
On Non-Parallelizable Deterministic Client Puzzle

Scheme with Batch Verification Modes

Qiang Tang and Arjan Jeckmans

DIES, Faculty of EEMCS
University of Twente, the Netherlands
{q.tang, a.j.p.jeckmans}@utwente.nl

Abstract. A (computational) client puzzle scheme enables a client to
prove to a server that a certain amount of computing resources (CPU
cycles and/or Memory look-ups) has been dedicated to solve a puzzle. Re-
searchers have identified a number of potential applications, such as con-
structing timed cryptography, fighting junk emails, and protecting critical
infrastructure from DoS attacks. In this paper, we first revisit this concept
and formally define two properties, namely deterministic computation and
parallel computation resistance. Our analysis show that both properties are
crucial for the effectiveness of client puzzle schemes in most application
scenarios. We prove that the RSW client puzzle scheme, which is based on
the repeated squaring technique, achieves both properties. Secondly, we
introduce two batch verification modes for the RSW client puzzle scheme
in order to improve the verification efficiency of the server, and investigate
three methods for handling errors in batch verifications. Lastly, we show
that client puzzle schemes can be integrated with reputation systems to
further improve the effectiveness in practice.

Keywords: Client puzzle, parallelization, batch verification, DoS attack

1 Introduction

Merkle [26] was the first to introduce the notion of puzzle which led to the
invention of public key cryptography. In this context, the puzzle is required to
be unsolvable by any polynomial-time entity. Dwork and Naor [12] proposed
the concept of pricing function to combat junk emails. Rivest, Shamir, and Wagner
[30] proposed the concept of timed-lock puzzle, which serves as a tool to realize
the concept of timed-release crypto. Jakobsson and Juels [18] defined the notion
of proof of work, and Juels and Brainard [20] coincided the concept client puzzle
and suggested to use it to prevent Denial of Service (DoS) attacks. Regardless
of the different notations, pricing function, timed-lock puzzle, proof of work, and
client puzzle share the same characteristic: they can be regarded as another type

of puzzle (different that of Merkle [26]) which is moderately hard in the sense
that a polynomial-time entity can successfully find a solution by spending a
certain amount of resources in a reasonable period of time. Without loss of
generality, we use the notation of client puzzle to refer to the second type of
puzzle (pricing function [12], timed-lock puzzle [30], proof of work [18], and client
puzzle [20]). Furthermore, we refer to the entity, which generates the puzzle, as
the server and the entity, which solves the puzzle, as the client.

Roughly speaking, there are two types of client puzzle schemes. One type is
CPU-bound, where the computation is measured by the amount of CPU cycles
needed to solve the puzzle. Some examples are those in [3,8,12,18,20,30,34,38],
which form the majority of the existing client puzzle schemes. Abadi et al. [1]
first noticed the fact that CPU power varies a lot for different computers (such as
PC, PDA, and Workstation), and introduced memory-bound puzzle schemes,
where the computation is measured by the amount of memory look-ups needed
to solve the puzzle. The schemes in [10,11] fall into this category.

1.1 Applications of Client Puzzles

In practice, a puzzle has (at least) two effects, namely timing effect and computation
effect, which has motivated its potential applications.

– Timing effect. In order to solve the puzzle, the client needs to spend a certain
amount of time in the computation. This effect is very intuitive since any
computation takes some time.

– Computation effect. In order to solve the puzzle, the client needs to dedicate
a certain amount of resources, such as CPU cycles and memory look-ups.

It is worth stressing that there are some subtle differences between these two
effects although they are tightly related to each other. For example, based on
whether or not a client puzzle achieves the parallel computation resistance property
(defined in Section 2.2), the timing effect could vary a lot though the computation
effect is the same. This is illustrated by the toy client puzzle scheme in Section
2.2.

Rivest, Shamir, and Wagner [30] made use of the timing effect to realize timed-
encryption. Boneh and Noar [5] and Syverson [33] made use of the timing effect to
realize timed bit commitment. Garay and Jakobsson [16] made use of the timing
effect to realize timed release of digital signatures. Based on these two effects,
Franklin and Malkhi [14] used client puzzle schemes to achieve trustworthy
website usage metering. In their scheme, if a client visits the website, it will
generate a solution to a puzzle, and the metering result is the total number of

solved puzzles. Similarly, Cai et al. [7] proposed using client puzzle schemes
as uncheatable benchmarks. Goldschlag and Stubblebine [17] made use of the
timing effect to generate delays in lottery applications.

In a denial-of-service (DoS) attack, an attacker attempts to prevent legitimate
users from accessing information or services by sending a large number of fake
requests; furthermore, in its distributed form (referred to as a DDoS attack [32]),
an attacker may use the controlled zombie computers to simultaneously launch
the attack as shown in Fig. 1.

Fig. 1. DDoS Attack

The victim of a DoS attack could be high-profile web servers such as bank
servers, DNS servers, cloud computing service providers, search engines (for
example, Google), etc. In more details, there are two categories of DoS attacks.

– One is the exhaustion of specific types of very limited computer resources,
such as TCP connections. For example, the SYN flood attack falls into this
category [20].

– The other is the exhaustion of bandwidth or general CPU cycles or memory
usages, for this purpose, the adversary just congests the communication
links or sends nonsense messages to the victim. For example, the jamming
attack in wireless sensor networks falls into this category [29].

For the first category, with a client puzzle scheme implemented, the server can
mitigate an attack by asking every client to solve a puzzle before allocating any

resource. The rationale is that, the number of “valid” requests from a malicious
client will drop to some extent because the client has only limited resources to
find puzzle solutions. Note that a client puzzle scheme will incur extra compu-
tation and computation overhead. For the second category, with a client puzzle
scheme implemented, if malicious clients send non-sense data as their puzzle
solutions, the attack will become even worse because the server has to spend
resources in verifying the fake puzzle solutions.

Juels and Brainard [20] first proposed using client puzzle schemes to mitigate
DoS attacks such as the TCP SYN flooding attack. Aura, Nikander, and Leiwo
[2] proposed using client puzzle schemes to prevent DoS attacks in authentica-
tion protocols. Dean and Stubblefield [9] suggested to use client puzzle schemes
to protect TLS against DoS attacks. Wang and Reiter [35] introduced the con-
cept of puzzle auction to solve the CPU power disparity problem when using
(CPU-bounded) client puzzles. Lee and Fung [22] proposed using client puzzle
schemes in the design of public-key based authentication and key establishment
protocols. Martinovic et al. [25] introduced the concept of wireless client puzzle
schemes for protecting access points against fake requests in wireless networks.
Lei, Pierre, and Quintero [23] discussed how to combat DoS attacks using quasi
partial collision based client puzzle schemes in UMTS networks. Dwork and
Naor [12], and Dwork, Goldberg and Naor [11] suggested to use client puzzle
schemes to combat junk emails. Fraser et al. [15] suggested to use client puzzle
schemes to mitigate DoS attacks in the Tor networks. Borisov [6] proposed us-
ing client puzzle schemes for defending Sybil attacks in peer-to-peer networks.
Ning, Liu, and Du [28] considered using client puzzle schemes to mitigate DoS
attacks against broadcast authentication in wireless sensor networks. Feng et al.
[13] suggested to implement client puzzle schemes in network protocols to pre-
vent DoS attacks. Wang and Reiter proposed the concepts of congestion puzzles
to defeat DoS attacks against IP networks [36,37]

In the literature, there has been some debate on whether client puzzle
schemes are really helpful to defect DoS attacks. Based on the collected results
from ISPs in UK, Laurie and Clayton [21] claimed that client puzzle schemes are
hardly effective in combating junk emails in practice. While, Liu and Camp [24]
argued that client puzzle schemes could be helpful if such schemes are used in
combination with reputation systems.

