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Abstract. The b-clique polytope CPnb is the convex hull of the node
and edge incidence vectors of all subcliques of size at most b of a com-
plete graph on n nodes. Including the Boolean quadric polytope QPn

as a special case and being closely related to the quadratic knapsack
polytope, it has received considerable attention in the literature. In
particular, the max-cut problem is equivalent with optimizing a linear
function over QPnn . The problem of optimizing linear functions over
CPnb has so far been approached via heuristic combinatorial algorithms
and cutting-plane methods.

We study the structure of CPnb in further detail and present a new
computational approach to the linear optimization problem based on
Lucena’s suggestion of integrating cutting planes into a Lagrangian re-
laxation of an integer programming problem. In particular, we show that
the separation problem for tree inequalities becomes polynomial in our
Lagrangian framework. Finally, computational results are presented.

1. Introduction

Consider the complete undirected graph Kn = (V,E) on the set V =
{1, . . . , n} of nodes with edge set E. We assume that to every edge e ∈ E
a weight ce and to every node i ∈ V a weight di is assigned. The weighted
maximal b-clique problem (WCPb) is to find, among all complete subgraphs
with at most b nodes, a subgraph (clique) for which the sum of the weights
of all the nodes and edges in the subgraph is maximal.

The weighted maximal b-clique problem can be seen as a Boolean qua-
dratic problem with a cardinality constraint (Mehrotra [1997]). On the other
hand, (WCPb) generalizes the well-studied maximum clique problem, which
is known to be NP–hard.

Applications of (WCPb) can be found, for example, in location theory
(see Späth [1985], Kuby [1987], Erkut et al.[1990] and Ravi et al. [1994]).
Other important applications of this optimization model arise in molecular
biology (see Hunting [1998]).

Date: 9 December, 1998.
1991 Mathematics Subject Classification. 90C27, 90D12.
Key words and phrases. clique polytope, cut polytope, cutting plane, Boolean quadric

polytope, quadratic knapsack polytope, Lagrangian relaxation.
1



2 MARCEL HUNTING, ULRICH FAIGLE, AND WALTER KERN

Exact branch-and-cut algorithms for (WCPb), based on linear program-
ming have been proposed by Dijkhuizen and Faigle [1993], Park et al. [1996],
Mehrotra [1997], and Macambira and De Souza [1997]. In these four papers
several facet-defining inequalities are introduced which are used as cutting
planes in order to improve the quality of the upper bounds. In Faigle et al.
[1994] upper bounds derived from Lagrangian relaxation are proposed. The
usual branch-and-cut approach can be quite successful for special types of
problems (see, e.g., Barahona et al. [1989] for the max-cut problem). The
general case, however, appears to be much harder. The first three of the
afore-mentioned studies deal with graphs with up to 30 nodes whereas –
as formulated by Macambira and de Souza – “the real challenge is to solve
problems with n ≥ 40 nodes”.

The weighted maximal b-clique polytope generalizes the Boolean quadric
polytope, which has been studied extensively (see, e.g., Padberg [1989],
Deza and Laurent [1992a,b], Boros and Hammer [1993], Sherali et al. [1995]
and Hardin et al. [1995]). The max-cut problem on graphs (cf. Barahona
and Mahjoub [1986]) can be formulated as the problem of optimizing a lin-
ear function over the Boolean quadric polytope. On the other hand, the
weighted maximal b-clique problem is a special case of the quadratic knap-
sack problem. Therefore, the corresponding polytopes are closely related.
Various techniques have been proposed for solving quadratic knapsack prob-
lems (see Chaillou et al. [1986], Johnson et al. [1993], Bretthauer et al.
[1995] and Helmberg et al. [1996]).

In the present paper, we propose a relaxation technique that has not
been applied before to (WCPb) or to the related problems mentioned above.
Following an idea of Lucena [1992] we combine Lagrangian relaxation with
the use of cutting planes. We report computational results with a branch-
and-cut algorithm based on this relaxation. We expect that the technique
can also be fruitfully applied to the related problems.

The paper is organized as follows. In Section 2, we give an integer
programming formulation for (WCPb) and review polyhedral results from
the literature. In Section 3, we describe two new classes of facet-defining
inequalities, which we will use in the (Lagrangian) branch-and-cut algo-
rithm, namely the i-clique inequalities and the generalized clique inequal-
ities. These inequalities turn out to define facets of the Boolean quadric
polytope as well.

In Section 4, we formulate a Lagrangian problem for (WCb) which turns
out to have solutions with nice properties. The upper bound obtained in
this Lagrangian relaxation often is quite good. Adding cutting planes to
the objective function, however, we can obtain even stronger bounds as our
computational results show.

Using cutting planes in a Lagrangian relaxation offers a considerable ad-
vantage over the standard branch-and-cut approach: Because of the special
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structure of the Lagrangian solutions, we are able to use classes of inequal-
ities for which the separation problem is NP -hard in general (cf . the tree
inequalities in Section 4) by adding violated inequalities to the objective
function of the Lagrangian relaxation without changing the structure of the
Lagrangian solutions.

