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Abstract

A number of results in hamiltonian graph theory are of the form P1 implies P2,
where P1 is a property of graphs that is NP-hard and P2 is a cycle structure
property of graphs that is also NP-hard. Such a theorem is the well-known
Chvátal-Erdös Theorem, which states that every graph G with α ≤ κ is
hamiltonian. Here κ is the vertex connectivity of G and α is the cardinality
of a largest set of independent vertices of G. In another paper Chvátal points
out that the proof of this result is in fact a polynomial time construction that
either produces a Hamilton cycle or a set of more than κ independent vertices.
In this note we point out that other theorems in hamiltonian graph theory
have a similar character. In particular, we present a constructive proof of the
well-known theorem of Jung [12] for graphs on 16 or more vertices.

Keywords : hamiltonian graphs, toughness, complexity, NP-hardness, polyno-
mial algorithms, constructive proofs

AMS Subject Classifications (1991) : 68R10, 05C38

1 Introduction

A number of results in hamiltonian graph theory are of the form P1 implies P2, where
P1 is a property of graphs that is NP-hard to decide and P2 is a cycle structure
property of graphs that is also NP-hard to decide. Two such well-known theorems
are the Chvátal-Erdös Theorem [7] [Theorem A below] and Jung’s Theorem [12]
[Theorem B below]. This raises the question of determining the practical utility
of these results. However in [6], Chvátal points out that the proof of Theorem A
is in fact a polynomial time construction that produces either a Hamilton cycle or
a set of more than κ independent vertices. In this note we point out that other
theorems in hamiltonian graph theory have a similar character. In particular, we
present a constructive proof of Theorem B for graphs on at least 16 vertices that,
in polynomial time, will either produce a Hamilton cycle or will produce a set of
vertices whose removal indicates that G is not 1-tough. Our goal, however, is to
raise the possibility that similar constructive proofs can be found for theorems in
other areas of graph theory.

We begin with some useful definitions. The terminology and notation required for
our proofs will be given in the next section. A good reference for any undefined
terms in graph theory is [5] and in complexity theory is [8]. We consider only finite
undirected graphs without loops or multiple edges. Let G be such a graph with
vertex set V (G) and edge set E(G). Then G is hamiltonian if it has a Hamilton cycle,
i.e., a cycle containing all of its vertices. We use κ(G) for the vertex connectivity of
G, δ(G) for the minimum vertex degree of G and α(G) to denote the cardinality of
a largest set of independent vertices in G. For 1 ≤ r ≤ α(G) we let

σr(G) = min
{∑
v∈S

d(v) | S ⊆ V (G) is an independent set with |S| = r

}
.
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If r > α(G), we define σr(G) = ∞. Note that σ1(G) = δ(G). Let ω(G) represent
the number of components of G. We say G is 1-tough if |S| ≥ ω(G − S) for every
subset S of the vertex set V (G) with ω(G − S) > 1. A cycle C in G is called a
dominating cycle if every edge of G has at least one of its endvertices on C. If
no ambiguities are likely to arise, we frequently omit any explicit reference to the
graph G by simply writing δ, κ, etc. We also sometimes identify a subgraph with
its vertex set, e.g., use C for V (C), etc.

Let

1. P1 be a property of graphs which is NP-hard to decide;

2. P2 be a cycle structure property of graphs which is NP-hard to decide; and

3. C be a class of graphs for which the membership decision problem is in P.

We will consider theorems of the following type.

Theorem 1.1 Let G ∈ C. If G has property P1, then G has property P2.

Some well-known examples of such theorems are the following.

Theorem A (Chvátal-Erdös [7] )
Let G be a graph on n ≥ 3 vertices. If α ≤ κ, then G is hamiltonian.

Theorem B (Jung [12])
Let G be a graph on n ≥ 11 vertices with σ2 ≥ n − 4. If G is 1-tough, then G is
hamiltonian.

