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Abstract

The study of travelling waves or fronts has become an essential part of the
mathematical analysis of nonlinear diffusion-convection-reaction processes.
Whether or not a nonlinear second-order scalar reaction-convection-diffusion
equation admits a travelling-wave solution can be determined by the study
of a singular nonlinear integral equation. This article is devoted to demon-
strating how this correspondence unifies and generalizes previous results on
the occurrence of travelling-wave solutions of such partial differential equa-
tions. The detailed comparison with earlier results simultaneously provides
a survey of the topic. It covers travelling-wave solutions of generalizations
of the Fisher, Newell-Whitehead, Zeldovich, KPP and Nagumo equations,
the Burgers and nonlinear Fokker-Planck equations, and extensions of the
porous media equation.
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1. Introduction

Wave phenomena are observed in many natural reaction, convection and
diffusion processes. This alone is motivation for studying their occurrence.
Other reasons why the study of travelling-wave solutions has become such an
essential part of the mathematical analysis of nonlinear reaction-convection-
diffusion processes are that: the analysis of travelling waves provides a means
of finding explicit solutions of the equation; in general travelling-wave solu-
tions are easier to analyse and therewith discern properties to be expected
of other solutions; such solutions can be used as tools in comparison princi-
ples and the like to determine the properties of general solutions; and, last
but not least, in conformance with their natural occurrence in many math-
ematically modelled phenomena, they characterize the long-term behaviour
in numerous situations.

This paper concerns a technique which can be used to determine whether
or not a nonlinear second-order reaction-convection-diffusion equation ad-
mits a travelling-wave solution and to investigate the properties of such a
travelling wave. The method involves the study of an integral equation, and
is an alternative to phase-plane analysis. It will be applied to equations
of the stated type, and in so doing, previous results will be reviewed in a
unifying framework.

The following equations are examples of the class of partial differential
equations which will be considered. Because these equations arise in diverse
fields of application [10, 11, 70, 71, 78, 88, 93, 100, 123, 201, 211, 244] such as
heat transfer [74,283,284], combustion [31,55,56,99,282], reaction chemistry
[13, 14], fluid dynamics [54], plasma physics [44, 62], soil-moisture physics
[30,64,219,248], foam drainage [264,275], crystal growth [127,249], biological
population genetics [53, 149, 155, 189, 191, 192, 203], cellular ecology [240],
neurology [238] and synergetics [140], the underlying interests and treatment
are often different.

1. The Fisher equation or logistic equation [98,265]

ut = uxx + u(1− u)

which is the archetypical deterministic model for the spread of an
advantageous gene in a population of diploid individuals living in a
one-dimensional habitat, and its generalization [192] ut = (um−1ux)x+
up(1− uq) with m, p and q positive parameters.

2. The Newell-Whitehead equation or amplitude equation [197]

ut = uxx + u(1− u2)
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which arises after carrying out a suitable normalization in the study
of thermal convection of a fluid heated from below. Considering the
perturbation from a stationary state, the equation describes the evolu-
tion of the amplitude of the vertical velocity if this is a slowly varying
function of time t and position x.

3. The Zeldovich equation [74]

ut = uxx + u2(1− u)

which arises in combustion theory. The unknown u represents temper-
ature, while the last term on the right-hand side corresponds to the
generation of heat by combustion.

4. The KPP equation [172]

ut = uxx + c(u),

with c differentiable for 0 ≤ u ≤ 1,

c(0) = 0, c(u) > 0 for 0 < u < 1, c(1) = 0,

and

c′(0) > c′(u) for 0 < u < 1.

This equation has the same origins as the Fisher equation and the
Zeldovich equation respectively.

5. The Nagumo equation or bistable equation [53,183,192,194,195]

ut = uxx + u(1− u)(u− α) with 0 < α < 1,

which has been obtained as one of a set of equations modelling the
transmission of electrical pulses in a nerve axon.

6. The porous media equation known in Soviet literature as the equation
of Newtonian polytropic filtration [16,17,157,216,260]

ut = (um)xx with m > 0,

which reduces to the linear heat equation in the particular case m = 1.
This equation has acquired its name because of its description of the
flow of an adiabatic gas in a porous media [10, 178, 193]. The un-
known u denotes the density of the gas and the constant m is re-
lated to its adiabatic constant. The equation also arises in other
contexts [10, 109]. It can be used to describe nonlinear heat trans-
fer [283, 284], concentration-dependent diffusion [70], the motion of
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plasma particles in a magnetic field [44], and the evolution of bio-
logical populations [128, 191, 192]. In the case m = 2 the equation
can be found in boundary layer theory [237], and as a dimensionless
reformulation of the Boussinesq equation in hydrology [30]. In the
case m = 7/2 it arises in the study of solar prominences [228]. The
equation has even been proposed as a suitable model for the spread of
intergalactic civilizations [123,200].

7. The porous media equation with absorption ut = (um)xx − up or with
a source term ut = (um)xx + up where m > 0 and p > 0 [257].

8. The Burgers equation [57–60]

ut + uux = uxx.

This equation is famous as a model for the component of the velocity in
one-dimensional turbulent flow. The second-order term on the right-
hand sides incorporates viscous effects.

9. The porous media equation with convection ut = (um)xx+(un)x where
m and n are positive constants. The foam drainage equation [120,263,
264,275],

ut = (u3/2)xx + (u2)x,

is a particular example of this equation. Modelling the gravitational
drainage of a foam comprising gas bubbles trapped in a liquid, the
unknown in this example represents the liquid fraction. Another par-
ticular example is the equation ut = (u4)xx + (u3)x. This example
arises in the modelling of the motion of a thin sheet of viscous liquid
over an inclined plate [54]. The unknown in this model represents the
film thickness. In both examples t denotes time and x a distance which
decreases in the direction of gravitational pull.

10. The Richards equation [226] also referred to as the nonlinear Fokker-
Planck equation [30,219]

ut = (a(u))xx + (b(u))x.

Under appropriate conditions on the functions a and b [113], this equa-
tion models the one-dimensional transport of water in an unsaturated
homogeneous soil. In this context u denotes soil-moisture content.
The mechanism behind the second-order term on the right-hand side
of the equation is capillary suction, while the first-order term is re-
lated to the influence of gravity and is proportional to the hydraulic
conductivity of the soil.
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11. The so-called quenching problem [164,220]

ut = (um)xx −
{

u−p for u > 0
0 for u = 0

with m > 0 and p > 0.

12. Combustion models with ignition thresholds [40,41]

ut = uxx +
{

0 for 0 ≤ u < δ
c(u) for u ≥ δ

where

c(u) > 0 for u ≥ δ.

Such equations describe the deflagration of a flame with one reactant
in a single step chemical reaction. The unknown u denotes the normal-
ized temperature, and c(u) a normalized reaction term with ignition
temperature δ.

13. The porous media equation with absorption and convection ut =
(um)xx + (un)x − up and its counterpart ut = (um)xx + (un)x + up.

All the above equations may be considered as specific examples of equa-
tions of the form

ut = (a(u))xx + (b(u))x + c(u). (1.1)

In application, the second-order term on the right-hand side of (1.1) corre-
sponds to a diffusive or dispersive process, the first-order term represents a
convective or advective phenomenon, while the last term corresponds to a
reactive process, sorption, source or sink. The unknown usually represents
a nonnegative biological, physical or chemical variable such as density, sat-
uration or concentration.

In correspondence with the predominant modelling origins of the equa-
tion (1.1), only nonnegative solutions of the equation will be considered in
this paper. These solutions may be bounded or unbounded though. Let I
denote a closed interval with infimum 0 and supremum `, i.e.

I = [0, `) with ` =∞, or, I = [0, `] with 0 < ` <∞.

The assumptions on equation (1.1) are the following.

Hypothesis 1. The coefficients a, b and c are defined on I and real. Fur-
thermore:
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(i) The function a is continuous in I, continuously differentiable in (0, `),
a′(u) > 0 for 0 < u < `, and a(0) = 0.

(ii) The function b is continuous in I, differentiable in (0, `), and b(0) = 0.

(iii) The function ca′ is integrable in every bounded subinterval of I; for
every 0 < u < ` the one-sided limits c(u−) and c(u+) exist, with
c(u−) < 0 if c(u) < 0, and, c(u+) > 0 if c(u) > 0; c(0) = 0; and,
c(`) = 0 if ` <∞.

This hypothesis is met by all the model equations, with the proviso that
condition (iii) of the above hypothesis means that p < m in the so-called
quenching problem. Moreover, it is of such a general nature that it may be
regarded as lying on the border of the current requirements for a mathemat-
ical theory for partial differential equations of the form (1.1).

Suppose that equation (1.1) admits a travelling-wave solution of the form

u(x, t) = f(ξ) with ξ = x− σt (1.2)

where σ is a constant which constitutes the wave speed. Then formally
substituting (1.2) into (1.1) yields the ordinary differential equation

(a(f))′′ + (b(f))′ + c(f) + σf ′ = 0 (1.3)

where a prime denotes differentiation with respect to ξ.

In general, for the class of partial differential equations considered, the
ordinary differential equation (1.3) does not have a classical solution. For in-
stance in the case of the porous media equation, ut = (um)xx, equation (1.3)
reads

(fm)′′ + σf ′ = 0. (1.4)

For m > 1 this admits the solution

f(ξ) =

{ ∣∣m−1
m σξ

∣∣1/(m−1) for ξ < 0
0 for ξ ≥ 0

(1.5)

for every σ > 0. This solution is physically relevant, since f and (fm)′,
which, in the process of gas flow in a porous media modelled by the nonlin-
ear partial differential equation, correspond to the density and flux respec-
tively, are continuous. However, when m ≥ 2, the stated function f is not
continuously differentiable and thus does not constitute a classical solution
of the equation.
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The above example illustrates the necessity of the consideration of some
abstraction of the notion of a solution. For continuous c in I it would suffice
to consider weak solutions of equation (1.3). However, one would like to be
able to consider singular reaction terms such as that in the above so-called
quenching problem. We therefore introduce a definition of a solution of (1.3)
which permits consideration of travelling waves which do not even need to
be such that c(f) is everywhere locally integrable. To this end, in the event
that I is unbounded we let

Cε(s) =
{

c(0) for s ≤ ε
c(s) for s > ε

for any ε > 0, and if I is bounded

Cε(s) =


c(0) for s ≤ ε
c(s) for ε < s < `− ε
c(`) for s ≥ `− ε

for any `/2 > ε > 0.

Definition 1. A function f defined on an open real interval Ω with values
in I is said to be a travelling-wave solution of equation (1.1) with speed σ if
f ∈ C(Ω), (a(f))′ ∈ L1

loc(Ω), Cε(f) ∈ L1
loc(Ω) for all sufficiently small ε > 0,

and

lim
ε↓0

∫
Ω

[
{(a(f))′ + b(f) + σf}φ′ − Cε(f)φ

]
dξ = 0 (1.6)

for any function φ ∈ C∞0 (Ω).

Any classical or weak solution of the ordinary differential equation (1.3) in
an interval Ω is automatically a solution in the above sense.

Definition 2. If, in the previous definition, Ω = (−∞,∞), the function f
is said to be a global travelling-wave solution of equation (1.1).

Definition 3. Two travelling-wave solutions will be said to be indistinct if
one is a translation of the other or one is the restriction of the other to a
smaller domain. Otherwise they are distinct.

Following [53,90,93,192] a monotonic global travelling-wave solution of
equation (1.1) which connects two equilibrium states of the equation will be
called a wavefront.

Definition 4. (i) A global travelling-wave solution which is monotonic,
but not constant, and such that

f(ξ)→ `− as ξ → −∞ (1.7)
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and

f(ξ)→ `+ as ξ →∞ (1.8)

for some `−, `+ ∈ I with c(`−) = c(`+) = 0 is said to be a wavefront
solution from `− to `+.

(ii) A travelling-wave solution which is defined, monotonic, but not con-
stant in (ω,∞) for some real ω, and such that (1.8) holds for some
`+ ∈ I with c(`+) = 0 is said to be a semi-wavefront solution to `+.
Similarly, a travelling-wave solution which is defined, monotonic, but
not constant in (−∞, ω) for some real ω, and such that (1.7) holds for
some value `− with c(`−) = 0 is said to be a semi-wavefront solution
from `−.

The function

f(ξ) =
(

1−m

m
σξ

)−1/(1−m)

for any σ > 0 gives an example of a semi-wavefront solution for the porous
media equation ut = (um)xx with m < 1. For ξ > 0 it can be verified to
satisfy (1.4) classically, be monotonic decreasing, and, such that (1.8) holds
with `+ = 0. However, it is not extendible beyond the interval (0,∞).

Definition 5. A semi-wavefront solution which is not extendible to a global
travelling-wave solution is said to be a strict semi-wavefront solution.

The interest in this paper will be in semi-wavefront, wavefront and un-
bounded monotonic travelling-wave solutions of equations of the class (1.1).
Under favourable conditions on the coefficients in the equation it can be
shown that any global travelling-wave solution of such an equation satisfying
(1.7) and (1.8) and with values in the range min{`−, `+} ≤ f ≤ max{`−, `+}
is necessarily monotonic [95,96]. Moreover, it can be established that, apart
from the constant solutions which are easy to identify, the only bounded
monotonic global travelling-wave solutions of an equation of the type (1.1)
are its wavefront solutions. We shall return to both these points in the next
section.

To supplement the above remarks, we note that by a simple change of
variables any wavefront solution of an equation of the type (1.1) can be
transformed into a wavefront solution from ` to 0 for an equivalent equation
of the same class. While, any semi-wavefront solution can be similarly trans-
formed into a semi-wavefront solution decreasing to 0. We shall therefore,
without loss of generality, focus our attention on wavefront solutions from `
to 0 and semi-wavefront solutions to 0.
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The principal contention of this paper is that the study of monotonic
travelling-wave solutions of equation (1.1) is equivalent to the study of the
integral equation

θ(s) = σs + b(s)−
∫ s

0

c(r)a′(r)
θ(r)

dr (1.9)

in which θ is the unknown. This equation may be classified as a singular
nonlinear Volterra integral equation of the second kind [125,185].

The correspondence between monotonic travelling-wave solutions of the
partial differential equation (1.1) and solutions of the integral equation (1.9)
can be motivated formally as follows. Suppose that the coefficients in (1.1)
are smooth and that the equation does not degenerate from parabolic type.
Then setting g(ξ) := −(a(f))′(ξ) the ordinary differential equation (1.3) can
be reformulated as the first-order system{

f ′ = −g/a′(f)
g′ = −g{σ + b′(f)}/a′(f) + c(f).

(1.10)

In the phase-plane the trajectories of this system are given by

dg

df
= σ + b′(f)− c(f)a′(f)

g
. (1.11)

Subsequently, if (1.3) admits a solution for which f(ξ)→ 0 and (a(f))′(ξ)→
0 as ξ → ∞ this solution is necessarily represented by a trajectory which
approaches the point (f, g) = (0, 0) in the phase-plane. Integrating (1.11)
through this point yields

g(f) = σf + b(f)−
∫ f

0

c(r)a′(r)
g(r)

dr

for such a trajectory. This is the integral equation (1.9) in other notation. In
other words, it is possible to view the integral equation (1.9) as a description
of travelling-wave solutions of (1.1) in their phase-space. The relationship
between travelling-wave solutions of equations of the type (1.1) and the or-
dinary differential equation (1.11) has been noted and utilized by previous
authors [20–23,32–38,61,90,93,96,97,159,162,172,191,192,213,222,246,247,
250,254,266,268,270,282], and for a related problem in [153,154,282].

