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ABSTRACT: One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of
solutions) problem of discontinuous dynamical systems. This paper addresses this problem for a class of piecewise linear
discontinuous systems under the definition of solutions of Carathéodory. The concepts of jump solutions or a sliding
mode are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study
of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal
systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property
of solutions. Next, its extensions to the multi-modal case are discussed. As an application to switching control, in the
case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization
of all admissible state feedback gains for which the closed loop system remains well-posed.

Keywords: piecewise linear systems, hybrid systems, discontinuous systems, well-posedness, lexicographic inequalities.

1 Introduction

Various approaches to modeling, analysis, and control synthesis of hybrid systems have been developed within the com-
puter science community and the systems and control community, from different points of view (see, e.g., [1] -[6]). In
the computer science community, as an extension of finite automata, several models of hybrid systems such as timed
automata [7] and hybrid automata [8] have been proposed and some results on verification of their models have been
obtained. In the control community, from the dynamical systems and control point of view, models of hybrid systems
have been proposed (see e.g., [9], [10]), and several properties such as stability and controllability have been discussed; see
[11] and [12] for controllability of switched systems and integrator hybrid systems, respectively, [13] and [14] for stability
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of general hybrid systems, and [15]-[17] for stability of piecewise linear systems. One of main concerns in these researches
is how we define and analyze various kinds of properties of hybrid systems with discontinuous changes of vector fields
and jumps of solutions (i.e., autonomous switchings and autonomous jumps in the terminology of [10]). However, there
are still few results on the basic problem of uniqueness of solutions of piecewise linear discontinuous systems, while the
existing standard theory of discontinuous dynamical systems is not quite satisfactory in spite of the fact that it is crucial
for various developments of hybrid systems.

On the other hand, as an approach to modeling of hybrid systems, there is a new attempt in [18] and [19] to generalize
in a natural manner dynamical properties of physical systems with jump phenomena which occur between unconstrained
motion and constrained motion, such as the collision of a mass to a hard wall, so as to develop a framework modeling a
class of hybrid systems. This framework is called the complementarity modeling (the corresponding system is called the
complementarity system), which can describe several kinds of hybrid systems including electrical network with diodes and
relay type systems as well as mechanical systems with unilateral constraints. Such an approach provides a natural and
intuitive interpretation of jump phenomena in hybrid systems and make the analysis relatively easier. In fact, as the first
result of the analysis in this line, several algebraic and checkable conditions for well-posedness (existence and uniqueness
of solutions) of such systems have been derived in [18] -[21].

When hybrid (discontinuous) systems are considered from the above physical viewpoint, there also exist physical
phenomena such as the collision to an elastic wall, whose system has a discontinuous vector field and does not exhibit
jumps. Does there exist a common algebraic structure in the discontinuous vector field of such systems? Can we extend
this to a general framework from the mathematical point of view? As far as we know, however, such questions have not
been addressed, although an abstract condition can be found in the well-known book by Filippov [22]. When solutions
without jumps are considered, there are, roughly speaking, two kinds of definitions of solutions, that is, Carathéodory’s
definition and Filippov’s definition. The latter yields the concept of a sliding mode. In the case of physical systems such
as the collision to an elastic wall, on the other hand, the solution belongs to the former, although we need to extend
Carathéodory’s definition, in a straightforward manner, to the case of discontinuous vector fields.

Besides from the viewpoint of a generalization of such physical systems, there are in addition the following three points
we like to stress as a motivation to address the well-posedness problem in the sense of Carathéodory for discontinuous
dynamical systems. First, this problem is a most fundamental one in the study of well-posedness for discontinuous
dynamical systems. In other words, compared with the well-posedness problem including the concept of jump phenomena
or a sliding mode, it is closest to the well-posedness problem in continuous dynamical systems. Therefore, as a first step
to establish a theory of well-posedness of general hybrid systems, it will be very meaningful to clarify to what extent this
basic problem can be analyzed. The second point is that it may be easier to analyze a system without jumps than with
jumps. By representing a system with jumps as a limit of a system without jumps, we may obtain more results on the
property of hybrid systems with jumps. A similar approach can be found in [23] -[26]. Third, in many examples of hybrid
systems of practical interest, the solutions do not necessarily have jumps in the transition from one mode to the other
mode, and also it may be desirable that no sliding mode exists in closed loop control systems.

In this paper, we address the well-posedness problem in the sense of Carathéodory for the class of piecewise linear
discontinuous systems. We mainly concentrate on bimodal systems, and give several necessary and sufficient conditions for
those systems to be well-posed, in terms of the analysis based on lexicographic inequalities and the smooth continuation
property. Furthermore, some of results obtained in the bimodal case will be extended to the case of two kinds of multi-
modal systems. Finally, as an application of our result, we discuss the well-posedness problem of feedback control systems
with two state feedback gains switched according to a criterion depending on the state. Recently, switching control
schemes have attracted considerable attention in the control community (see, e.g., [27], [28], and [29]). As one of its
basic results, we give a characterization of all admissible state feedback gains provides that the corresponding closed loop
system is well-posed.

The organization of this paper is as follows: In section 2, piecewise linear discontinuous systems in the bimodal case
are described, together with the definition of solutions of Carathéodory. Section 3 is devoted to some mathematical
preliminaries on lexicographic inequalities and smooth continuation. We give out main results on the well-posedness
of bimodal systems in sections 4 and 5, and some extensions in section 6. In section 7, our results are applied to the
well-posedness problem in switching control systems. Section 8 presents a brief summary and some topics for future
research.

In the sequel, we will use the following notation for lexicographic inequalities: for x ∈ Rn, if for some i, xj = 0
(j = 1, 2, · · · , i− 1), while xi > (<)0, we denote it by x � (≺)0. In addition, if x = 0 or x � (≺)0, we denote it x � (�)0.
We use the notation ∗ representing any fixed but unspecified number or matrix. Finally, In, Om,n and On denote the
n× n identity matrix, the m× n zero matrix, and the n× n zero matrix, respectively.
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2 Piecewise linear discontinuous systems

In this section, we describe the basic form of bimodal systems to be studied here, and give a definition of well-posedness
for these bimodal systems. Next, we give an equivalent representation of bimodal systems, which will be important for
further developments.

2.1 Description of bimodal system and definition of its solution

Consider the system given by

ΣO

{
mode 1 : ẋ = Ax, if y = Cx ≥ 0
mode 2 : ẋ = Bx, if y = Cx ≤ 0 (1)

where x ∈ Rn, y ∈ R, and A and B are n× n matrices (in general different). Since the two linear differential equations
ẋ = Ax and ẋ = Bx are coupled by separating the region of Rn into two subspaces, i.e., y ≥ 0 and y ≤ 0, the system
ΣO belongs to the class of piecewise linear systems. Even when we consider the system ΣO on any neighborhood of the
origin, the argument below holds with some modification. However, for brevity, we consider the system to be defined on
the whole Rn.

Furthermore, for simplicity of notation, we use ẋ(t) in (1), although there may be a set (of measure 0) of points of
time where the solution x(t) is not differentiable. Formally, the system ΣO is given by its integral form (which is called
the Carathéodory equation):

x(t) = x(t0) +
∫ t

t0

f(x(τ))dτ (2)

where f(x) is the discontinuous vector field given by the right hand side of (1). We call the x(t) given by (2) the solution
in the sense of Carathéodory.

Then the well-posedness for the system ΣO is defined as follows.

Definition 2.1 The system ΣO is said to be well-posed at x0 if there exists a unique solution of (1) on [0,∞) in the
sense of Carathéodory for the initial state x0 in Rn. In addition, the system ΣO is said to be well-posed if it is well-posed
at every initial state x0 ∈ Rn.

The following result shows that we only have to prove local existence and uniqueness of solutions at every initial state
in order to show the well-posedness of the system ΣO.

Lemma 2.1 If there exists an ε > 0 such that a unique solution x(t) of ΣO exists on [0, ε) in the sense of Carathéodory
from every initial state x0 ∈ Rn, then the system ΣO is well-posed and the solution is absolutely continuous on any
interval of R.

(Proof) Since there exists a local unique solution from every initial state, we can make a successively connected solution.
Then the solution x(t) in (2) is given by x(t) = eSi(t−ti)eSi−1(ti−ti−1) · · · eS0t1x(0) for all t ∈ [ti, ti+ε), where i ∈ {0, 1, 2, · · ·}
is the switching number, tj is a switching time (t0 = 0), and Sj = A or B (j = 0, 1, 2, · · · , i). Since there exists a positive
real number a such that max{‖ eAt ‖, ‖ eBt ‖} ≤ eat for all t ≥ 0, it follows that ‖ x(t) ‖≤ eat ‖ x(0) ‖ for all
t ∈ [ti, ti + ε) and all i ∈ {0, 1, 2, · · ·}. Noting that there exists a unique solution for all t ≥ t∞ even when t∞ <∞ (i.e., a
finite accumulation point of switching times exists), we have x ∈ L∞e (extended L∞ space). Thus there exists a unique
solution x(t) on [0,∞). In addition, since f(x) ∈ L1e (with f(x) defined by (2)) holds from x ∈ L∞e, it follows from
Lebesgue integral theory that the solution given by (2) is absolutely continuous on any interval of R. 2

Remark 2.1 After section 5, we will consider other types of discontinuous systems such as multi-modal systems. For all
these systems, Definition 2.1 can be straightforwardly extended and Lemma 2.1 also holds for these systems.

It is well-known that a sufficient condition for a system given by a first-order differential equation to be well-posed is
that it satisfies a global Lipschitz condition. When we apply this to the system ΣO, it follows that a sufficient condition
for well-posedness is that there exists a K such that B = A +KC. Note that in this case the vector field is necessarily
continuous in the state x.

Now, how about the case of discontinuous vector fields? Let us consider the following example shown in Figure 1.
The equations of motion of this system are given by

mode 1 :
[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≥ 0

mode 2 :
[
ẋ1
ẋ2

]
=

[
0 1
−k −d

] [
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≤ 0.

(3)
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Figure 1: Collision to an elastic wall

By simple calculations, we see that this system is well-posed (without jumps and sliding modes), although the vector field
is discontinuous in x when d 6= 0. On the other hand, we can easily find an example which is not well-posed, as shown
below: 

mode 1 :
[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≥ 0

mode 2 :
[
ẋ1
ẋ2

]
=

[
0 −1
0 0

][
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≤ 0.

In fact, if the initial state x(0) satisfies x1(0) = 0 and x2(0) = 1, then the solution x(t) in mode 1 belongs to the region
x1 > 0, and the solution x(t) in mode 2 belongs to the region x1 < 0. Thus there exist two solutions for this initial state.

Within the type of physical systems as given by (3), there will exist many systems with discontinuous vector fields,
but which are well-posed. In the next sections, we will derive a necessary and sufficient condition for the well-posedness
of the system ΣO including such physical systems.

Remark 2.2 Consider the system given by the equations
mode 1 :

[
ẋ1
ẋ2

]
=

[
0 −1
0 0

][
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≥ 0

mode 2 :
[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
, if y = [1 0]

[
x1
x2

]
≤ 0.

