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Abstract

In this paper, we discuss a discontinuous Galerkin finite element method

for linear free surface gravity waves. We prove that the algorithm is

unconditionally stable and does not require additional smoothing or

artificial viscosity terms in the free surface boundary condition to pre-

vent numerical instabilities on a non-uniform mesh. A detailed error

analysis of the full time-dependent algorithm is given, showing that

the error in the wave height and velocity potential in the L2-norm is in

both cases of optimal order and proportional to O(4t2+hp+1), without

the need for a separate velocity reconstruction, with p the polynomial

order, h the mesh size and 4t the time step. The error analysis is

confirmed with numerical simulations. In addition, a Fourier analysis

of the fully discrete scheme is conducted which shows the dependence

of the frequency error and wave dissipation on the time step and mesh

size. The algebraic equations for the DG discretization are derived in

a way suitable for an unstructured mesh and result in a symmetric

positive definite linear system. The algorithm is demonstrated on a

number of model problems, including a wave maker, for discretizations

with accuracy ranging from second to fourth order.
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1 Introduction

For many applications with free surface gravity waves it is sufficient to con-

sider the fluid as incompressible, inviscid and irrotational. This greatly

simplifies the problem, resulting in a Laplace equation with a non-linear

free surface boundary condition, but the numerical solution of these equa-

tions still requires a delicate balance between the stability and accuracy

of the discretization. Otherwise, spurious waves and serious errors in the

wave propagation will occur. The theoretical analysis of free surface gravity

waves is fairly complete, for overviews see [17, 18, 23], and many different

numerical schemes have been developed over the past decades. Both for

linear and nonlinear free surface gravity waves the vast majority of numeri-

cal techniques have been boundary element methods, because they offer the

promise of a significant reduction in computational complexity by trans-

forming the problem into an integral equation using a Greens function tech-

nique. For problems requiring higher order accuracy, complex geometries

and, in particular, for non-linear free surface boundary conditions, the use

of finite element methods can, however, be computationally more efficient,

especially when combined with efficient iterative solution techniques to solve

the resulting system of algebraic equations, see for instance [4, 8, 24]. More

information about the asymptotic computational complexity of boundary

and finite element methods can be found in [8].

Finite element methods also offer the possibility to apply hp-adaptive

techniques, in which the mesh is locally refined (h-adaptation) or the order

of the polynomial basis functions is locally adjusted (p-adaptation). Due to

their local, element wise discretization discontinuous Galerkin (DG) finite el-

ement methods are well suited for this technique and combine excellent accu-

racy and parallel performance with great flexibility to adapt the mesh using

hp-adaptation. Discontinuous Galerkin methods for elliptic and parabolic

pde’s have been around already for quite some time and were known ini-

tially as interior penalty methods. Recently, they have seen a revival due

to their potential for hp-adaptive techniques. An excellent overview and de-

tailed analysis of DG-methods for elliptic partial differential equations can

be found in [2]. Further theoretical results on elliptic equations are discussed

in [3, 6, 7, 9, 10, 14].

Despite their great potential, the application of discontinuous Galerkin

finite element methods to free surface gravity waves has been very limited

and mainly restricted to the shallow water equations [15, 16]. As a first step

in the development of these algorithms we provide in this paper a complete

analysis of a discontinuous Galerkin finite element method for linear free
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surface gravity waves. This will provide essential information necessary for

the extension to non-linear free surface wave problems. After some prelim-

inaries, we start with the discussion of an efficient DG discretization for

linear free surface gravity waves. This requires the solution of the Laplace

equation, for which we have chosen the approach from Brezzi et al. [6], since

this method results in the most compact stencil with the smallest number

of non-zero entries, and uses data only from nearest neighboring elements.

The differences in complexity and performance with the local discontinuous

Galerkin method proposed by Cockburn and Shu [9, 10, 12] are, however,

small.

Next, we analyse the convergence and stability properties of the numer-

ical discretization in detail and give an a-priori error analysis of the free

surface wave height and potential. The application of finite element meth-

ods has been hampered by the occurrence of saw-tooth waves resulting from

a dependence of the stability on the smoothness of the mesh, for an overview

see [19]. In order to overcome this problem additional smoothing has been

suggested [24], viscosity terms were added to the free surface equation [19],

or a finite difference reconstruction of the free surface has been applied [22],

but none of these approaches are very appealing. The smoothing and viscos-

ity approaches unnecessarily damp the wave amplitude. The finite difference

approach is not attractive in general geometries and is not easily combined

with hp-adaptation.

We could identify as a significant source of the numerical instabilities

the weak coupling between the Laplace equation describing the velocity po-

tential and the free surface condition, which is generally updated after the

Laplace equation is solved. We will demonstrate that these numerical insta-

bilities can be removed by introducing the free surface boundary condition

directly into the weak formulation for the velocity potential. This results in

a fully coupled set of equations with a symmetric positive definite matrix.

The numerical scheme is unconditionally stable and has a very small numer-

ical dissipation, which is important to simulate water waves for a long period

of time. A nice feature of the proposed DG finite element discretization is

also that all boundary conditions are imposed weakly. This alleviates the

problems at the free surface - wave maker intersection which occur with stan-

dard node based finite element methods, where it is unclear which boundary

condition to impose at the intersection point.

The organization of this paper is as follows. In Section 2, we present

the equations governing linear free-surface gravity waves. We define the

tessellation, function spaces and traces in Section 3. Next, we derive the

discontinuous Galerkin discretization in Section 4. In Section 5, we analyse
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the stability and convergence of the discretization and provide an a-priori

error analysis. In Section 6 we derive the algebraic equations for the dis-

continuous Galerkin discretization. The effects of the DG method on the

dispersion and dissipation of free surface waves are analyzed in Section 7.

We conclude in Section 8 with a numerical study of some model problems

with discretizations ranging from second to fourth order accuracy.

2 Equations governing linear free-surface gravity

waves

Let us assume the fluid to be incompressible and inviscid, with the velocity

field irrotational. The flow domain Ω ⊂ R
3 is bounded by a free surface ΓS,

a solid boundary ΓN , and periodic boundaries ΓP , such that Γ̄S∪ Γ̄N ∪ Γ̄P =

∂Ω. We assume that ΓS and ΓN have a non-zero measure and the boundaries

ΓS , ΓN , and ΓP are non-overlapping and Lipschitz continuous. The free

surface ΓS is defined as ΓS := {(x, y) ∈ S | z = 0}, with S ⊂ R
2 and x, y, z

the coordinates in a standard Cartesian coordinate system. The flow domain

Ω is defined as Ω :=
{
(x, y, z) ∈ R

3 | − hb(x, y) < z < 0, ∀(x, y) ∈ S
}
, with

hb : S → R
+ ∪ {0} representing the bottom topography. We also assume

that the wave height ζ : S × [t0, tn] → R is a single valued function of

its arguments. Let φ : Ω × [t0, tn] → R denote the velocity potential and

u = ∇φ the fluid velocity. We make the various parameters dimensionless

by redefining them as:

φ→ H
√
Hgc φ, (x, y, z)→ H(x, y, z), t→

√
H

gc
t, and u→ u

√
Hgc,

where gc is the gravitational constant, H the average depth, and t denotes

time. The following equations then govern the flow field of linear free-surface

gravity waves:

−∆φ = 0 in Ω, n · ∇φ= gN at ΓN , (1)

with linear free surface boundary conditions at ΓS:

∂φ

∂t
+ ζ = 0, and

∂ζ

∂t
− n · ∇φ= 0, (2)

and periodic boundary conditions at ΓP :

φ(x+ Lx, y + Ly, z, t) = φ(x, y, z, t). (3)

Here, n ∈ R
3 is the unit outward normal vector to ∂Ω, gN : ΓN → R the

prescribed normal velocity at ΓN , and Lx, Ly the length of the periodic
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domain in the x- and y-directions. For analysis purposes, and in order to

obtain an efficient discretization technique, it is beneficial to transform (2)

into a single equation for φ at ΓS :

∂2φ

∂t2
+ n · ∇φ = 0. (4)

As initial conditions, we either start without any waves with φ(x, y, z, t0) =

ζ(x, y, z, t0) = 0 and the waves are generated by the wave maker by speci-

fying a periodic normal velocity at ΓN ; or, we start with an analytic wave

field in a periodic domain and φ, ζ are known at initial time.

Note, if we change φ → φ + c, with c ∈ R an arbitrary constant, then

the equations and boundary conditions (1), (3) and (4) remain unchanged.

Hence, the potential φ is undetermined up to an arbitrary constant.