Notwithstanding the above remarks, the presented argument relating
travelling-wave solutions of the partial differential equation to solutions of
the integral equation (1.9) does not yet fully describe the situation. In terms
of a solution θ of the integral equation, the first component of (1.10) reads

a′(f)f ′

θ(f)
= −1.
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This infers that a travelling-wave solution f of equation (1.1) and a solution
θ of equation (1.9) are to be related by∫ f(ξ)

ν

a′(r)
θ(r)

dr = ξ0 − ξ

for some ν in the domain of definition of θ and some number ξ0. However,
to justify this construction, the above integral must be well-defined. To be
specific, for a travelling-wave solution of equation (1.1) with values f(ξ) in
(0, δ), this means that necessarily θ is defined in the domain (0, δ), and,∫ s1

s0

a′(r)
θ(r)

dr <∞ for all 0 < s0 < s1 < δ. (1.12)

Henceforth, we shall refer to this last constraint in the following terms.

Definition 6. A solution θ of equation (1.9) in a right neighbourhood of
zero [0, δ), or [0, δ] with δ <∞, is said to satisfy the integrability condition
in this neighbourhood if (1.12) holds.

The precise contention of this paper is that monotonic travelling-wave solu-
tions of equation (1.1) are characterized by solutions of the integral equation
(1.9) which satisfy the integrability condition.

Our key results are the following.

Theorem 1. Equation (1.1) has a semi-wavefront solution with speed σ de-
creasing to 0 if and only if (1.9) has a solution satisfying the integrability
condition on an interval [0, δ) for some 0 < δ ≤ `.

Theorem 2. Suppose that ` < ∞. Then equation (1.1) has a wavefront
solution from ` to 0 with speed σ if and only if (1.9) has a solution θ satisfying
the integrability condition on [0, `] such that θ(`) = 0.

Theorem 3. Suppose that ` = ∞. Then equation (1.1) has an unbounded
monotonic travelling-wave solution with speed σ decreasing to 0 if and only
if (1.9) has a solution θ satisfying the integrability condition on [0,∞).

Note that for a travelling wave f the condition that f(ξ) → 0 as ξ → ∞
implied in the above theorems does not automatically mean that f is posi-
tive and approaches zero in the limit. In many cases the typical behaviour
is f(ξ) = 0 for all ξ ≥ ξ∗ for some argument ξ∗. This is illustrated by the
explicit solution (1.5) of the porous media equation with m > 1. A simi-
lar remark may be made for a wavefront solution with regard to the limit
ξ → −∞.
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By studying the integral equation (1.9) and applying Theorems 1, 2 and
3, previous results on the occurrence of travelling-wave solutions of equa-
tions of the class (1.1) will be unified and generalized in this paper. It will
be shown how the integral equation may be applied in a number of different
concrete situations. In so doing, and comparing the results with previous
work on the occurrence of semi-wavefront and wavefront solutions, the lit-
erature on this topic will be surveyed.

The remainder of this paper is organized as follows. In the next section,
the proof of Theorems 1, 2 and 3 will be sketched and a number of straight-
forward corollaries of these theorems will be stated. The rest of the paper
is then devoted to the application of the theorems to nonlinear reaction-
convection-diffusion equations of the type (1.1). The theory of the integral
equation (1.9) which is needed is presented in an appendix.

In Section 3, it will be shown how results of Hadeler [133], Engler [89] and
Danilov et al. [74] on the equivalence of travelling-wave solutions of different
equations of the form (1.1) may be obtained and generalized, as a simple
corollary of Theorems 1 and 2. In Section 4, other results on how using
the integral equation (1.9), the occurrence of a semi-wavefront solution of a
given equation of the type (1.1) may be invoked to deduce the existence of
other semi-wavefront solutions of the same equation and of semi-wavefront
solutions of other equations of the same type will be presented. Among
other results, it will be proven that if equation (1.1) has a nontrivial semi-
wavefront solution decreasing to 0 with speed σ∗ the same can be said for
all speeds σ ≥ σ∗. Sections 5 to 7 are then specifically concerned with
the application of the integral equation (1.9) to determine the existence
of semi-wavefront solutions of particular equations of the class (1.1). In
Section 5, convection-diffusion equations will be considered, in Section 6
reaction-diffusion equations, and in Section 7 the specific equations

ut = (um)xx + b0(un)x +
{

c0u
p for u > 0

0 for u = 0
(1.13)

and the weaker perturbation of the linear diffusion-convection-reaction equa-
tion

ut = (u |ln u|−m)xx + b0(u |ln u|1−n)x + c0u |ln u|2−p ,

in which m, n, p, b0 and c0 are parameters, will be examined.

In Section 8 the existence of wavefront solutions of equation (1.1) will
be discussed and results on the set of wave speeds for which the equation
may admit such a solution, analogous to the result for semi-wavefronts es-
tablished earlier, will be proven. In Section 9 such waves for convection-
diffusion equations will be characterized. Thereafter, in Section 10, similar
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waves for reaction-diffusion equations will be studied. Particular attention
will be paid to equations in which the reaction term has a fixed sign, to equa-
tions in which the reaction term has one sign change, and, to equations with
smooth coefficients. Archetypes for the first category of equations are the
Fisher, Newell-Whitehead, Zeldovich and KPP equations, while the Nagumo
equation is the archetype for the second category of equations. Moreover,
all of the afore-mentioned equations may be viewed as having smooth coef-
ficients.

Section 11 concerns unbounded travelling-wave solutions. In Section 12
analyses of all global travelling-wave solutions and all unbounded travelling-
wave solutions of equation (1.13) will be discussed.

The following version of this paper will include a further section devoted
to explicit travelling-wave solutions of (1.1) which can be obtained from
analysis of the integral equation (1.9), and, a section containing a few re-
marks on extensions to travelling-wave solutions of equation (1.1) which are
not necessarily monotonic.

Kindred travelling-wave solutions of nonlinear second-order hyperbolic
equations have been investigated by Danilov, Maslov and Volosov [74] and
by Hadeler [134–136]. While the analogous solutions of first-order nonlinear
conservation laws have been studied by Mascia [182].

Very much bound up with the study of the occurrence of travelling-
wave solutions of equations of the type (1.1) is the study of the stability of
such waves. This topic is investigated in more detail for various variants
of (1.1) in [39, 46, 51, 52, 75, 78, 79, 91, 93, 95–97, 106, 123, 124, 137, 139, 149–
152, 159–162, 170, 172, 176, 177, 184, 188, 205, 215, 222, 229–231, 235, 246, 247,
253, 254, 256, 258, 261, 262, 268, 269]. Worthy of special mention for an in-
troduction in historical perspective are the works of Kolmogorov, Petrovskii
and Piskunov [172], of Kanel’ [160–162], of McKean [183, 184], of Aronson
and Weinberger [20, 21], of Fife and McLeod [95–97], of Sattinger [235], of
Uchiyama [253–256], and of Bramson [51,52].
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2. General theory

2.1. Necessity

Let us begin with some preliminary information on travelling-wave solutions
of (1.1).

Lemma 1. Suppose that (1.1) has a travelling-wave solution f in an open
interval Ω.

(i) If f ≡ f∗ for some f∗ ∈ I then c(f∗) = 0.

(ii) If 0 < f(ξ) < ` for all ξ ∈ Ω then a(f) ∈ C1(Ω), (a(f))′ + b(f) + σf is
absolutely continuous in Ω, and

((a(f))′ + b(f) + σf)′ + c(f) = 0 (2.1)

almost everywhere in Ω.

(iii) If ` > f(ξ1) > f(ξ) > 0 for all ξ ∈ (ξ1, ξ2) ⊆ Ω and some ξ1 ∈ Ω then
(a(f))′(ξ1) < 0 or c(f(ξ1)) ≥ 0.

(iv) If ` > f(ξ) > f(ξ1) > 0 for all ξ ∈ (ξ0, ξ1) ⊆ Ω and some ξ1 ∈ Ω then
(a(f))′(ξ1) < 0 or c(f(ξ1)) ≤ 0.

Proof. Part (i) may be verified formally by substitution in (1.3), and follows
rigorously from Definition 1 of a travelling-wave solution of equation (1.1).
With regard to part (ii), when 0 < f < ` Definition 1 is equivalent to the
definition of a solution of (1.3) in the sense of distributions. The assertion
may subsequently be obtained from a standard regularity argument. As re-
gards parts (iii) and (iv) in the classical setting, if the ordinary differential
equation (1.3) has a local maximum in a point ξ1 then by substitution in
(1.3) necessarily c(f(ξ1)) ≥ 0, whereas if this equation has a local minimum
in ξ1 then c(f(ξ1)) ≤ 0. Parts (iii) and (iv) of the lemma are the extension
of this argument to the present situation with weak continuity assumptions
on the coefficients in equation (1.1). We refer to [115] for details. 2

With the above information we can prove the ‘only if’ statements of Theo-
rems 1, 2 and 3.

Suppose that equation (1.1) has a monotonic travelling-wave solution in
an interval Ω = (ω,∞) for which f(ξ) → 0 as ξ → ∞ and f(ξ) → δ as
ξ → ω with 0 < δ ≤ ` and −∞ ≤ ω <∞. Set

Ξ0 := sup{ξ ∈ (ω,∞) : f(ξ) > 0}

and

Ξ1 := inf{ξ ∈ (ω,∞) : f(ξ) < δ}.
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By Lemma 1(ii), a(f) ∈ C1(Ξ1,Ξ0), (a(f))′+b(f)+σf is absolutely continu-
ous on (Ξ1,Ξ0) and (2.1) holds almost everywhere in (Ξ1,Ξ0). Subsequently,
one can define a continuous nonnegative function θ on (0, δ) via

θ(f(ξ)) = −(a(f))′(ξ) for ξ ∈ (Ξ1,Ξ0). (2.2)

We shall show that θ is the solution of the integral equation (1.9) satisfying
the integrability condition (1.12) which we seek.

Let

S := {ξ ∈ (Ξ1,Ξ0) : (a(f))′(ξ) = 0},

and note that by Lemma 1, c(f(ξ)) = 0 for all ξ ∈ S. Consequently,∫ ξ2

ξ1

|c(f(ξ))| dξ =
∫

(ξ1,ξ2)\S
|c(f(ξ))| dξ

= lim
ε↓0

∫ ξ2

ξ1

− |c(f(ξ))| (a(f))′(ξ)
θ(f(ξ)) + ε

dξ

for any Ξ1 < ξ1 < ξ2 < Ξ0. Hence, with the convention that any fraction of
the form ca′/θ takes the value 0 if both ca′ and θ vanish,∫ ξ2

ξ1

|c(f(ξ))| dξ = lim
ε↓0

∫ f(ξ1)

f(ξ2)

|c(r)| a′(r)
θ(r) + ε

dr =
∫ f(ξ1)

f(ξ2)

∣∣∣∣c(r)a′(r)θ(r)

∣∣∣∣ dr

for any Ξ1 < ξ1 < ξ2 < Ξ0. It follows that with the above convention, ca′/θ
is integrable on every compact subset of (0, δ). Furthermore, repeating the
above argument without the absolute value signs∫ f(ξ1)

f(ξ2)

c(r)a′(r)
θ(r)

dr =
∫ ξ2

ξ1

c(f(ξ)) dξ for all Ξ1 < ξ1 < ξ2 < Ξ0.

(2.3)

Alternatively repeating the above argument with c replaced by 1 we deduce
that a′/θ is integrable on every compact subset of (0, δ), and∫ f(ξ1)

f(ξ2)

a′(r)
θ(r)

dr = ξ2 − ξ1 −
∫

(ξ1,ξ2)∩S
1 dξ for all Ξ1 < ξ1 < ξ2 < Ξ0.

(2.4)

Integrating (2.1) and combining with (2.2) and (2.3), θ satisfies the equa-
tion

θ(s1)− σs1 − b(s1) = θ(s0)− σs0 − b(s0)−
∫ s1

s0

c(r)a′(r)
θ(r)

dr
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for any 0 < s0 < s1 < δ. By Lemma A5 of the appendix, this implies

µ := lim
s↓0

θ(s) ≥ 0 exists, (2.5)

∫ s

0

c(r)a′(r)
θ(r)

dr := lim
ε↓0

∫ s

ε

c(r)a′(r)
θ(r)

dr exists,

and

θ(s) = µ + σs + b(s)−
∫ s

0

c(r)a′(r)
θ(r)

dr

for any 0 < s < δ. Whence, if µ = 0, θ satisfies the integral equation (1.9)
and the integrability condition (1.12) on [0, δ).

It remains to show that µ = 0. However, amalgamating (2.2) and (2.5)
implies (a(f))′(ξ)→ −µ as ξ ↑ Ξ0. Hence, if Ξ0 =∞, this can plainly only
be the case if µ = 0. Whereas if Ξ0 <∞, since (a(f))′ ≡ f ≡ 0 on (Ξ0,∞),
from the integral identity (1.6) in the definition of a travelling-wave solution
of (1.1) on (Ξ1,∞) it can be verified that necessarily µ = 0.

This yields the ‘only if’ conclusions of Theorems 1 and 3. The ‘only if’
conclusions of Theorem 2 may be proved by extending the above consider-
ations regarding the limit (2.5) to the corresponding limit as s ↑ `.

2.2. Sufficiency

Suppose now that the integral equation (1.9) has a solution θ satisfying
the integrability condition on an interval [0, δ) with 0 < δ ≤ `. Suppose
furthermore that if δ = ` < ∞ then θ solves (1.9) on [0, `], and θ(`) = 0.
Let ν ∈ (0, δ) and set

Ξ0 :=
∫ ν

0

a′(r)
θ(r)

dr and Ξ1 := −
∫ δ

ν

a′(r)
θ(r)

dr. (2.6)

Next, let Ω denote the interval (−∞,∞) if δ = ` < ∞ and the interval
(Ξ1,∞) otherwise. Finally, define the function f on Ω by

−
∫ f(ξ)

ν

a′(r)
θ(r)

dr = max{ξ,Ξ1} for ξ ≤ 0 (2.7)

and ∫ ν

f(ξ)

a′(r)
θ(r)

dr = min{ξ,Ξ0} for ξ > 0. (2.8)
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We show that f is a travelling-wave solution of equation (1.1) on Ω with the
properties we seek.