The system is not well-posed at (x1, x2) = (0, 1) in the sense of Definition 2.1 because the solution x(t) in mode 1 (mode
2) is included in the region in mode 2 (mode 1). However, if we use Filippov’s definition, there exists a unique solution
from the initial state (x1(0), x2(0)) = (0, 1). In fact, the system ΣO can be rewritten by ẋ = 1

2 (1 + u)Ax + 1
2 (1 − u)Bx,

using a relay-type input of u = sgn(y). Thus for (x1(0), x2(0)) = (0, 1), there exists a unique solution given by the
equivalent control input u = 0. Certainly, Filippov’s definition is very important from a practical viewpoint as well as
from a mathematical viewpoint. However, in this paper, we concentrate on the well-posedness problem in the sense of
Definition 2.1.

Remark 2.3 When we consider the case of d→∞ in the example (3), a jump in the solution will occur. Such a system
can be treated within the framework of complementarity systems. Thus we conjecture that there exists some relation
between complementarity systems and systems given by (1). In other words, there may be some possibility to approximate
the complementarity system, i.e., the discontinuous dynamical system with jumps, by a system without jumps given by
(1). Some researchers have already studied the relation between two solutions for a simple physical system as in Figure 1
(see Chapter 2 in [26]), and we plan to return to this issue in a future paper.

2.2 Equivalent representation of the bimodal system ΣO

For the system ΣO, define the following row-full rank matrices:

TA
4
=


C
CA

...
CAh−1

 , TB
4
=


C
CB

...
CBk−1

 (4)

where h and k are the observability indexes of the pairs (C,A) and (C,B), respectively . In addition, let S+
A , S−A , S+

B ,
and S−B be sets defined by

S+
N

4= {x ∈ Rn | TNx � 0}, S−N
4= {x ∈ Rn | TNx � 0} (5)
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for N = A, B. Then noting that TAx = [y, ẏ, · · · , y(h−1)]T for the system ẋ = Ax and TBx = [y, ẏ, · · · , y(k−1)]T for the
system ẋ = Bx, we introduce the system given by

ΣAB

{
mode 1 : ẋ = Ax, if x ∈ S+

A

mode 2 : ẋ = Bx, if x ∈ S−B
. (6)

We call TA and TB the rule (or observability) matrices of the system ΣAB. The well-posedness for the system ΣAB is
defined similar to Definition 2.1. The following result shows that the system ΣO is well-posed if and only if the system
ΣAB is well-posed.

Lemma 2.2 The system ΣAB is equivalent to the original system ΣO, i.e., both systems have the same solutions.

(Proof) If y(t) = Cx(t) ≥ 0 for ẋ = Ax, then TAx(t) � 0. Conversely, if TAx(t) � 0 for ẋ = Ax, then y(t) = Cx(t) ≥ 0 is
obvious. When TAx(t) = 0, the definition of the observability index implies that y(t) ≡ 0. The case of ẋ = Bx is similar.
Thus modes 1 and 2 of ΣAB are equivalent to those of ΣO, respectively, which implies that both systems have the same
solutions. 2

Thus, we will discuss the well-posedness of the system ΣAB in the next sections. Note that the claim in Lemma 2.1
is still true for the system ΣAB.

3 Preliminaries on lexicographic inequalities and smooth continuation

In this section, as a preparation, we give mathematical preliminaries on lexicographic inequalities and smooth continuation
for solutions of linear systems with respect to lexicographic inequalities. Most of results obtained in this section will play
a central role in the study of well-posedness in the next sections.

3.1 Lemmas on lexicographic inequalities

First we give some lemmas on lexicographic inequalities. Throughout this subsection, x will be a vector in Rn.

Lemma 3.1 Let T be an m×n real matrix with m ≤ n and rank T =rank T1 = r, where T = [TT
1 TT

2 ]T and T1 ∈ Rr×n.
Then Tx � (�)0 if and only if T1x � (�)0.

(Proof) Tx � 0 is equivalent to T1x � 0, or T1x = 0 and T2x � 0. Hence, Tx � 0 implies T1x � 0. Conversely, consider
T1x = 0. Then rank T =rank T1 = r yields T2x = 0. Thus T1x � 0 implies Tx � 0. The case of Tx � 0 ↔ T1x � 0 is
similar. 2

This lemma shows that the row full-rank submatrix T1 of T is enough for representing the relation of the lexicographic
inequality. Thus the following result is obtained: let T be an m × n matrix and let t̄Ti be the ith row vector of T . Let

also Ti
4
= [t̄1 t̄2 · · · t̄i]T. Suppose that rankTi = rankTi+1 = i. Then from Lemma 3.1, we can use, in place of T ,

T̃ = [t̄1 · · · t̄i t̄i+2 · · · t̄m] which is obtained by removing the i+ 1th column t̄i+1 from T . Hence we can assume without
loss of generality that T is row-full rank, whenever we consider Tx � (�)0.

Definition 3.1 Let Ln be the set of n × n lower-triangular matrices. In addition, let Ln+ be the set of elements in Ln
with all diagonal elements positive.

The following lemma shows that the set Ln+ characterizes the coordinate transformations preserving the lexicographic
inequality relation.

Lemma 3.2 Let T be an n× n real matrix. Then x � (�)0↔ Tx � (�)0 if and only if T ∈ Ln+.

(Proof) (←) Obvious. (→) First, we will prove that if x � 0↔ Tx � 0 holds, then T is nonsingular. So assume that T
is singular and rank T = m < n. Then from Lemma 3.1, there exists a T1 ∈ Rm×n such that Tx � 0↔ T1x � 0. So we
consider x � 0↔ T1x � 0. Let T2 be an (n−m)× n matrix such that T̃

4
= [TT

1 TT
2 ] is nonsingular, and let z

4
= [z̄T

1 z̄T
2 ]T

where z̄i = Tix. Then x = T̃−1z = M1z̄1 +M2z̄2 where [M1 M2] = T̃−1. When z̄1 = 0 and z̄2 is any vector, we obtain
x = M2z̄2. In addition, since rank M2 = n−m, there exists a z2 ∈ Rn−m such that x ≺ 0. This is inconsistent with the
condition that T1x � 0→ x � 0. Hence, T is nonsingular.

Now we define the new coordinates z = [z1, z2, · · · , zn]T
4
= Tx. Denote the (i, j)th element of T by tij . Suppose that,

for k ∈ {1, 2, · · · , n}, xi = 0 (i = 1, 2, · · · , k − 1), xk > 0, and xj (j = k + 1, k + 2, · · · , n) are arbitrary. We will prove the
assertion for � by induction. First, let us consider k = 1. From

z1 = t11x1 + t12x2 + · · ·+ t1nxn,
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we have t1i = 0 (i = 2, 3, · · · , n) because z1 ≥ 0 and xi (i = 2, 3, · · · , n) are arbitrary. Furthermore, if t11 < 0, then z1 < 0
for x1 > 0, and if t11 = 0, then T is singular. Hence we conclude t11 > 0. Next assume that, for k = k∗ ∈ {1, 2, · · · , n−1},
tii > 0 (i = 1, 2, · · · , k∗), and tij = 0 (i = 1, 2, · · · , k∗, j = i + 1, i + 2, · · · , n). Under this inductive assumption, let us
consider k = k∗ + 1. From x1 = · · · = xk∗ = 0, it follows that

zk∗+1 = tk∗+1,k∗+1xk∗+1 + tk∗+1,k∗+2xk∗+2 + · · ·+ tk∗+1,nxn.

Thus noting that zi = 0 (i = 1, 2, · · · , k∗), we have tk∗+1,i = 0 (i = k∗+2, · · · , n) since zk∗+1 ≥ 0 and xi (i = k∗+2, · · · , n)
are arbitrary. In addition, similarly to the case k = 1, it is verified that tk∗+1,k∗+1 > 0. The proof of the assertion for �
is similar. 2

While Lemma 3.2 is concerned with the nonsingular matrices case, the following result treats the singular matrix case.

Lemma 3.3 Let T and S be l × n and m× n real matrices with rank T = l, rank S = m, and l ≥ m, respectively. Then
the following statements are equivalent.
(i) Sx � (�)0 for all x satisfying Tx � (�)0.
(ii) S = [M 0]T for some M ∈ Lm+ .

(Proof) (i)→(ii). Let Q be any (n − l) × n matrix such that [TT QT]T(
4
= T̃ ) is nonsingular. We denote the new

coordinates by z 4= [zT
1 zT

2 ]T, where z1 = Tx and z2 = Qx. Then (i) is equivalent to that Nz � 0 for all z1 � 0, where

N
4
= ST̃−1. Let N1 and N2 be m× l and m× (n− l) matrices, respectively, satisfying N = [N1 N2]. When z1 � 0 and

z2 is arbitrary, N2 = 0 is necessary for Nz � 0. Thus (i) is equivalent to the condition that N1z1 � 0 for all z1 � 0.
Similarly to the proof of Lemma 3.2 and noting rank S = m, we can prove that N1 = [M 0] for some M ∈ Lm+ . Hence it
follows that S = NT̃ = N1T = [M 0]T .

(ii) →(i). If Tx � 0, then [Im 0]Tx � 0, which implies that [M 0]Tx � 0 because M ∈ Lm+ . Hence (ii) provides
Sx � 0. The proof of the case with � is similar. 2

Note that Tx � (�)0 in (i) of Lemma 3.3 can be also replaced by Tx � (≺)0, as can be easily seen from the proof.
This fact will be used in the proof of Lemma 3.4 below. Moreover, when we describe the singular case in terms of a form
corresponding to Lemma 3.2, the following corollary is obtained from Lemma 3.3.

Corollary 3.1 Let T and S be l × n and m× n real matrices with rank T = l, rank S = m, and l ≥ m, respectively.
Then the following statements are equivalent.
(i) Sx � (�)0↔ Tx � (�)0.
(ii) l = m and S = MT for some M ∈ Lm+ .

(Proof) (i) →(ii). We can prove rank T =rank S in a similar way to the first part of the proof in Lemma 3.2. The latter
part in (ii) follows from Lemma 3.3. Concerning (ii) →(i), it follows from (ii) that Sx � (�)0 ↔ MTx � (�)0 ↔ Tx �
(�)0, which implies (i). 2

From the definition of the lexicographic inequality, it follows that for any nonsingular n × n matrix T we have the
properties:

{x ∈ Rn | Tx � 0}
⋃
{x ∈ Rn | Tx � 0} = Rn,

{x ∈ Rn | Tx � 0}
⋂
{x ∈ Rn | Tx � 0} = {0}.

The following lemma generalizes this property to the singular matrix case.

Lemma 3.4 Let T and S be l×n and m×n real matrices with rank T = l, rank S = m, and l ≥ m. Then the following
statements are equivalent.
(i) {x ∈ Rn | Tx � 0}

⋃
{x ∈ Rn | Sx � 0} = Rn.

(ii) S = [M 0]T for some M ∈ Lm+ .