1.2 Contribution and organization

The contribution of this paper lies in three aspects.

– Firstly, we present a new definition for client puzzle schemes. In contrast
to that in [8], which is specifically for those schemes for defending DoS

attacks, our definition generally covers all client puzzle schemes. We de-
scribe the following properties: puzzle hardness granularity, deterministic or
probabilistic computation, parallel computation resistance, stateful or stateless, and
communication complexity. We show that deterministic computation and parallel
computation resistance are the crucial properties accounting for the effective-
ness of client puzzle schemes in most application scenarios. We propose the
first formal definitions for these two properties.

– Secondly, we prove that the RSW client puzzle scheme in [30], which is based
on the repeated squaring technique, achieves the deterministic computation
and parallel computation resistance properties. To improve the efficiency of
verifying multiple puzzle solutions (by the server), we propose two batch
verification modes for the RSW scheme and analyze their security and ef-
ficiency implications. Moreover, we introduce three methods for handling
errors in batch verifications. Our results have substantially improved that
of Jeckmans [19], which has made similar attempts in this direction.

– Lastly, we show that client puzzle schemes can be integrated with reputation
systems to further improve their effectiveness in defeating DoS attacks.
Though similar concepts have been mentioned in [13,24], our proposal is
more general and concrete. In addition, we provide more detailed analysis
about the integration.

The rest of the paper is organized as follows. In Section 2 we present a
new definition to client puzzle schemes, describe some relevant properties, and
formally define deterministic computation and parallel computation resistance. In
Section 3, we revisit the RSW client puzzle scheme and analyze its security. In
Section 4, we introduce two batch verification modes for the RSW scheme and
analyze their performances. In Section 5, we introduce three methods to handle
errors in batch verifications. In Section 6 we provide some further remarks on
the effectiveness of using client puzzle schemes to prevent DoS attacks, and
show how to integrate them with reputation systems. In Section 7, we conclude
the paper.

2 Properties and Formal Definitions

Similar to the definition in [19], a client puzzle scheme consists of four (proba-
bilistic) polynomial-time algorithms (Setup,PuzzleGen,PuzzleSol,PuzzleVer).

– Setup(`): Run by the server, this algorithm takes a security parameter ` as
input, and outputs the public system parameter params and a private key
mk. The public system parameter params is implicitly part of the input to

other algorithms. For reasons of simplicity, this system parameter has been
omitted in the descriptions.

– PuzzleGen(mk, d, req): Run by the server, this algorithm takes the private
key mk, a hardness parameter d, and some request information req as input,
and outputs a puzzle puz and some relevant information in f o. The hardness
parameter d is an integer which indicates the total amount of computation
required. The server sends puz to the client, and keeps in f o for verifying the
solution.

– PuzzleSol(puz): Run by a client, this algorithm takes a puzzle puz as input
and outputs a puzzle solution sol.

– PuzzleVer(mk, in f o, sol): Run by the server, this algorithm takes the private
key mk, the puzzle information in f o, and the solution sol as input, and
outputs 1 if sol is correct or 0 otherwise.

Compared with the definition in [8] which aims at client puzzle schemes
tailored for defeating DoS attacks, our definition aims at client puzzle schemes
in general. Specifically, our definition does not contain a similar function to
PuzzleAut [8], which is run by the server to check that all puzzles are indeed
generated by itself.

2.1 Properties Outline

In most applications, the usefulness of client puzzle schemes is due to the
computation disparity between the client and the server: it should take very
little resource for the server to generate a puzzle and verify a solution, while
it should take a certain amount of resource for a client to find a solution. Take
the application of defeating DoS attacks as an example, suppose a client puzzle
scheme requires a similar amount of resources for a client and the server to solve
a puzzle and verify a solution respectively, then the server will not even be able
to generate the necessary puzzles and verify the received solutions given that
there will be a large volume of requests coming from clients to the server.

Besides the computation disparity requirement, the following properties are
also of interest in practice.

– Puzzle hardness granularity: Recall that, for the CPU-bounded client puzzle
schemes, the required resource in solving a puzzle is usually measured by
the total number of some basic operations, such as hashing [20] and repeated
squaring [30]. While, for the memory-bounded client puzzle schemes, the
resource required is usually measured by the total number of memory look-
ups [1]. Preferably, a client puzzle scheme should be able to generate puzzles

of fine-grained hardnesses. This will enable the server to set the puzzle hard-
ness flexibly according to the threat level against the underlying application.
Take the hash-based client puzzle scheme as an example 1: a puzzle is in the
form of (h, x2), where h = H(x1||x2), H is a collision-resistant hash function,
and x1 has bit-length k; a solution is a k bit x′

1
such that h = H(x′

1
||x2). Clearly,

the puzzle hardness can only be set exponentially with respect to k in this
case. However, in the RSW client puzzle scheme [30], the puzzle hardness
can be set linearly with respect to repeated squaring.

– Deterministic computation: For some client puzzle schemes, such as the RSW
scheme in [30], the required resources from the client to solve a puzzle
is deterministic. While, for other schemes, the required resource from the
client is probabilistic. Take the above hash-based client puzzle scheme as
an example, in the best case the client can find the solution by performing
one hashing, while in the worst case the client needs to perform 2k hashing
operations. The deterministic computation property is desirable because the
server can exactly determine the number of operations that the client must
perform to solve a puzzle. Client puzzle schemes, with a probabilistic nature,
may cause usability issues, such as the required resource is unpredictable
to solve a puzzle, which may become the deterrent of their adoption.

– Parallel computation resistance: In practice, a client may have access to a
number of computers as depicted in Fig. 2, so that the computing power
of this client will be the sum of those of the control computers. Such a
client may be able to solve a puzzle much faster than others, by dividing
the workload and letting the computers work in parallel. Take the above
hash-based client puzzle scheme as an example, suppose that the client has

N computers, then on average each computer needs to perform 2k−1

N hashing
until one of them finds a solution.

Client puzzle schemes, which allow parallel computation, will result in the
huge disparity between a client, which has access to many computers, and
another client, which has access to only one computer. Clearly, the paral-
lel computation resistance property is crucial for achieving the timing effect
required by the client puzzle schemes in [5,14,16,30,33]. For other applica-
tions such as defending DoS attacks, where an adversary may control a large
number of Zombie computers, the parallel computation resistance property
is also very important. Without this property, the disparity in computing
power will make it impossible for the server to appropriately set puzzle
hardness.

– Stateful or stateless: A client puzzle scheme is said to be stateful if the server
needs to store the parameter in f o associated with every puzzle. In practice,
it is straightforward to turn a stateful scheme into a stateless one by sending
both puz and in f o to the client, which should send sol and in f o back to the
server for verification.