Plainly f is continuous in Ω. Furthermore, differentiating (2.7) and (2.8),
(a(f))′ exists in (Ξ1,Ξ0) and satisfies (2.2). In fact, since

θ(0) = 0, and, θ(δ) = 0 if Ω 6= (Ξ1,∞), (2.9)

we deduce that a(f) ∈ C1(Ω). Now define the mapping Ψ on (0, δ) by
Ψ(f(ξ)) = ξ for ξ ∈ (Ξ1,Ξ0). By (2.7) and (2.8), Ψ is absolutely continuous
on (0, δ) and Ψ′(s) = −a′(s)/θ(s) for almost all s ∈ (0, δ). Subsequently∫ Ψ(s0)

Ψ(s1)
|c(f(ξ))| dξ =

∫ s1

s0

|c(r)| a′(r)
θ(r)

dr

for any 0 < s0 < s1 < δ. This implies c ∈ L1
loc(Ξ1,Ξ0), and thus Cε ∈ L1

loc(Ω)
for small enough ε > 0, where Cε is as defined in the previous section. More-
over, applying the above argument with c instead of |c|, (2.3) holds.

It follows that to complete the proof of Theorems 1, 2 and 3 it remains
to establish (1.6). However, using (1.9), (2.2) and (2.3) there holds(

(a(f))′ + b(f) + σf
)
(ξ2)−

(
(a(f))′ + b(f) + σf

)
(ξ1)

= −
∫ ξ2

ξ1

c(f(ξ)) dξ

for any Ξ1 < ξ1 < ξ2 < Ξ0. This yields the absolute continuity of (a(f))′ +
b(f) + σf on (Ξ1,Ξ0) and that (2.1) holds almost everywhere on (Ξ1,Ξ0).
So multiplying (2.1) by a test-function φ ∈ C∞0 (Ω), integrating by parts and
using (2.2) we compute∫ ξ2

ξ1

[{(a(f))′ + b(f) + λf}φ′ − c(f)φ] dξ

= φ(ξ2){−θ(f(ξ2)) + b(f(ξ2)) + λf(ξ2)}
− φ(ξ1){−θ(f(ξ1)) + b(f(ξ1)) + λf(ξ1)} (2.10)

for any Ξ1 < ξ1 < ξ2 < Ξ0. Letting ξ1 ↓ Ξ1 and ξ2 ↑ Ξ0 in (2.10) and
recalling (2.9) yields (1.6).

2.3. Illustrations

Some aspects of the afore-going proof of Theorems 1, 2 and 3 may seem
unnecessarily complicated. To illustrate the basic principles involved and
some of the pitfalls which have been avoided, we discuss a number of spe-
cific examples below.
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The exceptional feature of our first example is that in terms of the general
notation it concerns an explicit wavefront solution from ` to 0 such that

f(ξ) = 0 for all ξ ≥ ξ∗ some ξ∗ ∈ (−∞,∞) (2.11)

and

f(ξ) = ` for all ξ ≤ ξ∗∗ some ξ∗∗ ∈ (−∞,∞). (2.12)

This illustrates that the variables Ξ0 and Ξ1 introduced in the preceeding
subsections, for both the proof of necessity and the proof of sufficiency in
Theorems 1, 2 and 3, do not necessarily coincide with the supremum and
infimum respectively of the domain of the travelling wave. It follows that, in
general, Ξ0 and Ξ1 play an important role in the construction of a travelling-
wave solution of equation (1.1) from a solution of the integral equation (1.9),
and vice versa.

Example 1. The equation

ut = (
√

u(1− u)ux)x + (k + 2u)
√

u(1− u), (2.13)

where k is an arbitrary constant, admits the wavefront solution with wave
speed σ = k + 1 given by

f(ξ) =


1 for ξ ≤ −π/2
(1− sin ξ)/2 for − π/2 < ξ < π/2
0 for ξ ≥ π/2.

(2.14)

This equation falls into the general class (1.1) with a(u) =
∫ u

0

√
s(1− s) ds,

b(u) = 0, c(u) = (k + 2u)
√

u(1− u), and I = [0, 1]. Differentiating (2.14),
one may write

f ′(ξ) = −
√

f(1− f)(ξ) for all −∞ < ξ <∞. (2.15)

Subsequently, it is not too hard to check that (2.14) is a classical solution
of the ordinary differential equation (

√
f(1− f)f ′)′ + (k + 2f)

√
f(1− f) +

σf ′ = 0 in (−∞,∞), and, hence, a wavefront solution of (2.13) from 1
to 0 with wave speed σ. Now, in terms of the notation of Subsection 2.1,
for this explicit travelling wave, one has ω = −∞, δ = 1, Ξ0 := sup{ξ ∈
(ω,∞) : f(ξ) > 0} = π/2 and Ξ1 := inf{ξ ∈ (ω,∞) : f(ξ) < δ} = −π/2.
Hence, rewriting (2.2) as θ(f(ξ)) = −(a′(f)f ′)(ξ) = −(

√
f(1− f)f ′)(ξ) for

ξ ∈ (Ξ1,Ξ0), and using (2.15), produces the function

θ(s) = s(1− s) (2.16)
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for 0 < s < 1. This function is continuously extendible onto I with θ(0) =
θ(1) = 0. It is easily verified that it satisfies the corresponding integral
equation

θ(s) = σs−
∫ s

0

(k + 2r)r(1− r)
θ(r)

dr (2.17)

in this interval. Moreover, since it is positive on (0, 1), it automatically
fulfils the integrability condition on I. Conversely, starting from the solution
(2.16) of the integral equation (2.17), one may follow the methodology of the
previous subsection to construct a travelling-wave solution of (2.13). To be
specific, given any ν ∈ (0, 1), using (2.6) – (2.8) one generates the function
f on (−∞,∞) given by

arcsin{1− 2f(ξ)} =
{

max{ξ − arcsin(2ν − 1),−π/2} for ξ ≤ 0
min{ξ − arcsin(2ν − 1), π/2} for ξ > 0.

Modulo a translation, arcsin(2ν − 1) with 0 < ν < 1, this gives the original
wavefront solution (2.14).

Our next example is one of a wavefront solution which, excluding the pos-
sibility that (2.11) or (2.12) may hold, is not strictly monotonic. For such a
travelling-wave, the measure of the set S defined in Subsection 2.1 is positive.
Thus, this complication cannot be ignored. Furthermore, we shall see that
this can lead to a situation where the correspondence between distinct mono-
tonic travelling-wave solutions of the diffusion-convection-reaction equation
(1.1) and solutions of the integral equation (1.9) need not be one-to-one.

Example 2. The equation

ut = uxx +


4u2(8u− 3) for 0 ≤ u < 1/2
0 for u = 1/2
4(1 − u)2(8u− 5) for 1/2 < u ≤ 1

(2.18)

admits the wavefront solution with wave speed σ = 0 given by

f(ξ) =


{1 + 2(ξ0 − ξ)2}/2{1 + (ξ0 − ξ)2} for ξ < ξ0
1/2 for ξ0 ≤ ξ ≤ ξ1
1/2{1 + (ξ − ξ1)2} for ξ > ξ1

(2.19)

for every pair of real numbers ξ0 < ξ1.

Proof. Differentiating (2.19), it can be checked that this function is globally
continuously differentiable, and, twice continuously differentiable except at
the points ξ0 and ξ1. Moreover, u = f(x) satisfies (2.18) classically every-
where excepting for x = ξ0 and x = ξ1. Subsequently, it is easy to verify
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that this is a wavefront solution of equation (2.18) from 1 to 0 with wave
speed 0 in the sense of Definition 1. Following the analysis of Subsection 2.1,
we find that Ξ0 := ∞ and Ξ1 := −∞; while the function θ can be defined
by

θ(s) =
{

2s
√

2s(1− 2s) for 0 ≤ s ≤ 1/2
2(1− s)

√
2(1− s)(2s− 1) for 1/2 < s ≤ 1.

(2.20)

This function may be verified to satisfy the corresponding integral equation
(1.9). The set S = [ξ0, ξ1]. Note that c(f(ξ)) = 0 for all ξ ∈ S, in confor-
mance with Lemma 1. Conversely, we may follow the analysis of the previous
subsection to construct a travelling-wave solution f of equation (2.18) from
the function (2.20). Given any ν ∈ (0, 1), using (2.6) – (2.8), we obtain

f(ξ) =
{
{1 + 2(η − ξ)2}/2{1 + (η − ξ)2} for ξ ≤ η
1/2{1 + (ξ − η)2} for ξ > η,

(2.21)

where

η =
{
−
√

(1− 2ν)/2ν for ν ≤ 1/2√
(2ν − 1)/2(1 − ν) for ν > 1/2.

(2.22)

This is the wavefront solution (2.19) with ξ0 = ξ1 = η. 2

Let us recapitulate the above. Starting with an explicit travelling-wave solu-
tion (2.19) of the partial differential equation (2.18), we computed a solution
(2.20) of the appropriate integral equation (1.9). Thereafter, using (2.20), we
constructed a travelling-wave solution (2.21), (2.22) of the partial differential
equation (2.18). During this process though, more than a translation of the
wave has occurred. Although the original solution is constant in an interval
[ξ0, ξ1] of positive length, the reconstructed solution (2.21), (2.22) does not
possess this property. In fact, the reconstructed solution is independent of
the magnitude of ξ1−ξ0. Thus, in general, there is no one-to-one correspon-
dence between distinct monotonic travelling-wave solutions of the diffusion-
convection-reaction equation (1.1) and solutions of the integral equation
(1.9). Notwithstanding, from the analysis in the previous two subsections,
it can be discerned that there is a one-to-one correspondence under the
proviso that one considers only those monotonic travelling-wave solutions f
defined in a domain Ω, with inf{f(ξ) : ξ ∈ Ω} = 0 and sup{f(ξ) : ξ ∈ Ω} = δ
say, which are strictly monotonic in {ξ ∈ Ω : 0 < f(ξ) < δ}.

Our final example displays a further complexity. This is that the set
S := {ξ ∈ (Ξ1,Ξ0) : (a(f))′(ξ) = 0} has an infinite number of disjoint com-
ponents. Moreover, it is possible to define the measure of these components
in a such a way that (2.11) may or may not occur. In fact, we could extend
this example to control the occurrence of (2.12) as well. However, we shall
spare the reader the details of this procedure.
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Example 3. Let {si}∞i=0 be a strictly decreasing sequence of values in (0, 1]
such that s0 = 1 and si = O(i−3) as i → ∞. Set ξ0 = −π. Thereafter,
by induction, define ηi−1 = ξi−1 + π/i2 and ξi > ηi−1 for all i ≥ 1. The
equation

ut = uxx +
{

i4(u− si+si−1
2 ) for si < u < si−1 and i ≥ 1

0 otherwise

admits the wavefront solution with wave speed σ = 0 given by

f(ξ) =



1 for ξ ≤ ξ0
si+si−1

2 − si−si−1
2 cos{i2(ξ − ξi−1)} for ξi−1 < ξ < ηi−1

and i ≥ 1
si for ηi−1 ≤ ξ ≤ ξi

and i ≥ 1
0 otherwise.

(2.23)

Proof. It requires some laborious calculation to verify this example, and,
details will be omitted. The corresponding solution of the integral equation
(1.9) is

θ(s) =
{

i2
√

(s− si)(si−1 − s) if si < s < si−1 and i ≥ 1
0 otherwise.

(2.24)

The crucial features of this example are that

Ξ0 := sup{ξ ∈ (−∞,∞) : f(ξ) > 0}

=
∞∑
i=1

(ηi − ξi) +
∞∑
i=1

(ξi − ηi−1)

=
∞∑
i=1

π

(i + 1)2 +
∞∑
i=1

(ξi − ηi−1) (2.25)

and S = ∪∞i=1[ηi−1, ξi]. Thus, (2.11) holds if and only if the final sum in
(2.25) converges. On the other hand, the construction of a travelling-wave
solution from (2.24) following the approach presented in the previous subsec-
tion automatically results, modulo translation, in the function (2.23) with
ξi = ηi−1 for all i ≥ 1. 2

Both this and the preceeding example concern a wavefront solution f from
` to 0 with the property that there exists one or more values s∗ ∈ (0, `)
such that f ≡ s∗ in some interval of positive length. We have seen too that
deriving a solution θ of the integral equation from this wavefront solution
and then using the methodology outlined in the previous section to recon-
struct a travelling-wave solution results in a wavefront solution which does
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not have this property. However, this need not be the case. Noting, that
necessarily θ(s∗) = c(s∗) = 0, it is possible to insert an interval of arbitrary
length on which f ≡ s∗ in the reconstructed solution. To be more specific,
given any solution θ of the integral equation (1.9), defined in an interval
[0, δ), or, [0, δ] with δ <∞ say, for a countable number of values s∗ ∈ (0, δ)
such that θ(s∗) = 0 in the light of the lemma below one can modify the
proof in the previous subsection to construct a decreasing travelling-wave
solution f of equation (1.1) in a domain Ω such that inf{f(ξ) : ξ ∈ Ω} = 0,
sup{f(ξ) : ξ ∈ Ω} = δ, and, f ≡ s∗ in a subinterval of Ω with positive
length. This device will be employed in the proof of Corollary 1.4 of Theo-
rem 1, Corollary 2.4 of Theorem 2, and Corollary 3.4 of Theorem 3, below.

Lemma 2. Let θ be a solution of equation (1.9) on [0, δ) for some 0 < δ ≤ `.
Suppose that θ(s∗) = 0 for some 0 < s∗ < δ. Then c(s∗) = 0.

This result on solutions of the integral equation is equivalent to parts (iii)
and (iv) of Lemma 1 on travelling-wave solutions of the partial differential
equation (1.1).

Proof of Lemma 2. By equation (1.9) there holds

θ(s) = σs + b(s)− σs∗ − b(s∗)−
∫ s

s∗

c(r)a′(r)
θ(r)

dr for all 0 < s < δ.

(2.26)

Subsequently, θ̃(s) := θ(s + s∗) satisfies the equation

θ̃(s) = σs + b̃(s)−
∫ s

0

c̃(r)ã′(r)

θ̃(r)
dr

with b̃(s) := b(s + s∗)− b(s∗), c̃(s) := c(s + s∗) and ã(s) := a(s + s∗)− a(s∗)
for s ∈ [0, δ−s∗). However, by Hypothesis 1 and Lemma A3(ii), this integral
equation has no solution if c(s∗) > 0. Likewise, θ̃(s) := θ(s∗ − s) satisfies

θ̃(s) = −σs + b̃(s)−
∫ s

0

c̃(r)ã′(r)

θ̃(r)
dr

with b̃(s) := b(s∗−s)−b(s∗), c̃(s) := −c(s∗−s) and ã(s) := a(s∗)−a(s∗−s)
for s ∈ [0, s∗), and, by Hypothesis 1 and Lemma A3(ii) this integral equation
has no solution for c(s∗) < 0. 2

To close this subsection, we draw the following conclusions from the
discussion surrounding the examples. This will be useful for later.

21



Lemma 3. To every solution θ of the integral equation (1.9) satisfying the
integrability condition in an interval [0, δ) for some 0 < δ ≤ ` there cor-
responds precisely one distinct semi-wavefront solution f of equation (1.1)
with wave speed σ decreasing to 0 defined in a domain Ω such that sup{f(ξ) :
ξ ∈ Ω} = δ and f is strictly monotonic in {ξ ∈ Ω : δ > f(ξ) > 0}. More-
over, there corresponds no other distinct semi-wavefront solution f of equa-
tion (1.1) with wave speed σ decreasing to 0 defined in a domain Ω such that
sup{f(ξ) : ξ ∈ Ω} = δ, if and only if θ(s) > 0 for all 0 < s < δ.