(Proof) The complement of {x ∈ Rn | Tx � 0} in Rn is {x ∈ Rn | Tx ≺ 0}. Thus (i) is equivalent to (iii) {x ∈
Rn | Sx � 0} ⊇ {x ∈ Rn | Tx ≺ 0}. Hence we will show (ii) ↔ (iii). (iii) implies that Sx � 0 for all x satisfying Tx ≺ 0.
From Lemma 3.3, it follows that (iii)→ (ii). The proof of (ii)→ (iii) is straightforward. 2

3.2 Characterization of smooth continuation property

If all the solutions of the n− dimensional linear system ẋ = Ax locally conserve the lexicographic inequality relation, that
is, for each initial state x(0) satisfying x(0) � (≺)0, there exists an ε > 0 such that x(t) � (≺)0 for all t ∈ [0, ε], then we
say that the system has the smooth continuation property, or smooth continuation in the system is possible [18]. In this
subsection, we derive a necessary and sufficient condition for this property.
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Definition 3.2 Let Gn0 be the set defined by

Gn0
4
=


Γ ∈ Rn×n

∣∣∣∣∣∣∣∣∣∣∣∣∣
Γ =



∗ γ12 0 . . . 0
...

. . .
. . .

. . .
...

...
. . . . . . 0

...
. . . γn−1,n

∗ . . . . . . . . . ∗


, γi,i+1 ≥ 0, i = 1, 2, · · · , n− 1


where γij is the (i, j) element of the matrix Γ. In addition, let Gn+ be the set of elements in Gn0 with all the (i, i + 1)
elements γi,i+1 positive.

The set G0 characterizes the smooth continuation property of linear systems as follows.

Lemma 3.5 For the system ẋ = Ax, the following statements are equivalent.
(i) The system has the smooth continuation property.
(ii) A ∈ Gn0
(iii) There exists a matrix T ∈ Ln+ such that

TAT−1 =


Ã11 0 . . . 0

Ã21 Ã22
. . .

...
...

. . . . . . 0
Ãp1 . . . Ãp,p−1 Ãpp

 (7)

where

Ãii =


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . .

...
0 0 . . . 0 1
∗ . . . . . . . . . ∗

 ∈ R
ni×ni , Ãij =

 ∗ . . . ∗
...

...
∗ . . . ∗

 ∈ Rni×nj , for i > j ,

and n = n1 + n2 + · · ·+ np (p ∈ {1, 2, · · · , n}).

(Proof) (i)→ (ii). Suppose that, for k ∈ {2, · · · , n}, xi(0) = 0 (i = 1, 2, · · · , k − 1), xk(0) > 0, and xj (j = k + 1, k +
2, · · · , n) take any values. We will prove the assertion by induction. First, consider k = 2. Let aij be the (i, j) element of
A. So from

x1(t) = t{a12x2(0) + a13x3(0) + · · ·+ a1nxn(0)}+ o(t2),

it follows that a1j = 0 (j = 3, 4, · · · , n). In fact, if a1j 6= 0 for some j ∈ [3, 4, · · · , n], then there exists an ε > 0 such that
x1(t) < 0 for all t ∈ [0, ε] at some xj(0), which is inconsistent with the condition (i). In addition, since x2(0) > 0, no
smooth continuation is possible if a12 < 0. Hence we have a12 ≥ 0.

Next assume that, for k = k∗ ∈ {2, 3, · · · , n− 1}, ai,i+1 ≥ 0 and aij = 0 (i = 1, 2, · · · , k∗ − 1, j = i+ 2, i+ 3, · · · , n).
Under this assumption, let us consider k = k∗ + 1. By inductive calculations, it is verified that

x1(t) =
tk∗

k∗!
{ Πk∗

i=1ai,i+1xk∗+1(0) + Πk∗−1
i=1 ai,i+1ak∗,k∗+2xk∗+2(0) + · · ·+ Πk∗−1

i=1 ai,i+1ak∗,nxn(0) }+ o(tk∗+1).

From this, it follows that ak∗,j = 0 (j = k∗ + 2, · · · , n) and ak∗,k∗+1 ≥ 0. Thus by induction, (ii) holds.
(ii)→ (iii). Suppose that, for i = kj , ai,i+1 = 0 (j = 1, 2, · · · , s; s ≤ n− 1), and for the other i, ai,i+1 > 0. Set k0 = 0

and ks+1 = n. Let us consider the coordinate transformation z = [z1, z2, · · · , zn]T
4
= Tx given by

zkj+1
4
= xkj+1,

zkj+l
4
=

kj+2∑
i(kj+1)=1

i(kj+1)+1∑
i(kj+2)=1

· · ·
i(kj+l−2)+1∑
i(kj+l−1)=1

akj+1,i(kj+1)ai(kj+1),i(kj+2) · · ·ai(kj+l−2),i(kj+l−1)xi(kj+l−1) ,

l = 2, · · · , kj+1 − kj , j = 0, 1, · · · , s. (8)
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where ikj = kj + 1 (note that s = 0 implies that all elements ai,i+1 are positive). The matrix T is given by

T =


T11 0 . . . 0

T21 T22
. . .

...
...

. . . . . . 0
Ts+1,1 . . . Ts+1,s Ts+1,s+1

 (9)

where

Tii =


1 0 . . . 0

∗ ak(i−1)+1,k(i−1)+2
. . .

...
...

. . . . . . 0
∗ . . . ∗ Πki−ki−1−1

j=1 ak(i−1)+j,k(i−1)+j+1

 ∈ R(ki−k(i−1))×(ki−k(i−1)),

Tij =


0 . . . . . . 0
∗ . . . . . . ∗
...

...
∗ . . . . . . ∗

 ∈ R(ki−k(i−1))×(kj−k(j−1)), for i > j .

Thus from ai,i+1 > 0 for all i ∈ {1, 2, · · · , n} except for i = kj , we conclude T ∈ Ln+. Furthermore, by direct computation,
it is verified that TAT−1 satisfies (7).

(iii)→ (i). Denote the new coordinates by z = [z1, z2, · · · , zn]T
4
= Tx. From Lemma 3.2, T ∈ Ln+ implies that

x � 0↔ z � 0. Let z̄k (k = 1, 2, · · · , p) be defined by

z̄k
4
=


z(
∑

k−1

i=1
ni)+1

...
z

(
∑k

i=1
ni)

 .
where z̄1 = [z1, z2, · · · , zn1 ]T for k = 1.

Note that x(0) � 0, namely z(0) � 0, is equivalent to z̄i(0) = 0 (i = 1, 2, · · · , k−1) and z̄k(0) � 0 for all k ∈ {1, 2, · · · , p}.
So from the structure of the A-matrix of the system, for each k ∈ {1, 2, · · · , p}, there exists an ε > 0 such that{

z̄i(t) = 0, i = 1, 2, · · · , k − 1
z̄k(t) � 0 , ∀t ∈ [0, ε]

which implies that x(t) � 0 for all t ∈ [0, ε]. The case x(0) ≺ 0 is proven in the same way. 2

From Lemma 3.5, it turns out that, by the coordinate transformation given in (9), any linear system with the smooth
continuation property is transformed into a system whose A-matrix is given by (7). In addition, the equivalence between
(ii) and (iii) suggests that all the coordinates transformations given by elements in Ln+ conserve the smooth continuation
property of the linear system. This is shown in the following lemma.

Lemma 3.6 Let M be a matrix in Ln+ and Γ be a matrix in Gn0 (Gn+). Then MΓM−1 ∈ Gn0 (Gn+).

(Proof) Let Mk and Γk be k× k matrices with Mk ∈ Lk+ and Γk ∈ Gk0 . When k = 1, we can show that M1Γ1M
−1
1 ∈ G1

0 .
Assume that MkΓkM−1

k ∈ Gk0 for some k ∈ {1, 2, · · · , n− 1}. Under this assumption, it is verified that Mk+1Γk+1M
−1
k+1 ∈

Gk+1
0 . Thus by induction, we conclude MΓM−1 ∈ Gn0 . The proof in the case of Gn+ is similar. 2

There is another type of the smooth continuation property, where ε in (i) of Lemma 3.5 is independent of the initial
state x(0). In other words, if there exists a positive constant ε such that x(t) � (≺)0 for all x(0) satisfying x(0) � (≺)0
and all t ∈ [0, ε], we call this the uniform smooth continuation property. The following lemma characterizes this property.

Corollary 3.2 For the system ẋ = Ax, the following statements are equivalent.
(i) The system has the uniform smooth continuation property.
(ii) There exists a positive constant ε such that eAt ∈ Ln+ for all t ∈ [0, ε].
(iii) x(t) � (≺)0 for all x(0) satisfying x(0) � (≺)0 and all t ∈ [0,∞).
(iv) eAt ∈ Ln+ for all t ∈ [0,∞).
(v) A ∈ Ln.
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(Proof) (i)↔ (ii), and (iii)↔(iv) are straightforward from Lemma 3.2. We will prove (iv) → (ii) → (v) → (iv). First,
(iv) → (ii) is trivial. Next, (ii) → (v). Note that eAt is a one-parameter subgroup in Ln+ around t = 0. Thus the tangent
vector at t = 0 is A. On the other hand, the tangent space TeLn+ at the identity matrix is Ln. Hence A ∈ Ln. Finally,
(v)→ (iv). If A ∈ Ln, simple calculations show

eAt =


ea11t 0 . . . 0

∗ ea22t
. . .

...
...

. . . . . . 0
∗ . . . ∗ eannt

 , A = [aij ]

which implies (iv). 2

Obviously, the uniform smooth continuation property implies the smooth continuation property. However, the converse
is not true. Corollary 3.2 asserts that the uniform smooth continuation property in the local sense (i.e., (i)) is equivalent
to the global one (i.e., (iii)) in the case of linear systems. Moreover, (iii) shows that the sets {x ∈ Rn | x � 0} and
{x ∈ Rn | x ≺ 0} are invariant subsets of Rn with respect to the dynamics ẋ = Ax.

4 Characterization of well-posedness of bimodal systems

In this section, we discuss the well-posedness of ΣO, or equivalently of ΣAB. First, we give a result in the case that both
pairs (C,A) and (C,B) are observable. This will clarify a fundamental issue in the algebraic structure for well-posed
bimodal systems. Next, the unobservable case is treated, as a generalization of the observable case.

4.1 Observable case

In this subsection, we assume that the pairs (C,A) and (C,B) are observable, that is, TA and TB are nonsingular, where

TA
4
=


C
CA

...
CAn−1

 , TB
4
=


C
CB

...
CBn−1

 . (10)

In addition, we consider the following two systems:

ΣA

{
mode 1 : ẋ = Ax, if x ∈ S+

A

mode 2 : ẋ = Bx, if x ∈ S−A
, (11)

ΣB

{
mode 1 : ẋ = Ax, if x ∈ S+

B

mode 2 : ẋ = Bx, if x ∈ S−B
(12)

where S+
N and S−N (N = A,B) are given by (5). Utilizing the fact that S+

A

⋃
S−A = Rn, the system ΣA is given by the

rule matrix TA only. The system ΣB is defined by the rule matrix TB in the same way. Then we come to the first main
result on the well-posedness.

Theorem 4.1 Suppose that both pairs (C,A) and (C,B) are observable. Then the following statements are equivalent.
(i) ΣAB is well-posed.
(ii) ΣA is well-posed.
(iii) ΣB is well-posed.
(iv) S+

A

⋃
S−B = Rn and S+

A

⋂
S−B = {0}.

(v) TBT−1
A ∈ Ln+.

(vi) TABT−1
A ∈ Gn+.

(vii) TBAT−1
B ∈ Gn+.