1 This is a simplied version of the scheme in [20].

Fig. 2. Parallel Computation

– Communication complexity: The communication complexity is mainly con-
cerned with the bandwidth needed to transfer puzzles and solutions be-
tween a client and the server. Another concern is the number of rounds
needed. For example, in the model of Chen et al. [8], a client puzzle scheme
has three rounds. From this perspective, it will be more efficient if a client
puzzle scheme requires less rounds.

Remark 1. With respect to client puzzle schemes, especially the stateless ones, the
forgeability of puzzles may be a serious security concern. If a malicious client can
forge puzzles then it can pre-compute solutions, which will make client puzzle
schemes ineffective in applications like defeating DoS attacks. Nonetheless, the
unforgeability of puzzles can be achieved by some well-known techniques.

1. One technique is to use a secret key (for example, mk) to generate the puzzle.
Alternatively, the server can attach a message authentication code or a digital
signature to each puzzle. After receiving a puzzle solution, the server can
check whether the related puzzle is generated by itself or not. In fact, the first
technique has been used by many existing client puzzle schemes, although
the formal definition of unforgeability has only been given very recently by
Chen et al. in [8].
Even if a client puzzle scheme achieves unforgeability, there may be replay
attacks, in which a malicious client sends the same puzzle and solution
multiple times to the server. To prevent replay attacks (in other words, to
guarantee the freshness of received puzzles), synchronization techniques
such as timestamps should be used in the generation of puzzles. Alterna-
tively, the technique below can be adopted.

2. The other technique is for the server to keep a list of puzzles it has generated.
Later on, the server can discard the puzzle solutions, for which the related
puzzles are not on the list. With this solution, there are some management
issues which need to be taken into account in practical deployment. For
example, for the sake of storage efficiency, the server should decide how
many puzzles it will keep on the list. To prevent replay attacks, the server
also needs to remove a puzzle from the list once a correct solution has been
received.

2.2 Formal Definitions

To facilitate the formal definitions, suppose that the client puzzle is denoted as
Π and the total number of the Func operation is used as a metric for puzzle
hardness. Formally, we say that the puzzle hardness is evaluated by the total
number of queries to the Func oracle.

The properties of puzzle hardness granularity, stateful or stateless, and commu-
nication complexity don’t need formal investigation, namely, they can be heuris-
tically analyzed. Therefore, we only need to formally evaluate the properties
deterministic computation and parallel computation resistance, respectively. In both
cases, the adversary is a malicious client, and the attacks can be simulated
through the following three-phrase game between the adversary and a chal-
lenger.

1. Setup phase: the challenger runs the Setup algorithm to generate the master
key mk and the public system parameter params.

2. Challenge phase: The adversary issues queries to the PuzzleGen oracle
with its chosen d and req, and obtains the reply puz = PuzzleGen(mk, d, req)
from the challenger. At some point, the adversary sends d∗ and req∗ to the
challenger, which sends puz∗ = PuzzleGen(mk, d∗, req∗) back as a challenge.

3. Response phase: The adversary can issue queries to the PuzzleGen ora-
cle as in the challenge phase. At some point, the adversary terminates by
outputting a correct solution sol∗ to the puzzle puz∗.

In practice, the only information to a client is the puzzles generated by the
server and the public system parameter. It is straightforward to check that the
adversary has all the same privileges as a malicious client in practice.

Definition of deterministic computation. Informally, the property deterministic
computation requires that, after receiving a puzzle from the server, a client needs

to perform d times of Func operations (or, formally to issue d queries to the Func
oracle), given that the puzzle hardness is d. Basically, this has two implications.

– One is that puzzles, generated by the server, are independent in the sense
that solving one puzzle does not help solve another puzzle. In other words,
any puzzle generated by the server will require the client to perform d times
of Func operations.

– The other is that puzzles, generated by the server, are unpredictable in the
sense that any puzzle generated by the server looks fresh so that the client
is unable to pre-compute the solution.

An attack occurs if, after receiving a puzzle of hardness d, the adversary finds a
solution using less than d queries to the Func oracle. Formally, this property is
defined as follows.

Definition 1. Suppose the adversary has issued d† queries to the Func oracle in the
Response phase. A client puzzle scheme Π achieves the deterministic computation
property if the probability d† < d∗ is negligible.

Definition of parallel computation resistance. If a client has access to more
than one computers, then it is able to perform Func operations simultaneously.
Let’s take the following toy client puzzle scheme as an example.

– Setup(`): This algorithm outputs a hash function H as the public system
parameter params. The master secret key mk is set to be an empty value.

– PuzzleGen(mk, d, req): This algorithm outputs d random numbers ri (1 ≤ i ≤
d) as the puzzle. The parameter in f o is set to be ri (1 ≤ i ≤ d).

– PuzzleSol(puz): This algorithm outputs sol = {H(ri) (1 ≤ i ≤ d)} as the
solution.

– PuzzleVer(mk, in f o, sol): This algorithm computes d hash values and com-
pare them with sol.

Clearly, suppose a client has access to d computers, the client will solve a puzzle
of hardness d by asking every computer to compute only one hashing.

Informally, the property parallel computation resistance requires that, after
receiving a puzzle of hardness d from the server, a client needs to sequentially
perform d times of Func operations to find a solution. It means that the client
is unable to speed up the process by letting more than one computers work

in parallel. This also implies that the best strategy for the client is to use its
fastest computer to solve the puzzle. We first introduce the notion of sequential
computing time as follows.

Definition 2. Suppose that a client has access to a number of computers, which can
simultaneously answer oracle queries from the client during a computation task. Within
the occurrence of a computation task, consider all oracle query sequences of the following
form

Seqx = {q1, q2, · · · , qx},

where, for all 1 ≤ i ≤ x− 1, the query qi+1 is issued to a computer after the query qi has
been answered (by any computer). The sequential computing time of the computation
task is the maximum value of the sequence indexes, namely maxx.

Formally, the property parallel computation resistance is defined as follows.

Definition 3. Suppose the sequential computing time of the computation task of
finding a correct solution sol∗ in the Response phase is d†. A client puzzle scheme Π
achieves the parallel computation resistance property if the probability d† < d∗ is
negligible.

Consider a computation task with the occurred oracle queries shown in Fig.
3, where the rectangles (either in red or blue) represent an oracle query. Accord-
ing to Definition 2, it is straightforward to count that the sequential computing
time of this computation task is 11.

Fig. 3. The concept of sequential computing time

Remark 2. Clearly, according to our definition, the property parallel computation
resistance implies the property deterministic computation. However, the reverse is
untrue, as illustrated by the above toy client puzzle scheme.

3 Properties of the RSW Client Puzzle Scheme

The scheme, described below, is a slightly modified version of the RSW client
puzzle scheme proposed by Rivest, Shamir, and Wagner [30]. For simplicity, we
still refer to the described scheme as the RSW scheme.

– Setup(`): This algorithm selects two random large primes p, q and a hash
function H : {0, 1}∗ → Z∗pq. The public parameter is pq, and the master key is
mk = (p, q).

– PuzzleGen(mk, d, req): This algorithm chooses r ∈R Z
∗
pq and computes g =

H(r||req), and outputs the puzzle puz = (g, d). The related puzzle information
is in f o = (g, r, d, req).

– PuzzleSol(puz): This algorithm outputs sol = g2d
mod pq.