Lemma 4. Suppose that ` < ∞. To every solution θ of the integral equa-
tion (1.9) satisfying the integrability condition in [0, `] and θ(`) = 0 there
corresponds precisely one distinct wavefront solution f of equation (1.1) from
` to 0 with wave speed σ such that f is strictly monotonic in {ξ ∈ (−∞,∞) :
` > f(ξ) > 0}. Moreover, there corresponds no other distinct wavefront so-
lution of equation (1.1) from ` to 0 with wave speed σ if and only if θ(s) > 0
for all 0 < s < `.

2.4. Corollaries

The equivalence between travelling-wave solutions of equation (1.1) and the
integral equation (1.9) demonstrated in Subsections 2.1 and 2.2 may actu-
ally be shown under weaker conditions on the coefficients a, b and c than
in Hypothesis 1. In particular, equivalences can also be drawn in the cases
c(0) 6= 0, and, c(`) 6= 0 when ` <∞. We refer to [115] for details.

The following are corollaries of the above proof of Theorems 1, 2 and
3 which are of particular relevance to Theorem 1. The last three are il-
luminated by the examples in the previous subsection and the discussion
surrounding them.

Corollary 1.1. If f is a semi-wavefront solution of (1.1) decreasing to 0
in an interval Ω then a(f) ∈ C1(Ω) and (a(f))′(ξ)→ 0 as ξ →∞.

Corollary 1.2. If equation (1.1) has a semi-wavefront solution with speed
σ decreasing to 0, then the equation has at least one such solution f in an
interval Ω with the property that f is strictly decreasing in {ξ ∈ Ω : f(ξ) >
0}.

Corollary 1.3. Equation (1.1) has none, one or an infinite number of
distinct semi-wavefront solutions f with speed σ decreasing to 0 in an interval
Ω which are strictly decreasing in {ξ ∈ Ω : f(ξ) > 0} according to whether
equation (1.9) has respectively none, one, or an infinite number of solutions
satisfying the integrability condition on an interval [0, δ) with 0 < δ ≤ `.
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Corollary 1.4. (i) Equation (1.1) has a semi-wavefront solution f with
speed σ in an interval Ω for which

f(ξ) = 0 for all ξ ≥ ξ∗ some ξ∗ ∈ Ω (2.27)

if and only if equation (1.9) has a solution θ on an interval [0, δ) with
the property∫ s

0

a′(r)
θ(r)

dr <∞ for all 0 < s < δ. (2.28)

(ii) Equation (1.1) has a semi-wavefront solution f with speed σ decreasing
to 0 in an interval Ω with

f(ξ) > 0 for all ξ ∈ Ω (2.29)

if and only if (1.9) has a solution θ satisfying the integrability condition
on an interval [0, δ) with the property∫ s

0

a′(r)
θ(r)

dr =∞ for all 0 < s < δ (2.30)

or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0, δ) such that si ↓ 0
as i ↑ ∞.

Proof. (i) If equation (1.1) has a travelling-wave solution with the charac-
teristics described, then, in the proof of the ‘only if’ part of Theorem 1
in Subsection 2.1, necessarily Ξ0 <∞. Subsequently letting ξ2 ↑ Ξ0 in
(2.4) yields (2.28) for the solution θ of equation (1.9) on [0, δ). On the
other hand, if (1.9) has a solution θ satisfying (2.28), then our con-
structive proof of the ‘if’ part of Theorem 1 in Subsection 2.2 yields a
travelling-wave solution f on (0,∞) for which (2.27) holds.

(ii) If equation (1.1) has a travelling-wave solution with the property now
described, then in Subsection 2.1 necessarily Ξ0 = ∞. In this case,
letting ξ2 ↑ Ξ0 in (2.4) implies that (2.30) holds for the solution θ of
(1.9) on [0, δ), or, (ξ1,∞)∩S = {ξ ∈ (ξ1,∞) : θ(f(ξ)) = 0} has infinite
measure for every ξ1 > Ξ1. However, since θ(f(ξ)) = 0 for all ξ ∈ S,
the latter can only be the case if there is a sequence {si}∞i=1 ⊂ (0, δ)
such that si ↓ 0 as i ↑ ∞ and θ(si) = 0 for all i ≥ 1. This proves the
necessity. Conversely, if the integral equation (1.9) has a solution θ
satisfying the integrability condition on [0, δ) for which (2.30) holds,
then our constructive proof of the ‘if’ part of Thoerem 1 directly yields
a travelling-wave solution f in a domain Ω with f satisfying (2.29).
Whereas, if this is not the case, but (1.9) admits a solution θ on an
interval [0, δ) with a sequence {si}∞i=1 as described, then we can modify
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our construction slightly as intimated in Example 3 and its subsequent
discussion. We set ν = s1, η0 := 0 and thereafter by induction define
ξi := ηi−1 + 1 and

ηi := ξi +
∫ si

si+1

a′(r)
θ(r)

dr

for all i ≥ 1. We let f be given by (2.7) where Ξ1 is defined as of old
by (2.6), f(ξ) = si for ηi−1 ≤ ξ ≤ ξi and∫ si

f(ξ)

a′(r)
θ(r)

dr = ξ − ξi for ξi < ξ < ηi

for each i ≥ 1. Following the earlier proof in Subsection 2.2 and
recalling Lemma 2, this can be shown to still yield a travelling-wave
solution of equation (1.1). Moreover this solution is such that (2.29)
holds. 2

Similarly we can prove the following corollaries to Theorem 2. Through-
out implicitly ` <∞.

Corollary 2.1. If f is a wavefront solution of (1.1) from ` to 0 then a(f) ∈
C1(−∞,∞) and (a(f))′(ξ)→ 0 as ξ → ±∞.

Corollary 2.2. If equation (1.1) has a wavefront solution from ` to 0 with
speed σ, then the equation has at least one such solution f with the property
that f is strictly decreasing in {ξ ∈ (−∞,∞) : ` > f(ξ) > 0}.

Corollary 2.3. Equation (1.1) has none, one or an infinite number of
distinct wavefront solutions f from ` to 0 with speed σ which are strictly
decreasing in {ξ ∈ (−∞,∞) : ` > f(ξ) > 0} according to whether equa-
tion (1.9) has respectively none, one, or an infinite number of solutions θ
satisfying the integrability condition on [0, `] with θ(`) = 0.

Corollary 2.4. (i) Equation (1.1) has a wavefront solution f with speed
σ for which (2.11) and (2.12) hold if and only if (1.9) has a solution θ
on [0, `] with the properties θ(`) = 0 and∫ `

0

a′(r)
θ(r)

dr <∞. (2.31)

(ii) Equation (1.1) has a wavefront solution f from ` to 0 with speed σ for
which (2.11) holds but

f(ξ) < ` for all ξ ∈ (−∞,∞) (2.32)
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if and only if (1.9) has a solution θ on [0, `] with the properties∫ s

0

a′(r)
θ(r)

dr <∞ for all 0 < s < `, (2.33)

and, ∫ `

0

a′(r)
θ(r)

dr =∞ (2.34)

or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0, `) such that si ↑ `
as i ↑ ∞.

(iii) Equation (1.1) has a wavefront solution f from ` to 0 with speed σ for
which

f(ξ) > 0 for all ξ ∈ (−∞,∞) (2.35)

and (2.12) holds if and only if (1.9) has a solution θ on [0, `] with the
properties θ(`) = 0,∫ `

s

a′(r)
θ(r)

dr <∞ for all 0 < s < `, (2.36)

and, (2.34) is satisfied or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂
(0, `) such that si ↓ 0 as i ↑ ∞.

(iv) Equation (1.1) has wavefront solution f from ` to 0 with speed σ for
which (2.32) and (2.35) hold if and only if (1.9) has a solution θ sat-
isfying the integrability condition on [0, `] with the properties∫ s

0

a′(r)
θ(r)

dr =∞ for all 0 < s < ` (2.37)

or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0, `) such that si ↓ 0
as i ↑ ∞, and,∫ `

s

a′(r)
θ(r)

dr =∞ for all 0 < s < ` (2.38)

or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0, `) such that si ↑ `
as i ↑ ∞.

Analogous results for Theorem 3 are the following. In these results it is
assumed that ` =∞.

Corollary 3.1. If f is an unbounded monotonic travelling-wave solution
of (1.1) in an interval Ω = (ω,∞) with −∞ ≤ ω <∞ decreasing to 0 then
a(f) ∈ C1(Ω) and (a(f))′(ξ)→ 0 as ξ →∞.
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Corollary 3.2. If equation (1.1) has an unbounded monotonic travelling-
wave solution with speed σ decreasing to 0, then the equation has at least one
such solution f in an interval Ω with the property that f is strictly decreasing
in {ξ ∈ Ω : f(ξ) > 0}.

Corollary 3.3. Equation (1.1) has none, one or an infinite number of
distinct unbounded monotonic travelling-wave solutions f with speed σ in a
domain Ω = (ω,∞) with −∞ ≤ ω < ∞ decreasing to 0 which are strictly
decreasing in {ξ ∈ Ω : f(ξ) > 0} according to whether equation (1.9) has
respectively none, one, or an infinite number of solutions satisfying the in-
tegrability condition on [0,∞).

Corollary 3.4. (i) Equation (1.1) has an unbounded strict semi-wave-
front solution f with speed σ for which (2.27) holds if and only if (1.9)
has a solution θ on [0,∞) with the property that (2.31) holds.

(ii) Equation (1.1) has an unbounded monotonic global travelling-wave so-
lution f with speed σ for which (2.27) holds if and only if (1.9) has a
solution θ on [0,∞) with the properties that (2.33) holds, and, (2.34)
holds or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0,∞) such that
si ↑ ∞ as i ↑ ∞.

(iii) Equation (1.1) has an unbounded strict semi-wavefront solution f with
speed σ decreasing to 0 for which (2.29) holds if and only if (1.9) has a
solution θ on [0,∞) with the properties that (2.36) holds, and, (2.34)
holds or θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0,∞) such that
si ↓ 0 as i ↑ ∞.

(iv) Equation (1.1) has an unbounded monotonic global travelling-wave so-
lution f with speed σ decreasing to 0 such that (2.29) holds if and only
if (1.9) has a solution θ satisfying the integrability condition on [0,∞)
with the properties that (2.37) holds or θ(si) = 0 for a sequence of
values {si}∞i=1 ⊂ (0,∞) such that si ↓ 0 as i ↑ ∞, and, (2.38) holds or
θ(si) = 0 for a sequence of values {si}∞i=1 ⊂ (0,∞) such that si ↑ ∞
as i ↑ ∞.

2.5. Smooth coefficients

In the introduction, in mitigation of the consideration of only monotonic
travelling waves, it was mentioned that under certain circumstances any
global travelling-wave solution f of an equation of the type (1.1) such that

f(ξ)→ `− as ξ → −∞ (2.39)

and

f(ξ)→ `+ as ξ →∞ (2.40)
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for some `−, `+ ∈ I with c(`−) = c(`+) = 0 and such that the values of f
lie in the range min{`−, `+} ≤ f ≤ max{`−, `+} is necessarily monotonic.
The justification of this remark can be made without any loss of generality
under the assumption that `− = ` and `+ = 0. Extending arguments in [96]
the following is then the result which can be proven.

Theorem 4. Suppose that a ∈ C2(I) with a′(u) > 0 for all u ∈ I, b ∈ C1(I)
and c ∈ C1(I). Let f be a global travelling-wave solution of equation (1.1)
such that f(ξ) → ` as ξ → −∞ and f(ξ) → 0 as ξ → ∞. Then f ∈
C2(−∞,∞), and, (a(f))′(ξ) < 0 for all −∞ < ξ <∞.

Proof. The key to this result is the observation that if c ∈ C(I) then it can
be verified that c(f) ∈ L1

loc(Ω) for any travelling-wave solution f of equa-
tion (1.1) in a domain Ω in the sense of Definition 1. Subsequently by the
regularity argument behind part (ii) of Lemma 1 it can be demonstrated
that any such travelling wave must be a classical solution of the ordinary
differential equation (1.3). The remaining conclusions follow from analysis
of the system (1.10). 2

A number of conclusions about solutions of the integral equation (1.9)
may be drawn from the above result. However for completeness and because
of its usefulness later as a more general conclusion, we prove the following
studying the integral equation only.

Lemma 5. Suppose that ca′ is differentiable in (0, δ) for some 0 < δ ≤ `.
Then any solution θ of equation (1.9) satisfying the integrability condition
on [0, δ) is necessarily positive on (0, δ).

Conversely of course, any solution θ of equation (1.9) which is positive in
an interval (0, δ) automatically satisfies the integrability condition. Thus it
follows from Lemma 5 that if ca′ is differentiable in (0, `), the search for a
solution of the integral equation which satisfies the integrability condition
can be reduced to the search for a positive solution.

Proof of Lemma 5. Suppose that there exists a point s∗ ∈ (0, δ) such that
θ(s∗) = 0. Then, by Lemma 2, (ca′)(s∗) = 0. Furthermore, arguing as in
the proof of Lemma 2, (2.26) holds. Therefore, for any β > |σ + b′(s∗)| and
γ > |(ca′)′(s∗)| we can choose an ι < min{s∗, δ − s∗} so small that

θ(s) ≤
{

β + γ

∫ s∗+ι

s∗−ι

1
θ(r)

dr

}
|s− s∗| for all s∗ − ι < s < s∗ + ι.

(2.41)

However, because a ∈ C1(0, `) and a′ > 0 in (0, `), the integrability condition
implies that∫ s∗+ι

s∗−ι

1
θ(r)

dr <∞. (2.42)
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While (2.41) and (2.42) are incompatible. Thus the lemma is proved by
reductio ad absurdum. 2

Another point made in the introduction, in mitigation of the concen-
tration on wavefront solutions, is that under appropriate conditions the
wavefront solutions are the only bounded monotonic global travelling-wave
solutions of an equation of the class (1.1). This is borne out by the following.

Theorem 5. Suppose that c ∈ C(0, `). Suppose furthermore that equa-
tion (1.1) has a bounded monotonic global travelling-wave solution f . Let
`−, `+ ∈ I be such that (2.39) and (2.40) hold. Then c(`−) = c(`+) = 0.

