Faculty of Mathematical Sciences P.O. Box 217
7500 AE Enschede
The Netherlands

: : Phone: +31-53-4893400
University of Twente o 1234803114
University for Technical and Social Sciences Email: memo®@math.utwente.nl

MEMORANDUM NO. 1480

A branch-and-bound methodology
within algebraic modelling systems

J.J. Bisscuor, J.B.J. HEERINK' AND
G. KLOOSTERMAN

DECEMBER 1998

ISSN 0169-2690

1Paragon Decision Technology, Haarlem, The Netherlands

A Branch-and-Bound Methodology within
Algebraic Modeling Systems

J.J. Bisschop, J.B.J. Heerink and G.J. Kloosterman

Faculty of Mathematical Sciences
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands

December 18, 1998

Abstract

Through the use of application-specific branch-and-bound directives it
is possible to find solutions to combinatorial models that would otherwise
be difficult or impossible to find by just using generic branch-and-bound
techniques within the framework of mathematical programing. MINTO is
an example of a system which offers the possibility to incorporate user-
provided directives (written in C) to guide the branch-and-bound search.
Its main focus, however, remains on mathematical programming models.
The aim of this paper is to present a branch-and-bound methodology for
particular combinatorial structures to be embedded inside an algebraic
modeling language. One advantage is the increased scope of application.
Another advantage is that directives are easier implemented at the model-
ing level than at the programming level.

KEYWORDS: Modeling Languages, Combinatorial Optimization, Discrete Opti-
mization, Implicit Enumeration, Branch-and-Bound

MATHEMATICAL SUBJECT CLASSIFICATION: 68N20, 68N99

1 Introduction

Branch-and-bound methods are well-known enumeration schemes for solving
combinatorial optimization models and mixed-integer programming models
[11, 12]. These methods employ a search tree. Along each branch in this tree
typically one or more decision variables are either fixed or further constrained.
At each node in the tree there is a submodel to be solved in terms of all vari-
ables not yet fixed along the path from the node to the root of the search tree.

When the overall model to be solved is a linear program with binary and
integer variables, then there are readily available solvers which can solve these

models quite efficiently. These solvers are based on a collection of techniques
contained inside a generic branch-and-bound framework. There are models,
however, for which these solvers are not applicable, either because the underly-
ing model is not a mathematical program of the right type, or because the time
required for the search is too exhorbitant. In these cases, there is a need for an
alternative.

One such alternative is offered through the use of application-specific di-
rectives within a branch-and-bound framework. Through these directives it is
possible i) to influence the shape of the search tree, ii) to select the order in
which nodes are created, iii) to compute bounds which are not based on math-
ematical programming relaxations, and iv) to look for multiple (not necessarily
optimal) solutions. As these directives are based on insight into the reality be-
ing modeled, they could be superior to generic search directives which are for
the most part solely based on mathematical arguments. It is this last consider-
ation that has inspired the development of a system such as MINTO [13, 14].

MINTO is a system geared at solving mixed integer linear programs, and re-
lies heavily on its ability to solve linear programming relaxations at nodes in
the search tree. It offers the possibility to replace default system procedures
by new user-defined procedures to control the overall enumeration process.
MINTO is without doubt a powerful system, but its demanding interface re-
quires extensive programming skills in addition to the already required skills
to design the appropriate search directives.

An alternative technology for the specification of application-specific direc-
tives within a branch-and-bound framework could be based on the use of mod-
eling systems, such as AIMMS [2, 3], AMPL [9, 10] and GAMS [5, 6]. The modeling
languages inside these systems were primarily designed for the specification
of constraint-oriented models, but there are no inherent limitations to expand
these languages to allow for the expression of branch-and-bound directives re-
lated to these models.

The aim of this paper is twofold. The first objective is to specify a concep-
tual branch-and-bound enumeration scheme in which system tasks are coupled
to the execution of user-defined directives. The second objective is to present a
proposal on how this conceptual solver can be employed within the framework
of an algebraic modeling system. The algebraic modeling language AimMMmS [3] is
used for illustrative purposes, but any other language could be extended in a
similar manner.

Some related work in the area of modeling languages has already been done
by Bisschop and Fourer [4]. They explore a general variable subset enumeration
approach, combined with directives to guide the search. Our proposal offers
similar functionality, but has been extended to allow the modeler to set up an
application-specific search tree.

A straightforward implementation of the modeling technology proposed in
this paper will not compete in efficiency with a solver such as MINTO due to
differences in data structures and execution principles. In first instance, only
the ease and scope of specification should be seen as major advantages of using
a modeling language approach. However, as compiled code generation enters
into the arena of modeling systems, the efficiency argument in favor of C or
FORTRAN-based technology may no longer remain valid.

The remainder of this paper is organized as follows: Section 2 gives a de-
tailed overview of the branch-and-bound enumeration scheme thereby mak-

ing a distinction between user-defined routines and system-specific routines.
Section 3 argues in favor of modeling languages when specifying branch-and-
bound directives. Special emphasis is placed on the specification of the di-
rectives for particular set structures, namely the variable subset, the variable
subtour and the variable partition. For each of these three set structures an
example model plus selected directives are provided in Section 4, and have all
been written in the AiMmMS Modeling Language.

2 The Branch-and-Bound Enumeration Scheme

The principal idea behind each branch-and-bound enumeration scheme is to
partition a problem into more restricted subproblems of smaller size. Each of
these subproblems can then be reconsidered and partitioned again, until all
subproblems have become easy to solve. The best solution encountered during
this search is then also the best solution of the original problem. The major
disadvantage of this approach is that the number of subproblems grows expo-
nentially. However, not all subproblems need to be considered. Their number
can be reduced by concluding infeasibility of a particular subproblem and all
of its descendents. Another way to reduce the number of subproblems is to
obtain a bound on the best attainable objective function value of the subprob-
lem and all of its descendents. If this bound indicates that another solution
found elsewhere in the tree is better, then the subproblem (together with its
descendents) can be dropped.