2. The b-clique polytope

We formulate the weighted maximal b-clique problem (WCb) as an integer
programming problem. We introduce for every node i ∈ V a (0, 1)-variable
xi and for every edge e ∈ E a (0, 1)-variable ye. We think of an edge e ∈ E
as a subset of V of cardinality 2. In particular, if e = {i, j}, we call i and j
the endpoints of e.

Variable xi equals 1 if node i is in the clique and 0 otherwise, and ye
equals 1 if edge e is in the clique and 0 if not. The weighted maximal
b-clique problem can then be formulated as follows:

max
∑
i∈V

dixi +
∑
e∈E

ceye(1)

subject to the constraints∑
i∈V

xi ≤ b(2)

ye − xi ≤ 0 for all e = {i, j} ∈ E(3)

xi + xj − ye ≤ 1 for all e = {i, j} ∈ E(4)

xi ∈ {0, 1} for all i ∈ V(5)

ye ≥ 0 for all e ∈ E(6)

Note that the constraints (3)–(6), in fact, imply the seemingly stronger
integrality property ye ∈ {0, 1} for all e ∈ E. Also observe that (2) becomes
redundant if b = n.

We denote the convex hull of the feasible solutions by

CPn
b = conv{(x, y) ∈ Rn(n+1)/2| (x, y) satisfies (2)– (6)}(7)

and call it the b-clique polytope.

It is easy to see that the b-clique polytope is full-dimensional if b ≥ 2, i.e.,

dim CPn
b = n(n + 1)/2 .

Consequently, each facet-defining inequality for CPn
b is unique up to scalar

multiplication. Because CPn
b−1 ⊆ CPn

b , each inequality that is valid for
CPn

b is also valid for CPn
b−1. Moreover, if a valid inequality for CPn

b is
facet-defining for CPn

b−1, it is also facet-defining for CPn
b .
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Remark 2.1. It is interesting to observe that the (valid) inequalities xi ≥ 0
and xi ≤ 1 are not facet-defining for CPn

b whenever n ≥ 2 as they are
implied by the constraints (3), (4), and (6).

Similarly, inequality (2) is not facet-defining. The vertices (x, y) of CPn
b

corresponding to cliques of size b satisfy the two independent equations∑
i∈V

xi = b and
∑
e∈E

ye = b(b− 1)/2

and thus cannot generate a hyperplane. (See also Lemma 3.1 below).

The b-clique polytope is closely related to the Boolean quadric polytope
and the quadratic knapsack polytope. Other polytopes related to the b-
clique polytope are the clique partitioning polytope (Grötschel and Wak-
abayashi [1990]) and the cut polytope, which arises from the max-cut prob-
lem (see, e.g., Barahona and Mahjoub or Deza and Laurent [1992a,b]).

To make the relationship clearer, we present an equivalent formulation
of the maximal edge-weighted b-clique problem. Let the (n × n)-matrix
D = (dij) be given and consider the quadratic optimization problem

max
∑
i,j∈V

dijxixj(8)

subject to the constraints (2) and (5). Because x2
i = xi and y{i,j} := xixj ≥ 0

holds, the quadratic problem (8) is equivalent to the linear problem (1) with
parameters di := dii and c{i,j} := dij + dji, i 6= j.

For the rest of the paper, we introduce the following notation. Given a
vector (x, y) ∈ Rn(n+1)/2 and subset S ⊆ V , we denote by E(S) the set of
edges with both endpoints in S and let

x(S) =
∑
i∈S

xi and y(S) =
∑

e∈E(S)

ye.(9)

Each S ⊆ V with |S| ≤ b corresponds to a feasible solution (xS , yS) for
(WCPb) in the obvious way. We call (xS , yS) the incidence vector of S and
xS the node incidence vector of S.

2.1. Relationship with the Boolean quadric polytope. The Boolean
quadric polytope QPn was introduced by Padberg [1989] in his study of the
unconstrained quadratic zero-one programming problem. In our notation,
we have

QPn = CPn
n ,(10)

i.e., the Boolean quadric polytope is exactly the weighted b-clique polytope
with parameter b = n.
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Every valid inequality for QPn is, of course, valid for CPn
b for any b ≤

n. However, not all facet-defining inequalities of QPn also define facets
of CPn

b . Nevertheless, interesting special cases enjoying this property exist.
Examples are the “trivial” inequalities mentioned in the following result due
to Padberg [1989] and Park et al. [1996].

Proposition 2.1. Let n ≥ 3 and b ≥ 2. Then for all e = {i, j} ∈ E:

(i) The inequality ye ≥ 0 defines a facet of CPn
b .

(ii) The inequalities ye− xi ≤ 0 and xi + xj − ye ≤ 1 define facets of CPn
b

if and only if b ≥ 3.