(Proof) First, we prove (i)→(v)→ (iv) → (i).
(i)→(v). S+

A

⋃
S−B = Rn is obviously necessary for well-posedness. From Lemma 3.4, there exists a M ∈ Ln+ such that

TB = MTA. (v)→ (iv) follows from Lemmas 3.2 and 3.4. (iv) → (i). Note that, since TA and TB are the observability
matrices, TAAT−1

A ∈ Gn+ and TBBT
−1
B ∈ Gn+. So from Lemma 3.5, these guarantee the smooth continuation property for

each mode. Hence, (iv) implies that the system ΣAB has a unique solution at every initial state.
Next, we prove (v)→(ii)→(vi)→ (v).
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Figure 2: Elastic collision between 2 objects

(v)→(ii). Since (v) implies by Lemma 3.2 that S−A = S−B , ΣAB is equivalent to ΣA. Since ΣAB is well-posed by (v),

ΣA is also well-posed. (ii)→(vi). In the new coordinates z = [z1 z2 · · · zn]T
4
= TAx, the system ΣA is described by

Σ̃A

{
mode 1 : ż = TAAT

−1
A z, if z � 0

mode 2 : ż = TABT
−1
A z, if z � 0.

Then (ii) implies that smooth continuation is possible in each mode of ΣA. Thus by Lemma 3.5, (ii) implies TABT−1
A ∈ G0.

Letting γij be the (i, j) element of Γ
4
= TABT

−1
A , and noting that CT−1

A = [1 0 · · · 0], we obtain

CB = CT−1
A ΓTA = [∗ γ12 0 · · · · · · 0]TA,

CB2 = CT−1
A Γ2TA = [∗ ∗ γ12γ23 0 · · · 0]TA,

...
...

CBn−1 = CT−1
A Γn−1TA = [∗ · · · · · · ∗ Πn−1

i=1 γi,i+1]TA.

(13)

From these calculations, it follows that
TB = LTA (14)

where

L
4
=



1 0 . . . . . . 0

∗ γ12
. . .

...
...

. . . γ12γ23
. . .

...
...

. . .
. . . 0

∗ . . . . . . ∗ Πn−1
i=1 γi,i+1


. (15)

This implies that all elements γi,i+1 are positive, since TA and TB are nonsingular. Hence TABT−1
A ∈ G+. (vi)→(v). In

a similar way to (13), we obtain the equation (14) from (vi). Since L ∈ Ln+, (v) holds.
The proof of (v)→(iii)→(vii)→ (v) is similar. 2

Remark 4.1 From Theorem 4.1, it turns out that the well-posedness property of the bimodal system ΣAB with both (C,A)
and (C,B) observable is characterized by either one of the following two properties: (i) the preservation property of the
lexicographic inequality relation between two rule matrices TA and TB, which is characterized by the set Ln+, and (ii) the
smooth continuation property which is characterized by the set Gn+ (or Gn0 ). The former corresponds to the condition (iv)
or (v) in Theorem 4.1, and the latter to (vi) or (vii). Note also that the well-posedness property of ΣAB can be given by
the equivalence between ΣAB, ΣA, and ΣB. From (vi), it follows that a parameterization of all matrices B for which ΣAB
is well-posed is given by the form B = T−1

A ΓTA for any Γ ∈ Gn+.

Example 4.1 Consider the physical system in Figure 2. The equations of motion of this system are given by

mode 1 :


ẋ1 =

[
0 1
0 0

]
x1

ẋ2 =
[

0 1
−k2 −d2

]
x2

y = [1 0 − 1 0]x ≥ 0,

mode 2 :


[
ẋ1

ẋ2

]
=


0 1 0 0
−k1 −d1 k1 d1

0 0 0 1
k1 d1 −k1 − k2 −d1 − d2

[ x1

x2

]
y = [1 0 − 1 0]x ≤ 0

where x = [(x1)T (x2)T]T = [x1
1 x1

2 x2
1 x2

2]T. These provide

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −k2 −d2

 , B =


0 1 0 0
−k1 −d1 k1 d1

0 0 0 1
k1 d1 −k1 − k2 −d1 − d2

 ,
10



C = [1 0 − 1 0].

Simple calculations show that the pair (C,A) is observable if and only if k2 6= 0, and also the pair (C,B) is observable
if and only if k2 6= 0. Thus we here assume k2 6= 0.

From

TA =


1 0 −1 0
0 1 0 −1
0 0 k2 d2
0 0 −k2d2 k2 − d2

2

 ,

TB =

 1 0 −1 0
0 1 0 −1
−2k1 −2d1 2k1 + k2 2d1 + d2

(4d1 + d2)k1 −2k1 + (4d1 + d2)d1 −(4d1 + d2)k1 − (2d1 + d2)k2 (2k1 + k2)− 4d2
1 − 3d1d2 − d2

2

 ,
it follows that

TBT
−1
A =


1 0 0 0
0 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1


which belongs to the set L+. Hence the system is well-posed. We also have

TABT
−1
A =


0 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1
∗ ∗ ∗ ∗


which belongs to the set G+.

4.2 Unobservable case

The following result is concerned with the case that both pairs are unobservable.

Theorem 4.2 Suppose that the observability indexes of the pairs (C,A) and (C,B) are mA and mB, respectively, and
mA ≥ mB. Then the following statements are equivalent.
(i) ΣAB is well-posed.
(ii) The following conditions are satisfied.
(a) mA = mB.
(b) TB = MTA for some M ∈ LmA+ .
(c) (A−B)x = 0 for all x ∈ KerTA.
(iii) The following conditions are satisfied.
(a) mA = mB.
(b) TAB = ΓTA for some Γ ∈ GmA+ .
(c) (A−B)x = 0 for all x ∈ KerTA.

Since this theorem is a special case of Theorem 5.2 in the next section, the proof will follow from that of Theorem 5.2
(see Remark 5.3).

Remark 4.2 If mA = mB = n, (ii) and (iii) in Theorem 4.2 generalize (v) and (vi) in Theorem 4.1, respectively. Note
also that the condition TB = MTA, which is a necessary and sufficient condition for the well-posedness in the observable
case, is not sufficient for the well-posedness in the unobservable case, even if mA = mB. In other words, it is required
that the solutions in both modes in KerTA = KerTB are the same. This allows us to conclude that whenever the pair
(C,A) is observable and the pair (C,B) is unobservable, the system ΣAB is not well-posed. However, if the number of the
criterions which specify admissible regions of the state in each mode, i.e., the dimension of y in (1), is more than one,
then the situation is different. The details will be given in Theorem 5.2 and Example 5.1 in the next section.

Remark 4.3 The conditions in Theorem 4.2 can be checked as follows. First, check the condition (iii)(a). If it is not
satisfied, we conclude that the system is not well-posed. Otherwise, check (b) and (c) in (iii). So pick any matrix T̃A such

that T
4
= [TT

A T̃T
A ]T is nonsingular. Then note that (b) and (c) are equivalent to

[ImA 0]TBT−1
[
ImA

0

]
∈ GmA+ (16)

11



and

[0 In−mA ]T (A−B)T−1
[

0
In−mA

]
= 0, (17)

respectively. Thus if both conditions are satisfied, we conclude that the system is well-posed. Otherwise, we conclude that
the system is not well-posed. Note here that we only have to check the condition for some T̃A, since the well-posedness
does not depend on the choice of T̃A.

Example 4.2 Consider the system in Example 4.1 again. Assume that k2 = 0 and d2 6= 0. Then since

TA =

 C
CA
CA2

 =

 1 0 −1 0
0 1 0 −1
0 0 0 d2

 , TB =

 C
CB
CB2

 =

 1 0 −1 0
0 1 0 −1
−2k1 −2d1 2k1 2d1 + d2

 ,
we have mA = 3 and mB = 3. Thus (iii)(a) in Theorem 4.2 is satisfied. Letting T̃A

4
= [0 0 1 0], we have

TAT−1 =


0 1 0 0
0 0 1 0
0 0 −d2 0
0 0 1/d2 0

 , TBT−1 =


0 1 0 0
−2k1 −2d1 1 0
k1d2 d1d2 −d2 0

0 0 1/d2 0

 .
Using (16) and (17) in Remark 4.3, we can show that (b) and (c) in (iii) are satisfied. Therefore, the system is well-posed.

5 Well-posedness of bimodal systems with multiple criteria

In this section, we treat bimodal systems given by multiple criteria.

5.1 Description of bimodal systems with multiple criteria

Let us start with the following example:

ΣAB


mode 1 : ẋ =

[
0 1
1 1

]
x, if x � 0

mode 2 : ẋ =
[

1 0
1 1

]
x, if x � 0.

(18)

Since smooth continuation in each mode is possible, that is, both A-matrices belong to G2
0 , this system is well-posed.

Then let us consider what is the original system ΣO of this ΣAB. So from mode 1, we can see that C = [1 0]. However,
in this case, TA = I2 and TB = [1 0], and so (C,A) is observable but (C,B) is not observable. This implies that the
system of the form (1) given by C = [1 0] is not equivalent to the system ΣAB, and so is not the original system of ΣAB.

How can this well-posed bimodal system be characterized by our framework? In fact, the original system for ΣAB in
(18) is given in terms of two criteria Cx ≥ (≤)0 and C̄x ≥ (≤)0 where C = [1 0] and C̄ = [0 1] as follows.

ΣO


mode 1 : ẋ =

[
0 1
1 1

]
x, if Cx ≥ 0

mode 2 : ẋ =
[

1 0
1 1

]
x, if

[
C
C̄

]
x � 0.

(19)

In this section, we will generalize this example to consider the following bimodal system:

ΣO

{
mode 1 : ẋ = Ax, if Cx � 0
mode 2 : ẋ = Bx, if Dx � 0 (20)

where

C =


C1
C2
...
Cp

 ∈ Rp×n, D =


D1
D2
...
Ds

 ∈ Rs×n,
and CT

i and DT
j are n-dimensional vectors. In this definition, note that it is at least required for well-posedness that

{x ∈ Rn | Cx � 0}
⋃
{x ∈ Rn | Dx � 0} = Rn.
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First, we give an equivalent representation to the above system, as in the section 2. So we introduce the following
rule matrices:

TA
4
=


TA1
TA2

...
TAp

 ∈ RmA×n, TB
4
=


TB1
TB2

...
TBs

 ∈ RmB×n (21)

where

TAi
4
=


Ci
CiA

...
CiA

hi−1

 ∈ Rhi×n, i = 1, 2, · · · , p ,

TBi
4
=


Di

DiB
...

DiB
ki−1

 ∈ Rki×n, i = 1, 2, · · · , s ,

and each hi (i = 1, 2, · · · , p) is the maximum value of the rank such that [TT
A1 T

T
A2 · · ·TT

Ai]
T has a row-full rank. Similarily

for ki. Note that
∑p
i=1 hi = mA and

∑s
i=1 ki = mB , and then rank TA = mA and rank TB = mB.

Using these rule matrixes, we consider the system given by

ΣAB

{
mode 1 : ẋ = Ax, if x ∈ S+

A

mode 2 : ẋ = Bx, if x ∈ S−B
(22)

where S+
N and S−N (N = A,B) is defined by (5), where TA and TB are given by (21). Then we can prove that the system

ΣAB is equivalent to the original system ΣO in a similar way to Lemma 2.2. Theorefore, we focus on the well-posedness
of ΣAB.