The full specification of a branch-and-bound enumeration scheme is pre-
sented in the following three subsections. The first section describes a flow-
chart which captures the main enumeration algorithm. Two steps in this algo-
rithm, namely the extensive processing of a current node and the generation of
new nodes, are further elaborated in the subsequent two subsections.

2.1 Main Enumeration Algorithm

The implementation of an efficient enumeration algorithm in a programming
language such as C or FORTRAN is a nontrivial task. There is quite an exten-
sive bookkeeping task involved to keep track of the search tree (node creation,
node deletion, parameters at node, etc). The proposal in this paper makes the
assumption that the bookkeeping task is to be performed by a bookkeeping
engine, and that only the specification of enumeration directives remains the
responsibility of the person designing the algorithm.

Consider the flowchart in Figure 1. In this chart there are grey boxes, white
boxes, striped boxes, solid one-way directed arrows and a dotted two-way ar-
row. The grey boxes describe actions to be implemented by the algorithm de-
signer. The white boxes decribe actions to be performed by the bookkeeping
engine. The striped boxes represent extensive tasks to be performed, for which
further detail can be found in a separate flowchart elsewhere in this section.
The solid arrows indicate the flow of the algorithm, while the dotted two-way
arrow indicates a procedure call from within a grey box.

The meaning of each of the boxes is described as follows.

e The grey "Preprocess” box is provided to describe actions that may lead to

Preprocess

Y

Mark Root as Active, Cur-
rent and Not Yet Processed

Y
2 Initialize Search Tree
Parameters
Y
3 Decide whether to Expand 5 [Generate Children per Node
Search Tree
A
Y Y
Expand Search Tree? ‘i Select Nodes from
Yes Active Nodes
No
Y
6 Select Current Node from B
Nodes Not Yet Processed
Y
< New Current Node § Activate Dormant Nodes
Found? No
Yes
Y
7 Process Current Node
Y
Yes Any Dormant Nodes
Activated?
No
Y
9 Postprocess

Figure 1: Flowchart of the Main Enumeration Algorithm

a tighter specification of the original problem or to the determination of
method parameters. A typical action is to tighten bounds, lift constraints,
or use a heuristic to find an incumbent solution and/or an incumbent ob-
jective function value to be used for subsequent subproblem elimination.

The grey box with ”Initialize Search Tree Parameters” is provided to set
up and initialize (recursively defined) parameters to be used throughout
the search tree.

The white "Mark Root Node as Active, Current and Not Yet Processed” is
a system action that begins as soon as the previous step has been com-
pleted. The bookkeeping engine is started, and the root node becomes
Active, Current and Not Yet Processed. The Active status is maintained
by the system until the node is no longer needed. A node looses its Active
status once the subproblem at this node is infeasible, or does not pass the
bound test when compared to the incumbent objective function value, or
can no longer produce new subnodes (i.e. child nodes). The Not Yet Pro-
cessed status is assigned by the system to every new subproblem in the
search tree, and is changed into Processed as soon as the subproblem
has been processed. The root node is also the initial value of the system
parameter BBCurrentNode.

The grey box entitled "Decide whether to Expand Search Tree” must con-
tain the logic that controls the growth of the tree. It is possible to create
new subproblems without first investigating the originating subproblems.
It is also possible to reverse this process, and to investigate existing sub-
problems before creating additional new ones. The logic may depend on
the current number of active nodes, the depth of existing active nodes or
any parameter defined over nodes.

The white "Expand Search Tree” box is a system action to check the logi-
cal value of the predefined system parameter BBExpandSearchTree, and
act accordingly. The value of this parameter is set by the user in the
previously described grey box.

The grey box entitled "Select Nodes from Active Nodes” is a user proce-
dure to let the search tree grow as directed. During the execution of this
procedure one or more active nodes are selected in an iterative fashion,
and for each selected node a call is made to the procedure BBRegis-
terNewCh1ild to generate one or more new subproblems. Once the call is
finished, the calling procedure continues its execution.

The grey box with text "Select Current Node from Nodes Not Yet Pro-
cessed” is a user-defined procedure that selects a single subproblem to
be processed. Note that the Not Yet Processed status is completely under
the control of the system. When a node is created, it automatically gets
this status. It looses this status after the node has been processed.

The white "New Current Node Found” box checks the value of the prede-
fined element parameter BBCurrentNode (taken from the predefined set
of BBATTNodes). When this parameter is empty, the system will still check
whether there are any dormant nodes to be activated.

e The grey box with header ”Activate Dormant Nodes” is a user-specified
routine designed to activate nodes which were previously given the sta-
tus of Dormant. This status was given because the node was about to
be dropped as the result of a bound test, but either the computed bound
or the incumbent value (or both) contained a cheating factor. Dropping
would then not have been proper, thus a Dormant status (no longer Ac-
tive) was assigned to temporarily remove these nodes from further con-
sideration. In an iterative fashion all Dormant nodes are checked and,
depending on a user-defined criterion, Dormant nodes can be made Ac-
tive by calling the system procedure BBWake.

e The white (system) decision box to check whether there are ”Any Dormant
Nodes Activated” reacts to the result of the previous procedure Without
any active or dormant nodes the search is definitely over, and possible
postprocessing can begin. Otherwise, there is one or more active node to
be considered for the generation of new subproblems.

e The grey "Postprocess” box allows the user to specify the computation
of those parameters which depend on one or more of the incumbent so-
lutions found during the search process. Once the postprocess step is
completed, the entire search procedure is terminated.