�

The following proposition exhibits two more classes of inequalities that
are facet-defining for both QPn and CPn

b .

Proposition 2.2.

(i) For any S ⊆ V with |S| ≥ 1 and T ⊆ V − S with |T | ≥ 2, the cut
inequality ∑

i∈S,j∈T
y{i,j} − y(S)− y(T )− x(S) ≤ 0(11)

defines a facet of CPn
b if and only if either |S| = 1 and b ≥ 3 or

|S| ≥ 2 and b ≥ 4.
(ii) For any S ⊆ V with |S| ≥ 3 and integer α, 1 ≤ α ≤ |S|−2, the clique

inequality

αx(S)− y(S) ≤ α(α + 1)
2

(12)

defines a facet of CPn
b if and only if either α ≤ b− 2 or S = V and

α ≤ b− 1.

�

Remark 2.2. The fact that the inequalities in Proposition 2.2 are facet-
defining for CPn

b was already observed by Park et al.[1996]. However, the
statement and proof concerning the clique inequalities is not quite correct
there. It is claimed that for every 1 ≤ α ≤ |S| − 2 inequality (12) with
S = V defines a facet, which is not true if α ≥ b (cf. Hunting [1998]).

Recently, Macambira and De Souza [1996] presented the following class
of facet-defining inequalities for CPn

b that generalizes the cut inequalities.
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Proposition 2.3. Let S ⊆ V with |S| ≥ 1 and T ⊆ V − S with |T | ≥ 2 be
two disjoint subsets of nodes. For nonnegative integers α and β such that
α− β = 1, and |T | ≥ α + 1, the (α, β)-inequality∑

i∈S,j∈T
y{i,j} − y(S)− y(T )− αx(S) + βx(T ) ≤ 1

2
αβ(13)

defines a facet of CPn
b if α ≤ b− 4.

�
Macambira and De Souza furthermore proved that the (α, β)-inequalities

define facets of QPn. Their result generalizes a result of Padberg [1989] for
the so-called generalized cut-inequalities. We will derive a class of facet-
defining inequalities that generalizes the clique inequalities in Section 3.

2.2. Relationship with the quadratic knapsack polytope. Given a
vector w = (w1, . . . , wn) ∈ Rn, we define the quadratic knapsack polytope
QKPn

b (w) as the convex hull of those vectors (x, y) ∈ Rn(n+1)/2 satisfying
the conditions (3)–(6) together with the following knapsack generalization
of (2): ∑

i∈V
wixi ≤ b .(14)

The linear optimization problem over QKPn
b (w) generalizes the classical

knapsack problem to quadratic objective functions. This general problem
occurs, for example, as a subproblem in the work of Johnson et al..

Letting QKPn
b denote the knapsack polytope QKPn

b (w) in the special
case w = (1, 1, . . . , 1), i.e., with (2) for (14), we obtain the weighted b-clique
polytope as CPn

b = QKPn
b . .

The two classes of inequalities mentioned in the following proposition are
facet-defining for QKPn

b (see Johnson et al. [1993] and Park et al. [1996]).

Proposition 2.4.

(i) For any node i ∈ V the star inequality∑
e3i

ye − (b− 1)xi ≤ 0(15)

defines a facet of CPn
b if and only if b ≤ n− 1.

(ii) Let T be a sub-tree of Kn with set of nodes V (T ), |V (T )| = b + 1, and
set of edges E(T ), |E(T )| = b. Let 3 ≤ b ≤ n − 1. Then the tree
inequality ∑

e∈E(T )

ye −
∑

i∈V (T )

(δi − 1)xi ≤ 0(16)

where δi is the degree of node i in T , defines a facet of CPn
b if and

only if T is not a star or b = n− 1.
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�
Tree inequalities were also considered by Macambira and De Souza [1996].

They combined a tree inequality with an (α, β)-inequality for α = 2 and
β = 1, and showed that the resulting inequality is facet-defining if the un-
derlying tree is a path. Since the resulting inequalities do not seem to be
very useful in practice, we do not present them in detail here. We men-
tion that the separation problem for the tree inequalities is NP–complete
(Hunting [1998]).

3. New facets for the b-clique polytope

We say that the collection C = {C1, . . . , Cm} of nodes of Kn is a gener-
ating system of cliques if the associated clique incidence vectors (xC , yC),
C ∈ C, generate an (affine) hyperplane in Rn(n+1)/2.

If C is a generating system of cliques, there exists a vector a 6= 0 and a
number a0 such that

a(xC , yC) = a0 for all C ∈ C .

Moreover, up to scalar multiplication, (a, a0) is uniquely determined by C.
We say in this case that a(x, y) = a0 is a feasible equality for the generating
system C.

Let a(x, y) = a0 be a linear equality. Restricting the vector a to the com-
ponents corresponding to x and to y respectively, let us write the equality
a(x, y) = a0 as

a(1)x + a(2)y = a0 .