3 Tessellation, function spaces and traces

Let Th denote a tessellation of Ω with shape-regular elements K, with max-

imum diameter h. Conditions to ensure that elements are shape regular can

be found in e.g. [5, 11]. For simplicity we assume that Ω is a polyhedral do-

main. Let Γ denote the union of the boundary faces of the elements K ∈ Th,

i.e. Γ =
⋃

K∈Th
∂K, and Γ0 = Γ \ ∂Ω. We denote the set of all faces in Th

by {Fh}, all internal faces by
{
FI

h

}
, faces on ΓN by

{
FN

h

}
, faces on ΓS by{

FS
h

}
, and faces on ∂Ω by

{
F∂

h

}
. Note, faces at ΓP are considered internal

faces, where the periodicity relation (3) is used to connect the external part

of ΓP to the interior of the domain Ω.

For a general domain Ω ⊂ R
d, with d = dim(Ω), we use the standard

definition for the Sobolev space Hs(Ω), s ∈ R, for real valued functions, see

[5]. For s = 0, the Sobolev space Hs(Ω) is denoted as L2(Ω), with inner

product and norm

(u, v)Ω =

∫

Ω
uvdx, ||v||0,Ω = (v, v)

1

2

Ω,

and for m ≥ 0, integer, we define the Hm(Ω) norm and semi-norm as:

||v||m,Ω :=
( ∑

|α|≤m

||Dαv||20,Ω

) 1

2

, |v|m,Ω :=
( ∑

|α|=m

||Dαv||20,Ω

) 1

2

,

where Dα = (∂/∂x1)
α1 · · · (∂/∂x1)

αd denotes an arbitrary derivative with

multi-index symbol α = (α1, · · · , αd), αi ∈ N ∪ {0} and |α| = ∑d
j=1 αj . We

also introduce the space V , which is defined as:

V :=
{
v ∈ H1(Ω)

∣∣∣
∫

Ω
vdx = 0

}
.
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Now we introduce the finite element spaces associated with the tessellation

Th. We denote with H l(Th), l ∈ Z, the space of functions such that their

restriction to each element K ∈ Th belongs to the Sobolev space H l(K). Let

Pp (K) be the space of polynomials of degree at most p ≥ 1 on K ∈ Th. We

define the spaces V p
h and Σp

h as:

V p
h :=

{
v ∈ L2(Ω)

∣∣∣ v|K ∈ Pp(K), ∀K ∈ Th

}
,

Σp
h :=

{
σ ∈ [L2(Ω)]d

∣∣∣ σ|K ∈ [Pp(K)]d, ∀K ∈ Th
}
,

with d = dim(Ω). For consistency reasons, we need to assume that ∇V p
h ⊂

Σp
h.

The traces of functions in H l(Th) belong to T (Γ) :=
∏

K∈Th
H l− 1

2 (∂K).

Functions in T (Γ) are double-valued on Γ0 and single-valued on ∂Ω. Next,

we introduce some trace operators to manipulate the numerical fluxes in the

discontinuous Galerkin formulation. For v ∈ T (Γ), we define the average

〈v〉 and jump [[v ]] operators of v at an internal face F ∈ F I
h as follows:

〈v〉 :=
1

2
(vL + vR) , [[v ]] := vLnL + vRnR, (5)

with vL := v|∂KL
and vR := v|∂KR

, and KL, KR the elements connected to

the face F I with unit outward normal vectors nL and nR, respectively. For

q ∈ [T (Γ)]d we similarly define qL and qR and set:

〈q〉 =
1

2
(qL + qR), [[q ]] = qL · nL + qR · nR, at F ∈ F I

h . (6)

For F ∈ F∂
h , the set of exterior boundary faces, each v ∈ T (Γ) and q ∈

[T (Γ)]d has a uniquely defined restriction on F ; and we define:

[[v ]] = vn, 〈q〉 = q at F ∈ F∂
h . (7)

Since we do not require either of the quantities 〈v〉 or [[q ]] on boundary faces,

we leave them undefined.

For the definition of the primal DG formulation we need to define the

lifting operators: L : L2(Γ0)→ Σp
h and R : [L2(Γ)]d → Σp

h:
∫

Ω
L(q) · σdx =

∫

Γ0

q [[σ ]] ds, ∀σ ∈ Σp
h, (8)

∫

Ω
R(q) · σdx =

∫

Γ
q · 〈σ〉 ds, ∀σ ∈ Σp

h, (9)

and for a face F ∈ Fh also the local lifting operator RF :
[
L2 (F)

]d → Σp
h:

∫

Ω
RF (q) · σdx =

∫

F
q · 〈σ〉 ds, ∀σ ∈ Σp

h. (10)
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Note that RF (q) vanishes outside the elements connected to the face F and

that for a particular element K ∈ Th we have the relation:

R (q) =
∑

F∈Fh

RF (q) , ∀q ∈
[
L2 (Γ)

]d
. (11)

We can now define the following mesh-dependent norms and semi-norms for

v ∈ Hm(Th), with m ≥ 0, integer:

||v||2m,h :=
∑

K∈Th

||v||2m,K , |v|2m,h :=
∑

K∈Th

|v|2m,K ,

|v|2∗ :=
∑

F∈Fh

||RF ([[v ]])||20,Ω ,

|v|21,h,∗ := |v|21,h + |v|2∗ , (12)

and for v ∈ V (h) := H1(Th) + V ⊂ H2(Th):

|||v|||2 := |v|21,h +
∑

K∈Th

h2
K |v|22,K + |v|2∗ . (13)

Note, for v ∈ V (h), both (12) and (13) define norms, not just semi-norms,

also in the case h = 0. This follows directly from the discrete Poincaré-

Friedrichs inequality, see [1], equation (2.2) (which can be straightforwardly

extended to general convex elements with a Lipschitz continuous boundary),

and estimate (4.5) in [2], which together imply:

||v||0,Ω ≤ C(|v|21,h + |v|2∗)
1

2 , ∀v ∈ V (h),

with C a positive constant independent of v. In addition, the H 1(Ω) semi-

norm is a norm in V when Ω is a bounded Lipschitz domain due to the

Poincaré-Friedrichs inequality (see [13], Page 127). Note, restricted to v ∈
V (h) the norm |v|1,h,∗ is, for finite h, equivalent with the DG-norm |||v|||,
which follows directly from a local inverse inequality (see [5], Section 4.5).

4 Discontinuous Galerkin formulation

In this section we summarize the derivation of the discontinuous Galerkin

finite element discretization for linear free-surface gravity waves given by

(1), (3) and (4). We will follow the approach from Brezzi et al. [6], which

is analyzed in detail in [2]. First, we transform the Laplace equation into a

first order system of equations:

u = ∇φ, −∇ · u = 0, in Ω, (14)
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where u represents the fluid velocity and φ the potential. Multiplying (14)

with arbitrary test functions σ ∈ Σp
h and v ∈ V p

h , integrating by parts over

each element K ∈ Th (twice for (15)), and adding over all elements in Th,

we obtain for uh ∈ Σp
h and φh ∈ V p

h the relation:
∫

Ω
uh · σdx =

∑

K∈Th

∫

K

∇hφh · σdx+
∑

K∈Th

∫

∂K

(φ̂K − φh)σ · nKds, (15)

−
∑

K∈Th

∫

K

(∇h · uh)vdx =
∑

K∈Th

∫

K

uh · ∇hvdx−
∑

K∈Th

∫

∂K

nK · ûKvds = 0,

(16)

for ∀σ ∈ Σp
h and ∀v ∈ V p

h , where ∇h = ∇|K for all K ∈ Th. Here, the

numerical fluxes û(u) and σ̂(∇hu, σh), defined as:

û : H1(Th)→ T (Γ), σ̂ : H2(Th)× [H1(Th)]d → [T (Γ)]d,

are introduced to account for the multivalued trace at Γ. The different

discontinous Galerkin formulations proposed so far in the literature can all

be derived by specifying these numerical fluxes. A full account is given in

[2]. In order to simplify the sums over the element boundaries ∂K, we use

identity (3.3) in [2], which states:

∑

K∈Th

∫

∂K

ϕKqK · nKds =

∫

Γ
[[ϕ ]] · 〈q〉 ds+

∫

Γ0

〈ϕ〉 [[q ]] ds, (17)

∀ϕ ∈ T (Γ) and q ∈ [T (Γ)]d. If we introduce (17) into (15–16) we obtain:
∫

Ω
uh · σdx =

∫

Ω
∇hφh · σdx+

∫

Γ

[[
φ̂− φh

]]
· 〈σ〉 ds+

∫

Γ0

〈
φ̂− φh

〉
[[σ ]] ds

(18)
∫

Ω
uh · ∇hvdx−

∫

Γ
[[v ]] · 〈û〉 ds−

∫

Γ0

〈v〉 [[û ]] ds = 0. (19)

The numerical fluxes in the DG formulation from Brezzi et al. [6] are defined

as:

φ̂ =

{
〈φh〉 on Γ0,

φh on ΓN ∪ ΓS ,
(20)

û = 〈uh〉 − αr ([[φh ]]) on Γ0, (21)

û · n = gN on ΓN , (22)

û · n = −∂
2φ

∂t2
on ΓS, (23)
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where αr (q) = ηF 〈RF (q)〉 for F ∈ F I
h , ηF ∈ R

+ a positive number, and

gN ∈ H
1

2 (ΓN ) the prescribed Neumann boundary data. If we introduce the

relations for the lifting operators (8-9) into (18), we obtain the following

equation for uh, almost everywhere:

uh = ∇hφh +R
([[

φ̂− φh

]])
+ L

(〈
φ̂− φh

〉)
. (24)

The weak formulation for the potential φh is now obtained by introducing

the relation (24) for uh, the numerical fluxes (20–22), and the boundary

conditions (1) and (4) into (19):

Find a φh ∈ V p
h × (C2(t0, tn) ∩ C1[t0, tn]), such that for all v ∈ V p

h , the

following relation is satisfied:

∫

Ω
∇hφh · ∇hvdx+

∫

Γ0

[[
φ̂− φh

]]
· 〈∇hv〉 ds+

∫

Γ0

〈
φ̂− φh

〉
· [[∇hv ]] ds−

∫

Γ0

[[v ]] · 〈û〉 ds−
∫

Γ0

〈v〉 · [[û ]] ds+

∫

ΓS

v
∂2φh

∂t2
ds−

∫

ΓN

vgNds = 0. (25)

Here we used (8-9) to transform integrals over Ω with the lifting operators

into boundary integrals over Γ. Using the definitions of the jump and average

operators (5–7), the numerical fluxes (20–22), and the lifting operators (8-9),

we can transform the following integrals along Γ0 in (25) into:
∫

Γ0

[[
φ̂− φh

]]
· 〈∇hv〉 ds = −

∫

Γ0

[[φh ]] · 〈∇hv〉 ds
∫

Γ0

[[v ]] · 〈û〉 ds =

∫

Γ0

[[v ]] · 〈∇hφh〉 ds+
∑

F∈FI

∫

Ω
RF ([[v ]]) · R

([[
φ̂− φh

]])
dx−

∑

F∈FI

ηF

∫

Ω
RF ([[v ]]) · RF ([[φh ]])ds, (26)

while the other integrals along Γ0 are zero. The integrand in the second in-

tegral at the righthand of (26), increases the stencil of the DG discretization

for each element K beyond its nearest neighbors. Using (11), the fact that[[
φ̂− φh

]]
= 0 at ΓN ∪ΓS, and the relation

[[
φ̂− φh

]]
= − [[φh ]] at Γ0, we

can approximate this contribution as:

∑

F∈FI

∫

Ω
RF ([[v ]]) · R

([[
φ̂− φh

]])
dx ∼=

− nf

∑

F∈FI

∫

Ω
RF ([[v ]]) · RF ([[φh ]]) dx,

9



with nf the number of faces of an element in the tessellation, e.g. nf = 6 for

hexahedral elements. This approximation has no effect on the accuracy and

stability of the DG discretization, see Section 5.1, and the stencil now only

contains contributions from the element itself and its nearest neighbors.

If we introduce the bilinear form B0
h : V p

h × V
p
h → R and the linear form

Lh : V p
h → R, which are defined as:

B0
h(φh, ψh) =

∫

Ω
∇hφh · ∇hψhdx−

∫

Γ0

(
[[φh ]] · 〈∇hψh〉+ [[ψh ]] · 〈∇hφh〉

)
ds

+
∑

F∈FI
h

(ηF + nf )

∫

Ω
RF ([[φh ]]) · RF ([[ψh ]])dx, (27)

Lh(ψh) =

∫

ΓN

gNψhdx,

then the semi-discrete weak formulation for linear free-surface gravity waves

can be formulated as:

Find a φh ∈ V p
h × (C2(t0, tn) ∩ C1[t0, tn]), such that for all v ∈ V p

h , the

following relation is satisfied:

Bh(φh, v) :=
(∂2φh

∂t2
, v
)

ΓS

+B0
h(φh, v) = Lh(v). (28)

For the fully discrete weak formulation, we introduce the following backward

difference approximations to ∂φh/∂t at t = tn:

ς1h :=
1

4t(φ
1
h − φ0

h),

ςnh :=
1

4t(
3

2
φn

h − 2φn−1
h +

1

2
φn−2

h ), for n ≥ 2,

with φn
h = φh(tn). The weak formulation for the potential φn

h can now be

formulated as:

Find a φn
h, ς

n
h ∈ V

p
h , such that for all v1, v2 ∈ V p

h , the following relation is

satisfied for n ≥ 2:

3

24t
(
ςnh , v1

)
ΓS

+B0
h(φn

h, v1) = Ln
h(v1) (29)

3

24t
(
φn

h, v2

)
ΓS

−
(
ςnh , v2

)
ΓS

=
1

4t
(
2φn−1

h − 1

2
φn−2

h , v2

)
ΓS

, (30)

and for n = 1:

1

4t
(
ς1h, v1

)
ΓS

+B0
h(φ1

h, v1) = L1
h(v1) (31)

1

4t
(
φ1

h, v2

)
ΓS

−
(
ς1h, v2

)
ΓS

=
1

4t
(
φ0

h, v2

)
ΓS

. (32)
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Here Ln
h(v1) is defined as:

L1
h(v1) := Lh(v1) +

1

4t
(
ς0h, v1

)
ΓS

(33)

Ln
h(v1) := Lh(v1) +

1

4t
(
2ςn−1

h − 1

2
ςn−2
h , v1

)
ΓS

for n ≥ 2. (34)

Note, using (2) we have the relation ςn
h = −ζn

h , with ζ the wave height.

For the numerical simulations and part of the theoretical analysis it is

beneficial to eliminate ςnh , since this will result in a positive definite linear

system for the expansion coefficients of the potential φn
h. We rewrite the

weak formulations (29–32) therefore as:

Find a φn
h ∈ V

p
h , such that for all v ∈ V p

h and n ≥ 2, the following relation

is satisfied:

Bn
h(φn

h, v) :=
9

44t2
(
φn

h, v
)
ΓS

+B0
h(φn

h, v)

=Ln
h(v) +

1

4t2 (3φn−1
h − 3

4φ
n−2
h , v)ΓS

, (35)

and for n = 1:

B1
h(φ1

h, v) :=
1

4t2 (φ1
h, v)ΓS

+B0
h(φ1

h, v) = L1
h(v) +

1

4t2 (φ0
h, v)ΓS

. (36)

5 Stability and error analysis

5.1 Accuracy and stability of spatial discretization

The proof of stability and the error analysis of the DG discretization for

linear free-surface gravity waves strongly uses the results obtained in [6],

and we refer for more details to [2].

We summarize the following theoretical results, which will be partly

needed in the proof of stability and the error estimate for the fully discrete

scheme discussed in Section 5.2:

Lemma 5.1 Suppose that Ω ⊂ Rd is a bounded Lipschitz domain, then for

any 4t > 0 the bilinear form Bn
h , given by (35-36), is bounded, coercive for

any v ∈ V (h) and η = minF∈Fh
ηF > 0. In addition, it is consistent, adjoint

consistent, and there exists a positive constant C, independent of h and φn,

such that for any φn
h ∈ V

p
h the following error estimate holds:

||φn − φn
h||0,Ω ≤Chp+1 |φn|p+1,Ω (37)

|||φn − φn
h||| ≤Chp |φn|p+1,Ω . (38)

11



Proof:

• Boundedness of B0
h(φh, v) has been proven in [6] and [2]. Using the

Schwarz inequality and applying the trace theorem on each element

K ∈ Th connected to ΓS , we also obtain:

|(φn
h, v
)
ΓS
| ≤CΓS

||v||1,h ||φn||1,h ,

hence:

|Bn
h (φn

h, v)| ≤C |||φn
h||| |||v||| .

Here, we used the Poincaré-Friedrichs inequality to establish the equiv-

alence of the ||v||1,h norm with |v|1,h, and the fact that for finite h the

norms (12) and (13) are equivalent.

• Coercivity of B0
h(φh, φh) with homogeneous Dirichlet conditions in the

|v|1,h,∗ norm was proven in [6] for triangles under the condition η > 0.

A careful tracing of the proof in [6] shows that for general shape regular

elements with nf faces the same proof applies to B0
h defined in (27),

we only need to use the relation:

‖R (q)‖20,K ≤ nf

∑

F∈∂K

‖RF (q)‖20,K , (39)

instead of (43) in [6], which is obtained by applying the arithmetic

inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 (ai)

2 and (11). This implies that for

finite h > 0 coercivity is ensured if η > 0, hence:

α |||φn
h|||2 ≤ B0

h(φn
h, φ

n
h), ∀φn

h ∈ V p
h , (40)

with α = min(1−ε, η+nf− nf

ε
) and ε ∈ (

nf

η+nf
, 1) an arbitrary number.