2.2 Generate Children per Node

How to generate some or all of the children belonging to a selected active node
is the most difficult task to be specified by the person providing search di-
rectives. As will be demonstrated in the next section, this task is somewhat
simplified when the specification makes use of predefined modeling structures
for subsets, ordered subsets, permutations, partitions, etc.

>a[Create New Child Nodes

for Selected Nodes < >| Register New Child

Node

e Mark Child Nodes as
Active and Not Yet
Processed

A

Y
Mark Selected Node Inactive] 5b Initialize Child Node
when Appropriate

Figure 2: Flowchart of the Child Generation Algorithm

Consider the flowchart in Figure 2. The boxes in this chart can be described
as follows.

e The grey box entitled "Create New Child Nodes for Selected Node” is a
user-defined procedure to indicate how many and which child nodes are
to be created for the selected node at hand. Each new child is named
using the predefined naming function BBRegisterNewChildNode which
allows for optional arguments to pass all necessary naming information.

e The grey box "Initialize Child Node” allows the user to initialize node pa-
rameters that are associated with the current child node (which is avail-
able through the parameter BBCurrentChildNode. This routine is au-
tomatically called by the bookkeeping engine for every newly registered
child node.

e The white box “Mark Selected Node Inactive when Appropriate” is a sys-
tem routine which marks the selected node as Inactive when no new child
node was registered or when all children have been generated as indicated
by the value of the system parameter BBA11Ch1i1drenGenerated.

2.3 Process Current Node

Perhaps the most elaborate task to be specified by the person providing search
directives is how to process the current node. There are many ways to process
a node. Any choice in this matter is not only problem dependent, but also
depends on efficiency considerations (computational time required, likelihood
of results, etc.).

Consider the flowchart in Figure 3. Inside the grey box there are several top-
ics. For any particular subproblem in the search tree, not every topic needs to
be considered and certainly not in the order specified. The following comments

apply.

e Finding implications is an activity that checks whether new bounds and
new restrictions can be added to the subproblem at hand based on the
restrictions already set for each subproblem along the path to the root
of the search tree. The designer must decide (and thus provide control
over) whether or when it is worthwile finding implications for a particular
subproblem.

e Infeasibility determination is an activity that checks whether the current
subproblem and its descendents cannot have a feasible solution. Such
a check is essentially wasted when infeasibility cannot be concluded. In
case infeasibility is concluded, it should be registered by calling a system
routine named BBRegisterInfeasibility after setting the predefined
parameter BBIsInfeasible to TRUE. The system will then drop the cur-
rent subproblem (plus any existing descendents) from the search tree.

e The determination of a local bound (plus possibly a local solution) is an
activity that also might lead to the situation in which the system drops
the current subproblem (plus any existing descendents). This takes place
when a true local bound indicates that the subproblem plus its descen-
dents are no longer candidates for a better solution. If the bound is not a
true bound (something that must be communicated to the system through
the predefined parameter BBIsExactBoundComputation), then the sys-
tem will not drop the subproblem from the search tree, but will give it the

7a

Find Implications

Determination of (on or
more of) the follow

o Infeasibility
e Local Bound / Solution
e Incumbent Value

e Incumbent Solution

[< >

Register Infeasibility

¢ Remove Current Node
from Search Tree

[< >

Register Local Bound

e Apply Bound Test to
Current Node

¢ Remove Current Node
from Search Tree, or
Mark as Dormant

[< >

Register Incumbent
Value

¢ Apply Bound Test to All
Active and Dormant
Nodes

¢ Remove Current Node
from Search Tree, or
Mark as Dormant

[< >

Register Incumbent
Solution

Y

Mark Current Node
as Processed

l

Figure 3: Flowchart of the Current Node Processing Algorithm

Dormant status. Bound computations in practice are rarely trivial, and
are usually based on relaxation and/or local search techniques. Finally,
the local bound itself must be communicated to the system by calling a
system routine named BBRegisterLocalBound.

e An incumbent value is usually coupled to a feasible local solution. In
that case, this feasible solution also becomes an incumbent solution. By
calling the system routine BBRegisterIncumbentValue to register the
incumbent value, the system will also check whether there are other sub-
problems that can be dropped from the search tree on the basis of this
new incumbent value. By calling the system routine BBRegisterIncum-
bentSolution the system is informed about the fact that the current
solution should be considered as an incumbent solution.

e Once the current subproblem has been processed, it is marked as Pro-
cessed by the system. As a result, it will never be reconsidered for pro-
cessing. Its Active status, however, remains unaffected so that the node
can still be considered for the generation of new children.

2.4 Comparision to MINTO functionality

The main differences between the functionality of MINTO and the functional-
ity of the branch-and-bound enumeration scheme in this paper, apart from the
already mentioned language differences and the differences in the use of math-
ematical programming relaxations, are as follows.

e The child generation step as available in MINTO is linked to the node
process step. While MINTO requires all new child nodes of the current
node to be generated at once, the branch-and-bound enumeration scheme
in this paper allows for multiple child generation phases for a single node
by unlinking the child generation and node process step.

e The concept of Dormant nodes (and activation of Dormant nodes) allows
for a phased solution process. The underlying tree remains intact during
the transition from one phase to the next.