5.2 Observable case

We assume that the pairs (C,A) and (D,B) are observable, namely, mA = mB = n. Furthermore, we define the systems
ΣA and ΣB given by (11) and (12), respectively, where TA and TB are given by (21). Then the first result of the multiple
criteria case is obtained as follows.

Theorem 5.1 Suppose that the pairs (C,A) and (D,B) are observable. Then the following statements are equivalent.
(i) ΣAB is well-posed.
(ii) S+

A

⋃
S−B = Rn and S+

A

⋂
S−B = {0}

(iii) TBT−1
A ∈ Ln+.

(iv) The following conditions are satisfied.
(a) TABT−1

A ∈ Gn0 .
(b) Di = [∗ · · · ∗︸ ︷︷ ︸

k̄i

a 0 · · · 0]TA for every i ∈ {1, 2, · · · , s}, where k̄i = k1 + k2 + · · ·+ ki−1, k0 = 0, and a > 0.

(v) The following conditions are satisfied.
(a) TBAT−1

B ∈ Gn0 .
(b) Ci = [∗ · · · ∗︸ ︷︷ ︸

h̄i

b 0 · · · 0]TB for every i ∈ {1, 2, · · · , p}, where h̄i = h1 + h2 + · · ·+ hi−1, h0 = 0, and b > 0.

(Proof) Noting that TAAT−1
A ∈ G0 and TBBT

−1
B ∈ G0, the proof of (i) ↔ (ii) ↔ (iii) is given in a similar way to

Theorem 4.1. Next, (iii)→ (iv). From (iii), ΣAB is equivalent to ΣA. In addition, in the new coordinates z
4
= TAx, ΣA is

transformed into

Σ̃A

{
mode 1 : ż = TAAT

−1
A z, if z � 0

mode 2 : ż = TABT
−1
A z, if z � 0.

Thus from Lemma 3.5, the well-posedness of Σ̃A implies (iv)(a). In addition, it follows from (iii) that TB = MTA holds
for some M ∈ Ln+. So letting mij be the (i, j) element of M , the relation TB = MTA implies that, for i ∈ {1, 2, · · · , s},

Di = [ ∗ · · · ∗︸ ︷︷ ︸
k̄i

mk̄i+1,k̄i+1 0 · · · 0]TA.

Since mk̄i+1,k̄i+1 > 0, we have (iv)(b). (iv) → (iii) can be proven similar to (13) in Theorem 4.1. (iii)↔ (v) is proven in
the same way as (iii)↔ (iv). 2
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Remark 5.1 We can also prove that (iv)(a) is equivalent to the condition that ΣA is well-posed. Thus ΣA is equivalent
to ΣAB, provided that (iv)(b) holds. For ΣB, a similar result holds. Note that, however, this situation is a little different
from the assertion in Theorem 4.1 in the sense that the condition (iv)(b) is required. In addition, from (iv)(b) or (v)(b)
in Theorem 5.1, it follows that the condition C1 = D1 is necessary for the well-posedness of ΣAB.

Remark 5.2 It follows from the proof of Theorem 5.1 that every well-posed bimodal system given by (22) can be trans-
formed into the following canonical form:

Σ̃AB



mode 1 : ż =


Ã11 0 . . . 0

Ã21 Ã22
. . .

...
...

. . . . . . 0
Ãp1 . . . Ãp,p−1 Ãpp

 z, if z � 0

mode 2 : ẇ =


B̃11 0 . . . 0

B̃21 B̃22
. . .

...
...

. . . . . . 0
B̃s1 . . . B̃s,s−1 B̃ss

w, if w � 0

where w = TBT
−1
A z, TBT−1

A ∈ Ln+ and

Ãii =


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
∗ . . . . . . . . . ∗

 ∈ R
hi×hi , Ãij =


0 . . . . . . 0
...

...
0 . . . . . . 0
∗ . . . . . . ∗

 ∈ Rhi×hj , for i > j,

B̃ii =


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
∗ . . . . . . . . . ∗

 ∈ R
ki×ki , B̃ij =


0 . . . . . . 0
...

...
0 . . . . . . 0
∗ . . . . . . ∗

 ∈ Rki×kj , for i > j.

If p = s = 1, then this corresponds to the case of Theorem 4.1.

5.3 Unobservable case

Finally, we discuss the case that both pairs are unobservable. Let TA be the set of (n − mA) × n matrices such that

T
4
= [TT

A T̃T
A ]T is nonsingular, that is,

TA
4
=
{
T̃A ∈ R(n−mA)×n | T is nonsingular

}
. (23)

Let also TB be defined in the same way.

Theorem 5.2 Suppose that the rank of TA and TB given by (21) are mA and mB, respectively, and mA ≥ mB. Then
the following statements are equivalent.
(i) ΣAB is well-posed.
(ii) The following conditions are satisfied.
(a) rank [TT

A1 T
T
A2 · · ·TT

Ai]
T = mB for some i ∈ {1, 2, · · · , p}.

(b) TB = [M 0]TA for some M ∈ LmB+ .
(c) (A−B)x = 0 for all x ∈ KerTB.
(iii) The following conditions are satisfied.
(a) rank [TT

A1 T
T
A2 · · ·TT

Ai]
T = mB for some i ∈ {1, 2, · · · , p}.

(b) [ImB 0]TAB = Γ[ImB 0]TA for some Γ ∈ GmB0 .
(c) Di = [∗ · · · ∗︸ ︷︷ ︸

k̄i

a 0 · · · 0]TA for every i ∈ {1, 2, · · · , s}, where k̄i = k1 + k2 + · · ·+ ki−1, k0 = 0, and a > 0.

(d) (A−B)x = 0 for all x ∈ KerTB.
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(Proof) (i) → (ii). From (i), it follows that S+
A

⋃
S−B = Rn, which implies by Lemma 3.4 that TA and TB satisfy

TB = [M 0]TA for some M ∈ LmB+ . In addition, let two new coordinates be defined by z = [zT
1 zT

2 ]T
4
= Tx and

w = [wT
1 wT

2 ]T
4
= T̂ x, where T

4
= [TT

A T̃T
A ]T and T̂

4
= [TT

B T̃T
B ]T for any T̃A ∈ TA and any T̃B ∈ TB. Then ΣAB is

transformed into

Σ̃AB

{
mode 1 : ż = TAT−1z, if z1 � 0
mode 2 : ẇ = T̂BT̂−1w, if w1 � 0.

(24)

Here TAT−1 and T̂BT̂−1 are given by

TAT−1 =
[
Ã11 0mA,n−mA
∗ ∗

]
, Ã11 ∈ GmA0 , (25)

T̂BT̂−1 =
[
B̃11 0mB,n−mB
∗ ∗

]
, B̃11 ∈ GmB0 . (26)

Let z1 be denoted by z1
4
= [zT

11 zT
12]T where z11 ∈ RmB and z12 ∈ RmA−mB . So let us consider the case of z11(0) = 0

and z12(0) � 0, which also implies w1(0) = 0 because TB = [M 0]TA. From (25) and (26), smooth continuation in each
mode is possible from this state, and the solution in mode 2 is in the n−mB dimensional unobservable invariant subspace
with w1(t) ≡ 0, namely, KerTB. Thus due to uniqueness of the solution, the solution in mode 1 must satisfy z11(t) = 0
as far as z12 � 0 holds. Hence (a) follows from this. Furthermore, the vector fields in both modes must be the same on
KerTB ∩ {z ∈ Rn | z12 � 0}. From the property of linear systems, this implies that Ax = Bx for all x ∈ KerTB.

(ii) → (iii). We only have to show (b) and (c) in (iii). It follows from (ii)(b) that

[ImB 0]TAB = M−1TBB = M−1B̃11TB = M−1B̃11M [ImB 0]TA (27)

where B̃11 is the same as (26). From Lemma 3.6, this implies Γ
4
= M−1B̃11M ∈ GmB0 , namely, (iii)(b). Moreover,

(ii)→(iii)(c) follows from (ii)(b) in the similar way to the proof (iii)→(iv)(b) in Theorem 5.1.
(iii) → (i). First, we show TB = [M 0]TA for some M ∈ LmB+ . From (b) and (c) in (iii), it follows that

D1B = a[1 0 · · · 0][ImB 0]TAB
= a[1 0 · · · 0]Γ[ImB 0]TA
= a[∗ γ12 0 · · · 0][ImB 0]TA
= a[∗ γ12 0 · · · 0]TA.

Thus by calculating similarly D1B
2, · · ·, D1B

k1−1, D2B, · · ·, D2B
k2−1, · · ·, and DsB

ks−1, we can derive TB = [M 0]TA
for some M ∈ LmB+ . In addition, since [M 0]TAx � 0↔ [ImB 0]TAx � 0, ΣAB is equivalent to

ΣA

{
mode 1 : ẋ = Ax, if TAx � 0
mode 2 : ẋ = Bx, if [ImB 0]TAx � 0. (28)

In the new coordinates z
4
= [zT

1 zT
2 ]T = Tx, where T

4
= [TT

A T̃T
A ]T for any T̃A ∈ TA, ΣA is transformed into

Σ̃A

{
mode 1 : ż = TAT−1z, if z1 � 0
mode 2 : ż = TBT−1z, if [ImB 0]z1 � 0. (29)

Note here that TAT−1 is given by (25). On the other hand, it follows from (b) that, in mode 2,

ż11 = [ImB 0]TABT−1z = Γ[ImB 0]z1 = Γz11

where z11 is the mB-dimensional vector defined by z1 = [zT
11 zT

12]T. Thus, smooth continuation in each mode is possible.
Furthermore, when z11(0) = 0 and z12(0) � 0, the solutions in both modes are the same, since from (c) the vector fields
in both modes are the same on KerTB, i.e., the subspace given by z11(0) = 0. Therefore, ΣAB is well-posed. 2

Remark 5.3 When p = 1 and s = 1, Theorem 5.2 is reduced to Theorem 4.2, although GmB0 is replaced by GmB+ in
(iii)(b). In the proof of Theorem 5.2, the condition (iii)(b) in Theorem 4.2 comes from the fact that B̃11 in (27) is given
by

B̃11 =


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . .

...
0 0 . . . 0 1
∗ . . . . . . . . . ∗

 ∈ G
mB
+ .
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Remark 5.4 The conditions in Theorem 5.2 can be checked as described in Remark 4.3. Namely, the conditions (iii)(b)
and (d) are replaced by

[ImB 0]TBT−1
[
ImB

0

]
∈ GmB0 (30)

and

[0 In−mB ]T (A−B)T−1
[

0
In−mB

]
= 0, (31)

respectively, where T = [TT
A T̃T

A ]T for some T̃A ∈ TA.

Example 5.1 Let us check the well-posedness of the following simple example:

ΣAB


mode 1 : ẋ =

 0 1 0
1 1 0
0 0 1

 x, if Cx � 0

mode 2 : ẋ =

 0 1 0
1 2 0
1 1 1

 x, if Dx ≤ 0

where

C =
[
C1
C2

]
=
[

1 0 0
0 0 1

]
, D = D1 =

[
1 0 0

]
.

Then we obtain mA = 3 and mB = 2 from

TA =

 C1
C1A
C2

 =

 1 0 0
0 1 0
0 0 1

 , TB =
[

D1
D1B

]
=
[

1 0 0
0 1 0

]
.