Proof. It suffices to prove that K := c(`+) = 0, since the class of equations
(1.1) is invariant under the change of variable x 7→ −x. To do this, suppose
for the sake of argument that K 6= 0. Then, 0 < `+ < `, and, by Lemma 1(i),
f(ξ) 6= `+ for all −∞ < ξ < ∞. Subsequently, by an affine transformation
of the dependent variable, we involve no loss of generality if we suppose that
f is a semi-wavefront solution decreasing to 0 for which (2.29) holds, for
an alternative equation of the class (1.1) with the property that c(u) → K
as u ↓ 0. However, in this case, letting σ denote the wave speed of f ,
by Corollary 1.4(ii), there exists a δ > 0 such that equation (1.9) has a
solution θ on [0, δ) satisfying (2.30) or c(si) = 0 for a sequence of values
{si}∞i=1 ⊂ (0, δ) such that si → 0 as i→∞. Simultaneously, since c(s)→ K
as s ↓ 0, the first of these deductions is incompatible with the finiteness of
the integral in (1.9) for every 0 < s < δ, while the second is excluded a
priori. Thus, from the supposition that K 6= 0, we arrive at a contradiction.
We have to concede that K = 0. 2

Corollary 5.1. Suppose that ` = ∞, c ∈ C(0,∞), and, c(u) 6= 0 for all
u > 0. Then, beside the constant solution f ≡ 0, equation (1.1) has no
bounded monotonic global travelling-wave solutions. Furthermore, besides
possible monotonic semi-wavefront solutions decreasing to 0, the equation
has no unbounded nonincreasing travelling-wave solutions.
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3. Transformations

Concerning wavefront solutions, Hadeler [133], Engler [89], and, Danilov,
Maslov and Volosov [74] have derived transformations through which the
existence of a travelling-wave solution of one reaction-convection-diffusion
equation can be used to determine the existence of a travelling-wave solution
of another. These transformations become quite transparent in terms of the
integral equation (1.9). In fact, we can embody them in the following two
theorems.

Theorem 6. Suppose that ` <∞. If either one of the equations

ut = (a(u))xx + (b(u))x + c(u) (3.1)

or

ut = uxx + (b(u))x + c(u)a′(u) (3.2)

admits a wavefront solution from ` to 0 with speed σ, they both do. Moreover
if a ∈ C1(I), it is possible to define such a solution f1 of the first equation
and such a solution f2 of the second equation, for which f2(ξ) = f1(Ψ(ξ))
for all ξ ∈ (−∞,∞), where

Ψ(ξ) =
∫ ξ

0
a′(f2(η)) dη. (3.3)

Proof. The integral equations (1.9) associated with the differential equations
(3.1) and (3.2) are identical. So the assertions regarding the existence of the
travelling waves are an immediate corollary of Theorem 2. Furthermore, if
θ denotes the appropriate solution of the integral equation (1.9), for any
0 < ν < `, a wavefront solution f1 of equation (3.1) can be constructed by∫ ν

f1(ξ)

a′(s)
θ(s)

ds = ξ for Ξ(1)
1 < ξ < Ξ(1)

0 , (3.4)

where

Ξ(1)
1 := −

∫ `

ν

a′(s)
θ(s)

ds and Ξ(1)
0 :=

∫ ν

0

a′(s)
θ(s)

ds,

and a wavefront solution f2 of equation (3.2) via∫ ν

f2(ξ)

1
θ(s)

ds = ξ for Ξ(2)
1 < ξ < Ξ(2)

0 , (3.5)

where

Ξ(2)
1 := −

∫ `

ν

1
θ(s)

ds and Ξ(2)
0 :=

∫ ν

0

1
θ(s)

ds.
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Whence the travelling-wave solutions of the respective equations can be re-
lated by f2(ξ) = f1(Ψ(ξ)) for any Ξ(2)

1 < ξ < Ξ(2)
0 for some transformation

function Ψ. Using (3.4) and (3.5) this transformation function can be iden-
tified as

Ψ(ξ) =
∫ ν

f1(Ψ(ξ))

a′(s)
θ(s)

ds =
∫ ν

f2(ξ)

a′(s)
θ(s)

ds

= −
∫ ξ

0

a′(f2(η))
θ(f2(η))

f ′2(η) dη =
∫ ξ

0
a′(f2(η)) dη.

Moreover, since when a ∈ C1(I), Ξ(2)
0 < ∞ automatically infers Ξ(1)

0 < ∞
and likewise Ξ(2)

1 > −∞ implies Ξ(1)
1 > −∞, this transformation can be

extended to −∞ < ξ <∞. 2

Theorem 7. Suppose that ` < ∞. Let b ∈ C1(0, `) and f be a wavefront
solution of the equation

ut = uxx + (b(u))x (3.6)

from ` to 0 with speed σ. Then f is similarly a wavefront solution of the
equation

ut = uxx − b′(u){σu + b(u)}. (3.7)

Conversely, let c ∈ C1(0, `) and f be a wavefront solution of the equation

ut = uxx + c(u) (3.8)

from ` to 0 with speed σ. Then f is similarly a wavefront solution of the
equation (3.6) for some function b such that

−b′(u){σu + b(u)} = c(u). (3.9)

Proof. The integral equation associated with (3.6) is simply θ(s) = σs+b(s).
Subsequently, if this function is nonnegative it trivially satisfies the integral
equation associated with (3.7). The converse case is a little more subtle. If
(3.8) has a travelling wave of the stated type then following Theorem 2 the
integral equation

θ(s) = σs−
∫ s

0

c(r)
θ(r)

dr (3.10)

has a solution θ satisfying the integrability condition on [0, `] with θ(`) = 0.
Subsequently defining b(s) := θ(s)− σs we have

−b(s) =
∫ s

0

c(r)
σr + b(r)

dr
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which yields (3.9). While θ is a ‘solution’ of the ‘integral equation’ θ(s) =
σs + b(s). This gives the result. 2

The usefulness of the transformations in Theorem 6 may be illustrated
by the following simple example.

Example 4. The equation

ut = (um(1− u)nux)x +
{

u1−m(1− u)1−n for 0 < u < 1
0 otherwise

(3.11)

with m > −1 and n > −1 admits a wavefront solution from 1 to 0 with wave
speed σ if and only if σ ≥ 2.

Proof. From the pioneering work of Kolmogorov, Petrovskii and Piskunov
[172] we know that the Fisher equation

ut = uxx + u(1− u) (3.12)

admits a wavefront solution from 1 to 0 for any wave speed σ ≥ 2 but for no
such solution for σ < 2. Noting that both equations (3.11) and (3.12) are of
the forms (3.1) and (3.2) respectively with

a(u) =
∫ u

0
sm(1− s)n ds,

c(u) = u1−m(1 − u)1−n and c(u)a′(u) = u(1 − u), the result is immediate
from the theorem. 2

The transformations in Theorem 7 may be attributed to Engler [89].
While the equivalence noted in Theorem 6 was derived independently un-
der various restrictions by Hadeler [133], by Engler [89], and by Danilov et
al. [74]. Differentiating the relation a(f2(ξ)) = a(f1(Ψ(ξ))) which follows
from the transformation in Theorem 6, and using (3.3) to eliminate Ψ′(ξ)
yields f ′2(ξ) = (a(f1))′(Ψ(ξ)) for all −∞ < ξ < ∞. This relation for the
equivalence between travelling-wave solutions f1 and f2 of equations (3.1)
and (3.2) was previously derived in a special case by Danilov et al. [74] for
monotonic solutions defined in an arbitrary interval.

Note that in the converse case in Theorem 7 we are only able to say that
equation (3.6) has a travelling-wave solution for some b satisfying (3.9) and
not necessarily for any b satisfying (3.9). The inference in Engler’s paper [89]
is that the latter is true. However careful reading shows that there too only
the former statement can be justified. Indeed, it can be seen that the issue
is related to the question of whether or not (3.10) has a unique solution
satisfying the integrability condition on [0, `] with θ(`) = 0. While, from
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the theory presented in the appendix, we know that in general no matter
how smooth c is, this integral equation may have an infinite number of so-
lutions. As an explicit illustration where things go wrong, choose a function
c(u) := u(`−u)(2u− `) for some `. With σ = 0 the integral equation (3.10)
admits the explicit solution θ(s) = s(`− s), and thus (3.8) has a stationary
wavefront solution from ` to 0. At the same time, (3.9) is solved by b = ±θ.
However of these functions, b = θ is the only one for which the conclusions
of the theorem may be drawn.

Diverse variants on Theorems 6 and 7 are conceivable. For instance, it is
possible to state similar results for semi-wavefront solutions and unbounded
monotonic waves. The above-stated results serve as examples of what is
possible, and indicate how the reviewed earlier results may be obtained in
an alternative manner to that originally employed.

For completeness, we also mention the following.

Theorem 8. Suppose that ` <∞. Equation (1.1) has a wavefront solution
from ` to 0 with speed σ if and only if the equation

ut = (ã(u))xx + (̃b(u))x + c̃(u), (3.13)

with

ã(u) = a(`)− a(`− u),

b̃(u) = b(`− u)− b(`)

and

c̃(u) = −c(`− u),

has a wavefront solution from ` to 0 with speed −σ. Moreover, in both
instances the number of distinct wavefront solutions is the same.

This result can be obtained by direct examination of equation (1.1). It is
easily checked that if u is a solution of (1.1) then v(x, t) := `− u(−x, t) is a
solution of (3.13), and, vice versa. Furthermore, if u(x, t) → ` as x → −∞
and u(x, t) → 0 as x → ∞ then the same holds for v. Finally, if u has the
form u(x, t) = f(x − σt) for some function f and constant σ, then v has
the form v(x, t) = g(x + σt) where g(ξ) = ` − f(−ξ), and vice versa. In
terms of the correspondence between wavefront solutions and solutions of
the integral equation, Theorem 8 may also be viewed as a consequence of
the next lemma and its proof.

32



Lemma 6. Suppose that ` <∞. Then the following statements are equiva-
lent: equation (1.9) has a solution θ on [0, `] with θ(`) = 0; the equation

Θ(s) = −σs + b̃(s)−
∫ s

0

c̃(r)ã′(r)
Θ(r)

dr (3.14)

has a solution Θ on [0, `] in the sense of Definition A1 with Θ(`) = 0;
and, equations (1.9) and (3.14) both have solutions on [0, `]. Idem ditto,
the statements — equation (1.9) has a solution θ satisfying the integrability
condition on [0, `] with θ(`) = 0; equation (3.14) has a solution Θ satisfying
the integrability condition on [0, `] with Θ(`) = 0; and, equations (1.9) and
(3.14) both have solutions satisfying the integrability condition on [0, `] —
are equivalent.

Proof. The equivalence of the first two statements can be established quite
simply by relating θ and Θ via θ(s) = Θ(`− s). Whence, plainly each of the
first two statements implies the third. To complete the proof of the lemma,
suppose therefore that the third statement is true. Let θ and Θ denote the
corresponding solutions of (1.9) and (3.14). Then since θ(0) = 0 ≤ Θ(`) and
θ(`) ≥ 0 = Θ(0), by continuity there must be a point s∗ ∈ [0, `] such that
θ(s∗) = Θ(`− s∗). Consequently the function

ψ(s) :=
{

θ(s) for s ≤ s∗

Θ(`− s) for s > s∗

constitutes a solution of (1.9) on [0, `] with ψ(`) = 0. Moreover if θ and Θ
satisfy the integrability condition on [0, `] so does ψ. Thus the first statement
follows from the third. 2

33



34



4. Semi-wavefronts

In this section we state a number of general results on the existence of semi-
wavefront solutions of equation (1.1) which can be obtained from the study
of the integral equation (1.9).

4.1. Admissible wave speeds

Our first result states that the set of speeds for which such a solution de-
creasing to 0 exists is either empty, or, connected and unbounded above.

Theorem 9. If equation (1.1) has a semi-wavefront solution with speed σ0
decreasing to 0 the equation has such a solution for every wave speed σ ≥ σ0.

This theorem is an immediate consequence of a comparison principle for
solutions of the integral equation. This can be found in the appendix in
Lemma A6.

It follows from the above theorem that there exists a σ∗,−∞ ≤ σ∗ ≤ ∞,
such that equation (1.1) has no semi-wavefront solution decreasing to 0 with
any speed σ < σ∗ whereas it does have such a solution for every σ > σ∗.
This critical wave speed may be characterized using a generalization of the
‘variational principle’ for wavefront solutions of (1.1) discovered by Hadeler
and Rothe [138] and also described in [129–133] and [266,268]. This is also
a straightforward consequence of the theory of the integral equation (1.9).

Theorem 10. Let R denote the set of nonnegative continuous functions ψ
defined on an interval [0, ι) such that∫ s1

s0

{1 + |c(r)|}a′(r)
ψ(r)

dr <∞ for all 0 < s0 < s1 < ι

for some 0 < ι < `, and let S denote the subset of ψ ∈ R such that ψ(0) = 0
and

lim
ε↓0

∫ s

ε

c(r)a′(r)
ψ(r)

dr exists and is finite for every 0 < s < ι.

Define the functionals

F(ψ) = sup
0<r<s<ι


ψ(s)− ψ(r)− b(s) + b(r) +

∫ s

r

c(w)a′(w)
ψ(w)

dw

s− r


and

G(ψ) = sup
0<s<ι


ψ(s)− b(s) +

∫ s

0

c(r)a′(r)
ψ(r)

dr

s


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on R. Set σ∗ := inf{F(ψ) : ψ ∈ S}. Then equation (1.1) has a semi-
wavefront solution decreasing to 0 for all speeds σ > σ∗, such a solution
with speed σ∗ if and only if σ∗ = F(ψ) for some ψ ∈ S, and, no such
solution for any speed σ < σ∗. Furthermore when c(u) ≥ 0 for all 0 < u < δ
for some 0 < δ ≤ ` there holds σ∗ = inf{G(ψ) : ψ ∈ R}, and, σ∗ = F(ψ) for
some ψ ∈ S if and only if σ∗ = G(ψ) for some ψ ∈ R.

Proof. Suppose to begin with that equation (1.1) does have a solution of the
desired type with speed σ. Then by Theorem 1 the integral equation (1.9)
has a solution θ satisfying the integrability condition on an interval [0, δ) for
some 0 < δ < `. Subsequently, by definition θ ∈ S, and by (1.9) there holds

σ(s− r) = θ(s)− θ(r)− b(s) + b(r) +
∫ s

r

c(w)a′(w)
θ(w)

dw

for all 0 < r < s < δ, i.e. F(θ) = σ. Next, let σ be such that there is a
ψ ∈ S with σ ≥ F(ψ). Let [0, ι) denote the domain of definition of ψ and

b̃(s) := ψ(s)− σs +
∫ s

0

c(r)a′(r)
ψ(r)

dr.

This means that ψ is a solution of equation (1.9) with b replaced by b̃ on
[0, ι), while the function b − b̃ is nondecreasing on [0, ι). Subsequently, by
Lemma A6(i), the integral equation (1.9) has a solution θ on [0, ι) such that
θ(s) ≥ ψ(s) for all 0 < s < ι. Whence θ also satisfies the integrability condi-
tion on [0, ι), and by Theorem 1 equation (1.1) has a travelling-wave solution
of the desired type with wave speed σ. This proves the main conclusion of
the theorem. The conclusion when c ≥ 0 on (0, δ) for some 0 < δ ≤ ` may
be obtained by repeating the above argument with Lemma A6(ii) in lieu of
Lemma A6(i). 2

It is possible that equation (1.1) admits a semi-wavefront solution de-
creasing to 0 for all wave speeds (σ∗ = −∞), some wave speeds (−∞ <
σ∗ < ∞), and no wave speeds (σ∗ = ∞). Furthermore, when the critical
value σ∗ is finite, equation (1.1) may or may not admit such a solution with
this specific speed. Illustrations of all of these possibilities will be provided
in the coming sections.