Theorem C (Bauer, et al. [4])
Let G be a graph on n vertices with σ3 ≥ n ≥ 3. If G is 1-tough, then G has a
dominating cycle.

We wish to consider known proofs of these results from the point of view of rendering
the proofs constructive in the following sense: Beginning with any cycle C in G, in
polynomial time we do exactly one of the following:

1. demonstrate that G has property P2;

2. find a set of vertices whose existence demonstrates that property P1 does not
hold.

3. produce a longer cycle;
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In the event of (3), we begin again with the longer cycle.

An immediate consequence of the proof technique is that ifG has property P1, then
every longest cycle in G will demonstrate that G has property P2.

In particular, an examination of the proof of Theorem 5 in [4] indicates that such a
proof exists for Theorem C. It yields the next result which also appears in [4].

Theorem D Let G be a graph on n vertices with σ3 ≥ n. If G is 1-tough, then
every longest cycle in G is a dominating cycle.

The existence of a constructive proof for Theorem 1.1 is especially interesting when
P2 implies P1 (e.g., as in Theorem B). In that case, both properties P1 and P2 can
be recognized in polynomial time within the class of graphs C. In particular, within
the class of graphs with σ2 ≥ n− 4, the properties of being 1-tough and of having a
Hamilton cycle can each be recognized in polynomial time. Häggkvist [9] previously
observed that for the smaller class of graphs with δ ≥ n

2
− 2, the existence of a

Hamilton cycle can be recognized in polynomial time. This will be discussed further
in Section 4.

In Section 3 we first briefly discuss the constructive proof of Theorem A in [7], and
then provide a detailed constructive proof of Theorem B (for n ≥ 16). This later
proof makes use of arguments that appear in [2] and [4].

2 Preliminary Results

Our proofs require some notation and terminology. Let C be a cycle in G. We
denote by −→C the cycle C with a given orientation. If u, v ∈ C, then u

−→
C v denotes

the consecutive vertices on C from u to v in the direction specified by −→C . The same
vertices in reverse order are given by v←−C u. We use u+ to denote the successor of u on−→
C and u− to denote its predecessor. Further define u++ = (u+)+ and u−− = (u−)−,
etc. If v ∈ V , then N(v) is the set of all vertices in V adjacent to v. Whenever
A ⊆ C we let A+ = {v+|v ∈ A}. The sets A− and A++ are defined analogously.
Let S, T ⊆ V and v ∈ V . Then e(v, T ) is the number of edges joining v to a vertex
of T , and e(S, T ) denotes

∑
v∈S e(v, T ). We also use dC(v) to denote the number of

vertices of C which are adjacent to v.

The following lemma is needed for our constructive proof of Theorem B.
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Lemma 2.1 Let C be any cycle in G, v ∈ V − C, and A = N(v) ⊆ C. If any of
the following conditions holds, we can constructively obtain a cycle longer than C
in polynomial time.

(i) A ∩ A+ 6= ∅ or A+ ∩ A++ 6= ∅;

(ii) Either A+ or A− is not independent;

(iii) x1, x2 ∈ A, and

(a) there is a vertex z ∈ x+
1
−→
Cx+

2 such that x+
2 z, x

+
1 z

+ ∈ E, or

(b) there is a vertex w ∈ x+
2
−→
Cx+

1 such that x+
1 w, x

+
2 w

+ ∈ E, or

(c) dC(x+
1 ) + dC(x+

2 ) > |C|.

We note that (i), (ii), (iii)(a) and (iii)(b) employ standard arguments and (c)
follows easily from (a) and (b). An analogous lemma holds if we replace x+

1
by x−1 and x+

2 by x−2 . This analogous lemma will also be referred to as Lemma
2.1 (iii).

(iv) x1, x2 ∈ A with x2 = x+++
1 , and

(a) there is a vertex z ∈ x2
−→
C x−1 such that x++

1 z, x+
1 z

+ ∈ E, or

(b) there is a vertex z ∈ x2
−→
C x−1 such that x+

1 z, x
++
1 z+ ∈ E.