Thus (ii)(a) is satisfied. From TB = [I2 0]TA, we obtain (ii)(b). In addition, noting TAAT−1
A = A and TABT

−1
A = B,

(c) is satisfied. Therefore, this system is well-posed, although (C,A) is observable and (D,B) is not observable.

6 Extensions

In this section, we extend several results for the case of bimodal systems given by (1) to the case of multi-modal systems
with multiple criteria and multi-modal systems based on affine-type inequalities. We will only discuss the observable case,
as a first step to investigate to what extent our framework can be generalized, although the unobservable case may be
extended in a similar way.

6.1 Multi-modal systems with multiple criteria

We here consider multi-modal systems with multiple criteria. For any matrix C = [CT
1 CT

2 · · · CT
r ]T ∈ Rr×n where

r ≤ n, let the criterion vector be y = [y1 y2 · · · yr]T = Cx. We assume throughout that there exists no constant k such
that Ci = kCj for each i, j ∈ {1, 2, · · · , r}. Let I ⊂ {1, 2, · · · , r} be the index set satisfying yi ≥ 0 for i ∈ I and yi ≤ 0
for i 6∈ I. The index set I represents the mode (location) of the system. Note that there are 2r possible choices for the
index set I, and so there exist 2r modes. Moreover, let CI be a subset of Rn defined by

CI
4
= { x ∈ Rn | yi ≥ 0 for i ∈ I, yi ≤ 0 for i 6∈ I }.

By numbering the index sets I from 1 to 2r, we use the number i ∈ {1, 2, · · · , 2r} in place of I to express the mode.
Then we consider the original 2r-modal system ΣO given by

ΣO


mode 1 : ẋ = A1x, if x ∈ C1
mode 2 : ẋ = A2x, if x ∈ C2

...
...

...
mode 2r : ẋ = A2rx, if x ∈ C2r

(32)

where x ∈ Rn. For example, for r = 2, we have the 4 modal system given by
mode 1 : ẋ = A1x, x ∈ C1 = {x ∈ Rn | y1 ≥ 0, y2 ≥ 0}
mode 2 : ẋ = A2x, x ∈ C2 = {x ∈ Rn | y1 ≥ 0, y2 ≤ 0}
mode 3 : ẋ = A3x, x ∈ C3 = {x ∈ Rn | y1 ≤ 0, y2 ≥ 0}
mode 4 : ẋ = A4x, x ∈ C4 = {x ∈ Rn | y1 ≤ 0, y2 ≤ 0}.
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In addition, we assume that every pair (Ci, Ak) (i = 1, 2, · · · , r; k = 1, 2, · · · , 2r) is observable. So the rule matrices

T iAk
4
=


Ci
CiAk

...
CiA

n−1
k

 ∈ Rn×n
are all nonsingular. So let SI be a subset of Rn defined by

SI
4
= { x ∈ Rn | T iAIx � 0 for i ∈ I, T iAIx � 0 for i 6∈ I }

Using the sets SI , we also define the 2r-modal system ΣA0 as follows:

ΣA0


mode 1 : ẋ = A1x, if x ∈ S1
mode 2 : ẋ = A2x, if x ∈ S2

...
...

...
mode 2r : ẋ = A2rx, if x ∈ S2r .

(33)

For a vector x, y ∈ Rn, the notation x ≥ y expresses xi ≥ yi for all i. Similarily for the other notation ≤, >, and <.
For a closed convex polyhedral cone C 4= { x ∈ Rn | Sx ≥ 0 } where S is an m × n real matrix, let int C be the interior
of C and let ∂C be the boundary of C.

Then the following result is a natural extension to that for bimodal systems.

Theorem 6.1 Suppose that every pair (Ci, Aj) (i = 1, 2, · · · , r; j = 1, 2, · · · , 2r) is observable. Then the following
statements are equivalent.
(i) ΣO is well-posed.
(ii) ΣA0 is well-posed.
(iii)

⋃2r

j=1 Sj = Rn and Sj
⋂
Sk = {0} for all j, k(6= j) ∈ {1, 2, · · · , 2r}.

(Proof) (i)→(ii) can be proven in the same way as Lemma 2.2. (ii)→(iii). It obviously follows that
⋃2r

j=1 Sj = Rn.
In order to prove the latter part of (iii), we assume that there exists some j and k(6= j) such that Sj

⋂
Sk 6= {0} and

Sj
⋂
Sk 6= ∅. So let x∗(6= 0) be an element of Sj

⋂
Sk. Then for some ε > 0, the solution in mode j from the initial state

x∗ satisfies x(t) ∈ int Cj for all t ∈ (0, ε], while the solution in mode k from x∗ satisfy x(t) ∈ int Ck. This implies that the
solution is not unique, which is in contradiction with (ii). Hence the latter part of (iii) holds. (iii) → (ii) is obvious. 2

From Theorem 6.1, it turns out that the well-posedness of ΣO is characterized by condition (iii). When is condition
(iii) satisfied? We are not able to interpret condition (iii) in terms of some simple algebraic relation between the matrices
T iAj as in the case of bimodal systems. However, we give below an algorithm to check condition (iii).

For brevity, we discuss the case of r = 2, namely, 4-modal systems. The case r ≥ 3 can be treated in a similar way.
Consider the following situation:

S1 = { x ∈ Rn | T 1
A1
� 0, T 2

A1
� 0 },

S2 = { x ∈ Rn | T 1
A2
� 0, T 2

A2
� 0 },

S3 = { x ∈ Rn | T 1
A3
� 0, T 2

A3
� 0 },

S4 = { x ∈ Rn | T 1
A4
� 0, T 2

A4
� 0 }.

In order to clarify our idea, at first, we discuss the necessity of condition (iii) in Theorem 6.1.
Since

⋃
j=1 Cj = Rn and Cj

⋂
Ck = {0} or = ∂Cj

⋂
∂Ck, we do not need to check the cases C1x 6= 0 and C2x 6= 0. We

only have to consider each case C1x = 0 and C2x = 0.
So suppose C1x = 0. We consider the set defined by

S(1)
j

4
= Sj

⋂
{ x ∈ Rn | C1x = 0 }, j = 1, 2, 3, 4. (34)

Then note that the set S(1)
j can be expressed as

S(1)
j = { z ∈ Rn−1 | M1

j z � 0, M2
j z � 0 }, j = 1, 2, 3, 4 (35)

where M i
j is the (n− 1)× (n− 1) matrix derived from T iAjx � (�)0 with C1x = 0. In fact, M i

j is derived as follows. In
the new coordinates z̄ = [w zT]T = Tx where T = [CT

1 T̃T]T is nonsingular for some T̃ ∈ Rn−1×n, and w = C1x and
z = T̃ x, we have T iAjx = T iAjT

−1z̄ � (�)0. So when w = 0, this yields

T iAjT
−1
[

01,n−1
In−1

]
z � (�)0. (36)
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Then by applying Lemma 3.1 to (36), we can derive a (n− 1)× (n− 1) matrix M i
j in (35).

Thus it is required for condition (iii) in Theorem 6.1 to hold that

4⋃
j=1

S(1)
j = Rn−1 and S(1)

j

⋂
S(1)
k = {0}, ∀j, k ∈ {1, 2, 3, 4}. (37)

So letting sij be the 1st row vector of M i
j , we define

C(1)
j

4
= { z ∈ Rn−1 | s1

jz ≥ 0, s2
jz ≥ 0 }, j = 1, 2, 3, 4. (38)

Then we can see that the following conditions are necessary for (37).

4⋃
j=1

C(1)
j = Rn−1, (39)

C(1)
j

⋂
C(1)
k = {0} or = ∂C(1)

j

⋂
∂C(1)

k , ∀j, k ∈ {1, 2, 3, 4}. (40)

The condition (39) is equivalent to

4⋂
j=1

{ z ∈ Rn−1 | s1
jz < 0, s2

jz < 0 } = ∅

and also is equivalent to
4⋂
j=1

Qijj = ∅, ∀ij ∈ {1, 2} (41)

where Qij
4
= { z ∈ Rn−1 | sijz < 0 }. Since this last condition can be written as

⋂4
j=1Q

ij
j = { z ∈ Rn−1 | Sz < 0 } = ∅

where S =
[

(si11 )T (si22 )T (si33 )T (si44 )T ]T
, it can be checked by solving the following linear programming: min λ

subject to Sz ≤ λe or min λ subject to Sx ≤ λe and −e ≤ x ≤ e, where e is some vector with all elements positive.
Letting λ∗ be an optimal solution, if λ∗ = 0, then

⋂4
j=1Q

ij
j = ∅, and if λ∗ < 0, then

⋂4
j=1Q

ij
j 6= ∅.

Concerning the condition (40), on the other hand, the following lemma is obtained.

Lemma 6.1 Let Si be a set defined by Si
4
= { x ∈ Rn | Six ≥ 0 } (i = 1, 2) where Si is an mi × n real matrix. Then the

following statements are equivalent.
(i) S1

⋂
S2 = {0} or = ∂S1

⋂
∂S2.

(ii) intS1
⋂

intS2 = ∅, i.e., { x ∈ Rn | S1x > 0 }
⋂
{ x ∈ Rn | S2x > 0 } = ∅.

(Proof) (i)→ (ii) is trivial. (ii)→(i). We only have to show that if (ii) holds, then there also exist no elements in the
intersection of the boundary of a closed convex polyhedral cone and the interior of another cone. Let s11 be the 1st row
vector of S1 and let S̄1 be the matrix such that S1 = [sT

11 S̄T
1 ]T. Then we will show N = ∅ where

N 4
= { x ∈ Rn | s11x = 0, S̄1x > 0 }

⋂
intS2.

Assume N 6= ∅, and let x∗ be an element of N . Note that an element of S1 can be expressed by x =
∑m1
i=1 αiui +

{an element of KerS1}, where αi ≥ 0 and S1ui = ei (the ith element of ei is 1 and the others are 0). So we denote x∗ by
x∗ =

∑m1
i=2 αiui + {an element of KerS1} where αi > 0. Now for x̃∗ = x∗ + εu1 where ε > 0 is sufficiently small, we have

x̃∗ ∈ intS1
⋂

intS2, which implies that (ii) is not true. Hence, it follows that if (ii) is true, then N = ∅. For any other
boundary of Si, similar discussion holds. This completes the proof. 2

Thus by Lemma 6.1, the condition (40) can be also checked using the linear programming.
Now suppose that the conditions (39) and (40) are satisfied. Then for every (j, k) satisfying C(1)

j

⋂
C(1)
k = ∂C(1)

j

⋂
∂C(1)

k ,
we consider each case of s1

i z = 0 and s2
i z = 0 for i = j, k. Thus for every case, a discussion similar to the case C1x = 0

will be repeated on Rn−2.
If condition (iii) is satisfied, this procedure will be repeated in every case until the corresponding set to S(1)

j is given
on R. If not, the condition corresponding to (37) will not be satisfied at some step. The case C2x = 0 is similar.