Theorem 9 may be extended to show how the existence of a semi-
wavefront solution of one equation of the type (1.1) implies the existence
of such a solution for another equation of the same type.

Theorem 11. Consider equation (1.1) with two different sets of coefficients
ai, bi and ci on some interval I for i = 1, 2. Let σ1 and σ2 denote real
parameters.
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(a) Suppose that u 7→ σ2u+ b2(u)−σ1u− b1(u) is a nondecreasing function
on (0, `), and, (c2a

′
2)(u) ≤ (c1a

′
1)(u) for all 0 < u < `.

(b) Suppose that σ2u + b2(u) ≥ σ1u + b1(u) and max{0, (c2a
′
2)(u)} ≤

(c1a
′
1)(u) for all 0 < u < `.

Then in both cases (a) and (b), if equation (1.1) with i = 1 admits a semi-
wavefront solution with speed σ1 decreasing to 0, so does (1.1) with i = 2
and speed σ2.

Proof. Part (a) follows from Lemma A6(i). Part (b) follows in a similar
pattern from Lemma A6(ii). We refer to [115] for additional details. 2

4.2. Number of semi-wavefronts

Concerning the number of semi-wavefront solutions of a general equation of
the class (1.1) with any particular wave speed, we can state the following.

Theorem 12. For any fixed wave speed σ, equation (1.1) has at most one
distinct semi-wavefront solution decreasing to 0 whenever any one of the
following hold.

(a) c(u) < 0 for all 0 < u < `.

(b) ca′ is differentiable in (0, `) and c(u) ≤ 0 for all 0 < u < δ for some
0 < δ < `.

Definition 7. The partial differential equation (1.1) will be said to admit
a one parameter family of distinct semi-wavefront solutions with wave speed
σ decreasing to 0 when there exists a continuous order-preserving bijective
mapping from the interval (0, 1] onto the set of all such solutions.

Theorem 13. For any fixed wave speed σ, equation (1.1) has either a one
parameter family of distinct semi-wavefront solutions decreasing to 0 in the
sense of Definition 7 or no such solution whenever any one of the following
hold.

(a) c(u) > 0 for all 0 < u < `.

(b) ca′ is differentiable in (0, `) and c(u) > 0 for all 0 < u < δ for some
0 < δ < `.

In the coming sections we shall see that in accordance with Theorems 12 and
13 all three alternatives implied by these theorems are indeed possible, i.e.
equation (1.1) may have no semi-wavefront solution with speed σ decreasing
to 0, exactly one distinct solution of this type, or, a one parameter family
of such solutions.

To prove Theorems 12 and 13, we use the next two lemmas.
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Lemma 7. Consider equation (1.9) with two different wave speeds σi, sets
of coefficients ai, bi and ci, and corresponding solutions θi on an interval
[0, δ] with δ ≤ ` and δ < ∞ for i = 1, 2. Suppose that the function s 7→
σ2s + b2(s) − σ1s − b1(s) is nondecreasing on [0, δ], c2a

′
2 ≤ c1a

′
1 almost

everywhere in (0, δ), and, max{θ1(s), θ2(s)} > 0 for all 0 < s < δ. Then if
there exists a point s∗ ∈ (0, δ) such that θ2(s∗) ≥ θ1(s∗) there holds θ2 ≥ θ1
on [s∗, δ]. Moreover, if c1 ≥ 0 on (s∗, δ) then either θ2(δ) > θ1(δ) or θ2 ≡ θ1
on [s∗, δ].

Proof. Equation (1.9) can be rewritten as

θ(s) = θ(s∗) + σis + bi(s)− σis
∗ − bi(s∗)−

∫ s

s∗

ci(r)a′i(r)
θ(r)

dr (4.1)

for s ∈ [s∗, δ) and i = 1, 2. Subsequently, applying Lemma A6(i) to this
reformulation, from the existence of θ1 and θ2 we deduce the existence of a
solution θ∗ of (4.1) for i = 2 on [s∗, δ) such that θ∗(s) ≥ max{θ1(s), θ2(s)}
for all s ∈ [s∗, δ). However, since by Lemma A1 positive solutions of (4.1)
are unique, necessarily θ∗ ≡ θ2. This proves the first assertion of the lemma.
The remaining assertion subsequently follows from Lemma A6(ii). 2

Lemma 8. Suppose that c(u) > 0 for all 0 < u < δ for some 0 < δ < ` and
that equation (1.9) admits at least one solution on [0, δ). Then, for every
0 < % ≤ 1 equation (1.9) admits a unique solution θ(·; %) on an interval
[0,∆(%)] such that the mapping % 7→ (θ(∆(%); %),∆(%)) is continuous, given
any 0 < %1 < %2 ≤ 1 there holds 0 < ∆(%1) ≤ ∆(%2) ≤ ∆(1) = δ and
θ(s; %1) < θ(s; %2) for all 0 < s ≤ ∆(%1), and, no other solutions.

Proof. Since equation (1.9) admits a solution on [0, δ), it has a maximal
solution θ∗ on [0, δ] by Lemmas A2 and A5. We set Γ := {(s, 0) : 0 < s ≤
δ} ∪ {(δ, ρ) : 0 < ρ ≤ θ∗(δ)} and let % 7→ (∆(%), ϑ(%)) be a homeomorphism
(0, 1] → Γ with the property that ∆(%1) ≤ ∆(%2) and ϑ(%1) ≤ ϑ(%2) for
every 0 < %1 < %2 ≤ 1. By Lemma A6 any solution θ of equation (1.9) is
defined on a maximal subinterval of [0, δ], [0, δ∗] say, with (δ∗, θ(δ∗)) ∈ Γ.
On the other hand, by Lemma A3(i) the equation

θ(s) = ϑ(%) + σs + b(s)− σ∆(%)− b(∆(%)) +
∫ ∆(%)

s

c(r)a′(r)
θ(r)

dr

has a unique solution θ(·; %) on [0,∆(%)] which is positive on (0,∆(%)) for
every 0 < % ≤ 1. Moreover, by Lemma 7, given any 0 < %1 < %2 ≤ 1 there
holds θ(s; %1) < θ(s; %2) for all 0 < s ≤ ∆(%1), 2

Proof of Theorems 12 and 13. If c(s) ≤ 0 for all 0 < s < δ for some 0 < δ < `,
then equation (1.9) has at most one solution on [0, δ), by Lemma A2(i).
On the other hand, if c(s) > 0 for all 0 < s < δ for some 0 < δ < `,
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by Lemma 8, either equation (1.9) has no solution, or, there is a continu-
ous order-preserving bijective mapping from (0, 1] onto the set of solutions.
Moreover, in the latter case, every solution is positive in the interior of
its maximal interval of existence contained in [0, δ). Lemmas 3, 5 and 2
subsequently give the desired results. 2
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5. Semi-wavefronts for convection-diffusion

Considering only convection-diffusion processes, i.e. the equation

ut = (a(u))xx + (b(u))x, (5.1)

the integral equation (1.9) reduces to the simple identity θ(s) = σs + b(s).
Moreover, by Lemma 5 any such ‘solution’ θ satisfies the integrability con-
dition in an interval [0, δ) if and only if it is positive in (0, δ). The search
for nonnegative solutions of the integral equation satisfying the integrability
condition is therefore reduced to the search for σ such that σs+ b(s) > 0 for
all 0 < s < δ for some 0 < δ ≤ `. This leads readily to the next result [110].

Theorem 14 (Existence). Let

σ∗ := lim sup
s↓0

{−b(s)/s} .

Then for every wave speed σ equation (5.1) has either exactly one distinct
semi-wavefront solution decreasing to 0 or no such solution. Moreover, the
equation has such a solution for all σ > σ∗, such a solution for σ = σ∗ if
and only if

σ∗s + b(s) > 0 for all 0 < s < δ (5.2)

for some 0 < δ ≤ `, and no such solution for all σ < σ∗.

With regard to the boundedness of the support of the travelling-wave
solutions the following can be stated.

Theorem 15 (Bounded support). Suppose that the conditions of Theo-
rem 14 hold.

(i) If ∫ δ

0

a′(s)
max{s, b(s)} ds =∞ for some 0 < δ < ` (5.3)

then every semi-wavefront solution decreasing to 0 is positive every-
where in its domain of definition.

(ii) If ∫ δ

0

a′(s)
max{s, b(s)} ds <∞ for some 0 < δ < ` (5.4)

then every solution of this type with wave speed σ > σ∗ is such that its
support is bounded above.
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Proof. Estimates in [110, 117] will be refined. For any positive function
θ(s) = σs + b(s) on an interval (0, δ), we can estimate θ(s) ≤ (|σ| +
1)max{s, b(s)} for 0 < s < δ. Whence if (5.3) holds, so does (2.30) and
Corollary 1.4 yields part (i) of the theorem. On the other hand, if σ > σ∗

then choosing σ > σ0 > σ∗, γ := max{σ − σ0, 1,−σ0} and δ0 > 0 so small
that σ0s + b(s) > 0 for all 0 < s < δ0, we can estimate

θ(s) = (σ − σ0)s + σ0s + b(s)
= (σ − σ0)s + max{0, σ0s + b(s)}

≥ (σ − σ0)s +
σ − σ0

γ
max{0, σ0s + b(s)}

=
σ − σ0

γ
max{γs, (γ + σ0)s + b(s)}

≥ σ − σ0

γ
max{s, b(s)}

for 0 < s < δ0. Whence if σ > σ∗ and (5.4) holds, so does (2.28) for small
enough δ, and Corollary 1.4 yields part (ii) of the theorem. 2

In the event that (5.4) holds and the convection-diffusion equation (5.1)
has a semi-wavefront solution with the critical wave speed σ∗ decreasing to
0, this semi-wavefront may or may not have bounded support. In general,
when (5.2) and (5.4) hold, for the critical wave speed σ∗ there is no other
option but to test the criterion (2.28) explicitly, i.e.∫ δ

0

a′(s)
σ∗s + b(s)

ds <∞ for some 0 < δ ≤ `.

As an explicit illustration of the above theorems, let us examine the
model for the one-dimensional flow of a thin viscous film over a flat plate
studied by Buckmaster [54]. After a suitable normalization this model takes
the form of the equation

ut = (u4)xx + b0(u3)x, (5.5)

in which t denotes time, u denotes the thickness of the fluid film, and b0
is the angle of inclination of the plate in the direction x. The mechanism
behind this model is the force of gravity which acts in two ways. The first
is that it tends to drive the fluid from regions of greater thickness to those
where the film is thinner. This accounts for the diffusive second-order term
on the right-hand side of the equation. The second is that it tends to pull
the fluid to a lower elevation. This accounts for the first-order term on the
right-hand side of the equation. If the plate is horizontal b0 = 0, if the
plate is inclined uphill b0 > 0, and, if the plate is inclined downhill b0 < 0.
Of particular interest in this model is the existence of waves with bounded
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support, for, recalling that implicitly where a fluid film is present u > 0
and where there is no fluid present u = 0, the boundary of the support of a
solution demarcates a leading edge of the flow.

Example 5. For every wave speed σ equation (5.5) has at most one distinct
semi-wavefront solution decreasing to 0, and the support of this solution is
necessarily bounded above.

(i) If b0 > 0 then the equation admits such a solution if and only if σ ≥ 0.

(ii) If b0 ≤ 0 then the equation admits such a solution if and only if σ > 0.

Thus all semi-wavefront solutions representing a fluid film which may ap-
proach a zero thickness necessarily model a phenomenon in which there is
a free boundary between a domain where the fluid film is present and one
where it is absent. Of note too is the interpretation which may be given
to the admissible range of wave speeds. The first point is that there are
no waves with negative speed. This would infer that the diffusive mecha-
nism is strong enough to ensure that the surface of the plate covered by the
fluid film cannot contract. The second point is the possible occurrence of
what is essentially a stationary solution with wave speed σ = 0. If b0 > 0
then such a solution occurs, but if b0 ≤ 0 it does not. This would imply
that if the plate is inclined uphill, the downward gravitational pull may
be strong enough to balance the diffusive mechanism. On the other hand,
if the plate is horizontal or inclined downhill, then the motion will always
tend to enlarge the surface covered by the fluid. These observations have in
fact been rigourously proven to hold for arbitrary solutions of equation (5.5)
using the semi-wavefront solutions and a comparison principle [107,110,112].

As a contrast to the properties of equation (5.5), one might like to con-
sider the Burgers equation in a similar guise,

ut = uxx + b0(u2)x. (5.6)

Example 6. For every wave speed σ equation (5.6) has at most one distinct
semi-wavefront solution decreasing to 0, and this solution is necessarily pos-
itive everywhere in its domain of definition.

(i) If b0 > 0 then the equation admits such a solution if and only if σ ≥ 0.

(ii) If b0 ≤ 0 then the equation admits such a solution if and only if σ > 0.

Noting that in the Burgers equation the unknown u denotes a variable which
is a measure of turbulence in hydrodynamic flow, the inference of the positiv-
ity of the semi-wavefront solutions is that in it is impossible to have regions
with turbulence in combination with regions where there is no dissipation of
energy. The mathematical statement of this result has also been rigourously
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proven for arbitrary solutions of the equation (5.6) [110].

A further illustration is provided by the foam drainage equation,

ut = (u3/2)xx + b0(u2)x. (5.7)

Modelling the motion of a foam composed of gas bubbles trapped in a liquid
in one spatial dimension, the unknown in this equation denotes the liquid
fraction of the foam, t time, and, x a spatial coordinate. Analogous to in
the viscous film model, the parameter b0 is positive if x decreases in the
direction of gravitational pull, negative if it increases in the direction of
gravitational pull, and, zero if the motion occurs in a horizontal direction
[120,263,264,275].

Example 7. For every wave speed σ equation (5.7) has at most one distinct
semi-wavefront solution decreasing to 0.

(i) If b0 > 0 then the equation admits such a solution if and only if σ ≥ 0.
Moreover, if σ = 0 this solution is necessarily positive everywhere in
its domain of definition. Whereas, if σ > 0 the support of this solution
is necessarily bounded above.

(ii) If b0 ≤ 0 then the equation admits a semi-wavefront solution decreasing
to 0 if and only if σ > 0, and the support of this solution is necessarily
bounded above.

This example invites a similar interpretation to Example 5. However, the
fact that in the present example in the case b0 > 0 the semi-wavefront solu-
tion with wave speed σ = 0 does not have bounded support indicates that
for the foam drainage equation the diffusive mechanism is a little stronger
in comparison to the gravitational pull than for the viscous film model.