Then we observe

Lemma 3.1. Assume n ≥ 2, and let a(1)x+a(2)y = a0 be a feasible equality
for the generating system C of cliques. Then a(2) 6= 0.

Proof. Suppose a(2) = 0. We will derive a contradiction.

Notice that a(1) 6= 0 must hold (otherwise a = 0 would contradict our
assumption that a(x, y) = a0 is a feasible equality). Suppose that a(1) has
exactly one non-zero coefficient a

(1)
1 , say. By scalar multiplication, we may

assume a(1) = 1.

Then the equality a(x, y) = a0 can only be x1 = 1 or x1 = 0. In the case
x1 = 1, however, the cliques in C also satisfy the equality x2 − y{12} = 0.
Hence, the incidence vectors (xC , yC), C ∈ C, lie in the intersection of
two distinct hyperplanes and, therefore, could not generate a hyperplane.
Similarly, in the case x1 = 0, the cliques C ∈ C would also satisfy the equality
y{12} = 0 and thus could not generate a hyperplane. So we conclude that

a(1) has at least two non-zero coefficients a
(1)
1 and a

(1)
2 , say.



8 MARCEL HUNTING, ULRICH FAIGLE, AND WALTER KERN

Every incidence vector (xC , yC), C ∈ C, satisfies a(xC , yC) = a(1)(xC) =∑n
i=1 a

(1)
i xCi = a0. Squaring this equality, we obtain

n∑
i=1

[a(1)
i ]2[xCi ]2 +

∑
i6=j

a
(1)
i a

(1)
j xCi xCj = a2

0 .

Because [xCi ]2 = xCi and xCi xCj = yC{i,j}, we see that the vector (xC , yC) also
satisfies the linear equation∑

i∈V
[a(1)
i ]2xi +

∑
{i,j}∈E

2a(1)
i a

(1)
j y{i,j} = a2

0 .

Since a
(1)
1 a

(1)
2 6= 0, the latter equation is independent from a(x, y) = a0,

which implies that the clique incidence vectors lie in the intersection of
two distinct hyperplanes, a contradiction to our assumption that C is a
generating system of cliques.

Lemma 3.2. Assume n ≥ 2, and let C be a generating system of cliques
with associated incidence vectors (xC , yC), C ∈ C. Then the projected node
incidence vectors xC , C ∈ C, generate Rn.

Proof. If the Lemma were false, the vectors xC would be contained in a
hyperplane of Rn, i.e., we could find a vector a(1) 6= 0 and a number a0
such that a(1)xC = a0 for all C ∈ C. With a = (a(1), 0), we see that the
generating system C would thus satisfy the equality a(x, y) = a0, which
contradicts Lemma 3.1.

Let C = {C1, . . . , Cn+1, Cn+2, . . . , Cm} be a generating system of cliques
of Kn. In view of Lemma 3.2, we may assume that the node incidence
vectors xC1 , . . . , xCn+1 are affinely independent. We say that C is b-strong
if |C1| ≤ . . . ≤ |Cn+1| ≤ b− 1 holds.

Note that |C1| ≤ b − 2 must hold if C is b-strong: otherwise, the n + 1
vectors xCk , 1 ≤ k ≤ n+1, would satisfy the linear equality

∑
i∈V xi = b−1

and hence could not be affinely independent.

With the generating system C of cliques of Kn we associate its canonical
extension C relative to KN , N > n, as follows. C consists of the following
collections of subsets of nodes of KN :

S0 := {C |C ∈ C}
S l := {Ck ∪ {l} | k = 1, . . . , n + 1} (for l = n + 1, . . . ,N)
T := {C1 ∪ {l, s} |n + 1 ≤ l < s ≤ N}

(Note that T = ∅ if N = n + 1 and that the cardinality of each clique in
S l and T is bounded by b if C is b-strong).
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Theorem 3.1. (“Lifting Theorem”). If n ≥ 2 and C is a generating system
relative to Kn, then the canonical extension C is a generating system relative
to KN .

Proof. Let C = {C1, . . . , Cm}. The canonical extension C of C cannot gen-
erate all of RN(N+1)/2 since the feasible equation a(x, y) = a0 for C yields
an equality satisfied by C in an obvious way (cf . the “canonical extension”
of an inequality below).

To see that C does indeed generate a hyperplane, there is no loss of gener-
ality when we assume that the associated incidence vectors (xC , yC), C ∈ C,
are affinely independent. So m = n(n + 1)/2 and hence |C| = N(N + 1)/2.
It then suffices to show that the clique incidence vectors associated with C
are affinely independent.

The incidence vectors corresponding to cliques in T are independent of
all the others (due to their unique 1-entry in the y-coordinate (l, s) ). Thus,
suppose that there exists some non-trivial affine relation among the other
incidence vectors:

n(n+1)/2∑
j=1

λj(xCj , yCj ) +
N∑

l=n+1

n+1∑
k=1

µlk(xCk∪{l}, yCk∪{l}) = 0

with
∑

λj +
∑

µlk = 0.