– PuzzleVer(mk, in f o, sol): this algorithm returns 1 if sol ≡ g2d mod φ(pq) (mod pq),
and returns 0 otherwise.

In the above scheme, g is computed as g = H(r||req), while g is randomly
chosen generator in [30]. By doing so, if needed, the generator can be bound to
situational information (such as the identity information of the client) contained
in req.

With respect to computing the verification complexity of the server, we omit
that of computing 2d mod φ(pq) for two reasons. One is that it could be pre-
computed and stored by the server. The other is that, in many cases, multiple
puzzles might share the same hardness so that the computation only needs to be
done once. As a consequence, it is straightforward to calculate that the average
verification complexity for the server is approximately 3L

2 − 2 multiplications in
Z∗pq, where L is the bit-length of φ(pq).

3.1 Preliminary

As a preliminary, we introduce a generic group model and an extended discrete
logarithm assumption with respect to Z∗pq where p, q are two prime numbers.

We first define a generic algorithm according to the multiplication operation
in Z∗pq. Note that there are different ways of giving the definition (e.g. [27,31]),
and we follow that of Shoup [31].

Let g ∈R Z
∗
pq and σ be an encoding function of G = {gi | i ∈ N} on {0, 1}|pq|,

where N is the set of integers and |pq| means the bit-length of pq. Suppose O
is a multiplication oracle, which, for any r ∈ G, computes σ(r) as follows: if r
has been calculated before, then the same value of σ(r) is returned; otherwise, it
sets σ(r) to be a random value from {0, 1}|pq| \ S, where S is a set initialized to be
{σ(g)}.

A generic algorithmA is a probabilistic algorithm, which takes S and pq as
input, and behaves as follows. At any time,A can send a query with the input
(x, y, b), where x, y ∈ S and b ∈ {1,−1}, toO, and will receive σ(x · yb) as the reply.
After every query, the result is added to the set S.

Definition 4. Let p, q be two prime numbers. The extended discrete logarithm as-
sumption holds for Z∗pq if the following event only occurs with a negligible proba-
bility with respect to a security parameter `: Given (pq, g, gi (1 ≤ i ≤ L)), where
g, gi(1 ≤ i ≤ L) ∈R Z

∗
pq and L is any polynomial in the security parameter, a polynomial-

time adversary finds x , 0, xi (1 ≤ i ≤ L) ∈N such that

gx ≡

1≤i≤L
∏

xi∈N

gxi

i
(mod pq).

3.2 Proof of parallel computation resistance

Lemma 1. If the adversary is modeled as a generic algorithm as defined above, then
the RSW client puzzle scheme achieves parallel computation resistance based on the
extended discrete logarithm assumption (given in Definition 4) in the random oracle
model.

Proof sketch. In order to prove the lemma, we need to show that the adver-
sary’s advantage in the attack game (described at the beginning of Section 2.2)
is negligible according to Definition 3. Since the adversary is modeled as a
generic algorithm, there are two types of oracle queries it may issue. One is
the PuzzleGen query which can be issued to the challenger, and the other is
multiplication oracle query which can be issued to the oracle O.

We first consider a simple situation where the adversary does not issue
any PuzzleGen query in the game. In this situation, the best strategy for the
adversary to issue oracle queries to O in the Response phase is the following.

1. At the beginning, the adversary issues two queries with the inputs (σ(g∗), σ(g∗), 1)
and (σ(g∗), σ(g∗),−1). Clearly, until it receives the replies, namely σ((g∗)2) and
σ(1), from the oracleO, it does not make sense for the adversary to send any
other query.

2. After obtaining the replies, the set S becomes {σ(1), σ(g∗), σ((g∗)2)}. Then the
adversary issues queries with the following inputs

(σ(g∗), σ((g∗)2), 1), (σ((g∗)2), σ((g∗)2), 1),

(σ(1), σ(g∗),−1), (σ(1), σ((g∗)2),−1).

Clearly, until it receives the replies, namely σ((g∗)3), σ((g∗)4), σ((g∗)−1), and
σ((g∗)−2) from the oracle O, it does not make sense for the adversary to send
any other query.

3. After obtaining the replies, the set S becomes

{σ(1), σ(g∗), σ((g∗)2), σ((g∗)3), σ((g∗)4), σ((g∗)−1), σ((g∗)−2)}.

Then the adversary issues queries with (x, y, b), where x, y ∈ S, b ∈ {1,−1},
and σ(x · yb) < S. Clearly, until it receives the replies, it does not make sense
for the adversary to send any other query.

4. The adversary continues the above process until it sends the response to the
challenger.

Note that, in our security analysis, we consider polynomial-time adversary,
which can only issue a polynomial number of queries in the game. This means
that, in each step, the adversary can only issue a polynomial number of oracle
queries.

Suppose, at the end of the game, the adversary performs d∗ − 1 steps as
above (which also means the sequential computing time is d∗ − 1), then the set S
is a subset of

{σ((g∗)−2d∗−1

), σ((g∗)−2d∗−1+1), · · · , σ(1), · · · , σ((g∗)2d∗−1−1), σ((g∗)2d∗−1

)}

In the game, the adversary could choose to submit a value σ((g∗)z) from S or a
value r from {0, 1}|pq| \ S as the response to the challenger.

– In the first case, if σ((g∗)z) = σ((g∗)2d∗

), then the adversary has actually found

2d∗ − z such that (g∗)2d∗−z = 1 mod n. Based on the extended discrete loga-
rithm assumption, the probability is negligible.

– In the second case, if (g∗)2d∗

has not been queried to the oracle, the probability

r = σ((g∗)2d∗

) is
Q
pq where Q is the total number of queries issued to the oracle

O. Clearly, this probability is negligible. Otherwise, if (g∗)2d∗

has been queried

to the oracle O, the probability r = σ((g∗)2d∗

) is 0.

To summarize, in this simple situation, the adversary’s advantage is negligible.

Next, we evaluate a more complex situation where the adversary is free
to issue PuzzleGen oracle queries. Let σ(g1), σ(g2), · · · , σ(gL) be the elements
resulted from the replies of PuzzleGen oracle queries, where g1, g2, · · · , gL are
random elements from Z∗pq. Certainly, L is a polynomial in the security param-
eter. Suppose, at the end of the game, the adversary performs d∗ − 1 steps in
the Response phase, then the set S is a subset of S1

⋃

S2

⋃

S3. The set S1 is the
following.

S1 = {σ((g∗)−2d∗−1

), σ((g∗)−2d∗−1+1), · · · , σ(1), · · · , σ((g∗)2d∗−1−1), σ((g∗)2d∗−1

)}

The setS2 contains a polynomial number of encodings of the form σ(
∏1≤i≤L

xi∈N
gxi

i
),

and the set S3 contains a polynomial number of encodings of the form σ(A · B),
where σ(A) ∈ S1 and σ(B) ∈ S2.

In the game, the adversary could choose to submit a value σ((g∗)z) from S1,
S2, S3, or a value r from {0, 1}|pq| \ S as the response to the challenger.

– In the first case, from the analysis in the simple situation, the adversary’s
advantage is negligible.

– In the second and the third cases, if σ((g∗)z ·
∏1≤i≤L

xi∈N
gxi

i
) = σ((g∗)2d∗

), then the

adversary has actually found 2d∗−z such that (g∗)2d∗−z ≡
∏1≤i≤L

xi∈N
gxi

i
(mod pq).