We leave it as an exercise for the reader to verify the above three ex-
amples. Note that they all illustrate that in Theorem 14, equation (5.1)
may or may not have a semi-wavefront solution with the critical wave speed
σ∗ decreasing to 0. In each example σ∗ = 0, but it is the sign of b0 which
determines whether or not (5.2) holds for some 0 < δ ≤ ∞ and thus whether
or not there is such a solution. Parts (i) of Examples 5 and 7 also illustrate
that, when the convection-diffusion equation (5.1) has a semi-wavefront so-
lution with the critical wave speed σ∗ and the conclusions of Theorem 15(ii)
hold, the distinct semi-wavefront with the critical speed may or may not
have bounded support.
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6. Semi-wavefronts for reaction-diffusion

The class of equations of the type (1.1) in which the convection term is
absent, i.e. for which the equation has the form

ut = (a(u))xx + c(u), (6.1)

encompasses the Fisher equation, the Newell-Whitehead equation, the Zel-
dovich equation, the KPP equation, the Nagumo equation, and many other
commonly-used models of reaction-diffusion processes [53,74,78,93,191,192,
203,249]. In these models the reaction term does not change sign in a right
neighbourhood of zero, and, generally the coefficients a and c are smooth.
For an equation of the class (6.1) the corresponding integral equation (1.9)
reduces to

θ(s) = σs−
∫ s

0

c(r)a′(r)
θ(r)

dr. (6.2)

Moreover, when c has a fixed sign near zero or when ca′ is sufficiently smooth,
this equation possesses a structure which is relatively convenient for analysis.
In this section, we shall utilize this structure to examine the existence of
semi-wavefront solutions of the reaction-diffusion equation (6.1) when c has
a definite sign near zero, and, when ca′ is continuously differentiable in a
right-neighbourhood of zero. Furthermore, we shall identify circumstances
under which such a solution is positive everywhere or may have bounded
support.

6.1. Sink term

We begin with the case that the reaction term in (6.1) is a definite absorption
or sink term.

Theorem 16 (Existence). Suppose that c(u) < 0 for all 0 < u < `. Then
for every wave speed σ equation (6.1) has exactly one distinct semi-wavefront
solution decreasing to 0.

Proof. By Lemma A4(i) of the theory of the integral equation contained in
the appendix, (6.2) has a unique solution on [0, `) for every σ. Moreover,
this solution is positive on (0, `). The present theorem is then an immediate
consequence of Theorems 1 and 12. 2

According to Corollary 1.4, whether or not the semi-wavefront solution in
Theorem 16 has bounded support depends on the behaviour of the solution
θ of the integral equation (6.2) as s ↓ 0. As we shall see, this behaviour is
in turn is largely determined by that of the variable

Q(s) :=
∣∣∣∣2∫ s

0
c(r)a′(r) dr

∣∣∣∣1/2 . (6.3)
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To be specific, invoking Corollary 1.4 we shall prove the following.

Theorem 17 (Bounded support). Suppose that the conditions of Theo-
rem 16 hold. Fix 0 < δ < `.

(a) If ∫ δ

0

a′(s)
max{Q(s), s} ds =∞

then every semi-wavefront decreasing to 0 is positive everywhere in its
domain of definition.

(b) If ∫ δ

0

a′(s)
max{Q(s), s} ds <∞

and ∫ δ

0

a′(s)
Q(s)

ds =∞ (6.4)

then every solution of this type with wave speed σ ≤ 0 is positive
everywhere in its domain of definition, and every solution of this type
with wave speed σ > 0 is such that its support is bounded above.

(c) If ∫ δ

0

a′(s)
Q(s)

ds <∞ (6.5)

then every solution of this type with wave speed σ ≥ 0 is such that its
support is bounded above. Moreover, if ca′ is absolutely continuous in
[0, δ), (ca′)(0) = 0, lim ess sups↓0(ca′)′(s) ≤ 0, and,∫ δ

0

1
|c(s)| ds =∞

then every solution of this type with wave speed σ < 0 is positive ev-
erywhere in its domain of definition. Whereas, if lim sups↓0 Q(s)/s =
lim infs↓0 Q(s)/s > 0, if lim ess infs↓0 c(s)a′(s)/Q(s) > 0, or, if ca′ is
absolutely continuous in [0, δ), (ca′)(0) = 0, lim ess infs↓0(ca′)′(s) >
−∞, and,∫ δ

0

1
|c(s)| ds <∞,

then every solution of this type with wave speed σ < 0 is such that its
support is bounded above.
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Recalling Corollary 1.4, this theorem follows directly from the next lemma.

Lemma 9. Suppose that c(u) ≤ 0 and Q(u) > 0 for all 0 < u < δ for some
0 < δ < `. Suppose furthermore that equation (6.2) has a unique solution θ
on [0, δ).

(i) If σ = 0 then θ(s) = Q(s) for all 0 < s < δ.

(ii) If σ > 0 then

min{σ, 1}max{s,Q(s)} ≤ θ(s) ≤ (σ + 1)max{s,Q(s)} (6.6)

for all 0 < s < δ.

(iii) If σ 6= 0, and, Q(s)/s→ µ as s ↓ 0 for some 0 ≤ µ ≤ ∞, then

θ(s)
s
→ σ +

√
σ2 + 4µ2

2
as s ↓ 0. (6.7)

Moreover, if σ > 0 or µ > 0, then

θ(s)
Q(s)

→ σ/µ +
√

σ2/µ2 + 4
2

as s ↓ 0. (6.8)

(iv) If σ < 0, and, |c(s)a′(s)| ≥ AQ(s) for almost all 0 < s < δ for some
A > 0, then

θ(s) ≥ σ +
√

σ2 + 4A2

2A
Q(s) for all 0 < s < δ.

(v) If σ < 0, ca′ is absolutely continuous on [0, δ), (ca′)(0) = 0, and,
(ca′)′(s) ≥ A for almost all 0 < s < δ for some A ≤ 0, then

θ(s) ≥ 2√
σ2 − 4A− σ

∣∣c(s)a′(s)∣∣ for all 0 < s < δ.

(vi) If σ < 0, ca′ is absolutely continuous on [0, δ), (ca′)(0) = 0, and,
(ca′)′(s) ≤ B for almost all 0 < s < δ for some B ≤ σ2/4, then

θ(s) ≤ 2√
σ2 − 4B − σ

∣∣c(s)a′(s)∣∣ for all 0 < s < δ.

Proof. We rely on the theory of the integral equation presented in the
appendix.

(i) Taking α = β = 0 in Lemma A4(ii) yields the desired result.
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(ii) Taking α = 0 and β =∞ in Lemma A4(ii) yields

σs ≤ θ(s) ≤ σs + Q(s) for all 0 ≤ s < δ. (6.9)

However, by Lemma A6(i), Lemma A2(i) and part (i) of the present
lemma we also know

θ(s) ≥ Q(s) for all 0 ≤ s < δ. (6.10)

Combining (6.9) and (6.10) yields (6.6).

(iii) Pick 0 < δ∗ < δ. Define A := inf{Q(s)/s : 0 < s < δ∗} and B :=
sup{Q(s)/s : 0 < s < δ∗}. Then, if σ > 0, taking α := σ/B and
β := σ/A in Lemma A4(ii) gives

θ(s) ≥ σs +
−σ/A +

√
σ2/A2 + 4

2
Q(s) (6.11)

and

θ(s) ≤ σs +
−σ/B +

√
σ2/B2 + 4

2
Q(s) (6.12)

for every 0 < s < δ∗. On the other hand, if σ < 0 and µ > 0,
choosing δ∗ so small that −A < σ

√
1−A/B, and, taking α = σ/A

and β = σ/B in Lemma A4(ii), we obtain, for any 0 < s < δ∗, (6.11)
and (6.12) with the inequalities reversed. The assertions (6.7) and
(6.8) subsequently follow in either case by passing to the limit δ∗ ↓ 0.
It therefore only remains to establish (6.7) when σ < 0 and µ = 0.
However, in this case, by Lemma A2(i), Lemma A6(i) and part (i) of
the present lemma, there holds θ(s) ≤ Q(s) for all 0 < s < δ. Whence
the result is immediate.

(iv) It can be verified that θ1(s) := {(σ+
√

σ2 + 4A2)/2A}Q(s) is a solution
of (1.9) on [0, δ) with σs + b(s) replaced by σ1s + b1(s) := (σ/A)Q(s).
Moreover, s 7→ σs − σ1s − b1(s) is nondecreasing on [0, δ). Whence,
by Lemma A6(i) and Lemma A2(i) there holds θ ≥ θ1 on [0, δ).

(v) The proof of this part is similar to that of part (iv), noting that θ1(s) :=
{2/(
√

σ2 − 4A−σ)} |c(s)a′(s)| is a solution of (1.9) on [0, δ) with σs+
b(s) replaced by σ1s + b1(s) := θ1(s) + {(σ −

√
σ2 − 4A)/2}s.

(vi) The function θ2(s) := {2/(
√

σ2 − 4B − σ)} |c(s)a′(s)| is the unique
solution of (1.9) on [0, δ) with σs + b(s) replaced by σ2s + b2(s) :=
θ2(s) + {(σ −

√
σ2 − 4B)/2}s. Moreover, s 7→ σ2s + b2(s) − σs is

nondecreasing on [0, δ). So, by Lemma A6(i), necessarily θ ≤ θ2 on
[0, δ). 2
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The equation

ut = uxx −H(u), (6.13)

where H denotes the Heaviside function

H(u) =
{

0 for u ≤ 0
1 for u > 0,

has been derived as a model for the diffusion of oxygen in absorbing tissue.
In this model, t denotes time, x distance into the tissue from its outer
surface, and u the concentration of the oxygen which is free to diffuse. The
sink term in the equation simulates the uptake of this oxygen by the tissue.
The boundary of the support of any solution will denote the limit of the
penetration of the free oxygen [68,71,72,88]. The above theorems have the
following significance for this equation.

Example 8. For every wave speed σ equation (6.13) admits precisely one
distinct semi-wavefront solution decreasing to 0. Moreover, the support of
this solution is necessarily bounded above.

Proof. For equation (6.13) we discern that a′(s) = 1 while the variable
(6.3) is given by Q(s) =

√
2s for all s > 0. Subsequently, (6.5) holds, and,

Q(s)/s → ∞ as s ↓ 0. The assertion is now a corollary of Theorem 16 and
Theorem 17 part (iii). 2

The existence of a semi-wavefront solution with bounded support with every
wave speed σ signifies that, without a sufficient supply of free oxygen at the
surface of the tissue, the depth of penetration of unabsorbed oxygen will
recede towards the surface.

Worthy of note is also that equation (6.13) may be derived as a refor-
mulation of the classical Stefan problem [71,86,88,236]. In this setting, the
boundary of the support of the semi-wavefront solution corresponds to the
usual free boundary in the Stefan problem.

6.2. Source term

When the reaction term in equation (6.1) is a source term, the situation
is more complex than that described in the previous subsection. For a
start, the equation need not always admit a semi-wavefront solution. This
is determined by the finiteness of the parameter

λ1 := lim sup
s↓0

{
1
s

∫ s

0

c(r)a′(r)
r

dr

}
. (6.14)
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In general for equation (6.1) with a source term there may hold 0 ≤ λ1 ≤ ∞.
This may be verified by considering

ut = uxx + up where p > 0.

If p > 1 then λ1 = 0, if p = 1 then λ1 = 1, and if p < 1 then λ1 =∞. Also,
in general λ1 need not be equal to

λ0 := lim inf
s↓0

{
1
s

∫ s

0

c(r)a′(r)
r

dr

}
. (6.15)

This can be checked by considering

ut = uxx + u(2 + sin |ln u| − cos |ln u|).

For this equation λ1 = 3 whereas λ0 = 1. Another complication, when the
reaction term in equation (6.1) is a source term, is that the equation may
admit more than one semi-wavefront solution with any given wave speed.

The following is the case, where

Φ(z0, z1) :=
{

(2z1 − z0)/
√

2(z1 − z0) for 0 ≤ 3z0 < 2z1
2
√

z0 for 0 ≤ 2z1 ≤ 3z0

and

Λ1 := sup
0<s<δ

{
1
s

∫ s

0

c(r)a′(r)
r

dr

}
. (6.16)

Theorem 18 (Existence). Suppose that c(u) > 0 for all 0 < u < `. Then
for every wave speed σ equation (6.1) has a one parameter family of distinct
semi-wavefront solutions decreasing to 0 in the sense of Definition 7 or no
such solution. Moreover:

(i) When λ1 =∞ the equation has no such solution for all σ.

(ii) When 0 < λ1 < ∞ there exists a σ∗ > 0 such that the equation has
a one parameter family of such solutions for all σ > σ∗ and no such
solution for all σ < σ∗. The critical wave speed satisfies the inequalities
Φ(λ0, λ1) ≤ σ∗ ≤ 2

√
λ1. Furthermore, if λ0 = Λ1 for some 0 < δ < `,

the equation has a one parameter family of distinct semi-wavefront
solutions decreasing to 0 with the critical speed σ∗ = 2

√
λ1.

(iii) When λ1 = 0 the equation has a one parameter family of such solutions
for all σ > 0 and no such solution for all σ ≤ 0.
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Note that, in general when 0 < λ1 < ∞, equation (6.1) may or may not
admit semi-wavefront solutions decreasing to 0 for the critical wave speed
σ∗. By way of illustration, consider the equation

ut = uxx + u(1 + k |ln u|−2) (6.17)

with 0 < ` < 1 and k a real parameter. For this equation it can be computed
that λ0 = λ1 = 1 and thus that the critical wave speed is σ∗ = 2 irrespective
of the value of k. Moreover, Λ1 = 1 for each 0 < δ < ` if and only if k ≤ 0.
However, by Lemma A3 the equation admits a semi-wavefront solution with
wave speed σ∗ decreasing to 0 if and only if k ≤ 1/4.

The first assertion of Theorem 18 follows from Theorem 13. The remain-
ing assertions are justified by the lemma below, when one bears in mind that
without any loss of generality one can choose δ arbitrarily small.

Lemma 10. Suppose that c(u) > 0 for all 0 < u < δ for some 0 < δ < `.
Define Λ1 by (6.16) and

Λ0 := inf
0<s<δ

{
1
s

∫ s

0

c(r)a′(r)
r

dr

}
. (6.18)

(i) If σ ≤ 0 or σ < 2
√

Λ0 equation (6.2) has no solution on [0, δ). Further-
more, given any solution θ of (6.2) on [0, δ) there holds θ(s) ≤ µs for
all 0 < s < δ, where

µ :=
σ +
√

σ2 − 4Λ0

2
.

(ii) If Λ1 = ∞ or if Λ1 < ∞ and σ < Φ(Λ0,Λ1) equation (6.2) has no
solution on [0, δ).

(iii) If λ1 < Λ1 <∞, 3Λ0 ≤ 2Λ1 and σ ≤ Φ(Λ0,Λ1) equation (6.2) has no
solution on [0, δ).

(iv) If σ ≥ 2
√

Λ1 equation (6.2) has a solution θ on [0, δ) such that θ(s) ≥
νs for all 0 < s < δ, where

ν :=
σ +
√

σ2 − 4Λ1

2
. (6.19)

Proof. (i) Suppose that (6.2) has a solution θ on [0, δ). Since c is positive,
θ cannot be identically zero on [0, δ). On the other hand, θ(s) ≤ σs
for all 0 < s < δ by (6.2). This implies σ > 0. Furthermore, it implies
that one can define A := sup{θ(s)/s : 0 < s < δ} in the knowledge
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that 0 < A ≤ σ. This means though that given any 0 < ε < A one
can find an s ∈ (0, δ) such that

A− ε ≤ θ(s)
s

= σ − 1
s

∫ s

0

c(r)a′(r)
θ(r)

dr

≤ σ − 1
s

∫ s

0

c(r)a′(r)
Ar

dr

≤ σ − Λ0

A
.