By assumption, the incidence vectors corresponding to S0 are affinely
independent. Hence we must have µlk 6= 0 for some l and k. Considering
the x-coordinate corresponding to node l, we conclude

∑
k µlk = 0.

Moreover, considering the y-coordinates corresponding to edges joining
l to a node in Ck, k = 1, . . . , n + 1, we note that these are in one-to-
one correspondence with the node incidence vector of Ck. So the above
relation actually implies an affine relation among the node incidence vectors
of C1, . . . , Cn+1, which contradicts Lemma 3.2 and our labeling of C.

We want to generalize Padberg’s [1989] concept of a canonical extension
of a valid inequality.

If a(x, y) ≤ a0 is a valid inequality for CPn
b , we define its canonical

extension a∗(x, y) ≤ a0 to KN by

a∗i = ai ∀ i ∈ V, a∗i = 0 ∀ i ∈ V ′ \ V

a∗e = ae ∀ e ∈ E(V ), a∗e = 0 ∀ e ∈ E(V ′) \ E(V ) ,

where V = {1, . . . , n} and V ′ = {1, . . . ,N}. Trivially, the canonical exten-
sion of a valid inequality for CPn

b is valid for CPN
b .
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If a(x, y) ≤ a0 is facet-defining for CPn
b , then the system C of all cliques

C such that |C| ≤ b and a(xC , yC) = a0 is a generating system of cliques.
We say that a(x, y) ≤ a0 is b-strong if the associated generating system C is
b-strong.

Corollary 3.1. Let a(x, y) ≤ a0 be a b-strong facet-defining inequality for
CPn

b , n ≥ 2. Then its canonical extension is facet-defining for any CPN
b

with N > n.

Proof. If C is the generating system of cliques associated with the facet-
defining inequality a(x, y) ≤ a0, then the incidence vectors of the cliques C

in the canonical extension C of C obviously satisfy the equality a∗(xC , yCx) =
a0. So a∗(x, y) ≤ a0 must be facet-defining for CPN

b .

Corollary 3.2. (Padberg [1989]). If a(x, y) ≤ a0 is a facet-defining in-
equality for the Boolean quadric polytope QPn, then its canonical extension
a∗(x, y) ≤ a0 is facet-defining for QPn+1.

Proof. a∗(x, y) ≤ a0 is valid for QPn+1 = CPn+1
n+1 . By Theorem 3.1, it must

be facet-defining.

3.1. Reformulation-Linearization Technique. A useful technique for
finding new valid inequalities of a polytope corresponding to an integer
zero-one programming problem is the so-called Reformulation-Linearization
Technique (RLT) as introduced by Sherali and Adams [1990]. (This work is
related to Lovász and Schrijver [1991].)

The RLT consists of two steps, namely a reformulation step and a lin-
earization step. In the reformulation step problem constraints are multiplied
with d-degree polynomial factors composed of the n binary variables (in our
case x1, . . . , xn) and their complements, for some fixed d ∈ {0, 1, . . . , n}.
The resulting nonlinear program is then linearized by introducing new vari-
ables. For our purposes, we use only degree-1 polynomial factors.

As an example, consider the inequality (2)∑
j∈V

xj ≤ b ,

which is not facet-defining (cf. Lemma 3.1). Multiplication by (1− xi), for
some fixed i ∈ V , yields

(b− 1)xi +
∑
j∈V

xj −
∑
e3i

ye ≤ b ,

which is easily seen to be facet-defining. (We again employ the relations
x2
i = xi and xixj = y{i,j} for the binary variables xi and xj).
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As a second example, consider the clique inequality

αx(V )− y(V ) ≤ α(α + 1)
2

(17)

for some integer 1 ≤ α ≤ b− 1. Multiplying (17) with xi, we obtain

αxi + α
∑
e3i

ye − xi
∑
f∈E

yf ≤
α(α + 1)

2
xi .

Instead of introducing new variables wif = xiyf , we just use the relation
xiyf ≤ yf in order to obtain the i-clique inequality

α
∑
e3i

ye − y(V )− α(α− 1)
2

xi ≤ 0 .(18)

The way we derived (18) from (17) implies that (18) is a valid inequality
for CPn

b . (This can also be verified directly).

Theorem 3.2. For every integer α, 2 ≤ α ≤ b − 1 ≤ n − 2, the i-clique
inequality (18) is facet-defining for CPn

b .

Proof. We will exhibit a set of n(n + 1)/2 affinely independent elements of
CPn

b satisfying a given i-clique inequality with equality.

Consider the incidence vectors (xC , yC) for C = ∅, C = {j}, j 6= i, and
all subsets C ⊆ V with i ∈ C and |C| ∈ {α,α + 1}.

It is straightforward to check that all of these incidence vectors satisfy
(18) with equality. We leave it to the reader to verify that these incidence
vectors also span a subspace of co-dimension 1. (Because α ≤ n− 2, there
are “sufficiently many” candidate sets C).