3 Branch-and-Bound Directives in a Modeling
Language

The main aim of this paper is to present a branch-and-bound methodology for
combinatorial models to be embedded inside an algebraic modeling language.
Algebraic modeling languages are primarily designed for the specification of
optimization models in terms of indexed constraints. Such notation allows for
a representation that stays fairly close to the reality being modeled with the
advantage of understandability and maintainability of the resulting symbolic
form. This representation in terms of symbolic constraints is called the mod-
eler’s form by Fourer [8]. It is the task of the underlying modeling system to
automatically translate this modeler’s form into the algorithm’s form required
by solution algorithms. The algorithm’s form is an abstract one with reference
to just a single array of numbered variables and a single array of numbered

constraints. This representation is not easy to comprehend by a human being
and thus also not easy to maintain. This is precisely the weakness of a sys-
tem such as MINTO, which requires the user to specify both the model and the
corresponding branch-and-bound directives in terms of the algorithm’s form.

The currently available solvers inside modeling systems have been designed
to solve mathematical programs consisting of mostly linear constraints and nu-
meric variables which are either binary, integer or continuous. In this paper
there is no longer the requirement that variables are numeric. It will be possi-
ble to specify different kinds of set variables which take their value from one or
more known master sets. Such decision sets occur quite naturally when describ-
ing subselections and partitions. The reliance on standard solvers is then no
longer possible, but in their place will be the general branch-and-bound search
presented in this paper. Although not further discussed in the sequel, many
models expressed in terms of set variables can be translated automatically to
an equivalent representation in terms of numeric variables. Eventually, the two
approaches (one based on set variables and the other based on numeric vari-
ables) will be fruitfully combined into a single branch-and-bound framework.

The branch-and-bound methodology in this paper is to be used as a gen-
eral search mechanism with no a priori limitations on the shape of the search
tree. Nevertheless, it turns out that for most models it is natural to use special
constructs for the generation of children leading to prespecified shapes of the
search tree. The three structures discussed in this paper are the subset, the
subtour and the partition.

These structures together with predefined branch-and-bound identifiers are
treated in the remainder of this section. A few detailed examples are provided
in Section 4.

3.1 Variable Set Structures

Variable set structures, such as a variable subset, a variable subtour and a vari-
able partition, are available as model identifiers of a particular type, each with
its own attributes and methods. These methods are function or procedures
that operate on the variable set structures, and are referenced in the same way
as attributes, using the dot notation. It is expected that a large number of
applications will rely on just a few of these variable set structures.

3.1.1 Variable Subset

The variable subset structure concerns the unknown selection of a subset of a
known master set.

Attribute Value-type
SUBSET OF set-identifier
INDEX index-identifier

MINIMAL CARDINALITY | numerical-expression
MAXIMAL CARDINALITY | numerical-expression

Table 1: VARIABLE SUBSET attributes

10

The SUBSET OF attribute is used to specify the master set with possible el-
ements of the variable subset. The INDEX attribute provides the possibility to
declare an index identifier over the variable subset. When used inside a branch-
and-bound directive this index will only iterate over the elements that are in the
variable subset that corresponds to the current node. The MINIMAL CARDI-
NALITY and MAXIMAL CARDINALITY attributes directly restrict the cardinality
of the variable subset. This information will be used by the branch-and-bound
enumeration scheme, and will influence the size of the search tree.

Method Value-type
IsSelected(i) boolean-function
IsExcluded(i) boolean-function

IsFree(i) boolean-function
SeTlect (i) procedure
Exclude(i) procedure
SetFree(i) procedure

Table 2: VARIABLE SUBSET methods

The first three methods associated with the variable subset are used to in-
terrogate the variable subset about its current contents. The boolean function
IsSelected(i) returns TRUE if element i is in the variable subset correspond-
ing to the current node. The function IsExcluded (i) can be used to determine
whether a certain element i is excluded from the variable subset. All elements
that are not selected and not excluded are considered to be free. This status
is checked through the IsFree(i) method. An element i can be put in the
variable subset corresponding to the current node (and all its descendants) by
using the Select(i) method. An element i can be explicitely excluded from
the variable subset by using the Exclude (i) method. Finally, an element i that
has either been selected or excluded can be set free by using the SetFree(i)
method.

3.1.2 Variable Subtour

The variable subtour structure is an unknown cyclically ordered subset of a
known master set.

Attribute Value-ype
SUBSET OF set-identifier
INDEX index-identifier

MINIMAL CARDINALITY | numerical-expression
MAXIMAL CARDINALITY | numerical-expression

Table 3: VARIABLE SUBTOUR attributes

The attributes of a variable subtour are the same as the previously discussed
attributes of a variable subset.

The methods of a variable subtour are not the same as the previously dis-
cussed methods of a variable subset. When formulating a model that considers
a variable subtour, it is natural to express the essential decisions in terms of
links that together form the subtour. For this reason, the methods all have

11

Method Value-type
IsSelected(i,j) | boolean-function
IsExcluded(i,j) boolean-function

IsFree(i,j) boolean-function
Select(i,]) procedure
Exclude(i,j) procedure
SetFree(i,j) procedure

Table 4: VARIABLE SUBTOUR methods

two indices to represent the start and end element of the link. Based to this
link representation, the branch-and-bound enumeration scheme imposes triv-
ial checks on the search tree. One such check makes sure that every element in
the tour has exactly one incoming and one outgoing link. As was the case with
the VARIABLE SUBSET structure, the first three methods are used to retrieve
information about the variable subtour at the current node. The boolean func-
tion IsSelected(i,j) returns TRUE if link (i, j) is part of the variable subtour.
Similarly, the functions IsExcluded(i,j) and IsFree(i,j) provide informa-
tion about the exclusion or 'not yet determined’ status of link (i, j). For each
status there is a corresponding method to set the status. The Select(i,j)
method ensures that the link (i, j) is part of the variable subtour correspond-
ing to the current node, while the ExcTude (i, j) method is used to explicitely
exclude link (i, j) from the subtour. A link (i, j) that has already been selected
or excluded can be set free again using the SetFree(i,j) method.