Based on the extended discrete logarithm assumption, the probability is
negligible.

– In the forth case, from the analysis in the simple situation, the adversary’s
advantage is negligible.

As a result, in this situation, the adversary’s advantage is negligible. The lemma
follows. ut

4 Proposals of Batch Verification Modes

Note the fact that a client puzzle scheme will trigger extra computation overhead
to the server, which may be required to generate a large number of puzzles and
verify the corresponding solutions. The situation becomes more serious when
the computations need to be done in real-time. Similar to the case in signature
schemes [4], given a client puzzle scheme, if it supports batch verification, then
the verification efficiency will be dramatically improved. In the rest of this
section, we propose two batch verification modes for the RSW client puzzle
scheme.

4.1 A Batch Verification Mode - Attempt

As to the multiplication operation in Z∗pq, given that, for 1 ≤ i ≤ n, ai ∈ Z
∗
pq and

bi = ar
i

mod pq for r ∈N, the following equality holds.

(

n
∏

i=1

ai)
r ≡

n
∏

i=1

bi (mod pq)

Based on this observation, suppose that there are n puzzles puzi = (gi, d) and
solutions hi from the RSW client puzzle scheme, we can verify the solutions
using a batch verification mode, by checking the following equality.

(

n
∏

i=1

gi)
2d mod φ(pq) ≡

n
∏

i=1

hi (mod pq) (1)

Note that we assume the puzzles share the same hardness granularity d.

Let L be the bit-length of φ(pq). The average batch verification complexity
is Cn =

3L
2 + 2n − 4 multiplications in Z∗pq. If the server sequentially verifies

the individual puzzle solutions, the complexity would be (3L
2 − 2) · n. With

reasonable parameters (say, L = 1024 and n = 100), the batch verification is
much more efficient, namely

Cn << (
3L

2
− 2) · n.

Remark 3. Note that, without considering the constant 3L
2 − 4, the complexity

is linear in the batch size n. It is also worth stressing that
∏n

i=1 gi can be pre-
computed, which has the complexity of n − 1.

With respect to this batch verification mode, we have the following obser-
vations.

1. If the equality (1) does not hold, then at least one solution is incorrect, i.e.
h j , gr

j
(mod pq) for some 1 ≤ j ≤ n.

2. If all solutions are correct, i.e. hi ≡ gr
i

(mod pq) for all 1 ≤ i ≤ n, then the
equality (1) holds.

3. If the equality (1) holds, it does not imply that all solutions are correct.
Clearly, if hi (1 ≤ i ≤ n) are replaced with any h′

i
(1 ≤ i ≤ n), where

n
∏

i=1

hi ≡

n
∏

i=1

h′i (mod pq),

the equality (1) still holds.

The third observation implies that there could be false accept if the server
verifies the solutions simply by checking the equality (1). In fact, the client(s)
only needs to perform d repeated squarings to compute H, where

H = (

n
∏

i=1

gi)
2d

(mod pq),

then it can randomly split H into h′
i

(1 ≤ i ≤ n) as the solutions.

4.2 A Batch Verification Mode - Improvement

Suppose that there are n puzzles puzi = (gi, d) and solutions hi from the RSW
client puzzle scheme, the improved batch verification mode is as follows. Select
xi ∈ Z

∗
N, where N is an integer and smaller than pq, and check the following

equality.

(

n
∏

i=1

(gi)
xi)2d mod φ(pq) ?

≡

n
∏

i=1

(hi)
xi (mod pq) (2)

Let L be the bit-length of φ(pq). The average batch verification complexity is
3L
2 + 2n − 4+ 2n · (3L′

2 − 2) multiplications in Z∗pq, where L′ is the bit-length of N.

Remark 4. It is worth stressing that
∏n

i=1(gi)
xi can be pre-computed, which has

the average complexity of n · (3L′

2 − 2) + n − 1.

With respect to this batch verification mode, the first and second observations
in the previous subsection are still true. The third observation is also partially
true, but the false accept probability can be reduced as low as possible by the
following lemma.

Lemma 2. If the equality (2) holds, the probability that there exist incorrect solutions
(i.e. h j , gr

j
(mod pq) holds for some 1 ≤ j ≤ n) is upper-bounded by 1

N .

Proof sketch. Note that, for any (1 ≤ j ≤ n), the equality (2) can be rephrased as
follows:

(
(g j)

2d mod φ(pq)

h j
)x j ≡ ((

n
∏

i=1,i, j

(gi)
xi)2d mod φ(pq))−1

n
∏

i=1,i, j

(hi)
xi (mod pq). (3)

Suppose that h j , (g j)
2d mod φ(pq) holds, then it is clear that the equality (3) holds

at most with the probability 1
N . The lemma follows. ut

4.3 Further Improvement

Orthogonal to the improvement in Section 4.2, the false accept shortcoming may
be mitigated by the following divide-and-verify strategy. Suppose that a server
employs the RSW client puzzle scheme, and a dishonest client tries to use the
following trick to cheat the server.

Attack assumption. As noted in Section 4.1, the client generates H
first,

H = (

n
∏

i=1

gi)
2d

(mod pq),

and then randomly splits it into n individual solutions h′
i

(1 ≤ i ≤ n)).

With the divide-and-verify strategy, after receiving a certain number of puzzle
solutions, the server first divides the received puzzle solutions into several
subgroups, and then performs batch verification in each subgroup. With this
strategy, the probability of false accept is determined by the following lemma.

Lemma 3. Suppose that the server divides the received solutions into Y subgroups.
The probability that a false accept occurs is (1

Y)n−1.

Proof sketch. The verifications on h′
i

(1 ≤ i ≤ n) will pass only if they fall into the

same subgroup. As a result, the probability is (1
Y)n−1. ut

Clearly, when Y becomes larger (or, the size of subgroup become smaller),
the false accept rate will drop much faster. On the other hand, when Y becomes
larger, the server’s computation complexity will increase. The extreme case in
this direction is for the server to verify every puzzle solution independently.
Clearly, there is a tradeoff between the false accept rate and the computation
complexity of the server.

In practice, the divide-and-verify strategy and the improved batch verification
mode (described in Section 4.2) can be integrated, namely the server first divides
the received puzzle solutions into several subgroups, and then performs batch
verification for each subgroup. The false accept rate is described by the following
lemma.

Lemma 4. Suppose that the server divides the received solutions into Y subgroups.
With the above batch verification mode, the probability that a false accept occur is
(1

Y)n−1 · 1
N .

Remark 5. It is worth stressing that a malicious client may not behave in the
same way as stated in Attack assumption. Nonetheless, the divide-and-verify
strategy will always help the server to detect fake puzzle solutions, though the
successful detection probability will differ from the above.

5 Handling Errors in Batch Verification

With the batch verification modes described in Section 4, errors in the batch (re-
ferred to asB = (h1, h2, · · · , hn), will be detected when the following inequalities
hold, respectively.