Based on the above discussion, an algorithm for checking condition (iii) is given as follows.
Step 1: For C1x = 0, derive S(1)

j and C(1)
j (j = 1, 2, 3, 4).
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Step 2: Check whether (39) (i.e., (41)) and (40) (i.e., the condition corresponding to (ii) in Lemma 6.1) for C(1)
j are true

or not. If both are true, then go to the next step. If not, we conclude that condition (iii) is not satisfied.
Step 3: For every (j, k) satisfying C(1)

j

⋂
C(1)
k = ∂C(1)

j

⋂
∂C(1)

k , we consider sihz = 0 for each h = j, k and each i ∈ {1, 2}.
For each case, the procedure similar to step 1 and step 2 will be repeated until either of the following two conditions is
satisfied: (a) the condition corresponding to that in step 2 is not satisfied at some step, or (b) the set corresponding to
S(1)
j is given on R and the condition corresponding to (37) is satisfied. If (a) is true, then we conclude that condition (iii)

is not satisfied. If (b) is true, go to step 4.
Step 4: For the case C2x = 0, follow the same procedure. If the situation corresponding to (b) at step 3 holds, we
conclude that condition (iii) is satisfied. Otherwise, it is not satisfied.

Finally, we give a simple example to capture the idea of the proposed algorithm.

Example 6.1 Consider the 4-modal system given by

A1 =

 0 1 0
0 0 1
1 0 0

 , A2 =

 0 1 0
0 0 −1
1 0 0

 , A3 =

 0 −1 0
0 1 1
1 0 −1

 , A4 =

 0 −1 0
0 1 −1
1 0 −1


and, C1 = [1 0 0] and C2 = [0 1 0]. Then we have

T 1
A1

=

 1 0 0
0 1 0
1 0 1

 , T 2
A1

=

 0 1 0
0 0 1
1 0 0

 ,
T 1
A2

=

 1 0 0
0 1 0
0 0 −1

 , T 2
A2

=

 0 1 0
0 0 −1
−1 0 0

 ,
T 1
A3

=

 1 0 0
0 −1 0
1 −1 −1

 , T 2
A3

=

 0 1 0
0 1 1
1 1 0

 ,
T 1
A4

=

 1 0 0
0 −1 0
0 −1 1

 , T 2
A4

=

 0 1 0
0 1 −1
−1 1 0

 .
Now we consider the case of C1x = 0. At step 1, we have

M1
1 =

[
1 0
0 1

]
, M2

1 =
[

1 0
0 1

]
, M1

2 =
[
−1 0
0 1

]
, M2

2 =
[

1 0
0 −1

]
,

M1
3 =

[
−1 0
−1 −1

]
, M2

3 =
[
−1 0
−1 −1

]
, M1

4 =
[

1 0
1 −1

]
, M2

4 =
[
−1 0
−1 1

]
.

and

s1
1 = [1 0], s2

1 = [1 0], s1
2 = [−1 0], s2

2 = [1 0], s1
3 = [−1 0], s2

3 = [−1 0], s1
4 = [1 0], s2

4 = [−1 0]

At step 2, it can be easily verified that (39) and (40) are satisfied. At step 3, we only have to consider the case of
[1 0]z = 0. So from M i

j , we have a new M i
j as follows:

M1
1 = 1, M2

1 = 1, M1
2 = 1, M2

2 = −1, M1
3 = −1, M2

3 = −1, M1
4 = −1, M2

4 = 1.

Then we can see that the condition corresponding to (37) is satisfied. In the case of C2x = 0, it is also verified that every
condition is satisfied. Thus we conclude that condition (iii) of Theorem 6.1 is satisfied for this system, and so the system
is well-posed.

6.2 Multi-modal systems with affine inequalities

We here start with the bimodal system given by

ΣO(α)
{

mode 1 : ẋ = Ax, if Cx ≥ α
mode 2 : ẋ = Bx, if Cx ≤ α (42)

where x ∈ Rn, C ∈ R1×n, and α ∈ R is any given constant. Note that the inequality constraint is affine.
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This system is equivalent to the following system:

ΣAB(α)
{

mode 1 : ẋ = Ax, if x ∈ S̄+
A (α)

mode 2 : ẋ = Bx, if x ∈ S̄−B (α) (43)

where
S̄+
A = {x ∈ Rn | T̄Ax � ᾱ}, S̄−B = {x ∈ Rn | T̄Bx � ᾱ},

T̄A =
[

TA
CAn

]
, T̄B =

[
TB
CBn

]
and ᾱ = [α 0 · · · 0]T ∈ Rn+1, and TA and TB are defined by (10). In fact, if Cx(t) ≥ α in ΣO(α), then T̄Ax(t) � ᾱ.
Conversely, if T̄Ax(t) � ᾱ, then Cx(t) ≥ α, and if T̄Ax(t) = ᾱ, then Cx ≡ α. The same argument holds in mode 2. Thus
each mode in ΣO(α) is identified with each mode in ΣAB(α).

Denote by (M)(i,j) the (i, j) element of a matrix M .

Theorem 6.2 Suppose that both pairs (C,A) and (C,B) are observable. Then for any given constant α ∈ R, the following
statements are equivalent.
(i) ΣO(α) is well-posed.
(ii) ΣAB(α) is well-posed.
(iii) The following conditions are satisfied.
(a) ΣAB(0) is well-posed.
(b) (b1) (TAAT−1

A )(n,1)α ≥ 0 and (TBBT−1
B )(n,1)α > 0, or (b2) (TAAT−1

A )(n,1)α < 0 and (TBBT−1
B )(n,1)α ≤ 0, or (b3)

(TAAT−1
A )(n,1)α = 0 and (TBBT−1

B )(n,1)α = 0.

(Proof) (i) ↔ (ii) has already been proven. (ii) → (iii). From (ii), it follows that S̄+
A + S̄−B = Rn. In the same way as

in the proof of Lemma 3.4, we get TB = MTA for some M ∈ Ln+. Thus from Theorem 4.1, this implies (iii)(a). Then in

the two new coordinates z
4
= TAx− α̃ and w

4
= TBx− α̃, where α̃ = [α 0 · · · 0]T ∈ Rn, ΣAB(α) is described by

Σ̃AB(α)


mode 1 : ż = TAAT

−1
A z + TAAT

−1
A α̃, if

[
z

CAnT−1
A (z + α̃)

]
� 0

mode 2 : ẇ = TBBT
−1
B w + TBBT

−1
B α̃, if

[
w

CBnT−1
B (w + α̃)

]
� 0.

(44)

Note here that w = MTAx− α̃ = M(TAx−M−1α̃) = Mz because of M−1α̃ = α̃.
Now let us consider z(0) = 0, where both modes may be admissible. For mode 1, if CAnT−1

A α̃ � (≺)0, smooth
continuation is (not) possible, while for mode 2, if CBnT−1

B α̃ � (�)0, smooth continuation is (not) possible. Since the
system has a unique solution, there is no situation where smooth continuation in both modes is possible at the same time,
except for z(t) = w(t) ≡ 0. Hence (iii)(b) holds.

(iii)→ (ii). (iii)(a) implies w = Mz for some M ∈ Ln+, where z and w are defined above. Thus we obtain (44). In each
case of z(0) � 0 and w(0) ≺ 0, smooth continuation in only one of the two modes is possible. In addition, when z(0) = 0,
(iii)(b) guarantees smooth continuation in only one of the two modes or z(t) = w(t) ≡ 0. This implies (ii). 2

This theorem asserts that the well-posedness of ΣO(α) for all α ∈ R is characterized by that of ΣO(0), provided that
(iii)(b) holds. In (iii)(b), (b1) implies that, whenever z(0) = 0, smooth continuation in mode 1 is possible, while not in
mode 2. (b2) implies the converse situation of (b1). In addition, (b3) corresponds to the case that smooth continuation
in both modes is possible and their solutions are the same.

Remark 6.1 If we assume α 6= 0 in Theorem 6.1, we can obviously remove α from the condition (iii)(b), that is, (b1)
(TAAT−1

A )(n,1) ≥ 0 and (TBBT−1
B )(n,1) > 0, or (b2) (TAAT−1

A )(n,1) < 0 and (TBBT−1
B )(n,1) ≤ 0, or (b3) (TAAT−1

A )(n,1) =
0 and (TBBT−1

B )(n,1) = 0. Thus in the case of affine inequalities, the well-posedness of the system does not depend on α.

Based on the above result, we consider the well-posedness of the following r-modal system:

ΣO(α1, α2, · · · , αr−1)


mode 1 : ẋ = A1x, if x ∈ C1
mode 2 : ẋ = A2x, if x ∈ C2

...
...

...
mode r : ẋ = Arx, if x ∈ Cr

(45)

where x ∈ Rn, α1 > α2 > · · · > αr−1 are any real numbers, and

C1 = {x ∈ Rn | Cx ≥ α1},
Ci = {x ∈ Rn | αi−1 ≥ Cx ≥ αi}, i ∈ {2, · · · , r − 1},
Cr = {x ∈ Rn | αr−1 ≥ Cx},
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Figure 3: 3-modal system

and C ∈ R1×n. Let us also introduce the bimodal system given by

ΣO(Ai, Ai+1, αi)
{

mode i : ẋ = Aix, if x ∈ {x ∈ Rn | Cx ≥ αi}
mode i+ 1 : ẋ = Ai+1x, if x ∈ {x ∈ Rn | Cx ≤ αi}

(46)

for i ∈ {1, 2, · · · , r−1}. Then the following fact will be useful for determining the well-posedness of ΣO(α1, α2, · · · , αr−1).

Theorem 6.3 The multi-modal system ΣO(α1, α2, · · · , αr−1) is well-posed if and only if the bimodal system ΣO(Ai, Ai+1, αi)
is well-posed for all i ∈ {1, 2, · · · , r − 1}.
(Proof) ΣO(α1, α2, · · · , αr−1) is well-posed if and only if the bimodal system given by

Σ̃O(Ai, Ai+1, αi)
{

mode i : ẋ = Aix, if x ∈ {x ∈ Rn | αi−1 > Cx ≥ αi}
mode i+ 1 : ẋ = Ai+1x, if x ∈ {x ∈ Rn | αi ≥ Cx > αi+1}

(47)

is well-posed for all i ∈ {1, 2, · · · , r − 1}, where α0 = ∞ and αr = −∞. In addition, for each i ∈ {1, 2, · · · , r −
1}, Σ̃O(Ai, Ai+1, αi) is well-posed if and only if ΣO(Ai, Ai+1, αi) is well-posed since we only have to consider smooth
continuation in the case Cx = αi. 2

Using Theorem 6.2, we can determine whether the multi-modal system ΣO(α1, α2, · · · , αr−1) is well-posed or not, as
shown in the example below.

Example 6.2 Consider the physical system in Figure 3. Assume that k1 ≥ 0 and k2 ≥ 0. Set α1 = 0 and α2 = −1. The
dynamics of the system is given by

ΣO(0,−1)

 mode 1 : ẋ = A1x, if x ∈ {x ∈ Rn | Cx ≥ 0}
mode 2 : ẋ = A2x, if x ∈ {x ∈ Rn | 0 ≥ Cx ≥ −1}
mode 3 : ẋ = A3x, if x ∈ {x ∈ Rn | − 1 ≥ Cx}

where x = [x1, x2]T, C = [1 0], and

A1 =
[

0 1
0 0

]
, A2 =

[
0 1
−k1 −d1

]
, A3 =

[
0 1

−k1 − k2 −d1 − d2

]
.