Proof: If (a) is satisfied, then x+
1 z

+−→C x1vx2
−→
C zx++

1 x+
1 is a cycle longer than

C. If (b) is satisfied, then x+
1 z
←−
Cx2vx1

←−
C z+x++

1 x+
1 is a cycle longer than C. 2

(v) x+
1 ∈ A+ ∩A−, z ∈ N(x+

1 ) ∩ C, and

(a) {z+} ∪ A+ is not an independent set of vertices, or

(b) {z−} ∪ A− is not an independent set of vertices.

Proof: We prove (a); the proof of (b) uses an analogous argument. Suppose
z+x+

j ∈ E, where xj ∈ A. If x+
j ∈ A+∩x++

1
−→
C z, then x+

j z
+−→Cx1vxj

←−
Cx+

1 z
←−
Cx+

j

is a cycle longer than C. If x+
j ∈ A+∩z++−→Cx+

1 , then x+
j
−→
Cx+

1 z
←−
Cx++

1 vxj
←−
C z+x+

j

is a cycle longer than C. 2

3 Proofs

We begin by noting that the proof of Theorem A in [7] is constructive in the sense
mentioned in the introduction. This was pointed out by Chvátal in [6]. An outline of
his argument is as follows. It can be determined in polynomial time whether a graph
G on n ≥ 3 vertices has κ(G) = 1. In this case it is easy to find two independent
vertices in G, thus showing that the hypothesis of Theorem A is false. Otherwise,
construct a cycle C in the 2-connected graph G. If C is not a Hamilton cycle, let H
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be any component of G−C and A =
⋃
v∈V (H) N(v)−V (H). Clearly, κ ≤ |A| = |A+|.

Let v1, v2 ∈ A. If v+
1 v

+
2 ∈ E or if they are joined by a path whose internal vertices

lie entirely in H, then a cycle longer than C is easily constructed using standard
arguments. Thus, if v0 is any vertex in H, A+∪{v0} is an independent set of vertices
having cardinality greater than κ. Hence, in polynomial time, it is possible to either
find a cycle longer than C or to find a set of more than κ independent vertices. Thus
in at most n iterations we either obtain a Hamilton cycle or demonstrate that the
hypothesis of Theorem A is false.

Before giving a constructive proof of Theorem B (Jung’s Theorem), we need a con-
structive proof of the following lemma.

Lemma 3.1 Let G be a 2-connected graph on n ≥ 16 vertices with σ2 ≥ n − 4.
Then G contains a dominating cycle.

Proof: Let C be any cycle in G, and suppose C is not a dominating cycle.
Give C an orientation and let H be a nontrivial component of G − C. Set A =⋃
v∈V (H) N(v) − V (H) and let v1, . . . , vk be the elements of A occurring on −→C in

consecutive order. Since G is 2-connected, k ≥ 2. If v+
i = vi+1 for any i, 1 ≤ i ≤ k

(indices modulo k), then C can easily be lengthened by at least one vertex. Let C
now be the longer cycle. Furthermore, it also follows from G being 2-connected that
there exist integers r and s with 1 ≤ r < s ≤ k such that vr and vs are connected
by a path Pr,s of length at least 3 with all internal vertices in H.

We now show that the following three conditions hold; otherwise we can construc-
tively obtain a longer cycle in polynomial time. We then start the argument again
with the new longer cycle.

(1) There exists no (v+
r , v

+
s )-path which is internally disjoint from C; in particular,

v+
r v

+
s /∈ E.

Assuming the contrary to (1), let P be a (v+
r , v

+
s )-path, internally disjoint from

C. Since v+
r , v

+
s /∈ A, we have V (P ) ∩ V (H) = ∅. Now vrPr,svs

←−
C v+

r Pv
+
s

−→
C vr

has length at least |V (C)|+ 2.