For h = 0 we need to apply the Poincaré-Friedrichs inequality, which

ensures that in the space V the H1 semi-norm is actually a norm, see

also [5], Section 5.3. The coercivity of Bn
h(φn

h, φ
n
h), for all φn

h ∈ V
p
h and

4t > 0 is then immediate:

α |||φn
h|||2 ≤ B0

h(φn
h, φ

n
h) +

9

44t2 ||φ
n
h||20,ΓS

= Bn
h (φn

h, φ
n
h). (41)

• Consistency of Bn
h(φn

h, v), ∀φn
h, v ∈ V

p
h , follows directly from the consis-

tency of B0
h(φn

h, v), see [2]. This also implies the orthogonality relation:

Bn
h (φn − φn

h, v) = 0, ∀v ∈ V p
h .

12



• For Adjoint Consistency we consider the adjoint problem:

−∆ψ = 0, in Ω

n · ∇ψ = 0, at ΓN , n · ∇ψ +
9

44t2ψ = 0, at ΓS,

which is obtained if we introduce w,ψ ∈ V p
h into (35) and integrate by

parts:

Bn
h (w,ψ) = 0, ∀w ∈ V p

h ,

hence the DG discretization is adjoint consistent.

• The DG and L2 approximation error (37–38) are obtained analogously

to [2] using the coercivity, boundedness, and orthogonality properties

of B0
h(φn

h, ψ
n
h). In addition we use the trace theorem for the free-surface

contribution
(
φn

h, v
)
ΓS

. 2

Due to the coercivity, symmetry and boundedness of the bilinear form

B0
h(φh, ψh) we can also define the following inner product:

((φh, ψh))Ω,h :=B0
h(φh, ψh), ∀φh, ψh ∈ V p

h , (42)

with induced norm:

|||φh|||2DG = ((φh, φh))Ω,h . (43)

Note, for h = 0 we have ((φ, ψ))Ω,h = (∇φ,∇ψ)Ω, which is also an inner

product for all φ, ψ ∈ V due to the Poincaré-Friedrichs inequality. The norm

|||φh|||DG is for finite h equivalent with the norm |||φh|||.
We also define the Ritz-Galerkin projection Rh : V → V p

h , with respect to

the inner product ((·, ·))Ω,h, so that

((Rhφ, ψ))Ω,h = ((φ, ψ))Ω,h , ∀ψ ∈ V p
h . (44)

5.2 Stability and error estimate of fully discrete scheme

The following theorem proves stability and provides an error estimate for

the fully discrete DG formulation. For the proof we follow the same strategy

as outlined in [21], Chapter 1.

Theorem 5.2 Let Ω ⊂ Rd be a bounded Lipschitz domain and φn
h, ςnh , be

solutions of (29–34), with ς0h = −ζ0 and
∣∣∣∣Rhς

0 − ς0
∣∣∣∣

0,ΓS
≤ Chr+1 |ς|r+1,ΓS

for any φ ∈ Hr+1(Th) × (C4(t0, tn) ∩ C3[t0, tn])) with r ≥ 1, and η =

13



minF∈Fh
ηF = 1

4t
, then the discontinuous Galerkin discretization is sta-

ble and we have the following error estimate for the wave height ζn
h and

potential φn
h at time level tn for n ≥ 0, n integer:

||ζn − ζn
h ||0,ΓS

≤ Chr+1
(
4

∫ tn

t0

|ζ,t|r+1,ΓS
ds+

5

2

∫ t1

t0

|ζ,t|r+1,ΓS
ds
)

+
5

2
4t2

∫ tn

t0

||ζ,ttt||0,ΓS
ds+

5

2
4t
∫ t1

t0

||ζ,tt||0,ΓS
ds

+ Ca4t hr+1
(∣∣ζ0

∣∣
r+1,ΓS

+

∫ tn

t0

|ζ,t|r+1,ΓS
ds
)

|||φn − φn
h||| ≤ CΓS

(
Chr+1

(
16

∫ tn

t0

|ζ,t|r+1,ΓS
ds+ 10

∫ t1

t0

|ζ,t|r+1,ΓS
ds

+ 2

∫ tn

tn−2

|ζ,t|r+1,ΓS
ds
)

+ 104t2
∫ tn

t0

||ζ,ttt||0,ΓS
ds

+ 104t2
∫ t1

t0

||ζ,tt||0,ΓS
ds+

5

4
4t2

∫ tn

tn−2

||ζ, ttt||0,ΓS
ds
)

+ Ca4t hr
(∣∣φ0

∣∣
r+1,Ω

+

∫ tn

t0

|φ,t|r+1,Ω ds
)
.

Remark 5.3 If we assume that the velocity potential φn is sufficiently regu-

lar, e.g. φ ∈ H2(Th), then using the adjoint consistency of Bn
h and a duality

argument [2] it is straightforward to show that:

||φn − φn
h|| ≤ Ch |||φn − φn

h|||0,Ω .

Proof: Introduce:

φn
h − φn =(φn

h −Rhφ
n) + (Rhφ

n − φn) := θn
1 + ρn

1 , (45)

ςnh − ςn =(ςnh −Rhς
n) + (Rhς

n − ςn) := θn
2 + ρn

2 , (46)

with Rh the Ritz-Galerkin projection defined in (44). First, we will derive

bounds for θn
1 and θn

2 . Consider the following relation for n ≥ 2:

(D̄θn
2 , v1)ΓS

+B0
h(θn

1 , v1) = (D̄ςnh , v1)ΓS
− (D̄Rhς

n, v1)ΓS
+B0

h(φn
h, v1)−

B0
h(Rhφ

n, v1)

= Lh(v1)− ((Rhφ
n, v1))Ω,h − (D̄Rhς

n, v1)ΓS
(47)

= Lh(v1)− ((φn, v1))Ω,h − (RhD̄ς
n, v1)ΓS

(48)

=
(∂ςn
∂t

, v1
)
ΓS
−
(
RhD̄ς

n, v1)ΓS
(49)

= −
(
(Rh − I)D̄ςn, v1

)
ΓS
−
(
D̄ςn − ∂ςn

∂t
, v1
)
ΓS

14



:= −(ωn
1 , v1)ΓS

− (ωn
2 , v1)ΓS

, ∀v ∈ V p
h , (50)

with D̄θn
2 = (3

2θ
n
2−2θn−1

2 + 1
2θ

n−2
2 )/4t, I the identity operator, and ∂ςn

∂t
= ∂ς

∂t

at t = tn. Here we used in (47) equations (29) and (34), and the definition

of the inner product (42). In (48) we used (44) and the linearity of Rh, and

finally in (49), we used the consistency of B0
h ((3.13) in [2]), which implies

((φn, v1))Ω,h = (∇φn,∇hv1)Ω, ∀v1 ∈ V p
h , and (28) for h = 0 with ς = ∂φ

∂t
.

Similarly, we obtain with ∂̄θn = (θn − θn−1)/4t the relation:

(∂̄θ1
2, v1)ΓS

+B0
h(θ1

1, v1) = −(ω1
1 , v1)ΓS

− (ω1
2 , v1)ΓS

, (51)

with ω1
1 = (Rh − I)∂̄ς1 and ω1

2 = ∂̄ς1 − ∂ς1

∂t
. We use now the following

relation ([21], (1.52), page 18):

4t(∂̄θ1
2, θ

1
2)ΓS

+4t
n∑

j=2

(D̄θj
2, θ

j
2)ΓS

≥ 3

4
||θn

2 ||20,ΓS
− 1

4
(
∣∣∣∣θn−1

2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ1

2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ0

2

∣∣∣∣2
0,ΓS

). (52)

Take v1 = θn
2 in (50–51), and sum over all time levels:

4t(∂̄θ1
2, θ

1
2)ΓS

+4t
n∑

j=2

(D̄θj
2, θ

j
2)ΓS

+4t
n∑

j=1

B0
h(θj

1, θ
j
2)

= −4t
n∑

j=1

(ωj
1 + ωj

2, θ
j
2)ΓS

, (53)

which, combined with inequality (52), results in the estimate:

||θn
2 ||20,ΓS

+
4

3
4t

n∑

j=1

B0
h(θj

1, θ
j
2) ≤

1

3

(∣∣∣∣θn−1
2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ1

2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ0

2

∣∣∣∣2
0,ΓS

)

− 4

3
4t

n∑

j=1

(ωj
1 + ωj

2, θ
j
2)ΓS

. (54)

Note, inequality (54) is valid for arbitrary values of θj
1 ∈ V

p
h , (j = 1, · · · , n),

which follows directly from the fact that (52) does not depend on θj
1. We

can take therefore the supremum of (54) for all values of θj
1 and obtain the
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following estimate for ||θn
2 ||0,ΓS

:

||θn
2 ||20,ΓS

+
4

3
4t

n∑

j=1

sup
06=θ

j
1
∈V

p
h

((
θj
1, θ

j
2

))
Ω,h

|||θj
1|||

∣∣∣∣∣∣θj
1

∣∣∣∣∣∣

≤ 1

3

(∣∣∣∣θn−1
2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ1

2

∣∣∣∣2
0,ΓS

+
∣∣∣∣θ0

2

∣∣∣∣2
0,ΓS

)

+
4

3
4t

n∑

j=1

(∣∣∣
∣∣∣ωj

1

∣∣∣
∣∣∣
0,ΓS

+
∣∣∣
∣∣∣ωj

2

∣∣∣
∣∣∣
0,ΓS

) ∣∣∣
∣∣∣θj

2

∣∣∣
∣∣∣
0,ΓS

.