Then for ΣO(Ai, Ai+1, αi) (i = 1, 2) we obtain TA1 = TA2 = TA3 = I2 where TAi (i = 1, 2, 3) is the rule matrix. Thus
for i = 1, since α1 = 0 and TA1T

−1
A2
∈ L2

+, ΣO(A1, A2, 0) is well-posed. For i = 2, on the other hand, TA2T
−1
A3
∈ L2

+
implies (ii)(a) in Theorem 6.2. In addition, we have (TA2A2TA2)(2,1)α2 = k1 ≥ 0 and (TA3A3TA3)(2,1)α2 = k1 + k2 ≥ 0,
which implies (ii)(b) for any k1 ≥ 0 and k2 ≥ 0. Thus ΣO(A2, A3,−1) is also well-posed. Hence from Theorem 6.3, the
3-modal system ΣO(0,−1) is well-posed for any k1 ≥ 0 and k2 ≥ 0. From this, it turns out that the well-posedness does
not depend on the value of d1 and d2.

Remark 6.2 Consider the system

ΣO

{
mode 1 : ẋ = Ax, if | Cx |≥ α
mode 2 : ẋ = Bx, if | Cx |≤ α, α > 0 (48)

which may appear as the closed loop system resulting from the use of switching controllers. From Theorem 6.2, we can
show that this system is well-posed if and only if the bimodal system

ΣO(A,B, α)
{

mode 1 : ẋ = Ax, if Cx ≥ α
mode 2 : ẋ = Bx, if Cx ≤ α (49)

is well-posed. Thus the well-posedness problem for the system given by (48) is reduced to that for the system given by
(49).
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7 Application to well-posedness problem in control switching

The well-posedness conditions as obtained in the previous sections can be applied to several issues in hybrid systems
theory. Especially, by combining a stability condition of piecewise linear systems by Johansson and Rantzer [16] with
our result, we can judge stability of those systems where the existence of a unique solution without sliding modes is
guaranteed.

As the other application, in this section, we discuss a well-posedness problem of switching control systems where state
feedback gains are switched according to a criterion depending on the state.

Consider the following problem: let the control system be given by

ẋ = Ax+Bu (50)

where x ∈ Rn and u ∈ Rm. For this system, let us consider a state feedback controller with two modes given by

u =
{
K1x if Cx ≥ 0
K2x if Cx ≤ 0 (51)

where C ∈ R1×n, and K1 and K2 are given according to some design specification of the closed loop system. Then the
problem is to check whether this closed loop system is well-posed or not.

As a simple example, consider the system given by[
ẋ1
ẋ2

]
=
[

0 1
0 0

] [
x1
x2

]
+
[

0
1

]
u

and K1 = [k1 k2], K2 = [k̄1 k̄2] , and C = [c1 c2]. Then letting TA+BK1 and TA+BK2 be the rule matrices (i.e., the
observability matrices) for the pairs (C,A+BK1) and (C,A+BK2), and assuming that these matrices are nonsingular,
we obtain

TA+BK2T
−1
A+BK1

=
[

1 0
∗ a

]
where a

4
= c1(c1+c2k̄2)−c22k̄1

c1(c1+c2k2)−c22k1
. Thus from Theorem 4.2, we conclude that the closed loop system is well-posed if and only if

a > 0.
This example shows the following significant fact: even if each controller stabilizes each system in the usual sense, the

total system is not necessarily well-posed. For example, consider the case of c1 = 1, c2 = 1, k1 = −1, k2 = −3, k̄1 = −1
and k̄2 = −1. Then A+BK1 and A+ BK2 are stable, but a < 0. Note that such a case is not rare and the stability in
the usual sense for each mode does not automatically provide the well-posedness of the closed loop system.

As shown in the above example, for any given closed loop system, the well-posedness can be determined by checking
the corresponding conditions derived in the previous sections. Moreover, we can give an explicit characterization of all
feedback gains which guarantee the well-posedness of the closed loop systems in question.

For the closed loop system with two modes given by (50) and (51), letting K
4
= K2 −K1 and denoting A + BK1 by

A again, we have

ΣO

{
mode 1 : ẋ = Ax, if y = Cx ≥ 0
mode 2 : ẋ = (A+BK)x, if y = Cx ≤ 0. (52)

For single-input control systems (50), we obtain the following result.

Theorem 7.1 Assume that the pair (C,A) is observable and the relative degree for the triple (C,A,B) is p(≤ n) (i.e.,
CB = CAB = . . . = CAp−2B = 0 and CAp−1B 6= 0). Then the following statements are equivalent.
(i) The system ΣO is well-posed.
(ii) KT ∈ span{CT, (CA)T, · · · , (CAp−1)T}+ {ξ ∈ Rn | ξ = γ(CAp)T, γCAp−1B > −1}.

(Proof) (i)→(ii). From Theorem 4.2, (i) implies that (C,A + BK) is observable. Thus from Theorem 4.1, there exists
an M ∈ Ln+ such that TA+BK = MTA, where TA+BK and TA are the observability matrices for the pairs (C,A + BK)
and (C,A), respectively. Noting that C(A+BK)i = CAi (i = 0, 1, · · · , p− 1) and C(A+BK)p = CAp +CAp−1BK, we
obtain

CAp + CAp−1BK = mp+1,1C +mp+1,2CA+ · · ·+mp+1,pCA
p−1 +mp+1,p+1CA

p

where mp+1,i is the (p+ 1, i) element of M , and mp+1,p+1 > 0. This implies that

K = m̄p+1,1C + m̄p+1,2 + · · ·+ m̄p+1,pCA
p−1 + γCAp

where m̄p+1,i = mp+1,i/CA
p−1B and γ = (mp+1,p+1 − 1)/CAp−1B. From mp+1,p+1 > 0, (ii) follows.
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(ii) → (i). Let µ
4
= CAp−1B and let K be given by K = κ1C + κ2CA + · · · + κpCA

p−1 + κp+1CA
p where κi

(i = 1, 2, · · · , p) are any values and κp+1µ > −1. Then simple calculations show that

TA+BK = MTA, M
4
=



Ip 0p,n−p

∗

1 + κp+1µ 0 . . . 0

∗ 1 + κp+1µ
. . .

...
...

. . . . . . 0
∗ . . . ∗ 1 + κp+1µ

 .

Since 1 + κp+1µ > 0, M is nonsingular. Thus the pair (C,A+BK) is observable because M and TA are nonsingular. In
addition, M ∈ Ln+. Hence by Theorem 4.1, ΣO is well-posed. 2

Remark 7.1 It follows from Theorem 7.1 that for p = n the closed loop system is well-posed for any K. Note also that
the case K = κ1C corresponds to the vector field of the closed loop system being Lipschitz continuous.

Remark 7.2 Theorem 7.1 can be extended to the multi-input case. If the relative degrees for all inputs are different from
each other, the extension is straightforward. On the other hand, if some relative degrees are the same, the condition for
well-posedness becomes more complicated. Furthermore, Theorem 7.1 can be extend to the case of affine inequalities as
given below:

ΣO(A,A+BK,α)
{

mode 1 : ẋ = Ax, if Cx ≥ α
mode 2 : ẋ = (A+BK)x, if Cx ≤ α.

8 Conclusion

We have discussed a well-posedness problem in the sense of Carathéodory for a class of piecewise linear discontinuous
systems, and have derived necessary and sufficient conditions for those systems to be well-posed. The obtained results
are based on the lexicographic inequality relation and the smooth continuation property. As an application to switching
control problems, we have given a necessary and sufficient condition for two state feedback gains, which are switched
according to a criterion depending on the state, to maintain the well-posedness property of the closed loop system.

There are several open problems on well-posedness of discontinuous systems to be addressed in the future. We will
have to discuss well-posedness of multi-modal systems in the unobservable case as an extension of section 6. In addition,
extensions to the case of nonlinear systems should be addressed. It will be also interesting to discuss some relations
with well-posedness of complementarity systems as mentioned in Remark 2.3. Finally, basic results derived here such
as the smooth continuation property may be useful to solve well-posedness problems arising in the framework of hybrid
automata as exposed e.g., in [8].

Acknowledgement
The first author would like to express his gratitude to the Canon foundation for awarding a 1998 visiting research fellowship
for performing this work at Faculty of Mathematical Sciences, University of Twente. The first author also would like to
thank M. Saeki, professor of Hiroshima university, for his support.

References

[1] R.L Grossman, A. Nerode, A.P. Ravn, and H. Rischel (Eds.). Hybrid systems. Lecture Notes in Computer Science
736, New York, Springer-Verlag, 1993.

[2] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (Eds.). Hybrid systems II. Lecture Notes in Computer Science 999,
New York, Springer-Verlag, 1995.

[3] R. Alur, T.A. Henzinger, and E.D. Sontag (Eds.). Hybrid systems III. Lecture Notes in Computer Science 1066,
New York, Springer-Verlag, 1996.

[4] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (Eds.). Hybrid systems IV. Lecture Notes in Computer Science
1273, New York, Springer-Verlag, 1997.

[5] O. Maler (Ed.). Hybrid and real time systems. Lecture Notes in Computer Science 1201, New York, Springer-Verlag,
1997.

[6] Special issue on hybrid systems. IEEE Trans. Automatic Control, AC-43:, 1998.

23



[7] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, Vol. 126, pp. 183–235, 1994.

[8] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, and X. Nicollin. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, Vol.138, pp. 3–34, 1995.

[9] P.J. Antsaklis, J.A. Stiver, and M. Lemmon. Hybrid system modeling and autonomous control systems. Hybrid
systems, Lect. Notes in Computer Sciences, 736, Springer-Verlag, Berlin, pp. 366–392, 1993.

[10] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control. Proc. of the 33rd IEEE
Conference on Decision and Control, pp. 4228–4234, 1994.

[11] J. Ezzine and A.H. Haddad. Controllability and observability of hybrid systems. Int. J. Control, Vol. 49, No. 6, pp.
2045–2055, 1989.

[12] M. Tittus and B. Egardt. Control design for integrator hybrid systems. IEEE Trans. Automatic Control, Vol. 43,
pp. 491–500, 1998.

[13] M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans.
Automatic Control, Vol. 43, pp. 475–482, 1998.

[14] H. Ye, N. Michel, and L. Hou. Stability theory for hybrid dynamical systems. IEEE Trans. Automatic Control, Vol.
43, pp. 461–474, 1998.

[15] M.A. Wicks, P. Peleties, and R.A. DeCarlo. Construction of piecewise Lyapunov functions for stabilizing switched
systems. Proc. of the 33rd IEEE Conference on Decision and Control, pp. 3492–3497, 1994.

[16] M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE
Trans. Automatic Control, AC-43:, pp. 555–559, 1998.

[17] A. Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear systems. Proc. of American Control
Conference, pp. 3659–3664, 1998.

[18] A.J. van der Schaft and J.M. Schumacher. The complementary-slackness class of hybrid systems. Mathematics of
Control, Signals, and Systems, 9:, pp. 266–301, 1996.

[19] A.J. van der Schaft and J.M. Schumacher. Complementarity modeling of hybrid systems. IEEE Trans. Automatic
Control, AC-43:, pp. 483–490, 1998.
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