(2) If v ∈ v+
r

−→
C v+

s and v+
s v ∈ E, then v+

r v
+ /∈ E. Similarly, if v ∈ v+

s

−→
C v+

r and
v+
r v ∈ E, then v+

s v
+ /∈ E.

To prove (2) assume, e.g. v ∈ v+
r

−→
C v+

s , v
+
s v ∈ E and v+

r v
+ ∈ E. By (1),

v 6= v+
r , vs. If v ∈ v++

r

−→
C v−s , then the cycle vrPr,svs

←−
C v+v+

r

−→
C vv+

s

−→
C vr has

length at least |V (C)|+ 2.

(3) If v ∈ v+
r

−→
C v+

s and v+
s v ∈ E−E(C), then v+

r v
++ /∈ E. Similarly, if v ∈ v+

s

−→
C v+

r

and v+
r v ∈ E − E(C), then v+

s v
++ /∈ E.

The proof of (3) is similar to the proof of (2), except now the longer cycle has
length |V (C)|+ 1 instead of |V (C)|+ 2.
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Using observations (1)-(3) we now obtain an upper bound for d(u0)+d(v+
r )+d(v+

s ),
where u0 is an arbitrary vertex of H. Define

R1(v+
r ) = {v ∈ v+

r

−→
C vs | v+

r v
+ ∈ E},

S1(v+
s ) = {v ∈ v+

r

−→
C vs | v+

s v ∈ E},
R2(v+

r ) = {v ∈ v+
s

−→
C vr | v+

r v ∈ E},
S2(v+

s ) = {v ∈ v+
s

−→
C vr | v+

s v
+ ∈ E},

R3(v+
r ) = {v ∈ V − V (C) | v+

r v ∈ E},
S3(v+

s ) = {v ∈ V − V (C) | v+
s v ∈ E},

B(v+
r , v

+
s ) = R1(v+

r ) ∪ S1(v+
s ) ∪R2(v+

r ) ∪ S2(v+
s ).

By (2), R1(v+
r ) ∩ S1(v+

s ) = R2(v+
r ) ∩ S2(v+

s ) = ∅.
By (1), and the fact that v+

r , v
+
s /∈ A, R3(v+

r )∩S3(v+
s ) = V (H)∩(R3(v+

r )∪S3(v+
s )) =

∅. Furthermore, for i ∈ {1, . . . , k}−{r, s}, either v+
i or vi is not in B(v+

r , v
+
s ). To see

this, suppose e.g., v+
i ∈ R1(v+

r ) ∪ S1(v+
s ). Then v+

r v
++
i ∈ E, since the assumption

that v+
s v

+
i ∈ E implies the existence of a cycle longer than C, containing the vertices

of a (vi, vs)-path of length at least 2 with all internal vertices inH(cf. (1)). But then,
by (3) with v = vi, v+

s vi /∈ E. Since v+
r v

+
i /∈ E, it follows that vi /∈ R1(v+

r )∪S1(v+
s ).

Thus

d(u0) + d(v+
r ) + d(v+

s ) = d(u0) + |R1(v+
r )|+ |R2(v+

r )|+ |R3(v+
r )|+

|S1(v+
s )|+ |S2(v+

s )|+ |S3(v+
s )|

≤ (k + |V (H)| − 1) + (|V (C)| − (k − 2)) +
|R3(v+

r )|+ |S3(v+
s )|

≤ (k + |V (H)| − 1) + (|V (C)| − (k − 2)) +
(|V | − |V (C)| − |V (H)|)

= n+ 1.

However, since σ2 ≥ n− 4, we have

d(u0) + d(v+
r ) + d(v+

s ) ≥ 3
2
(n− 4).