Suppose m is chosen so that ||θm
2 ||0,ΓS

= max0≤j≤n

∣∣∣
∣∣∣θj

2

∣∣∣
∣∣∣
0,ΓS

, and using the

Riesz representation theorem, which implies:

sup
06=θ

j
1
∈V

p
h

((
θj
1, θ

j
2

))
Ω,h

|||θj
1|||

=
∣∣∣∣∣∣θj

2

∣∣∣∣∣∣,

we obtain the following bound:

||θn
2 ||0,ΓS

≤ ||θm
2 ||0,ΓS

≤ 1

2

(∣∣∣∣θ1
2

∣∣∣∣
0,ΓS

+
∣∣∣∣θ0

2

∣∣∣∣
0,ΓS

)
+ 24t

n∑

j=1

(∣∣∣
∣∣∣ωj

1

∣∣∣
∣∣∣
0,ΓS

+
∣∣∣
∣∣∣ωj

2

∣∣∣
∣∣∣
0,ΓS

)
,

since
∑n

j=1

∣∣∣∣∣∣θj
1

∣∣∣∣∣∣ ∣∣∣∣∣∣θj
2

∣∣∣∣∣∣≥ 0. Using a similar analysis, but now only re-

stricted to (51), we obtain the inequality:

∣∣∣∣θ1
2

∣∣∣∣
0,ΓS
≤
∣∣∣∣θ0

2

∣∣∣∣
0,ΓS

+4t
(∣∣∣∣ω1

1

∣∣∣∣
0,ΓS

+
∣∣∣∣ω1

2

∣∣∣∣
0,ΓS

)
.

If we choose ς0h = Rhς
0 as initial field, then

∣∣∣∣θ0
2

∣∣∣∣
0,ΓS

= 0, and the estimate

for ||θn
2 ||0,ΓS

can be further simplified into:

||θn
2 ||0,ΓS

≤ 24t
n∑

j=1

(∣∣∣∣ωj
1

∣∣∣∣
0,ΓS

+
∣∣∣∣ωj

2

∣∣∣∣
0,ΓS

)
+

1

2
4t(

∣∣∣∣ω1
1

∣∣∣∣
0,ΓS

+
∣∣∣∣ω1

2

∣∣∣∣
0,ΓS

).

(55)

For a bound on |||θn
1 ||| we use (50–51) with v1 = θn

1 , the coercivity estimate

(40) for B0
h(θn

1 , θ
n
1 ), and the trace theorem with constant CΓS

:

α |||θn
1 |||2 ≤ |(D̄θn

2 , θ
n
1 )ΓS
|+ |(ωn

1 , θ
n
1 )ΓS
|+ |(ωn

2 , θ
n
1 )ΓS
|

≤CΓS

( 1

4t
(3

2
||θn

2 ||0,ΓS
+ 2

∣∣∣∣θn−1
2

∣∣∣∣
0,ΓS

+
1

2

∣∣∣∣θn−2
2

∣∣∣∣
0,ΓS

)
+

||ωn
1 ||0,ΓS

+ ||ωn
2 ||0,ΓS

)
|||θn

1 ||| . (56)
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Combining (55) and (56) gives the estimate:

|||θn
1 ||| ≤

CΓS

α

(
2
(∣∣∣∣ω1

1

∣∣∣∣
0,ΓS

+
∣∣∣∣ω1

2

∣∣∣∣
0,ΓS

)
+ ||ωn

1 ||0,ΓS
+ ||ωn

2 ||0,ΓS

+ 8

n∑

j=1

(∣∣∣∣ωj
1

∣∣∣∣
0,ΓS

+
∣∣∣∣ωj

2

∣∣∣∣
0,ΓS

))
for n ≥ 1. (57)

Estimates for ||ωn
1 ||0,ΓS

, n ≥ 2, can be obtained using the following relation:

ωn
1 =

1

4t(Rh − I)(
3

2
ςn − 2ςn−1 +

1

2
ςn−2)

=
3

24t

∫ tn

tn−1

(Rh − I)ς,tds−
1

24t

∫ tn−1

tn−2

(Rh − I)ς,tds.

If we restrict Rhς to ΓS and use the standard local approximation property:

||u−Rhu||0,ΓS
≤ Chr+1

K |u|r+1,ΓS
,

with r ≥ 1 the highest index of the Sobolev space for which ς ∈ H r+1(Th),

then we obtain the following estimates:

n∑

j=2

||ωn
1 ||0,ΓS

≤ 2

4t

∫ tn

t0

||(Rh − I)ς,t||0,ΓS
ds

≤ 2Chr+1

4t

∫ tn

t0

|ς,t|r+1,ΓS
ds, (58)

∣∣∣∣ω1
1

∣∣∣∣
0,ΓS
≤ Ch

r+1

4t

∫ t1

t0

|ς,t|r+1,ΓS
ds, (59)

||ωn
1 ||0,ΓS

≤ 2Chr+1

4t

∫ tn

tn−2

|ς,t|r+1,ΓS
ds, for n ≥ 2. (60)

Estimates for ||ωn
2 ||0,ΓS

can be obtained using a Taylor series expansion with

remainder, see also ([21], (1.52), pages 14–17), yielding:

∣∣∣∣ω1
2

∣∣∣∣
0,ΓS
≤
∫ t1

t0

||ς,tt||0,ΓS
ds, (61)

∣∣∣∣ωn
2

∣∣∣∣
0,ΓS
≤ 5

4
4t
∫ tn

tn−2

||ς,ttt||0,ΓS
ds, for n ≥ 2. (62)

n∑

j=1

∣∣∣∣ωj
2

∣∣∣∣
0,ΓS
≤ 5

4
4t
∫ tn

t0

||ς,ttt||0,ΓS
ds+

∫ t1

t0

||ς,tt||0,ΓS
ds. (63)
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If we introduce (58-59) and (61-63) into (55) we obtain the final bound for

||θn
2 ||ΓS

:

||θn
2 ||0,ΓS

≤ Chr+1
(
4

∫ tn

t0

|ς,t|r+1,ΓS
ds+

5

2

∫ t1

t0

|ς,t|r+1,ΓS
ds
)

+
5

2
4t2

∫ tn

t0

||ς,ttt||0,ΓS
ds+

5

2
4t
∫ t1

t0

||ς,tt||0,ΓS
ds.

Similarly, introducing (58–63) into (57) and taking α = 1
4t

, which implies

that the stabilization parameter η must satisfy η = 1
4t

, results in the bound

for |||θn
1 |||:

|||θn
1 ||| ≤ CΓS

(
Chr+1

(
16

∫ tn

t0

|ς,t|r+1,ΓS
ds+ 10

∫ t1

t0

|ς,t|r+1,ΓS
ds

+ 2

∫ tn

tn−2

|ς,t|r+1,ΓS
ds
)

+ 104t2
∫ tn

t0

||ς,ttt||0,ΓS
ds

+ 104t2
∫ t1

t0

||ς,tt||0,ΓS
ds+

5

4
4t2

∫ tn

tn−2

||ς,ttt||0,ΓS
ds
)

Estimates for ρn
1 and ρn

2 are obtained using the definition of the DG-norm

(43), the coercivity and boundedness of Bn
h(φn

h, v), see Lemma 5.1, and

interpolation estimate (4.22) in [2] (which can be straightforwardly extended

to general convex elements with a Lipschitz boundary), with v = uI an

elementwise discontinuous interpolant:

|||ρn
1 ||| = |||Rhφ

n − φn||| ≤ Ca

α
min
v∈V

p

h

|||φn − v||| ≤ Ca

α
hr |φn|r+1,Ω

≤ Ca

α
hr
(∣∣φ0

∣∣
r+1,Ω

+

∫ tn

t0

|φ,t|r+1,Ω ds
)
.