3.1.3 Variable Partition

The variable partition structure is the unknown partition of a set of elements
into groups of elements.

The variable partition attributes are for the most part related to the groups
of elements.

Attribute Value-type

ELEMENTS set-identifier

GROUPS set-identifier

INDEX index-identifier

MINIMAL CARDINALITY numerical-expression
MAXIMAL CARDINALITY numerical-expression
MINIMAL CARDINALITY PER | (indexed) numerical-expression
MAXIMAL CARDINALITY PER | (indexed) numerical-expression

Table 5: VARIABLE PARTITION attributes

The ELEMENTS attribute refers to the master set of elements to be parti-
tioned, while the GROUPS attribute refers to the master set of groups making
up the partition. The INDEX attribute allows for an index to iterate over the
groups in the variable partition corresponding to the current node. The num-
ber of non-empty groups in the variable partition can be restricted using the
MINIMAL CARDINALITY and MAXIMAL CARDINALY attributes. Similarly, the at-
tributes MINIMAL CARDINALITY PER and MAXIMAL CARDINALITY PER restrict
the number of elements per group. All four cardinality restrictions will be used

12

by the branch-and-bound enumeration scheme to restrict the size of the search
tree.

Method Type
IsSelected(e,g) | boolean function
IsExcluded(e,g) | boolean function

IsFree(e) boolean function
Select(e,q) procedure
Exclude(e,qg) procedure
SetFree(e) procedure

Table 6: VARIABLE SUBTOUR methods

The decisions to be taken when constructing a variable partition are ex-
pressed in terms of a single element e and a single group g, indicating the
assignment of element e to group g. The boolean function IsSelected(e,g)
indicates whether an element e is already assigned to a group g. The boolean
function IsExcluded(e,g) is used to determine whether an element e is ex-
cluded from a group g. The attribute IsFree(e) is used to provide informa-
tion about whether element e is assigned at all. As before, the three methods
Select, Exclude and SetFree can be used to set the corresponding status.

3.2 Branch-and-Bound Method Declaration

A user-defined branch-and-bound method can be specified by declaring a new
ENUMERATION METHOD identifier. The directives of the branch-and-bound met-
hod can be specified through its attributes, which correspond with the grey
boxes in the three flowcharts described in the previous section.

Attribute Value-ype | Flowchart
PREPROCESSING procedure | Box 1
INITIALIZATION procedure | Box 2
DECIDE ON EXPANSION procedure | Box 3
SELECT EXPANSION NODES | procedure | Box 4
EXPAND SELECTED NODE procedure | Box 5a
INITIALIZE CHILD NODE procedure | Box 5b
SELECT CURRENT NODE procedure | Box 6
PROCESS CURRENT NODE procedure | Box 7a
ACTIVATE DORMANT NODES | procedure | Box 8
POSTPROCESS procedure | Box 9

Table 7: BRANCH AND BOUND METHOD attributes

3.3 Branch-and-Bound Parameters

Special predeclared system identifiers can be used to interrogate the enumera-
tion process or to pass additional information to the enumeration process. The
value of these predeclared system identifiers are likely to vary from node to
node. If so, the value that is passed to the model will be the value at the cur-
rent node in the enumeration process. General branch-and-bound tolerances
(like cutoff tolerances, absolute and relative optimality tolerances) will not be

13

discussed here, but are communicated to the enumeration scheme through the
AIMMS option mechanism.

3.3.1 Predefined Sets and Parameters

The following predefined sets and parameters are available within the branch-
and-bound enumeration scheme.

e BBA11Nodes, a set identifier denoting the set of all nodes in the search
tree.

e BBActiveNodes, a subset of the set BBAT1Nodes, denoting the set of all
currently active nodes.

e BBDormantNodes, a subset of the set BBA11Nodes, denoting the set of all
currently sleeping nodes.

e BBCurrentNode, an element parameter in the set BBA11Nodes, denoting
the current node in the enumeration process.

e BBExpandSearchTree, a boolean value indicating whether the search tree
should be expanded with new child nodes.

e BBA11ChildrenGenerated, a boolean value indicating whether all chil-
dren have been generated. Once set to TRUE during the child generation
routine, the current node is marked as inactive. The default value for this
identifier is FALSE.

e BBIncumbentSolutionValue, a real value that denotes the current in-
cumbent solution value.

e BBExactBoundComputation, a boolean denoting whether the local bound
computation is exact or not. This information is used by the enumeration
engine to decide whether a node should be made inactive or dormant
when its bound test is violated. The default value for this identifier is
TRUE.

3.3.2 Tree Administration Routines

The following predefined tree administration procedures and functions are
available either to get additional information or to activate the bookkeeping
mechanism to perform certain tasks.

e BBParent(n), a function that returns the parent node of node n in the
set BBAT1Nodes.

e BBAncestor(k), a function that returns the k-th ancestor node of node
n in the set BBAT1Nodes.

e BBChildSet(n), a function that returns the set of all generated child
nodes of node n.

e BBDepth(n), a function that returns the depth of node »n in the search
tree. The root node has depth 0.

14

BBNodeNumber (n), a function that returns the number of node n. Node
numbers are consecutive integers denoting the order in which the nodes
are created. The root node has number 1.

3.3.3 Child Identification Routines

The following predefined child identification procedures are available for use
during the node creation and node processing phases.

BBExpandNode(n), a procedure that is called to generate children for
node n.