Hence
3
2
(n − 4) ≤ n + 1, a contradiction since n ≥ 16. Thus we conclude that G

contains a dominating cycle. 2

Constructive proof of Theorem B (Jung’s Theorem)

Our constructive proof applies to all graphs on n ≥ 16 vertices.
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We begin by first constructing a dominating cycle C. This is possible by Lemma
3.1. Let v0 be a vertex of largest degree in V − C and A = N(v0). We now show
that if C is not a Hamilton cycle, in polynomial time we can either

(a) Produce a longer dominating cycle; or

(b) Produce a new dominating cycle having the same length as C, but having a
vertex w0 not on the cycle such that d(w0) > d(v0); or

(c) Produce a set of vertices whose removal shows that G is not 1-tough.

In either case (a) or (b) we let C now be the new dominating cycle and begin again.
We consider several cases.

Case 1: |C| ≤ n− 3.

Since |A| = d(v0) ≥
n− 4

2
, we immediately get a longer dominating cycle unless

C − A had d(v0) components consisting of all singletons and (possibly) an edge of
C itself. Since V − C is independent, we have

e(V − C − v0, C − A) ≥ |V | − |C|.

Otherwise

ω(G− A) ≥ d(v0) + |V − C| − e(V − C − v0, C − A)
≥ d(v0) + |V | − |C| − (|V | − |C| − 1)
= d(v0) + 1
= |A|+ 1,

and G is not 1-tough. But then, since e(V −C−v0, C−A) ≥ |V |−|C| > |V −C−v0|,
there exists w ∈ V −C− v0 with e(w,C−A) ≥ 2. Thus w is adjacent to either two
consecutive vertices of C, two vertices in A+ or two vertices in A−. In any case we
obtain a longer dominating cycle than C.

Case 2: |C| = n− 2.

Let Q = (V − C) ∪A+. We first assert the following:

Q is an independent set of vertices.

Let v1 6= v0 ∈ V −C and w ∈ A. Since C is a dominating cycle, it suffices by Lemma
2.1(ii) to show that v1w

+ /∈ E. Suppose otherwise. We claim that v1 is not adjacent
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to any vertex in (A+ − {w+})∪A++. If v1w
++ ∈ E we easily obtain a longer cycle.

If v1s
+ ∈ E, where s+ ∈ A+ − {w+}, then C ′ : v1s

+−→Cwv0s
←−
Cw+v1 is a cycle longer

than C and if v1s
++ ∈ E, where s++ ∈ A++, then C

′′ : v1s
++−→Cwv0s

←−
Cw+v1 is a

cycle longer than C. Since (A+ − {w+}) ∩ A++ = ∅, by Lemma 2.1(i) we have
d(v1) ≤ |C| − 2d(v0) + 1. Since d(v0) + d(v1) ≥ n − 4 and d(v0) ≥ d(v1) we have

d(v0) ≥
n− 4

2
. Hence

d(v0) + d(v1) ≤ (n− 2)− n− 4
2

+ 1 =
n+ 2

2
.

Since n ≥ 16 we have d(v0)+d(v1) < n−4, a contradiction. This proves the assertion.

Since G is 1-tough, |Q| ≤ n

2
. Hence

|C| ≥ n

2
+ |A+| = n

2
+ d(v0) ≥

n

2
+
n− 4

2
= n− 2,

and equality holds only if d(v0) = d(v1) =
n− 4

2
.

We now consider two cases.

Case 2a: There exists w ∈ A such that w++, w+++ /∈ A.

Let t+ ∈ A+∩A−. By Lemma 2.1(ii), N(t+) ⊆ A∪{w++}. But then G−(A∪{w++})
has at least

n

2
components and G is not 1-tough.

Case 2b: There exist u, w ∈ A such that u++, w++ /∈ A.

If t+ ∈ A+ ∩ A−, then by Lemma 2.1(ii), N(t+) ⊆ A. Hence G − A has at least
n− 2

2
components and again G is not 1-tough.

Case 3: |C| = n− 1.