Similarly, when we restrict Rhφ
n to the surface ΓS , we obtain the estimate:

||ρn
2 ||0,ΓS

≤ Ca

α
hr+1

(∣∣ς0
∣∣
r+1,ΓS

+

∫ tn

t0

|ς,t|r+1,ΓS
ds
)
.

Using the relation ςn = −ζn completes the proof. 2

6 Algebraic system for the discontinuous Galerkin

discretization

The algebraic equations for the discontinuous Galerkin formulation (29-34)

are obtained by representing the potential function φn
h ∈ V

p
h in each element
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K ∈ Th with the following polynomial representation:

φn
h(x) =

Np∑

j=1

φK,jNK,j(x), ∀x ∈ K, (64)

with Np the number of polynomial coefficients in the DG discretization. The

polynomial order p is chosen equal to 1, 2 or 3. Similar expressions are used

for the time-derivative of the potential function ςn
h and the test functions

v1, v2. As elements we use quadrilateral elements (hexahedral elements in

three dimensions), but the procedure to derive the algebraic equations is

essentially independent of the different type of elements. The basis functions

NK,j are defined as:

NK,j(x) = N̂j ◦ F−1
K (x),

with ξ ∈ [−1, 1]d and d = dim(Ω), using the isoparametric mapping:

FK : [−1, 1]d → K;x 7→
Np∑

j=1

x̂jN̂j(ξ), (65)

with x̂j ∈ R
d the coordinates of theNp points used to define Lagrangian basis

functions on the element K, see [11]. The basis functions N̂j(ξ) are defined

as the tensorproduct of p-th order polynomials in the local coordinates ξi,

i = 1, · · · , d.
The first step in deriving the algebraic equations for the discontinuous

Galerkin discretization is to approximate the local lifting operator RF ∈ R
d,

defined in (10), which we briefly summarize. For more details see [20]. Since

RF is only non-zero in the two elements KL and KR which are connected

to the face F , we have:

∫

KL

RF ,L([[φh ]]) · vLdx+

∫

KR

RF ,R([[φh ]]) · vRdx

=
1

2

∫

F

(
φL,hnL + φR,hnR

)
·(vL + vR)ds, ∀vL, vR ∈ Σp

h. (66)

We approximate the k-th component of the lifting operator and test func-

tions vL, vR as:

(RF ,K([[φh ]] (x))k =

Np∑

j=1

RK;F
jk NK,j(x), ∀x ∈ K, (67)

(vK(x))k =

Np∑

j=1

vK,jkNK,j(x), ∀x ∈ K, (68)
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and introduce the following vectors IK;F ∈ R
Np, matrices: AK ,BK , CLR;F ,

SK;F ∈ R
Np×Np , and tensors DLR;F , EL;F , FLR;F ∈ R

Np×Np×d, which are

defined as:

AK
ij :=

∫

K

NK,iNK,jdx, BK
ij :=

∫

K

∇hNK,i · ∇hNK,jdx,

CLR;F
ij :=

∫

F
NL,jnL · ∇hNR,ids, DLR;F

ijk :=

∫

F
nL,kNL,iNR,jds,

IK;F
i :=

∫

F
gNNK,ids, SK;F

ij :=

∫

F
NK,iNK,jds (69)

EK;F
njk :=

Np∑

i=1

(
A−1

)K
ni
DKK;F

ijk , FLR;F
njk :=

Np∑

i=1

(
A−1

)R
ni
DLR;F

jik . (70)

Here, K is the index of the elements in the tessellation Th, which contains

NT elements, and L,R are the element indices of the two elements con-

nected to each side of the face with index F . The integrals are computed

by transforming them to the reference element [−1, 1]d using the mapping

(65) and approximating them with Gauss quadrature rules. Since most of

the integrands are of polynomial type we choose the number of quadrature

points such that the Gauss quadrature rule is exact.

If we introduce (67-68) into (66), and use the fact that this equation

must be satisfied for arbitrary test functions vL, vR, then we obtain the

following relations for the coefficients of the lifting operator in (67):

RL;F
nk =

1

2

Np∑

j=1

(
EL;F

njk φL,j + FRL;F
njk φR,j

)
,

RR:F
nk =

1

2

Np∑

j=1

(
FLR;F

njk φL,j +ER;F
njk φR,j

)
.

The algebraic equations for the discontinuous Galerkin discretization are

obtained by introducing the polynomial representation for φn
h and ςnh and

the test functions, defined in (64), into (35-36) and using the fact that

these equations must be satisfied for arbitrary test functions. After some

lengthy, but straightforward algebraic manipulations the algebraic equations

for the discontinuous Galerkin discretization at the time level t = tn can be

represented in matrix form as:

MΦn = F, (71)

with M ∈ R
NpNT ×NpNT , Φ ∈ R

NpNT and F ∈ R
NpNT , where NT denotes

the number of elements in the mesh. The matrixM at each time level n ≥ 2
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consists of N 2
T blocks [M ] ∈ R

Np×Np and is constructed as follows:

a) Initialize M = 0, (72)

b) [Mij]
KK = BK

ij , ∀i, j ∈ {1, · · · , Np}, ∀K ∈ {1, · · · , NT }, (73)

c) [Mij]
LL ←

∑

F∈FI
h

{
[Mij]

LL − 1

2

(
CLL;F

ij + CLL;F
ji

)

+
1

4
η̃F

d∑

k=1

Np∑

n=1

(
EL;F

njk D
LL;F
ink + FLR;F

njk DLR;F
ink

)}
, (74)

d) [Mij]
LR ←

∑

F∈FI
h

{
[Mij ]

LR − 1

2

(
CRL;F

ij + CLR;F
ji

)

+
1

4
η̃F

d∑

k=1

Np∑

n=1

(
FRL;F

njk DLL;F
ink +ER;F

njk D
LR;F
ink

)}
, (75)

e) [Mij]
RL ←

∑

F∈FI
h

{
[Mij ]

RL − 1

2

(
CLR;F

ij + CRL;F
ji

)

+
1

4
η̃F

d∑

k=1

Np∑

n=1

(
EL;F

njk D
RL;F
ink + FLR;F

njk DRR;F
ink

)}
, (76)

f) [Mij]
RR ←

∑

F∈FI
h

{
[Mij]

RR − 1

2

(
CRR;F

ij + CRR;F
ji

)

+
1

4
η̃F

d∑

k=1

Np∑

n=1

(
FRL;F

njk DRL;F
ink +ER;F

njk D
RR;F
ink

)}
, (77)

g) [Mij]
K,K ←

∑

F∈FS
h

{
[Mij ]

K,K +
9

44t2S
K;F
ij

}
,

∀i, j ∈ {1, · · · , Np}, (78)

with η̃F = ηF + nf . For n = 1 the matrix M is identical, except that the

coefficient 9
4 is equal to 1 in (78). The righthand side vector F is constructed

as follows:

h) [Fi]
K = 0, ∀i ∈ {1, · · · , Np}, ∀K ∈ {1, · · · , NT },

i) [Fi]
K ←

∑

F∈FN
h

{
[Fi]

K + IK;F
i }, ∀i ∈ {1, · · · , Np},
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j) [Fi]
K ←

∑

F∈FS
h

{
[Fi]

K +

Np∑

j=1

( 2

4t ς
n−1
K,j −

1

24t ς
n−2
K,j

)
SK;F

ij

}
,

∀i ∈ {1, · · · , Np},

k) [Fi]
K ←

∑

F∈FS
h

{
[Fi]

K +

Np∑

j=1

( 3

4t2φ
n−1
K,j −

3

44t2φ
n−2
K,j

)
SK;F

ij

}
,

∀i ∈ {1, · · · , Np},

with the obvious modification for n = 1, see (33) and (36). The construction

of the matrix on a general unstructured mesh is now straightforward. First,

we initialize all entries to zero, followed by a loop over all elements. Next

under c) till g) we loop over all faces, compute the block matrix entries for

the two elements with indices L and R which are connected to the face F ,

and store these entries in the blocks [M ]LR. This whole procedure does not

depend on the chosen type of elements and is suitable for any unstructured

mesh.