The i-clique inequalities are obviously b-strong. So we can apply Corol-
lary 3.1 in the case n = b + 1 and obtain

Corollary 3.3. Let S ⊆ V and 2 ≤ α ≤ min{b − 1, |S| − 2}. Then the
“lifted i-clique inequality”

α
∑
j∈S\i

y{i,j} − y(S)− α(α− 1)
2

xi ≤ 0

is facet-defining for CPn
b .

�
We refer the interested reader to Hunting [1998] for other classes of facet-

inducing inequalities. Applying the technique of “sequential lifting” (cf.
Wolsey [1975]), one can, for example derive the following class of generalized
clique inequalities:
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α[x(S) −
∑

i∈S,j∈T
y{i,j}]− y(S) ≤ α(α + 1)

2
[1− x(T ) + y(T )]

for S ⊆ V , T ⊆ V \ S and 1 ≤ α ≤ |S| − 2.

4. Lagrangian relaxation

We now assume in our model for the weighted clique problem that we
have a complete directed graph ~Kn = (V,A) that differs from Kn in that
each edge e = {i, j} ∈ E is split into two arcs: (i, j) and (j, i), both in A.
We assume that each arc in ~Kn has a weight that equals half the weight of
the corresponding edge in Kn.

For each arc (i, j) in ~Kn, we define a (0, 1)-variable ~yij that takes the
value 1 if the arc (i, j) is in the clique, and value 0 otherwise. With these
new variables, (WCPb) can be transformed into the problem

max
n∑
i=1

dixi +
∑

(i,j)∈A

cij
2

~yij(19)

subject to

xi + xj − ~yij ≤ 1, 1 ≤ i < j ≤ n(20)

~yij = ~yji 1 ≤ i < j ≤ n(21)

~yij − xi ≤ 0, 1 ≤ i 6= j ≤ n(22)

The star inequalities for 2 ≤ α ≤ b− 1:

n∑
j=1
j 6=i

~yij − (b− 1)xi ≤ 0, 1 ≤ i ≤ n(23)

The clique inequalities for S = V , 1 ≤ α ≤ b− 1:

α
n∑
i=1

xi −
1
2

∑
(i,j)∈A

~yij ≤
α(α + 1)

2
,(24)

The i-clique inequalities for 1 ≤ i ≤ n and 2 ≤ α ≤ b− 1:

α
n∑
j=1
j 6=i

~yij −
1
2

∑
(j,k)∈A

~yjk −
α(α− 1)

2
xi ≤ 0,(25)
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xi ∈ {0, 1}, 1 ≤ i ≤ n(26)

~yij ∈ {0, 1}, 1 ≤ i 6= j ≤ n.(27)

When we now dualize the (in)equalities (20) and (21) by using Lagrangian
multipliers u ≥ 0 and w, we obtain the Lagrangian problem (Lu,w):

max
n∑
i=1

dixi +
∑

(i,j)∈A

cij
2

~yij(28)

+
∑

(i,j)∈A
uij(1− xi − xj + ~yij) +

∑
(i,j)∈A

wij(~yji − ~yij)

subject to (22) – (27).

An optimal solution of the Lagrangian relaxation (Lu,w) can be efficiently
computed as a consequence of the following observation.

Lemma 4.1. A (0, 1)-vector (x, ~y) satisfies the constraints (22) – (27) if
and only if there exists an integer p ∈ {0, 1, . . . , b} such that

n∑
i=1

xi = p(29)

∑
j∈V \i

~yij =

{
p− 1 if xi = 1
0 otherwise.

(30)

Proof. Assume that the (0, 1)-vector (x, ~y) satisfies (29) and (30). Then the
conditions (22), (23), (26) and (27) are clearly satisfied. Inequality (24) is
equivalent with

(α− p)(α− p + 1) ≥ 0 ,

which holds because α and p are integers. Inequality (25) follows in the
same way.

Conversely, assume that the (0, 1)-vector (x, ~y) satisfies (22) – (27). Adding
all the star inequalities (23) and twice the clique inequality (24) with α =
b− 1, we deduce

∑
xi ≤ b. Let p :=

∑
xi.

If p = 0, then (30) is an immediate consequence of (22). If p = b, then
(23) implies that “≤” holds in (30). On the other hand, we see from (24)
with α = b− 1 that

∑
i,j ~yij ≥ b(b− 1) must hold. So (30)) is satisfied with

equality.

Finally, consider the case 1 ≤ p ≤ b − 1. When we add all i-clique
inequalities (25) with xi = 1 for α = p (choose α = 2 in the case p = 1), we
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obtain ∑
i,j

~yij ≤ p(p− 1) .

On the other hand, (24) with α = p shows∑
i,j

~yij ≥ p(p− 1) .

Hence equality holds. Substitution of this equality into (25) with α = p now
yields the desired result.