BBRegisterNewChildNode(...), a procedure to generate a new child
node for the current node. Information can be passed through optional
arguments. These arguments are available when initializing the node
through the functions BBNumberOfArguments and BBArgument(i).

BBNumberOfArguments, a function which returns the number of argu-
ments that were passed when genererating the node.

BBArgument (i), a function which returns the i-th argument that was
passed when generating the node.

BBCurrentChildNode, an element parameter in the set BBAT1Nodes, de-
noting the current child node.

3.3.4 Registration Routines

The following predefined system registration procedures are available for use
during the node processing phase.

BBRegisterInfeasibility, a procedure to inform the bookkeeping pro-
cess that the current node is infeasible.

BBRegisterLocalBound(x), a procedure to inform the bookkeeping pro-
cess about the value of the local bound for the current node. Based on
the value of BBExactBoundComputation the bookkeeping process will
change the status of the node.

BBRegisterIncumbentValue(x), a procedure to inform the bookkeeping
process about a (potential) new incumbent solution value.

BBRegisterIncumbentSolution, a procedure to inform the bookkeeping
process that the solution at the current node should be considered as the
candidate solution of the original problem.

4 Examples

In this section there are three worked examples. The first example is complete
in the sense that it demonstrates all directives necessary to specify the enumer-
ation process. The last two examples contain a complete model description, but
do not provide all required directives to steer the branch-and-bound process.
Instead, they focus on the specification of the shape of the search tree.

15

4.1 A Subset Enumeration Example

The following example describes the same approach to solve a knsapsack prob-
lem as was presented in [4]. The knapsack needs to be filled with objects such
that the total value of all objects in the knapsack is maximal and the total
weight of all objects in the knapsack does not exceed a given maximum capac-
ity. The declaration of the model is straightforward and natural. The formula-
tion makes use of the VARIABLE SUBSET identifier.

4.1.1 Model Declaration

SET:
Objects
index : o;

PARAMETERS:
Weigth
index domain : o;
Value
index domain : o;
Capacity;

VARIABLE SUBSET:

KnapSack
subset of : Orders
index H '
CONSTRAINTS:

CapacityRestriction
definition : sum[k, Weight(k)] <= Capacity;

VARIABLE:
TotalValue
definition : sum[k, Value(k) 1;

MATHEMATICAL PROGRAM:

Fil1Knapsack
objective : TotalValue
direction : maximize
subject to : AllConstraints
method : EnumerateKnapsack;

4.1.2 Branch-and-Bound Method Declaration

In this example the directives specified below will constitute the entire branch-
and-bound enumeration scheme to solve the initial knapsack problem.

BRANCH AND BOUND METHOD:

EnumerateKnapsack
preprocessing
initialization : Initialization
decide on expansion : DecideOnExpansion
select expansion nodes : SelectExpansionNodes
expand selected node : ExpandSeTlectedNode
initialize child node : InitializeChildNode
select current node : SelectCurrentNode
process current node : ProcessCurrentNode
activate dormant nodes :
postprocess I

16

4.1.3 Branch-and-Bound Directives Specification

There are three parameters that are to be registered at every node. Their decla-
ration is as follows.

INDEX:
n
range : BBAT1Nodes;

PARAMETERS:
CurrentValue
index domain : n;
PathCost
index domain : n;
CapAvail
index domain : n;

The procedure Initialization is used to initialize the previously declared
three parameters. Note that the initialization is specified for the root node,
which at this phase in the enumeration process is available through the sys-
tem parameter BBCurrentNode. Initialization of these parameters for all other
nodes is performed in the procedure InitializeChiTldNode.

PROCEDURE Initialization:

BODY:
CurrentValue(BBCurrentNode) := 0;
PathCost(BBCurrentNode) = 0;
CapAvail(BBCurrentNode) = Capacity;
ENDBODY ;

In this example the search tree will only be expanded (at the current node)
when there are still objects available for placement in the variable subset.

PROCEDURE DecideOnExpansion;
BODY:
if (count[o | Knapsack.IsFree(o)] = 0) then
BBExpandSearchTree := FALSE;
else
BBExpandSearchTree := TRUE;
endif;
ENDBODY ;

In this example the procedure SelectExpansionNodes tells the branch-
and-bound enumeration scheme only to consider the current node when gener-
ating new child nodes.

PROCEDURE SeTlectExpansionNodes
BODY:

BBExpandNode (BBCurrentNode) ;
ENDBODY;

For every object that has not yet been selected (or excluded) a new child
node is generated in the procedure ExpandSelectedNode. All possible child
nodes are generated at once. The new object o that is added to the variable
subset is passed as an argument when generating the child node. This argument
is used again in the procedure InitializeChildNode to put the new object in
the variable subset using the Select method.

17

PROCEDURE ExpandSelectedNode:
BODY:
for (o | Knapsack.IsFree(o)) do
BBRegisterNewChiTldNode(o);
endfor;
BBA11ChildrenGenerated := TRUE;
ENDBODY ;

The three parameters for the current child node are initialized through the
following recursive relations linking the current child nodes to their parent (i.e.
the current node). In addition, the child node itself is characterized by selecting
a specific object (i.e. the value of NextObject) and excluding all objects already
selected by previous children.

PROCEDURE InitializeChiTldNode:
DECLARATION SECTION:

ELEMENT PARAMETER:

NextObject
range : Objects

ENDSECTION;
BODY:

! initialize parameters at node

CurrentValue(BBCurrentChildNode) = CurrentValue(BBCurrentNode) +

Value(NextObject);
PathCost(BBCurrentChildNode) = PathCost(BBCurrentNode) +

Weight(NextObject);
CapAvail(BBCurrentChiTldNode) = CapAvail(BBCurrentNode) -

Weight(NextObject);

! specify selection and exclusion at node
NextObject := BBArgument(l);
for (o | o < NextObject) do
Knapsack.Exclude(o);
endfor;
Knapsack.Select(NextObject);
ENDBODY ;

The procedure SelectCurrentNode selects that active node for which the
associated knapsack has maximal cardinality. Note that this selection criterion
leads to a depth-first search strategy.