The resulting linear system (71) is symmetric and positive definite, be-

cause the bilinear form (35) is coercive, bounded and symmetric, and can be

solved efficiently, either directly with a Choleski decomposition or iteratively

with a preconditioned conjugate gradient method. The linear system is non-

singular due to the stabilization terms in the DG discretization, but has a

large condition number because one of the eigenvalues is close to zero. This

does not result in a serious loss of accuracy when the zero mean condition∫
Ω φhdx = 0 is imposed, which ensures that a unique solution is obtained

in the space H1(Th) + V . The zero mean condition can be imposed by

correcting the numerical solution after each iteration step in the conjugate

gradient method: φh ← φh − φh, with φh = 1
|Ω|

∫
Ω φhdx, after which the

new expansion coefficients of φh are obtained in each element K using an

L2(K) projection onto the basis functions NK,j. In practice, it works how-

ever equally well if the zero mean condition is imposed after the solution of

the linear system is obtained. Introducing the zero mean condition directly

into the linear system is not beneficial since this results in a non-symmetric

linear system and is computationally more expensive.
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7 Analysis of dispersion and dissipation error of

the DG discretization

A critical factor in the numerical simulation of free surface waves is the dis-

sipation and dispersion of the waves due to numerical discretization errors.

For this purpose we first conduct an analysis of the semi-discrete DG formu-

lation (28) for time-harmonic waves. Next, we conduct a Fourier analysis

of the fully discrete scheme. This will provide us with information on the

dependance of the dissipation and dispersion properties of the numerical

scheme on the time-step and spatial discretization.

7.1 Analysis for time-harmonic waves

In this section we assume that the potential function is time-harmonic:

φ(x, y, z, t) = φ̂(x, y, z) exp(−ıωt), (79)

with frequency ω and ı =
√
−1. If we introduce the time-harmonic ansatz

(79) into (28) we obtain the following eigenvalue problem:

−ω2(φ̂, v)ΓS
+B0

h(φ̂, v) = 0, ∀v ∈ V p
h , (80)

which can be transformed into a linear system using the results from the pre-

vious section. Without loss of generality we now assume that the elements

are ordered such that the first NS elements are connected to the free sur-

face. The linear system for B0
h then is obtained by adding the contributions

(72–77) to the matrix B0 ∈ R
NpNT ×NpNT . The contribution −ω2(φ̂, v)ΓS

results in the matrix BSS ∈ R
NpNS×NpNS , which is a block diagonal ma-

trix BSS = diag(S1;1, . . . ,SNS ;NF ), with blocks SK;F defined in (69). We

partition the matrix B0 now as:

B0 =

(
B0

SS

(
B0

DS

)T

B0
DS B0

DD

)
,

with B0
DD ∈ R

Np(NT −NS)×Np(NT −NS), B0
SS ∈ R

NpNS×NpNS , and

B0
DS ∈ R

Np(NT −NS)×NpNS , where the suffix S refers to coefficients in ele-

ments connected to the free surface. The eigenvalue problem can now be

expressed as:

−ω2

(
BSS 0

0 0

)(
φ̂S

0

)
+

(
B0

SS

(
B0

DS

)T

B0
DS B0

DD

)(
φ̂S

φ̂D

)
= 0, (81)
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with φ̂S ∈ R
NpNS , φ̂D ∈ R

Np(NT −NS). It is straightforward to eliminate φ̂D

from (81):

φ̂D = −
(
B0

DD

)−1 B0
DS φ̂S ,

and we obtain the following eigenvalue problem for φ̂S :

LSφ̂S = µBSSφ̂S , (82)

with µ = ω2 and LS ∈ R
NS×NS defined as:

LS = B0
SS −

(
B0

DS

)T (B0
DD

)−1 B0
DS.

Due to the symmetry and coercivity of B0
h and Bh, both B0 and BSS are

positive definite matrices, and it is straightforward to show that also LS is

positive definite. Using the matrix square root of BSS and the transforma-

tion ŷ = (BSS)
1

2 φ̂S , we can transform (81) into the eigenvalue problem:

L̂S ŷS = µŷS, (83)

with L̂S = (BSS)−
1

2 LS (BSS)−
1

2 a positive definite matrix. All eigenvalues

µi, i = 1, . . . , NS are therefore real and strictly positive, hence the eigenval-

ues ωi = ±√µi, i = 1, . . . , NS are also real. The L2-norm of the potential φ

at the free surface, which is defined as:

||φ||ΓS
=
(
φ, φ

) 1

2

ΓS
=
∣∣∣
∣∣∣φ̂S

∣∣∣
∣∣∣
ΓS

,

where an overbar denotes the complex conjugate, is therefore constant, since

ωi is in (79) is real. The spatial discretization therefore does not generate

any growing or decaying modes in (79), is energy conserving and stable,

and only generates a dispersion error. This also applies to the wave height

ζ, since the wave height is defined as ζ = − ∂φ
∂t
|ΓS

. Note, contrary to [19]

or [22] the stability of the DG discretization does not depend on the mesh

smoothness. Also, the numerical scheme does not require any extra damping

terms in the free surface equation (2) to guarantee stability, as for instance

in [19].

7.2 Analysis of fully discrete scheme

For the analysis of fully discrete scheme we assume, in addition to the time-

harmonic potential, a two-dimensional domain with a uniform mesh with

Nx × Nz coordinates xj = j4x, zm = m4z and periodic boundary condi-

tions in the x-direction. We use the Fourier ansatz for the coefficients φ̂j in

the DG discretization at time level tn = n4t:

φ̂j(z, tn) = λn exp(ıkj4x)φ̂F (z), (84)
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with λn = exp(−ıωn4t) the amplification factor, k the wavenumber, and a

similar relation for the coefficients ς̂j .

If we introduce (84) into (71) we obtain the following generalized eigen-

value problem:
(

0 S

0 0

)(
φ̂F

S

φ̂F
D

)
= µ(λ,4t)MF (k)

(
φ̂F

S

φ̂F
D

)
, (85)

with φ̂F
S ∈ R

Np and φ̂F
D ∈ R

Np(Nz−1), where the suffix S refers to coefficients

in elements connected to the free surface and D to elements not connected

to the free surface. The matrix MF ∈ R
NpNz×NpNz is an Hermitian positive

definite block-tridiagonal matrix with the following block-structure:

[
MF (k)

]
m

= TriDiag(A exp(−ık4x), Bm, A exp(−ık4x)),

with A,Bm ∈ R
Np×Np for m ∈ {1, · · · , Nz}. The matrix S ∈ R

Np×Np is

given by (69). The eigenvalues µi are related to the amplification factor λ

and time step 4t as:

(9

4
+
4t2
µ

)
λ4 − 6λ3 +

11

2
λ2 − 2λ+

1

4
= 0.

Hence for each eigenvalue µi we obtain four amplification factors λi,j, j =

1, · · · , 4. Since the matrix MF is Hermitian and positive definite it is

straightforward to solve the generalized eigenvalue problem, which will have

only Np non-zero real eigenvalues. The eigenvalues µi are computed with

MATLAB for a wide range of 4t and k ∈ [0, 2π) values, resulting for all

cases in amplification factors λi,j with a modulus less than or equal to one,

hence the numerical discretization is unconditionally stable.

The Fourier analysis is also used to compute the dispersion and dis-

sipation properties of the numerical scheme. If we solve the generalized

eigenvalue problem (85) for a particular wave number k then the frequency

and dissipation of the discrete modes are the real and imaginary part of
ı
4t

lnλi,j, respectively, with one of the frequencies close to the frequency

of the physical mode. In Section 8.3 we use this technique to compute the

dispersion and dissipation of the numerical scheme as a function of the mesh

size and time-step.

8 Numerical examples

In this section we discuss the numerical results of model problems which

aim to verify the analysis and demonstrate the capabilities of the method
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for the simulation of free surface water waves. After some initial test cases

to validate the code and confirm the theoretical orders of accuracy for the

Laplace equation, we consider two cases: (i) an harmonic wave in an un-

bounded domain, and (ii) the simulation of water waves generated by a wave

maker.

For the free surface simulations in an unbounded domain (in the hor-

izontal direction) we choose the domain as [−1, 1] × [−1, 0] with periodic

boundary conditions given by (3) at both ends x = ±1 of the domain, and

a flat bottom at z = −1 with a homogenous Neumann boundary condition

representing a slip flow boundary. As initial free surface we use the pro-

jection of the analytic solution onto the finite element basis functions. The

analytic solution of this problem is given by:

φ = φ0 cosh (k (z + 1)) cos (ωt− kx), (86)

where φ0 denotes the amplitude of the velocity potential, k the wave number,

which is related to the wavelength λ as k = 2π/λ, and ω the frequency of

the oscillations, which satisfies the dispersion relation:

ω2 = k tanh (k),

All quantities in this section are in dimensionless form. For details see

Section 2. The parameter η in the DG algorithm was set equal to η = h−2p,

with p the order of the polynomial basis functions, but the results do not

significantly depend on this parameter.

8.1 Laplace equation

As a first step to verify the computer code we switch off the free-surface con-

dition (2) and consider the Laplace equation with only Neumann boundary

conditions. At the free surface we use:

∂φ

∂n
= φ0k sinh (k) cos (kx).