First suppose d(v0) 6=
n− 3

2
or

n− 4
2

. If d(v0) >
n− 1

2
=
|C|
2

, we can easily con-

struct a Hamilton cycle in G. If d(v0) =
n− 1

2
or
n− 2

2
, then G−A has more than

d(v0) components and G is not 1-tough. Let x1, x2 ∈ A. If d(v0) <
n− 7

2
, then

d(x+
1 ), d(x+

2 ) >
n− 1

2
, contradicting Lemma 2.1(iii). Hence

n− 7
2
≤ d(v0) ≤

n− 5
2

.

We now show how to construct another cycle C ′ of length n− 1 with w0 ∈ V − C
′

and d(w0) ≥
n− 3

2
. Let x+ ∈ A+ and w++ ∈ A++ − {x++}. If x+w++ ∈ E, then
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C
′ : x+w++−→C xv0w

←−
Cx+ is the required cycle and w0 = w+ is the required vertex.

Thus we may assume x+w++ /∈ E for all w++ ∈ A++ − {x++}. Since v0x
+ /∈ E, it

follows from Lemma 2.1(i) and (ii) that d(x+) ≤ (n−1)−2(d(v0)−1)−1 = n−2d(v0).

Since d(v0) + d(x+) ≥ n− 4 we conclude d(v0) ≤ 4. However d(v0) ≥
n− 7

2
, a con-

tradiction for n ≥ 16.

Case 3a: d(v0) =
n− 3

2
.

Case 3ai: There exists z ∈ A such that z++, z+++ /∈ A.

Let t+ ∈ A+ − {z+}. By Lemma 2.1(ii), t+z+, t+z+++ /∈ E. If t+z++ ∈ E then by

Lemma 2.1(iii), z+z+++ /∈ E and thus G−(A∪{z++}) has
n+ 1

2
components, is not

1-tough. If t+z++ /∈ E for any t+ ∈ A+ − {z+}, then G− A has
n− 1

2
components

and again G is not 1-tough.

Case 3aii: There exist vertices z, w ∈ A such that z++, w++ /∈ A.

If z+w++, z++w+ /∈ E, then G − A has
n− 1

2
components and G is not 1-tough.

Suppose z+w++ ∈ E. If z+++ 6= w then w−− ∈ A. By Lemma 2.1(ii), N(w−) ⊆ A

and since v0w
− /∈ E, d(w−) ≥ n− 5

2
. If z 6= w+++, then either w−z or w−w+++ ∈ E,

contradicting Lemma 2.1(iii). If z = w+++ and all vertices in A+ − {z+, w+}
are not adjacent to z, then each vertex has degree at most

n− 5
2

. But then

d(x+) + d(y+) ≤ n− 5 for every pair of vertices x+, y+ ∈ A+ − {z+, w+}, a contra-
diction. Hence we must have z+++ = w. By Lemma 2.1(iv), w+z++ /∈ E. Since

d(w+) + d(z++) ≥ n − 4 and n is odd, either d(w+) ≥ n− 3
2

or d(z++) ≥ n− 3
2

.

Suppose, without loss of generality, that d(w+) ≥ n− 3
2

. Then N(w+) ⊆ A∪{w++}.
Hence either w+z ∈ E or w+w+++ ∈ E. However w+w+++ ∈ E contradicts Lemma
2.1(iii) and w+z ∈ E contradicts Lemma 2.1(iv). Thus we conclude that z+w++ /∈ E.
An analogous argument shows that z++w+ /∈ E.

Case 3b: d(v0) =
n− 4

2
.

Case 3bi: There exists z ∈ A such that z++, z+++, z++++ /∈ A.

Let t+ be any vertex in A+−{z+}. If t+z++ ∈ E then by Lemma 2.1(v), A+∪{z+++}
is an independent set. Also z+z++++ /∈ E by Lemma 2.1(iii). Hence G−(A∪{z++})
has

n

2
components, and G is not 1-tough. Thus t+z++ /∈ E and similarly t+z+++ /∈
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E. But this implies that G− A has
n− 2

2
components, and G is not 1-tough.