PROCEDURE SeTlectCurrentNode
BODY:

BBCurrentNode := argmax[a in BBActiveNodes, card(Knapsack)];
ENDBODY;

During the process step the enumeration scheme will conclude infeasibil-
ity if the remaining capacity that is available in the knapsack associated with
the current node is less than zero. Otherwise, a local bound will be computed
and passed to bookkeeping engine by making a call to BBRegisterLocalBound.
Since a feasible solution of the subproblem at the current node is also feasible
for the original knapsack problem, this solution and its corresponding objec-
tive function value are also reported to the bookkeeping engine as a candidate
incumbent solution and a candidate incumbent solution value, respectively.

PROCEDURE ProcessCurrentNode

DECLARATION SECTION:
PARAMETER:

18

LocalBound;
ENDSECTION;
BODY:
! infeasibility check
if (CapAvail(BBCurrentNode) < 0) then
BBRegisterInfeasibility;
return;
endif;

! Tocal bound computation
LocalBound := CurrentValue(CurrentNode) + CapAvail(CurrentNode) *
(max[o | Knapsack.IsFree(o), Value(o) / Weight(o) 1);

! register local bound and solution
BBRegisterLocalBound(LocalBound);
BBRegisterIncumbentValue(LocalBound);
BBRegisterSolution;

ENDBODY ;

4.2 A Subtour Enumeration Example

The subtour enumeration example considers the budgetted traveling salesman
problem as was considered in [4]. A tour must be found such that number of
cities visited is maximal while still satisfying an overall budget restriction.

4.2.1 Model Declaration

SET:
Cities
index : c, f, t;

PARAMETERS:
LinkAvailable
index domain : (f, t);
TravelCost
index domain : { (f, t) | LinkAvailable(f, t) };
AvailabTleBudget;

VARIABLE SUBTOUR:
Tour
subset of : Cities

VARIABLE:
NrCitiesVisisted
definition : card(Tour);

CONSTRAINT:
BudgetRestriction
definition : sum[c in Tour, TravelCost(c, c++1)] <= AvailableBudget;

MATHEMATICAL PROGRAM:

TravelAlongCities
objective : NrCitiesVisited
direction : maximize
subject to : AllConstraints
method : EnumerateSubTour;

19

4.2.2 Branch-and-Bound Method Declaration

In this variable subtour example the focus is on the specification of the shape
of the search tree. That is why only the three relevant directives are discussed
below.

BRANCH AND BOUND METHOD:
EnumerateSubTour

select expansion nodes : ExpandCurrentNode
expand selected node : ExpandSelectedNode
initialize child node : InitializeChildNode

.y

4.2.3 Branch-and-Bound Directives Specification

The procedure ExpandCurrentNode only generates new child nodes for the
current node.

PROCEDURE ExpandCurrentNode
BODY:

BBExpandNode (CurrentNode) ;
ENDBODY ;

The number of new child nodes to be created for a particular node is equal
to the number of cities that are not yet visited in the current tour. All child
nodes are created at once. Note that the unvisited city c is passed as an argu-
ment of the BBRegisterNewChild procedure.

PROCEDURE ExpandSeTlectedNode:
BODY:
for (c | Tour.IsFree(c)) do
BBRegisterNewChiTldNode(c);
endfor;
BBA11ChildrenGenerated := TRUE;
ENDBODY ;

Note that the name of the current child is retrieved using the BBArgument
function and assigned to the local element parameter NewCity. Together with
the last city in the variable subtour the value of NewCity is used to select the
next link to be part of the variable subtour.

PROCEDURE InitializeChiTldNode:
DECLARATION SECTION:
ELEMENT PARAMETERS:

LastCity
range : Cities
NewCity
range : Cities
ENDSECTION;
BODY:
LastCity := Tast(Tour);
NewCity := BBArgument(l);
Tour.Select(LastCity, NewCity);
ENDBODY;

20

4.3 A Partition Enumeration Example

This variable partition example considers a branch-and-bound enumeration
scheme for the order batching problem as described in [1]. In this problem,
orders are assigned to batches subject to a maximum batch size. Batches are
filled in parallel. For each batch there is a cheapest way to retrieve the orders
from a warehouse. This retrieval subproblem can be efficiently solved using an
external procedure (referred to as Rat1iffAndRosenthal below). The overall
objective is to minimize the makespan (i.e. the largest amount of time required
for any batch).

4.3.1 Model Declaration

SETS:
Orders
index : o;
Batches
index : b;

PARAMETER:
PickTime
index domain : o;

VARIABLE PARTITION:
OrderBatchATlTlocation
elements : Orders
groups 1 Batches
maximum cardinality per : ceil(card(Orders) / card(Batches));

FUNCTION Ratl1iffAndRosenthal:
argument list : (CurrentOrders)
range : nonnegative;

DECLARATION SECTION:

SET:
CurrentOrders
subset of : Orders
property : Input;
ENDSECTION;
BODY:

Rat1iffAndRosenthal := ...;
ENDBODY ;

VARIABLE:
TotalCost;
BatchCost
index domain : b
definition
Rat1iffAndRosenthal({o | OrderBatchAllocation.IsSelected(o,b)});

CONSTRAINT:
TotalCostDefinition
index domain : b
definition : TotalCost >= BatchCost(b);

MATHEMATICAL PROGRAM:

OrderBatching
objective : TotalCost
direction : minimize

subject to : AllConstraints

21

method : EnumerateOrderBatchAllocation;

4.3.2 Branch-and-Bound Method Declaration

In this variable partition example the focus is on the specification of the shape
of the search tree. That is why only the three relevant directives are discussed
below.