At the other boundaries homogeneous Neumann boundary conditions are

applied. As mentioned in the Section 3, the solution of this problem is

indeterminate up to a constant. We can, however, find a unique solution in

the space H1 (Th) + V . To keep the L2-errors within reasonable bounds we

choose a wave length λ = 1 and amplitude φ0 = 0.05 in (86) for the basis

functions with polynomial order p = 1 and 2, and λ = 0.25 and φ0 = 0.1

for p = 3, respectively. This makes it possible to easily compare cases with

different order of polynomial basis functions. To illustrate the insensitivity
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of the computed solution to the mesh smoothness, which is an important

benefit of the DG scheme, we have chosen two meshes, a uniform and a

randomly distorted mesh where the vertices have a random displacement of

30% of the edge length. The L2-error in the velocity potential as a function

of the mesh size (on log− log scale) is shown in Figure 1, which confirms

that the optimal order of convergence O
(
hp+1

)
is achieved on both meshes,

with the quality of the solution almost unaltered by the mesh smoothness.

8.2 Time harmonic waves in an unbounded domain

As a next step we consider time harmonic waves in an unbounded domain

with free-surface condition (2). The initial conditions for the free surface

potential and wave height at z = 0 are:

φ = φ0 cosh (k) cos (kx), ζ = φ0ω cosh (k) sin (kx).

For the free surface computations we restrict ourselves to p = 1 and 2. We

choose the wave length λ = 1 and φ0 such that the maximum amplitude

of the free-surface height is 0.05, hence 5% of the water depth. First, we

consider the L2(Ω)-error in the velocity potential and the L2(ΓS)-error in the

wave height, which both converge with nearly optimal order, see Figures 2

and 3. This error virtually only consists of a frequency error, the dissipation

is very small, see also Figures 5-8.

The free-surface height after 20 periods is shown in Figure 4. The mesh

size is (approximately) h = 0.125 and 0.0625 for the basis functions with

order p = 1 and h = 0.125 for p = 2, on a uniform as well as a randomly

distorted mesh. The insensitivity of the computed wave solution to the

mesh smoothness, already proved by the theoretical analysis, is confirmed

and the computations did not require any artificial modification of the free

surface boundary condition, such as for instance in [19]. The dissipation

error in both cases, p = 1 and 2, is very small, but for p = 1 the phase

error on the mesh with h = 0.125 is significantly larger than for p = 2. For

p = 1 the computed wave is moving faster than the actual wave. After mesh

refinement to h = 0.0625 the phase error for p = 1 is significantly reduced,

see Figure 4. For p = 2 the numerical solution matches even closer with the

analytic solution on the mesh with h = 0.125 and we can conclude that for

simulating wave motion it is more efficient to increase the polynomial order

of the basis functions than reducing the mesh size.
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8.3 Analysis of dispersion and dissipation error

Since the time integration scheme is unconditionally stable the time step is

only dictated by accuracy requirements. In order to obtain insight into the

dependency of the accuracy on the time step and mesh size we performed the

fully discrete Fourier analysis discussed in Section 7.2. The results for the

frequency error and dissipation for the DG discretizations with linear and

quadratic polynomial basis functions are shown in Figures 5-8. They show

that the dissipation is very small and the error is dictated by the frequency

error. Also, there is an optimal relation between the time step and mesh

size. Figures 5 and 7 can be used to find optimal values for the time step,

depending on the maximum wave frequency expected in the simulation and

mesh size used. We also conducted a discrete Fourier analysis for a two-step

Adams-Moulton time integration method. For this method the dissipation

is on all meshes at the level of machine accuracy, but the simulation results

did not differ substantial in comparison with the backward difference time

integration method since the frequency error is the dominant factor.

8.4 Simulation of water waves generated by a wave maker

Next we present the numerical simulation of waves generated by a wave

maker in a model basin. In this case the domain is [0, 10] × [−1, 0]. We

assume, homogenous Neumann boundary conditions at the bottom z = −1

and at the end of the domain at x = 10 opposite to the wave maker. The

initial free surface height and velocity potential are zero, and a time periodic

Neumann boundary condition is applied at the wave maker, which governs

the normal velocity. The normal velocity profile is linear, starting with zero

at the bottom and has an amplitude of 0.05. The frequency of the time

harmonic motion is 1.8138. All simulations are done only on the random

mesh. We choose quadrilateral elements with 3 cases of varying mesh size

and polynomial degree, h = 0.125 with p = 1 and 2 and also for h = 0.0625

when p = 1. The wave profile in the domain at T = 20, when the wave

starts approaching the wall opposite the wave maker, is presented in Figure

9. For a comparison see also [22]. Next, the profile at T = 38.22, when

the wave gains full height against the wall, is shown in Figure 10, and

finally the profile at T = 75.32, when the wave from the opposite wall is

travelling back into the domain and affects the pattern of the generated

wave, is given in Figure 11. Up to T = 38.22 there is hardly any difference

visible between the results for p = 1 and 2 and the different meshes. At

T = 75.32 the results for p = 1 on the coarse mesh are influenced by the
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mesh size, but on the finer mesh with h = 0.0625 they are close to the p = 2

results on the mesh with size h = 0.125. Considering the computational

expense it is therefore more efficient to use a polynomial order p = 2 for

these wave simulations in order to obtain a higher accuracy than a finer

mesh. Beyond p = 2 this requires, however, also a more accurate time

integration technique. The extension of the backward difference or Adams-

Moulton time integration methods to higher order is, however, not A-stable

as a consequence of a famous theorem from Dahlquist. This causes serious

stability problems in the simulations conducted with these methods and

they will have to be replaced for instance by implicit Runge-Kutta methods

to obtain an unconditionally stable discretization.

9 Conclusions

We have developed a discontinuous Galerkin finite element discretization

for linear free surface gravity waves. The algorithm is unconditionally sta-

ble and does not suffer from a mesh dependent instability, which occurs when

the Laplace equation and free surface boundary condition are only weakly

coupled, as is commonly done in most algorithms. The discretization results

in a symmetric positive definite linear system, which can be solved efficiently

either with a Choleski decomposition or a preconditioned conjugate gradient

method. A complete analysis of the stability and accuracy of the numerical

discretization is conducted which shows that the method has an L2(ΓS)-

error for the wave height and an L2(Ω)-error for the velocity potential both

proportional to O(4t2 + hp+1). The algorithm does not require a separate

velocity reconstruction, for instance using finite differences or different order

polynomials for velocity and potential, in order to preserve the accuracy in

the wave height. Also, no smoothing or damping of unstable waves on a

non-uniform mesh is necessary. An analysis of the DG discretization error

for harmonic waves shows that the spatial discretization only produces a dis-

persion error and has zero dissipation. In addition, a fully discrete Fourier

analysis is conducted to find optimal values of the time step as a function

of the wave frequency, mesh size and wave length. This analysis shows that,

in particular, the discretization using quadratic basis functions has a low

numerical dissipation and dispersion error and is well suited for the simu-

lation of wave motion. The theoretical results are confirmed by numerical

simulations of water waves in an unbounded domain and waves generated

by a wave maker. The DG discretization discussed in this paper will be used

as the essential building block in the construction of a DG method for fully

non-linear water waves which is a topic of current research.
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Figure 1: L2(Ω)-error in the DG discretization of the Laplace equation with

Neumann boundary conditions on a uniform and randomly disturbed mesh.
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Figure 2: L2(Ω)-error in the velocity potential as a function of mesh size for

polynomial basis functions with order p = 1 and 2.
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Figure 3: L2(ΓS)-error in the wave height as a function of mesh size for

polynomial basis functions with order p = 1 and 2.
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Figure 5: Absolute value of frequency error for time-harmonic waves as a

function of mesh size/wave length (h/λ) and time step×frequency (ω4t) for

the DG discretization using linear basis functions.
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Figure 6: Dissipation for time-harmonic waves as a function of mesh

size/wave length (h/λ) and time step×frequency (ω4t) for the DG dis-

cretization using linear basis functions.
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Figure 7: Absolute value of frequency error for time-harmonic waves as a

function of mesh size/wave length (h/λ) and time step×frequency (ω4t) for

the DG discretization using quadratic basis functions.
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Figure 8: Dissipation for time-harmonic waves as a function of mesh

size/wave length (h/λ) and time step×frequency (ω4t) for the DG dis-

cretization using quadratic basis functions.
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Figure 9: Wave profile at T = 20 generated by a wave maker at x = 0 (ran-

domly disturbed mesh) for different mesh sizes h and order of the polynomial

basis functions.
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Figure 10: Wave profile at T = 38.22 generated by a wave maker at x =

0 (randomly disturbed mesh) for different mesh sizes h and order of the

polynomial basis functions.
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Figure 11: Wave profile at T = 75.32 generated by a wave maker at x =

0 (randomly disturbed mesh) for different mesh sizes h and order of the

polynomial basis functions.
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