Case 3bii: There exist vertices z, w ∈ A such that z++, w++, w+++ /∈ A.

Let t+ be any vertex in A+−{z+, w+}. If t+w++ ∈ E, then by Lemma 2.1(v), A+∪
{w+++} and A−∪{w+} are both independent sets of vertices. Thus G−(A∪{w++})
has

n

2
components, a contradiction. Hence t+w++ /∈ E. Thus N(t+) = A. Next we

show that w+z++ /∈ E. Suppose otherwise. If z 6= w++++ then w+z++, z−w ∈ E
contradicts Lemma 2.1(iii). and thus z = w++++. Since z+v0 /∈ E, d(z+) ≥ n− 4

2
.

Thus z+ must be adjacent to either w,w++, w+++ or z+++. However if z+z+++ we
contradict Lemma 2.1(iii) and if either z+w or z+w++ ∈ E we contradict Lemma
2.1(iv). If z+w+++ ∈ E, then C ′ : v0zz

+w+++w++w+z++−→Cwv0 is a Hamilton cycle.
Hence w+z++ /∈ E. Using an analogous argument we conclude z+w+++ /∈ E, and
thus G is not 1-tough. For if w+w+++ /∈ E, then G−(A∪{w++}) has

n

2
components

and if w+w+++ ∈ E, then by Lemma 2.1(iii), z+w++, z++w++ /∈ E and G− A has
n− 2

2
components.

Case 3biii: There exist vertices u, z, w ∈ A such that u++, z++, w++ /∈ A.

It suffices to show that z++w+, z+w++, z++u+, z+u++, w++u+, w+u++ /∈ E since

then G−A has
n− 2

2
components and G is not 1-tough. We show that z++w+ and

z+w++ /∈ E; symmetric arguments will complete the proof. We assume, without
loss of generality, that u+ ∈ [w+−→C z+]. Suppose z++w+ ∈ E. If w = z+++ consider
any distinct pair of vertices x+, y+ ∈ A+ ∩ A−. Since N(x+), N(y+) ⊆ A − {w},
d(x+) + d(y+) < n − 4, a contradiction. If w 6= z+++, then since z+v0 /∈ E we

have d(z+) ≥ n− 4
2

and by Lemma 2.1(ii), z+ must be adjacent to at least one of

w,w++, z+++ and u++. However z+w, z+w++ /∈ E by Lemma 2.1(iv) and z+z+++ /∈
E by Lemma 2.1(iii). If z+u++ ∈ E, then C

′ : z+u++←−Cw+z++−→Cwv0u
+++−→C z+ is

a Hamilton cycle. Hence z++w+ /∈ E. Now suppose z+w++ ∈ E and consider w+.
Reasoning as above, w+ must be adjacent to at least one of z, z++, w+++ and u++.
However w+z, w+z++ /∈ E by Lemma 2.1(iv) and w+w+++ /∈ E by Lemma 2.1(iii).
Hence w+u++ ∈ E. Now by considering z++ we similarly conclude z++u+ ∈ E.
Since n ≥ 16, A+ − {u+, w+, z+} 6= ∅. Without loss of generality suppose w− ∈
A+ − {u+, w+, z+}. Clearly N(w−) = A. Thus w−w+++ ∈ E. However, since
z+w++ ∈ E, this contradicts Lemma 2.1(iii) and completes the proof. 2
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4 Concluding Remarks

As mentioned earlier, our constructive proof of Theorem B shows that within the
class of graphs with σ2 ≥ n − 4, the properties of being 1-tough and of having a
Hamilton cycle can be recognized in polynomial time. Our proof is based on the
proof of Jung’s Theorem in [2] and the proof of Theorem D in [4]. At the time
these results were established, the computational complexity of recognizing 1-tough
graphs was not known. Consequently, a number of researchers questioned the utility
of such theorems. Later it was established in [1] that recognizing t-tough graphs was
indeed NP-hard, for any positive rational t > 0. Hence the constructive argument
in this note shows that, in some sense, Theorem B and Theorem D have more than
purely theoretical interest.