In view of Lemma 4.1, we can solve problem (Lu,w) in a straightforward
way in time O(n2 log n):

Note that the objective function of (Lu,w) can the written as

max
∑
i∈V

d̃ixi +
∑

(i,j)∈A
c̃ij~yij .

Thus, for p = 0, 1, . . . , b, we (greedily) choose the p “best” nodes i ∈ V ,
i.e., those nodes i for which the weight d̃i plus the weights c̃i,j of the corre-
sponding p heaviest arcs (i, j) is as large as possible). We finally compare
these b + 1 candidate solutions and we take the one with the best objective
function value.

4.1. Improving the Lagrangian Relaxation. Let L(u,w) denote the
optimal value of the Lagrangian problem (Lu,w) with respect to the objective
(28). Since L(u,w) is an upper bound on the objective function value of
our integer program (WCPb) of Section 2, we are interested in solving the
problem

min{L(u,w) |u ≥ 0, w}
in order to obtain good bounds for a branch-and-bound algorithm (see

also Section 5).

One could theoretically improve the Lagrangian bound by dualizing all of
the inequalities known to be facet-generating for the polytope CPn

b . Typ-
ically, however, there are too many facet-generating inequalities to make
this procedure computationally feasible in practice. So we want to dualize
a valid inequality only when it has been found to be violated by the current
Lagrangian solution. This implies that we need an efficient algorithm to
detect violated inequalities. As an illustration, we give such a separation
algorithm for the tree inequalities (cf. Proposition 2.4). We expect that,
e.g., the clique and cut inequalities can be treated similarly.

It is NP -hard to find a tree inequality that is violated by a given vector
(x, ~y) ∈ Rn2

(Hunting [1998]). We will show, however, that this separation
problem can be solved in polynomial time when restricted to (0, 1)-vectors
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(x, ~y) satisfying inequalities (29) and (30). This means that we can solve
the separation problem for tree inequalities with respect to the solutions of
our Lagrangian relaxation of (WCPb).

Let T be a tree in Kn with set V (T ) of nodes and set E(T ) of (undirected)
edges. Denoting by δi(T ) the degree of node i ∈ V (T ) with respect to T , we
set

ω(T ) :=
∑

{i,j}∈E(T )

1
2
(~yij + ~yji) −

∑
i∈V (T )

(δi(T )− 1)xi .(31)

Thus (x, ~y) violates the tree inequality associated with the tree T if and
only if ω(T ) > 0.

Proposition 4.1. Assume that the (0, 1)-vector (x, ~y) satisfies the condi-
tions of Lemma 4.1. Then (x, ~y) satisfies all tree inequalities if and only
if

~yij ≤ xj 1 ≤ i 6= j ≤ n .(32)

Proof. Assume that (32) holds for the vector (x, ~y) and let T be a tree with
|V (T )| = b + 1 nodes.

Since
∑

i xi ≤ b, there exists a node r ∈ V (T ) with xr = 0. Starting
from this “root” r, we can compute ω(T ) recursively by iteratively adding
an edge (i, j) to the subtree T ′ of T already constructed. If T ′′ denotes this
augmented tree with the new node j, we observe

ω(T ′′) = ω(T ′) +
1
2
(~yij + ~yji)− xj .

In view of (22) and (32) we conclude (~yij + ~yji)/2 − xj ≤ 0 and therefore
obtain inductively

ω(T ′′) ≤ ω(T ′) ≤ 0 .

Conversely, if (32) is violated at some node r ∈ V (i.e., xr = 0 and ~ylr = 1
for some l ∈ V ), we take T to a star with center r and l as one of its b leaves.
Then ω(T ) > 0 holds.

5. Computational Results

We implemented a branch-and-bound algorithm for the edge-weighted
clique problem (WCPb) as follows. At each node of the search tree, we create
subproblems by fixing some variable xi to either 0 or 1. Following an idea of
Lucena [1992], we compute upper bounds for the objective function of the
subproblems by first (approximately) solving the corresponding Lagrangian
dual problem

(D) min{L(u,w) |u ≥ 0}
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and then adding new violated inequalities to the objective function of the
Lagrangian problem. We then solve the Lagrangian dual problem relative
to the new objective function and add new violated inequalities. We repeat
this process a fixed number of times. In the following, we will refer to an
execution of this process (i.e., solving problem (D) and adding new violated
inequalities) as a cycle.

In order to keep the number of dualized constraints manageable, we re-
move in each cycle those constraints from the objective function for which
the associated Lagrangian multipliers are almost 0.

We solve the Lagrangian dual (D) via the subgradient method with step
sizes either according Held et al. [1974] with

λk = ρ
f(xk)− f̄

‖γk‖ ,(33)

where f̄ is an estimation of the optimal value f∗, and coefficient ρ satisfies
0 < ρ ≤ 2 or according to the convergent series method (see Shor [1968] and
Goffin [1977]) with

λk = λ0α
k,(34)

where 0 < α < 1, and λ0 is the initial step size.

