1 € E(G). But
then xlxjﬂﬁp*xj_lﬁxizxjpﬁxk contradicts the choice of P.

Case 2.2 z;_12j41 & E(G) (hence ;12,1 € E(G)).

Case 2.2.1 j —i > 5.

To avoid G[{x;t1; i, Tit2, xj_1}] %HKL;:,, we ha_)ve Titaxj—1 € E(G), since z;x540 ¢ E(G) (con-
tradicting path: x1Px;_12i112j_1Priiox;20;Pry). By symmetry, we also have ;172 €
E(G). To avoid G[{®jt1;%i, Tit2,Tj—2}] = K13, we have x;401;_2 € E(G). However, then
G[{.’BZ, 2y L5551, Tj—2, xi+2}] =~ H,.

Case 2.2.2 j —i=4.
We use that x;12 has a neighbor p & {x;—1, i, Tit1, Tiy2, Tj—1,Tj, Tj41}-

We first show we can choose p € V(P). Supposing this is not the case consider a triangle
T containing p. Let ¢; and g2 be the other vertices of T. First suppose V(T) NV (P) = @.
If 1zi40 € E(G), then G{z;—1, %, xiy1;Tive,p, 1} = Hy. Hence q1zi42,qxi+2 & E(G).
But then G[{q1,q2,p; Tit2, Tiv1,xj—1}] = Hi. Hence |V(T)NV(P)| > 1. Let ¢; denote a
neighbor of p in (V(P) N V(T)) \ {zit2}. Then z;12q1 ¢ E(G) by assumption. If z;_1q €
E(G), then also zj_1q; € E(G) (otherwise G[{q1;¢q; ,xj—1,p}] = K13), and we easily find a
path contradicting the choice of P. A similar observation shows z;4+1¢1 ¢ E(G). But then
GHwiy1, 2 1,Tiv2; 0, q1, @2 }] = Hy.

Hence we can choose p € V(P). If z;,9 has two successive neighbors on P, it is obvious
that we can find a path contradicting the choice of P. Hence, if p~ and p™ exist, we get that
p~ptT € E(G). We deal with the cases that p € {z1,z,,} later.

To avoid G[{@it1,zj—1,Tiy2;p,p~,p+}] = Hy, we have z;41p € E(G) or z;_1p € E(G). If
xip1p € E(G) and p € xjﬂﬁxm,l, then by considering the path xlﬁxiﬂpxiwﬁp_ﬁ?xm,
we are back in Case 2.2.1. But then G[{zjy1,2j_1,Zis2;p,p",p"}] = H;.
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Now suppose p = Ty,. Then T F Tk, smce otherwise G[{zm; Tit2, 2, Tm—1] = K1 3. Note
that xg # xm,—1 (otherwise xPx, 1x,+1x,zkax,+gxm contradicts the choice of P). To avoid
Gl{zi, zj, 228, Tp—1, Tp1}| = Hi, we have z;x, € E(G) or zjz, € E(G). First assume
zjxy € E(G). Like in the beginning of Case 2, we have ;12541 € E(G) or zj125-1 € E(G).
If ;12541 € E(G), also zj_sxy1 € E(G). However, since xj_9 = x;;2 this contradicts the
fact that zy # xpm—1. If zj1125-1 € E(G), then like in the beginning of this case, we have
k—j=4. To avoid G[{it1,Tiy2, Tj—1;Tj41,Tj42, Tj43}] = Hi, we have z; 1125413 € E(G).
But then G{xi—1, i, Tiy1; Tj43, Tjq1, Tj42}] = Hi. Hence we may assume that z;x, ¢ F(G)
and z;x;, € F(G). But then Gl{x;; xi—1, 2z, x5} = K 3.

For the final subcase suppose {1} = N(2i42) \ {%i+1,2;—1}. By the choice of P, N(x1) C
V(P) and xo # ;1. All neighbors of x; except for possibly xi;1, z;42,2j—1 are also neighbors
of 25, otherwise we obtain an induced claw centered at z1. If x12; € E(G), then zox; € E(G)
and to avoid G[{z;; 2,2, xiy1}] = K13, we have zox; 1 € E(G), contradicting the choice of
P. Hence z1z; ¢ E(G) and similarly z1z; ¢ E(G).

If x12i41 € E(G), then G[{x1, xit1, Tit2; 24, 2,25} = Hy; if 21251 € E(G), then G[{x1,
Tit2,Tj—1; T, T, 2} = Hy. Now assume x1xi41,21,2;—1 € E(G). Hence z; has some neighbor
q # T, Tiy1, Tit2, Tj—1, ¢; which is also a neighbor of 5. To avoid G[{q, x2, z1; Tit2, Tit1,Tj-1}]
Hy, we have qz;11 € E(G) or qz;_1 € E(G).

First suppose ¢ € flfgﬁ.%'i_l and qr;1 € F(G). Then to avoid G[{xit1;q, xi,xir2}] =
K3, we have qv; € E(G). To avoid G[{x1,x2,q;%i, 2,25} = Hi, we have qx; € E(G).
But then G[{q;x2,2iy1,2;}] = Ki3. Next suppose ¢q € xgﬁxi,l and qr;+1 € E(G). Then
qrj—1 € E(G) and to avoid G[{xj_1;q,Tit2,2;}] = Ky 3, we have qz; € E(G). To avoid
Gl{z1,x2,q; 25,2, 2;}] = Hy, we h_a)we qr; € E(G). But tgen Gl{q; w2, i, xj—1}] = Ky 3.