In fact, it can be determined in polynomial time if G is 1-tough within the larger
class of graphs G on n vertices with σ2 ≥ n − k, for any fixed integer k ≥ 0. To
see this, it suffices to note that if G is not 1-tough, then G contains a set of vertices
S such that G − S contains at least |S| + 1 components. Suppose this is the case,
and let T1 and T2 be two smallest components of G− S, with t1 = |T1| ≤ |T2| = t2.
Then clearly

n ≥ t1 + s · t2 + s

and by examining the degree of a vertex in T1 and a vertex in T2 we get

s+ t1 − 1 + s+ t2 − 1 ≥ n− k.

These inequalities imply
k − 1 ≥ (s− 1)(t2 − 1).

Thus s ≥ k + 1 ⇒ t2 = 1. Hence, to determine whether G has such a set S, it
suffices to first check all subsets of k or fewer vertices. If S is not one of these sets,
then S must consist of a set of all vertices which are adjacent to a single vertex. All
of this can be checked in time O(nk).

By contrast, in [3] we proved the results below. Let Ω(r) be the class of all graphs
G on n vertices with δ(G) ≥ rn and let t ≥ 1 be any rational number.

Theorem 4.1 Let G be a graph in Ω
(

t

t+ 1

)
. Then G is t-tough.

Theorem 4.2 For any fixed ε > 0 it is NP-hard to recognize t-tough graphs in

Ω
(

t

t+ 1
− ε

)
.

A consequence of Theorem 4.2 is that, for any ε > 0, recognizing 1-tough graphs is
NP-hard within the class of graphs having δ ≥ n

2
−f(n), where f(n) = ε·n. It would

be interesting to find the largest f(n) for which recognizing such graphs can be done
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in polynomial time. All we know is that c1 ≤ f(n) < c2n for any constants c1, c2 > 0.

We noted earlier that Häggkvist [9] has shown that within the class of graphs on
n vertices with δ ≥ n

2
− 2, the existence of a Hamilton cycle can be recognized in

polynomial time. In fact he established the following.

Theorem 4.3 Let k ≥ 0 be any fixed integer. Then within the class of graphs G on
n vertices with δ ≥ n

2
− k, a Hamilton cycle can be recognized in time O(n5k).

Note that our proof of Theorem B shows that the property of having a Hamilton
cycle can be recognized in polynomial time within the class of graphs G on n vertices
with σ2 ≥ n− 4. We do not have an argument to extend this to the class of graphs
G on n vertices with σ2 ≥ n− k for a fixed integer k ≥ 5.

We close by raising the possibility that constructive proofs might be found for the-
orems and/or conjectures in other areas of graph theory that have the form of The-
orem 1.1. One such possibility is in the area of edge coloring of graphs. Consider
the well-known conjecture of Goldberg [11] on the edge coloring of multigraphs. Let
χ
′(G) denote the edge chromatic number of a graph G.

Conjecture (Goldberg [11]) Let G be a loopless multigraph.

If χ′(G) > 1 + ∆(G), then χ′(G) = maxH⊆G

⌈
|E(H)|
b|V (H)|/2c

⌉
.

It is known that determining χ′(G) is NP-hard [10], and it appears that determining

maxH⊆G

⌈
|E(H)|
b|V (H)|/2c

⌉
is also NP-hard. Thus Goldberg’s Conjecture is of the

form of Theorem 1.1, and the following conjecture would yield a constructive proof
of Goldberg’s Conjecture.

Conjecture Let G be a loopless multigraph, and let k be any integer with k ≥
1 + ∆(G). Then we can construct in polynomial time either a k-edge-coloring of G

or an induced subgraph H of G with
⌈
|E(H)|
b|V (H)|/2c

⌉
> k.
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