Several preliminary tests lead us to an implementation where we use the
first rule for solving Lagrangian dual problems associated to node 0 of the
search tree and use the convergent series method for search tree nodes at
depth > 0 .

As to the parameter setting, we observed that the correct choice of param-
eters depends on the type of inequalities we add. For example, the “original”
Lagrangian dual (D) could be solved with the convergent series method and
α = 0.95, while we needed α = 0.99 when we added all triangle clique and
cut inequalities. Such high values of α (we set λ0 = 100) lead to a fairly
large number of iterations (about 300) of the subgradient method. All of our
computational results are obtained with a fixed setting of the parameters,
chosen so as to optimize running times for the “hard instances”. We noticed
that the choice of a different setting could result in a faster solution for the
“easy” problems.

Lower bounds are computed with a simple heuristic solution algorithm
proposed by Späth [1985a]: we take the clique given a the current solution
and perform a sequence of simple exchange steps (exchange a node in the
clique with a node outside) until a local maximum is reached. This heuristic
performed extremely well: in all of our experiments, we found the global
optimum before the first branching, i.e., at depth 0.
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Macambira and de Souza [1996] tested a branch-and-cut method on a set
of instances with 40 ≤ n ≤ 48 and b = n/2. Edge weights were generated
by using a parameter k ∈ {1, 2, 3, 4, 5}. Our computational results for these
instances are listed below in Table 1 (positive edge weights) and Table 2
(mixed, i.e., positive and negative edge weights).

The column “gap %” displays the relative difference between the optimal
solution and the upper bound computed at depth 0. The columns “max
depth” and “# branch nodes” refer to the search tree.

The running time resulting from our approach seems to be at least com-
parable with the branch-and-cut method of Macambira and de Souza [1996].
On the hard instances, in particular, our approach led to an improvement
by a factor of 2 or 3. Our computations were carried out on a HP 9000/735
(125 Mhz), whereas Macambira and de Souza implemented their algorithm
on a SUN Sparc 1000 machine, using CPLEX 3.0.
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optimal gap max. # branch time
n k value 1st node % depth nodes (sec.)

1 109346 109819.2 0.4 4 11 1677
2 82451 82517.1 0.1 2 5 946

40 3 68759 69339.4 0.8 5 23 2115
4 60782 61601.3 1.3 5 37 2915
5 60513 60561.7 0.1 1 3 917
1 120299 121308.0 0.8 5 43 3845
2 87810 88950.6 1.3 6 47 4203

42 3 76554 77081.3 0.7 11 39 3947
4 69482 69644.5 0.2 2 7 1381
5 67383 67453.5 0.1 1 3 1245
1 136525 136846.5 0.2 4 11 1912
2 98186 99285.3 1.1 4 31 3672

44 3 84675 84856.6 0.2 2 7 1332
4 75274 75559.8 0.4 2 7 1403
5 69540 69777.6 0.3 12 27 4113
1 142985 144377.5 1.0 7 57 5590
2 108243 109777.5 1.4 6 81 7481

46 3 94859 95213.7 0.4 4 15 2421
4 78747 79674.4 1.2 5 41 4222
5 72431 73297.8 1.2 8 43 4434
1 163397 164435.4 0.6 6 47 4959
2 115471 118219.7 2.4 11 295 27479

48 3 96666 98305.9 1.7 8 117 11166
4 88728 89112.5 0.4 4 11 2122
5 82117 82361.6 0.3 4 9 2093

Table 1. Results for Macambira/De Souza instances (posi-
tive weights)
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optimal gap max. # branch time
n k value 1st node % depth nodes (sec.)

1 70348 73580.6 4.6 8 175 14079
2 45404 45743.8 0.7 5 11 1857

40 3 34091 34502.9 1.2 4 9 1129
4 27758 28180.3 1.5 3 15 2548
5 27967 28076.3 0.4 5 13 2785
1 81633 84997.2 4.1 9 185 14841
2 46828 48091.0 2.7 5 43 4159

42 3 36689 37014.2 0.9 3 13 2130
4 35987 36211.2 0.6 3 7 534
5 35460 35710.3 0.7 3 7 1800
1 90620 94499.8 4.3 11 307 27445
2 56960 57978.3 1.8 5 25 3329

44 3 40697 41101.0 1.0 3 9 2142
4 32601 33157.9 1.7 7 35 4208
5 29407 29639.5 0.8 3 9 1502
1 99550 102398.6 2.9 12 101 10348
2 58361 59539.5 2.0 8 37 4579

46 3 43915 45109.0 2.7 6 49 5418
4 32968 34354.0 4.2 14 97 10185
5 31000 31252.6 0.8 3 9 2350
1 113478 118353.3 4.3 12 539 55917
2 61768 65358.1 5.8 10 377 36963

48 3 45941 46572.9 1.4 5 23 3277
4 36903 37176.3 0.7 3 9 2257
5 31351 32067.0 2.3 5 33 4505

Table 2. Results for Macambira/De Souza instances
(mixed weights)
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