BRANCH AND BOUND METHOD:
EnumerateOrderBatchAlTocation

select expansion nodes : SelectExpansionNodes
expand selected node : ExpandSelectedNode
initialize child node : InitializeChildNode

.y

4.3.3 Branch-and-Bound Directives Declaration

In this variable partition example only new child nodes are generated for the
current node. This is expressed in the procedure ExpandCurrentNode.

PROCEDURE SeTlectExpansionNodes
BODY:

BBExpandNode (BBCurrentNode) ;
ENDBODY ;

All child nodes are generated at once in the following manner. Consider the
first order that has not yet been assigned to the current node. A new child node
is created for every non-empty batch that is not yet full. One more extra child
is generated for the first empty batch. By constructing the search tree in this
manner all possible assignments of orders to batches are enumerated [1]. Both
the batch to be considered and the first order not yet assigned are passed as
arguments of the routine BBRegisterNewChild.

PROCEDURE ExpandSelectedNode:
DECLARATION SECTION:
ELEMENT PARAMETERS:
FirstOrderNotYetAssigned
range : Orders
FirstEmptyBatch
range : Batches
ENDSECTION;
BODY:
FirstOrderNotYetAssigned
first(o | not exists(b
FirstEmptyBatch 1=
first(b | not exists(o | OrderBatchAllocation.IsSelected(o,b)));
for (b | b <= FirstEmptyBatch) do
BBRegisterNewChildNode(b, FirstOrderNotYetAssigned);
endfor;
BBA11ChildrenGenerated := TRUE;
ENDBODY ;

OrderBatchAlTocation.IsSelected(o,b)));

Note that the identification of the current child is retrieved using the BBAr-
gument function. This identification information is assigned to the local ele-
ment parameters Batch and Order, which are then used to assign Order to
Batch using the Select method of the variable partition.

22

PROCEDURE InitializeChildNode:
DECLARATION SECTION:
ELEMENT PARAMETERS:

Batch
range : Batches
Order
range : Orders
ENDSECTION;
BODY:

Batch := BBArgument(l);

Order := BBArgument(2);

OrderBatchAllocation.Select(Order, Batch);
ENDBODY ;

5 Conclusions

In this paper a branch-and-bound algorithmic framework is specified in detail
to demonstrate the possibilities of providing search directives as part of the
algorithm. The main purpose was to express these search directives within the
framework of a modeling language. The examples in this paper have shown
the feasibility of such an approach, although quite an extensive machinery is
required to obtain the kind of flexibility required to specify the branch-and-
bound directives for a wide class of problems. This paper forms a serious
first step, but an implementation of the methodology proposed herein, coupled
with a large number of examples, is required before stronger conclusions can
be drawn.

References

[1] J.P. van den Berg, A.J.R.M. Gademann and H.H. Hoff, “An Order Batching
Algorithm for Wave Picking in a Parallel-Aisle Warehouse,” Report LPOM-
96-10, University of Twente, The Netherlands, 1996.

[2] J.J. Bisschop and R. Entriken, “AIMMS: The Modeling System,” Paragon De-
cision Technology, Haarlem, 1993.

[3] J.J. Bisschop and G.H.M. Roelofs, “AIMMS 3: The Language Reference,”,
Draft, Paragon Decision Technology, Haarlem 1998.

[4] J.J. Bisschop and R. Fourer, “New Constructs for the Description of Com-
binatorial Optimization Problems in Algebraic Modeling Languages,” Com-
putational Optimization and Applications vol. 6, pp. 83-116, 1996.

[5] J.J. Bisschop and A. Meeraus, “On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment,” Mathematical Pro-
gramming Study, vol. 20, pp. 1-29, 1982.

[6] A. Brooke, D. Kendrick and A. Meeraus, “GAMS: A User’s Guide, release
2.25,” Boyd & Fraser/The Scientific Press, Danvers, MA, 1992.

[7] CPLEX, “Using the CPLEX Callable Library,” 1997, Version 5.0, ILOG Inc.

23

[8] R. Fourer, “Modeling Languages versus Matrix Generators for Linear Pro-
gramming,” ACM Transactions on Mathematical Software, 9, pp. 143-183,
1983.

[9] R. Fourer, D.M. Gay and B.W. Kernighan, “A Modeling Language for Mathe-
matical Programming,” Management Science, vol. 36, pp. 519-554, 1990.

[10] R. Fourer, D.M. Gay and B.W. Kernighan, “AMPL: A Modeling Language for
Mathematical Programming,” Boy & Fraser/The Scientific Press: Danvers,
MA, 1992.

[11] T.Ibaraki, “Enumerative Approaches to Combinatorial Optimization”, Part
I, Baltzer, AG, 1987.

[12] G.L.Nemhauser and L.A. Wolsey “Integer and Combinatorial Optimization”
Wiley , NJ, 1988.

[13] G.L. Nemhauser, M.W.P. Savelsbergh and G.S. SigisMundi, “MINTO, a Mixed
INTeger Optimizer,” Oper. Res. Letters vol. 15, pp. 47-58, 1994.

[14] M.W.P. Savelsbergh and G.L. Nemhauser, “Functional description of MINTO,
a Mixed INTeger Optimizer,” Report COC-91-03C, Georgia Institute of
Technology.

24