(

n
∏

i=1

gi)
2d mod φ(pq)

,

n
∏

i=1

hi (mod pq)

(

n
∏

i=1

(gi)
xi)2d mod φ(pq)

,

n
∏

i=1

(hi)
xi (mod pq)

Roughly, the server can deal with an erroneous batch in two ways. One solution
is to treat all puzzle solutions to be false and reject them. As shown in Section 6.2,
this could be a reasonable solution when combined with reputation systems in
some application scenarios. However, generally, it is not a good choice because
an adversary can pollute (multiple) puzzle batches by sending false solutions
to the server and make the server reject the puzzle solutions from legitimate
clients. An alternative solution is for the server to sort out the false solutions
and reject them. Furthermore, the server may also enforce other punishment on
the client(s) which have sent the false solutions.

Remark 6. If the improved batch verification mode has been used, the values of
(gi)

xi and (hi)
xi for all 1 ≤ i ≤ n will have been computed in the batch verification

process. As a result, the error-searching procedures will be exactly the same,
regardless which batch verification has been used. Without loss of generality,
the following discussion assumes the basic verification mode.

Next, we consider three different methods to figure out the incorrect solu-
tions, namely sequential searching, sequential searching with batch verification, and
dividing-and-conquering.

5.1 The Case of sequential searching

The strategy of sequential searching is straightforward: if errors are detected, the
server verifies each puzzle solution in the batch and finds out all the incorrect
ones. Clearly, the error-searching complexity is n · (3L

2 −2) multiplications inZ∗pq.

5.2 The Case of sequential searching with batch verification

Choose i as an index and initialize it to be 1, then the algorithm of sequential
searching with batch verification works as follows.

1. Verify the solution hi.

(a) If the verification passes, set i = i + 1, re-execute this step if i ≤ n and
stop otherwise.

(b) Otherwise, hi is incorrect, set i = i+ 1. If i > n, stop; otherwise, go to step
2.

2. Verify the puzzle solutions h j (i ≤ j ≤ n) using the batch verification mode.
If the verification passes, stop; otherwise, go to step 1.

Fig. 4. Example

Suppose that there are 1 ≤ t ≤ n errors which are uniformly distributed in
the batch. With respect to the computations in the above two steps, we have the
following observations.

– In step 1, the server needs to perform puzzle verification on individual
puzzle solutions. Let the average complexity be Ū, which is determined
by the average of the distribution of the highest index z of the incorrect
solutions in the batch. Note that we suppose there are t errors in the batch,
the average complexity is as follows.

Ū = (
3L

2
− 2) ·

n
∑

z=t

(z · Pz), Pz =
t

z
·

n−z−1
∏

i=0

n − t − i

n − i

– In step 2, the server needs to perform batch verification if h j is incorrect,

and the complexity is 3L
2 − 4 + 2(n − j). Note that n − j the distance from h j

to hn. For 1 ≤ k ≤ t
2 , the following two averages are the same: the average

of the distance l from k-th incorrect solution to h1, and the average of the
distance l′ from (t − k + 1)-th incorrect solution to hn. Based on the remark
in Section 4.1, the average complexity of batch verifications following these
two incorrect solutions is

2(
3L

2
− 4) + 2(n − l + l′ − 1) = 3L + 2n − 10.

As a result, the average complexity of batch verifications is V̄, where

V̄ =
t

2
· (3L + 2n − 10).

In summary, the complexity of the whole error-searching process is Ū + V̄.

5.3 The Case of dividing-and-conquering

Generate a puzzle set list L and initialize it to be the batch B, namely L = {B}.
The algorithm of dividing-and-conquering works as follows.

1. If the list L is empty, stop. Otherwise, pick up the first puzzle set in the list,
and go to Step 2.

2. Equally split the chosen puzzle set into two subsets, and verify one of them
(randomly chosen) first using the basic batch verification mode. Note that,
if the number of solutions in the set is odd, then it can allow one subset has
one more member than the other subset. Based on the verification result, do
the following.

– If the verification passes, do the following. If the size of the other subset
is larger than 1, then adds it to the list L and go to Step 1. Otherwise,
output the other subset as an incorrect puzzle solution and go to Step 1.

– If the verification fails, do the following. If the size of this subset is
larger than 1, then adds it to the list L, otherwise output this subset
as an incorrect puzzle solution. Verifies the other subset and do the
following.
• If the verification passes, go to Step 1.

• If the verification fails, do the following: If the size of the other subset
is larger than 1, then adds it to the listL and go to Step 1. Otherwise,
output the other subset as an incorrect puzzle solution and go to
Step 1.

Fig. 5. Example of dividing-and-conquering

To illustrate the algorithm, suppose the batch size is 16 and the second and
the third solutions are incorrect, as shown in Fig. 5.3. At the first level of the
tree (when the batch is firstly split), the average number of multiplications
is 3

2 · (3L
2 − 4 + 16). At the second level of the tree, the average number of

multiplications is 3
2 · (3L

2 − 4 + 8). At the third level of the tree, the average

number of multiplications is 2 · (3L
2 − 4+ 4). At the forth level (at the level of leaf

nodes), the average number of multiplications is 3 · (3L
2 − 2). The total number

of multiplication is 12L + 18.

5.4 A Comparison of Different Methods

To compare the performances of different methods, we choose two cases with the
batch sizes of 128 and 1024. In each case, we consider the subcases where there
are 2, 10, and 50 incorrect solutions respectively. The results are summarized in
the following table.

Complexity Comparison

(n, t) Searching Number
Method of Multiplications

(128,2)
sequential searching -256+192L

sequential searching with batch verification 74+132L
dividing-and-conquering 431+26L

(128,10)
sequential searching -256+192L

sequential searching with batch verification 995+191L
dividing-and-conquering 652+72L

(128,50)
sequential searching -256+192L

sequential searching with batch verification 5897 +257L
dividing-and-conquering 795+200L

(1024,2)
sequential searching -2048+1536L

sequential searching with batch verification 671+1028L
dividing-and-conquering 3879 + 39L

(1024,10)
sequential searching -2048+1536L

sequential searching with batch verification 8326+1413L
dividing-and-conquering 6593+128L

(1024,50)
sequential searching -2048+1536L

sequential searching with batch verification 48940+1582L
dividing-and-conquering 9208+374L

As to the methods sequential searching and sequential searching with batch
verification, we have figured out the formulas for the verification complexities.
In order to evaluate the complexity of the method dividing-and-conquering, we
run a Mathematica program2 100 times to compute the average with respect to
randomly chosen distributions of the t incorrect puzzle solutions.

From the figures, we can roughly draw the following conclusions. When
the rate of incorrect solutions (namely t

n) is small, the method dividing-and-
conquering is more efficient than the other two, and the method sequential
searching with batch verification is also more efficient than the method sequential
searching. When the rate increases, the advantage of the method dividing-and-
conquering becomes less obvious, while sequential searching with batch verification
may become less efficient than the method sequential searching. If the bit-length
of φpq is 1024 (i.e. L = 1024); intuitively, the comparison is shown in Fig. 6.

2 Available at http://www.vf.utwente.nl/˜tangq/new.nb

http://www.vf.utwente.nl/~tangq/new.nb

Fig. 6. Comparison Results

6 Further Remarks on Using Client Puzzle Schemes

6.1 On the Effectiveness in Mitigating DoS Attacks

As we have surveyed in Section 1.1, client puzzle schemes have been considered
by many researchers as a solution to prevent DoS attacks in many scenarios.
The main rationale behind these proposals is that the adversary needs to per-
form some computation before being allocated any resource from the server.
In fact, client puzzle schemes have another useful effect, namely it may act as
an indicator to identify Zombie machines. For example, if a computer performs
intensively during some time periods, then the reason might be that, this com-
puter has been captured as a Zombie and required to solve client puzzles when
the adversary tries to mount a DoS attack. By examining the computation logs
of the computer, the owner can potentially determine whether his machine has
become a Zombie or not.