We now may assume ¢ ¢ x3Px;_1, hence ¢ € xj11Px,,. We choose ¢ as close to x,, as
possible, and deal with the subcase gzj_1 € E(G) first.

If ¢ = x,,, then, as before, we can repeat the previous cases with z;,z; instead of x;, z;,
and obtain an induced Hi, unless zj, = x,,; but in the latter case G[{xm,;x2, ug, xj_1}] =
K 3. Hence q # x,,. To avoid G[{z1,x2,q;xj-1,2;,2j41}] = Hi, we have gqz; € E(G) or
qrjy1 € E(G), both implying gz, € E(G). To aV01d G[{q, T1,Zj+1,q" ] = Ky 3, we have
xj+1q+ € E(G), yielding T1Ti420j 1T j 2T Ti41Tj— 1Px2qu]+1q ﬁxm, a contradiction. For the
remaining case we assume qz;_1 € E(G), hence qz;11 € E(G). By similar arguments as before
we may assume ¢ # Tp,. To avoid G[{q;q¢",z1,2i41}] = K13, we have x;11¢" € E(G). If
gT = x,,, then by similar arguments as before z,, = z;, and xlxiwﬁxk_1x2?xi,1xi+1xiszxk
gives a contradiction. In the final case the path P/ = $1ﬂfi+2ﬁq272?ﬂfi+1q+?xm has the same
properties as P, also with respect to the choice of z. But z has two internal vertices x;; and x;
of P" with j'—1i’ > 5 as neighbors, so repeating the above arguments with respect to P’, x;,
we will obtain an induced H;. This completes the proof of Theorem 9. [ |
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3 Possible forbidden pairs and hamiltonian-connectedness

We start by defining eight graphs which are 3-connected but not hamiltonian-connected. Let
m > 4 be an integer, M; be a K,, in which three vertices x;, y; and z; are marked and

o G = Km,m-
e (35 is obtained from a cycle C' = xyx9 . . . o, by adding the edges z;zp, 4 (i =1,...,m).
e (33 is an arbitrary 3-connected Cy-free bipartite graph.

e (G4 is obtained from M; by adding two vertices a and b and all (six) edges between a, b

and x1,y1, 21.

e (5 is obtained from a cycle C = z1z5 . . . g, by adding the edges z3;_oxs3; (i = 1,...,2m)
and the edges x3i_1Z3m+3i—1 (i =1,...,m).

e Gg is obtained from a cycle C = xjxy...x4, by adding the edges x9;_122i41 (i =
1, e ,2m — 1), Tam—1T1 and L2 X2m+2i (’L = 1, . ,m).

e (57 is obtained from G35 by replacing every triangle xs3;_oxs;—1x3; (i = 1,...,2m) by the
graph G’ of Figure 2.

e (g is obtained from M by indentifying each vertex x; with y;41 (i = 1,...,7), zg with
y1 and each vertex z; with z;44 (i =1,...,4).

T3i—1 T3i—2

x3i
Figure 2: The graph G'.

Since the graphs Gy,...(Gs are not hamiltonian-connected, each of them must contain an
induced copy of either X or Y. The graphs G, Ga, G3, G4 all contain a claw, but the last four
graphs G5, Gg, G7, Gg are all claw-free.
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We will first show that one of the graphs X or Y must be K 3. Assume that this is not true.
Assume, without loss of generality, that X C G;. Then X must either contain an induced Cy
or it must be a generalized claw K7, for r > 4. First consider the case when Cy C X. Then
Y must be an induced subgraph of both G35 and Gy, since neither of these graphs contains an
induced C4. However, the only induced subgraph common to both G'3 and Gy is the claw K 3.
If X = Ky, for r > 4, then Y must be an induced subgraph of both G and G4, since neither
of these graphs has an induced K 4. Again, the only induced subgraph common to both G»
and Gy is the claw K 3. Therefore, without loss of generality, we can assume that X = K 3.

Since G5, Gg, G7,Gg are all claw-free, Y must be an induced subgraph of each of these
graphs. Since Gj is claw-free and A(G5) = 3, Y must satisfy both (a) and (f). There is no
induced Py in Gg, so (b) is satisfied. The shortest induced cycle in G5 besides C3 is a Cy,
the longest induced cycle in Gg is a Cg, and Gg contains no induced Cg. Thus (¢) is satisfied.
In G5 the distance between distinct triangles is either one or at least three. This implies that
(d) is satisfied. The graph G7 does not contain an induced copy of the graph S obtained from
a P5 by placing a triangle on the first and third edge (S is an H; with an edge attached to
a vertex of degree two). Therefore, if Y contains three triangles, then each pair of triangles
would have to be at distance at least three. This would imply an induced P;g, which is not
true. Thus (e) is satisfied. This completes the proof of Theorem 5. [

4 Open question
The obvious question is the following.
Question A

What is the characterization of those pairs of connected graphs X and Y such that being
X-free and Y-free implies that a 3-connected graph is hamiltonian-connected?

A simpler question, but one that is critical to answering Question A is the following.

Question B
What is the largest k such that a 3-connected claw-free and Pg-free graph is hamiltonian-
connected?
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