DoS attacks pose serious threat to today’s ICT systems, and researchers
have devised many different countermeasures, which are complementary to
client puzzle schemes. Some examples are the following.

– Load balancing: The server’s workload is distributed (logically and geo-
graphically) across two or more computers and network links. By doing
so, the chance that all the computers and network links are flooded will be
greatly reduced.

– Black-listing malicious clients: The server can block those clients which
are suspicious for the attacks. Such measure can be regarded as a simple
reputation system, and we give more details in the next subsection.

– Restricting resource usage of individual client: The server can have a strat-
egy such as a client could only request a limited amount of resources in a
certain period of time.

– Restricting the number of request of individual client: The server can have
a strategy such as a client could only issue a limited number of request in a
certain period of time.

Take black-listing malicious users as an example, it can prevent known
Zombie machines from sending out service requests to the server. As a result,
if a client puzzle scheme with parallel computation resistance is deployed, the
adversary can not use these machines to solve any client puzzle in parallel
either.

Another concern with using client puzzle schemes is the disparity of com-
puting abilities of clients, which causes the concern of fairness with respect to
the puzzle hardness.

– From the perspective of a resource-limited client, fairness may mean it should
be served in the same way as other powerful clients. If they are required
to solve puzzles of the same hardness, then the resource-limited client will
be served with a much lower priority. What makes things worse is that, a
malicious client may control a number of Zombie machines. As depicted in
Fig. 2, the malicious client may be much more powerful than any legitimate
clients.

– From the perspective of a powerful client, fairness may mean it should be
served in a way according to its investment in its computing. For example,
a client may buy a faster or buy more than one machine to increase its
computing power, in order to obtain better services. To achieve this sort of
fairness, Wang and Reiter introduced the concept of puzzle auction in [35].

In general, it is not possible to judge which definition of fairness is generally
better than another one, because they may be reasonable in different application
scenarios. It is worth stressing that, non-parallelable client puzzle schemes are
an effective deterrent against the adversary which controls an army of Zombie
machines.

There is another concern, namely an adversary may launch DoS attacks
against a legitimate client in some situations. We refer this type of attack to be
reverse DoS attacks. One example situation is when the adversary can spoof the
server’s address, then the adversary can send the hardest puzzles to the client
to exhaust its resources. In order to mitigate this negative effect, we need to
assume there is an integrity-protected link between any legitimate client and
the server.

6.2 Integration with a Reputation System

In this subsection we first review some attempts in combining a client puzzle
scheme with a reputation system to defeat DoS attacks, and then propose a
more comprehensive solution for such combination. It is worth noting that this
strategy may not be useful in other applications, such as those based on the
timing effect [5,16,30].

Current Solutions The concept of utilizing a client puzzle scheme with a rep-
utation system was mentioned as a future work by Feng et al. [13]. Their rough
idea is that the server should base the puzzle hardness on the reputation of
a client, but they did not give any further details. In an attempt to refute the
claim of Laurie and Clayton [21] that client puzzle schemes are hardly effective
in combating junk emails, Liu and Camp [24] suggested that a client puzzle
scheme could be effective when being used in combination with a reputation
system. Their idea is the following: the email server keeps a reputation value
for each client; to send an email, a client needs to solve a puzzle, the hardness
of which is a decreasing function with respect to the client’s reputation value.
Some more details about the solution in [24] are highlighted as follows.

– Clients are identified by their IP addresses.

– Initially, the reputation value of a new client is set to be very low so that the
client needs to compute a hard puzzle to sends its first email. The reason
is that, it would be difficult to judge that a new client is malicious or not,
so that the puzzles should be hard enough to make the client not be able to
send out a lot of junk emails.

– Over the time, the reputation of a legitimate client will increase while the
puzzle hardness to send an email will decrease accordingly.

– If the total number of the emails reach one limit in one day, then the repu-
tation of a client will begin to decrease.

To summarize, both proposals [13,24] attempt to implement the same strat-
egy, which is to leverage the puzzle hardness based on the past behaviors of a
client. This strategy is rational, and we will also use it in our proposal.

Our Proposal The logical structure of the proposed architecture is depicted in
Fig. 7. In our proposal, the puzzle hardness according to a client’s request is
determined by two factors, namely the threat level and the reputation of the
client.

Fig. 7. Client Puzzle Application Architecture

– The threat level is an indicator about how severe the server is suffering from
DoS attacks, which comes from the feedback from an intrusion detection
system. Intuitively, if the threat level is high, then the server should increase
the hardness of puzzles sent to the clients.

– In practice, there are three types of clients which may send requests to the
server. The first type is legitimate clients who always honestly compute
puzzle solutions. The second type is malicious clients which throw random
bits to the server in order to deplete the resources of the server. The third
type is curious clients which may submit either correct puzzle solutions
or random bits. For example, this type of clients could be legitimate clients
which, from time to time, are controlled by an adversary for a certain period.
Just the same as in the case of [13,24], the integration of the reputation system
is to distinguish these types of clients and be fair to the legitimate clients.

Formally, the puzzle hardness d is expressed in the following way

d = F1(L) + F2(L,R).

In this expression, F1 is a function which takes a threat level L as input and
returns the basic number of operations required. The function F2 is a function
which takes the threat level L and a reputation value R as input and returns the
additional number of operations required. The detailed definitions of F1 and F2

rely on the applications of the specific application scenarios and the relevant
security requirements, hence, we skip them in this paper. Nonetheless, these
functions should satisfy the following properties.

– The function F1 is increasing with respect to L, while the function F2 is
a non-decreasing function with respect to L. Moreover, the function F2 is
decreasing with respect to R.

– If there is no threat (or, equivalently L = 0), the equations F1(0) = 0 should
hold for any R. Regardless of the fact that, with a client puzzle scheme,
the server needs to spend a certain amount of resources to generate and
verify puzzles and solutions; even if there is no threat, the server may still
set F2(0,R) , 0. By doing so, the server can enable the client with higher
reputation to perform less computation in order to receive the requested
service, which is rational.

With respect to the implementation of a reputation system, instead of using
the reputation value for each client, it may be more efficient for the server to
use the aggregate reputation values for user groups. For example, aggregation
can be done on the basis of organizations or IP rages instead of individual IP
address. With this change, batch verification can be implemented for the puzzle
solutions from the same group of clients. Moreover, the server may just reject
all requests if there is any error in the batch, which is a severe punishment.

7 Conclusion

In this paper, we have revisited the concept of client puzzle schemes and pre-
sented formal definitions for the two important properties, namely deterministic
computation and parallel computation resistance. We have proven that the RSW
client puzzle scheme achieves both properties. To our knowledge, this is the
first scheme which has been proven possessing the property parallel computation
resistance. More interestingly, we have shown that the RSW scheme supports
batch verification modes, which greatly improve the efficiency for the server.
Client puzzle scheme is regarded as a useful tool in defeating DoS attacks,
however, it is not a perfect solution by itself. Consequently, we proposed an
integration between a client puzzle scheme and a reputation system. While our
proposal is theoretical and abstract at the moment, an interesting future work
is to instantiate the proposal in a real-world application, such as defeating junk
emails, and to further investigate the effectiveness.

References

1. M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-
bound functions. ACM Transactions on Internet Technology, 5(2):299–327, 2005.

2. T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with client puzzles.
In Security Protocols, 8th International Workshop, pages 170–177, 2000.

3. A. Back. Hashcash — amortizable publicly auditable cost functions, 2002.
4. M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation

and digital signatures. In Eurocrypt ’98, pages 236–250, 1998.

5. D. Boneh and M. Naor. Timed commitments. In CRYPTO ’00: Proceedings of the 20th
Annual International Cryptology Conference on Advances in Cryptology, pages 236–254.
Springer, 2000.

6. N. Borisov. Computational puzzles as sybil defenses. In P2P ’06: Proceedings of the
Sixth IEEE International Conference on Peer-to-Peer Computing, pages 171–176. IEEE
Computer Society, 2006.

7. J. Cai, R. J. Lipton, R. Sedgewick, and A. C. Yao. Towards uncheatable benchmarks.
In Structure in Complexity Theory Conference, pages 2–11, 1993.

8. L. Chen, P. Morrissey, N. Smart, and B. Warinschi. Security notions and generic
constructions for client puzzles. In Advances in Cryptology — Asiacrypt 2009, volume
5912 of Lecture Notes in Computer Science, pages 505–523. Springer, 2009.

9. D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In SSYM’01:
Proceedings of the 10th conference on USENIX Security Symposium, pages 1–1. USENIX
Association, 2001.

10. S. Doshi, F. Monrose, and A. D. Rubin. Efficient memory bound puzzles using pattern
databases. In Applied Cryptography and Network Security, 4th International Conference,
ACNS 2006, pages 98–113, 2006.

11. C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting
spam. In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 426–444. Springer, 2003.

12. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F.
Brickell, editor, Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture Notes
in Computer Science, pages 139–147. Springer, 1992.

13. W. Feng, E. Kaiser, W. Feng, and A. Luu. The design and implementation of network
puzzles. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2005), pages 2372–2382, 2005.

14. M. K. Franklin and D. Malkhi. Auditable metering with lightweight security. In
R. Hirschfeld, editor, Financial Cryptography, First International Conference, FC ’97,
Proceedings, volume 1318 of Lecture Notes in Computer Science, pages 151–160. Springer,
1997.

15. N.A. Fraser, D.J. Kelly, R.A. Raines, R.O. Baldwin, and B.E. Mullins. Using client
puzzles to mitigate distributed denial of service attacks in the tor anonymous routing
environment. Communications, 2007. ICC ’07. IEEE International Conference on, pages
1197–1202, 2007.

16. J. A. Garay and M. Jakobsson. Timed release of standard digital signatures. In
M. Blaze, editor, Financial Cryptography, 6th International Conference, FC 2002, volume
2357 of Lecture Notes in Computer Science, pages 168–182. Springer, 2002.

17. D. Goldschlag and S. Stubblebine. Publicly verifiable lotteries: Applications of delay-
ing functions. In FC ’98: Proceedings of the Second International Conference on Financial
Cryptography, pages 214–226. Springer-Verlag, 1998.

18. M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In CMS
’99: Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure Information
Networks, pages 258–272. Kluwer, B.V., 1999.

19. A. Jeckmans. Practical client puzzle from repeated squaring. Technical report,
Centre for Telematics and Information Technology, University of Twente, 2009.
http://eprints.eemcs.utwente.nl/15951/.

20. A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 1999, pages 151–165, 1999.

21. B. Laurie and R. Clayton. Proof-of-Work Proves not to Work. In Third Annual
Workshop on Economics of Information Security (WEIS04), 2004.

22. M. Lee and C. Fung. A public-key based authentication and key establishment
protocol coupled with a client puzzle. J. Am. Soc. Inf. Sci. Technol., 54(9):810–823,
2003.

23. Y. Lei, S. Pierre, and A. Quintero. Client puzzles based on quasi partial collisions
against DoS attacks in UMTS. Proceedings of the 64th IEEE Vehicular Technology Con-
ference, pages 1–5, 2006.

24. D. liu and L. Jean Camp. Proof of Work can Work. In Fifth Workshop on the Economics
of Information Security (WEIS06), 2006.

25. I. Martinovic, F. A. Zdarsky, M. Wilhelm, C. Wegmann, and J. B. Schmitt. Wireless
client puzzles in IEEE 802.11 networks: Security by wireless. In WiSec ’08: Proceedings
of the first ACM conference on Wireless network security, pages 36–45. ACM, 2008.

26. R. C. Merkle. Secure communications over insecure channels. Communications of the
ACM, pages 294–299, 1978.

27. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes, 55(2):91–101, 1994.

28. P. Ning, A. Liu, and W. Du. Mitigating dos attacks against broadcast authentication
in wireless sensor networks. ACM Transactions on Sensor Networks, 4(1), 2008.

29. D. R. Raymond and S. F. Midkiff. Denial-of-service in wireless sensor networks:
Attacks and defenses. IEEE Pervasive Computing, 7(1):74–81, 2008.

30. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technology,
1996.

31. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology — EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science,
pages 256–266. Springer, 1997.

32. S. M. Specht and R. B. Lee. Distributed denial of service: Taxonomies of attacks,
tools, and countermeasures. In D. A. Bader and A. A. Khokhar, editors, Proceedings
of the ISCA 17th International Conference on Parallel and Distributed Computing Systems,
September 15-17, 2004, The Canterbury Hotel, San Francisco, California, USA, pages
543–550. ISCA, 2004.

33. P. Syverson. Weakly secret bit commitment: Applications to lotteries and fair ex-
change. In CSFW ’98: Proceedings of the 11th IEEE workshop on Computer Security
Foundations, page 2. IEEE Computer Society, 1998.

34. S. Tritilanunt, C. Boyd, E. Foo, and J. M. González Nieto. Toward non-parallelizable
client puzzles. In Cryptology and Network Security, 6th International Conference, CANS
2007, pages 247–264, 2007.

35. X. Wang and M. K. Reiter. Defending against denial-of-service attacks with puzzle
auctions. In SP ’03: Proceedings of the 2003 IEEE Symposium on Security and Privacy,
page 78, Washington, DC, USA, 2003. IEEE Computer Society.

36. X. Wang and M. K. Reiter. Mitigating bandwidth-exhaustion attacks using conges-
tion puzzles. In CCS ’04: Proceedings of the 11th ACM conference on Computer and
communications security, pages 257–267, 2004.

37. X. Wang and M. K. Reiter. A multi-layer framework for puzzle-based denial-of-
service defense. International Journal of Information Security, pages 243–263, 2008.

38. B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle outsourcing
techniques for DoS resistance. In Proceedings of the 11th ACM Conference on Computer
and Communications Security, CCS 2004, pages 246–256, 2004.

	On Non-Parallelizable Deterministic Client Puzzle Scheme with Batch Verification Modes
	Qiang Tang and Arjan Jeckmans