Multiplying the above by 4A and letting ε ↓ 0 yields (2A − σ)2 ≤
σ2 − 4Λ0. Whence, σ > 0, σ ≥ 2

√
Λ0 and A ≤ µ.

(ii) In the light of part (i) we only have to prove the assertion for Λ1 =∞
and 3Λ0 < 2Λ1 < ∞. We adapt an idea of Atkinson, Reuter and
Ridler-Rowe [22]. We note that (6.2) may be differentiated to yield

θ′(s) = σ − c(s)a′(s)
θ(s)

(6.20)

for almost all 0 < s < δ. Subsequently, multiplying by 2θ(s)/s,(
θ2

s

)′
+

(2σs− µs− θ)(µs− θ)
s2 +

2ca′

s
= µ(2σ − µ)

for almost all 0 < s < δ. Whence, noting that if (6.2) has a solution
θ on [0, δ) there holds θ2(s)/s → 0 as s ↓ 0 by part (i), integrating
the above identity from 0 to s ∈ (0, δ) and thereafter dividing by s we
deduce

µ(2σ − µ) =
θ2(s)
s2 +

1
s

∫ s

0

{2σr − µr − θ(r)}{µr − θ(r)}
r2 dr

+
2
s

∫ s

0

c(r)a′(r)
r

dr (6.21)

for all 0 < s < δ. Recalling that σr ≥ µr ≥ θ(r) for all 0 < r < δ by
part (i), this yields

µ(2σ − µ) ≥ 2Λ1. (6.22)

This last inequality plainly cannot hold if Λ1 = ∞, while elementary
manipulation shows that if 3Λ0 ≤ 2Λ1 < ∞ it is equivalent to σ ≥
Φ(Λ0,Λ1).

(iii) We refine the proof of the previous part. If λ1 < Λ1 <∞ there exists
a 0 < s ≤ δ such that the quantity on the last line of (6.21) actually
equals Λ1. Invoking Lemma A5 if necessary, for such an s the identity
(6.21) subsequently yields (6.22) with strict inequality, from which the
assertion follows.
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(iv) It can be verified that the function θ1(s) := νs is a solution of equa-
tion (1.9) on [0, δ) with σs + b(s) replaced by

σ1s + b1(s) := νs +
∫ s

0

c(r)a′(r)
νr

dr ≤
(

ν +
Λ1

ν

)
s = σs.

Subsequently the existence of a solution θ of (6.2) satisfying θ(s) ≥
θ1(s) for all s ∈ [0, δ) follows from Lemma A6(ii) of the theory of the
integral equation. 2

As a consequence of the reaction-diffusion equation with a source term
admitting a one parameter family of semi-wavefront solutions with a given
wave speed decreasing to 0 if it admits one at all, the investigation of the
boundedness of the support of these waves is also more complicated than
in the case of a sink term. It will be of help to this investigation to first
consider the next lemma.

Lemma 11. Consider equation (1.9) with two different wave speeds σi, sets
of coefficients ai, bi and ci, and corresponding solutions θi on [0, δ) for 0 <
δ ≤ ` and i = 1, 2. Suppose that the function s 7→ σ2s + b2(s)− σ1s− b1(s)
is nondecreasing on [0, δ), c2a

′
2 ≤ c1a

′
1 almost everywhere in (0, δ), and,

c1(s) 6= 0 or c2(s) 6= 0 for all 0 < s < δ Then, either θ2 ≥ θ1 on [0, δ), or,
there exists a δ∗ ∈ (0, δ) such that θ2 < θ1 on (0, δ∗).

Proof. By Lemma 2, max{θ1(s), θ2(s)} > 0 for any 0 < s < δ. Hence, if
there exists an s∗ ∈ (0, δ) such that θ2(s∗) < θ1(s∗), by Lemma 7 there holds
θ2(s) < θ1(s) for all 0 < s < s∗. This gives the result. 2

The above lemma enables us to establish the following.

Lemma 12. Let the assumptions of Lemma 10 hold.

(i) If σ > 2
√

Λ1 then given any γ > γ∗ := (σ−
√

σ2 − 4Λ1)/2 equation (6.2)
has at most one solution θ on [0, δ) such that

θ(s) ≥ γs for all 0 < s < δ. (6.23)

(ii) If for some A > 0 there holds c(s)a′(s) ≥ As for almost all 0 < s < δ,
then given any solution θ of (6.2) on [0, δ) necessarily σ2 ≥ 4A and

lim inf
s↓0

θ(s)
s
≥ σ −

√
σ2 − 4A
2

. (6.24)

(iii) If σ > 2
√

Λ1, and, for some Λ1 < B ≤ σ2/4 there holds c(s)a′(s) ≤ Bs
for almost all 0 < s < δ, then given any solution θ of (6.2) on [0, δ)
other than the maximal solution necessarily

lim sup
s↓0

θ(s)
s
≤ σ −

√
σ2 − 4B
2

. (6.25)
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(iv) If ca′ is absolutely continuous on [0, δ), (ca′)(0) = 0, and, for some
A there holds (ca′)′(s) ≥ A for almost all 0 < s < δ, then given any
solution θ of (6.2) on [0, δ) necessarily σ2 ≥ 4A and

lim inf
s↓0

θ(s)
c(s)a′(s)

≥ 2
σ +
√

σ2 − 4A
. (6.26)

(v) If σ > 2Λ1, ca′ is absolutely continuous on [0, δ), (ca′)(0) = 0, and,
for some Λ1 < B ≤ σ2/4 there holds (ca′)′(s) ≤ B for almost all
0 < s < δ, then given any solution θ of (6.2) on [0, δ) other than the
maximal solution necessarily

lim sup
s↓0

θ(s)
c(s)a′(s)

≤ 2
σ +
√

σ2 − 4B
. (6.27)

Proof. (i) To obtain this result we adapt another idea of Atkinson, Reuter
and Ridler-Rowe [22]. We let X denote the set of real functions ψ
defined on [0, δ] such that ν ≤ ψ ≤ σ, where ν is defined by (6.19),
and define the mapping

F (ψ) := σ − 1
s

∫ s

0

c(r)a′(r)
rψ(r)

dr

on X. This mapping can be shown to be a contraction on X. There-
fore, by the Banach-Cacciopoli contraction mapping principle, F has
a unique fixed point ψ in X. Setting θ = sψ(s) subsequently gives
the existence of a unique solution of (6.2) in the class of functions
satisfying

νs ≤ θ(s) ≤ σs for 0 ≤ s ≤ δ. (6.28)

However, by part (i) of Lemma 10 and Lemma A5 any solution of (6.2)
must satisfy the right-hand inequality in (6.28). While, if a solution
satisfies (6.23) for some ν > γ > γ∗ then substituting (6.23) in the
right-hand side of (6.2) we compute θ(s) ≥ γ1s for all 0 < s < δ where
γ1 = σ−Λ1/γ. Next substituting this new inequality in the right-hand
side of (6.2) we find θ(s) ≥ γ2s for all 0 < s < δ with γ2 = σ − Λ1/γ1.
Repeating this process delivers a sequence of values γk such that θ(s) ≥
γks for all 0 < s < δ and k ≥ 1. Moreover, this sequence is increasing,
and such that γk → ν as k → ∞. Recalling Lemma A5, this implies
that θ must also satisfy the left-hand inequality in (6.28). In summary
then, any solution θ which satisfies (6.23) for some γ > γ∗ must satisfy
(6.28), and in this class of functions (6.2) is uniquely solvable.

(ii) Lemma 10(i) implies that σ2 ≥ 4A. To prove (6.24) we may therefore
suppose that A < σ2/4 without loss of generality. Let c2(r)a′2(r) :=
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Ar, and, observe that by Lemma A7(ii) for every γ equation (6.2) with
c2(r)a′2(r) in lieu of c(r)a′(r) admits a unique solution θγ such that

θγ(s) = β1s + γsβ2/β1 +O(s(2β2−β1)/β1) as s ↓ 0, (6.29)

where β1 := (σ−
√

σ2 − 4A)/2 and β2 := (σ +
√

σ2 − 4A)/2. Further-
more if [0, δγ) denotes its maximal interval of existence contained in
[0, δ), θγ is positive on (0, δγ), δγ depends continuously and monoton-
ically on γ, and, δγ → 0 as γ → −∞. Simultaneously, c2(s)a′2(s) ≤
c(s)a′(s) for almost all 0 < s < δ, and, c2(s)a′2(s) > 0 for all 0 < s < δ.
So, by Lemma 11, either

θ(s) > θγ(s) for all 0 < s < δ∗ some 0 < δ∗ < δγ , (6.30)

or, δγ = δ and θ(s) ≤ θγ(s) for all 0 < s < δ. Consequently, since
δγ → 0 as γ → −∞, we can choose a negative γ of sufficient magnitude
that (6.30) holds. This gives (6.24).

(iii) Suppose to begin with that σ2 > 4B. Set β1 := (σ −
√

σ2 − 4B)/2
and β2 := (σ +

√
σ2 − 4B)/2, and note that Lemma A7(ii) infers the

existence of a solution θγ of equation (6.2) with c(r)a′(r) replaced by
c1(r)a′1(r) := Br such that (6.29) holds for every γ. Furthermore, if
[0, δγ) denotes its maximal interval of existence contained in [0, δ), θγ
is positive on (0, δγ), δγ is a continuous monotonic increasing function
of γ, δγ = δ for all γ > 0, and, θγ′(s) > θγ(s) for all 0 < s < δγ and
γ′ > γ. Finally, c(s)a′(s) ≤ c1(s)a′1(s) for almost all 0 < s < δ, and,
c(s) 6= 0 for all 0 < s < δ. So, by Lemma 11, for any γ either

θ(s) < θγ(s) for all 0 < s < δ∗ some 0 < δ∗ < δγ (6.31)

or, θ(s) ≥ θγ(s) for all 0 < s < δγ. We deduce therefore that either
(6.31) holds for some γ, or, θ(s) ≥ θ∞(s) := sup{θγ(s) : 0 < γ < ∞}
for all 0 < s < δ. The function θ∞ can be verified to be a solution
of (6.2) with c(r)a′(r) replaced by c1(r)a′1(r) though. Whence, by
Lemma A7(ii), θ∞(s) = β2s for all 0 < s < δ. However, by part (i)
of the present lemma and Lemma 10(iv), the inequality θ(s) ≥ β2s
for 0 < s < δ implies that θ must be the maximal solution of (6.2).
Thus, since by hypothesis this is not the case, there has to be a γ such
that (6.31) holds. This yields (6.25). If σ2 = 4B the result may be
obtained similarly using Lemma A7(i) instead of Lemma A7(ii)

(iv) By part (ii) σ2 ≥ 4A. Choose γ < 2/(σ +
√

σ2 − 4A). Observe that
θ2(s) := γc(s)a′(s) is a solution of (1.9) on [0, δ) with σs+b(s) replaced
by σ2s + b2(s) := θ2(s) + s/γ. Furthermore, s 7→ σ2s + b2(s) − σs is
nondecreasing on [0, δ). Hence, by Lemma 11, either

θ(s) > θ2(s) for all 0 < s < δ∗ some 0 < δ∗ < δ (6.32)
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or θ(s) ≤ θ2(s) for all 0 < s < δ. However, substituting this last
inequality in the right-hand side of (6.2) we compute θ(s) ≤ (σ−1/γ)s
for all 0 < s < δ, which possibility is excluded by part (ii) of the
present lemma. We are therefore forced to conclude that (6.32) must
hold. The conclusion (6.26) follows.

(v) Note that the function θ1(s) := {2/(σ +
√

σ2 − 4B)}c(s)a′(s) is a so-
lution of (1.9) on [0, δ) with σs + b(s) replaced by σ1s + b1(s) :=
θ1(s) + {(σ +

√
σ2 − 4B)/2}s. Furthermore, s 7→ σs − σ1s − b1(s) is

nondecreasing on [0, δ). Hence, in this case by Lemma 11, either

θ(s) < θ1(s) for all 0 < s < δ∗ some 0 < δ∗ < δ (6.33)

or θ(s) ≥ θ1(s) for all 0 < s < δ. Substitution of the last inequality
in the right-hand side of (6.2) yields θ(s) ≥ {(σ −

√
σ2 − 4B)/2}s

for all 0 < s < δ. Whereafter, part (i) of the present lemma and
Lemma 10(iv) imply that θ must be the maximal solution of (6.2).
Thus, since θ is not the maximal solution, (6.33) must hold. This
yields (6.27). 2

Lemma 12 supplies the following.

Theorem 19 (Bounded support). Suppose that the conditions of Theo-
rem 18 hold. Fix 0 < δ < `.

(a) If ∫ δ

0

a′(s)
s

ds =∞ (6.34)

then every semi-wavefront solution decreasing to 0 is positive every-
where in its domain of definition.

(b) If ∫ δ

0

a′(s)
s

ds <∞ (6.35)

then for every wave speed σ > 2
√

λ1 there is a solution of this type
whose support is bounded above. Moreover, if ca′ is absolutely contin-
uous on [0, δ), (ca′)(0) = 0, lim ess sups↓0(ca′)′(s) ≤ λ1, and,∫ δ

0

1
c(s)

ds =∞,

then for every wave speed σ > 2
√

λ1 there is exactly one distinct so-
lution of this type whose support is bounded above and all other solu-
tions of this type are positive everywhere in their domain of definition.
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Whereas, if lim ess infs↓0 c(s)a′(s)/s > 0, or, if ca′ is absolutely con-
tinuous on [0, δ), (ca′)(0) = 0, lim ess infs↓0(ca′)′(s) > −∞, and,∫ δ

0

1
c(s)

ds <∞,

then for every wave speed σ > 2
√

λ1 every solution of this type is such
that its support is bounded above.

6.3. Smooth coefficients

Let us now turn to the case of equation (6.1) when ca′ is continuously dif-
ferentiable in [0, `) and (ca′)(0) = 0. The previous two subsections already
provide results should c be negative everywhere in (0, δ) or positive every-
where in (0, δ) for some 0 < δ ≤ `. The outstanding situation is therefore
that in which c vanishes at some point in (0, δ) for every 0 < δ < `. The
following are our results for this case.

Theorem 20 (Existence). Suppose that ca′ ∈ C1([0, `)), and, c(ui) = 0
for a sequence of values {ui}∞i=1 ⊂ (0, `) such that ui → 0 as i→∞.

(a) If, for some 0 < δ < ` there holds∫ s

0
c(u)a′(u) du < 0 for all 0 < s ≤ δ, (6.36)

then equation (6.1) has exactly one distinct semi-wavefront solution
decreasing to 0 for every wave speed σ ≥ 0 and no such solution for
any wave speed σ < 0.

(b) If, given any 0 < δ < ` there holds∫ s

0
c(u)a′(u) du ≥ 0 for some 0 < s ≤ δ,

then equation (6.1) has exactly one distinct semi-wavefront solution
decreasing to 0 for every wave speed σ > 0 and no such solution for
any wave speed σ ≤ 0.

Theorem 21 (Bounded support). Suppose that the conditions of Theo-
rem 20 hold. Fix 0 < δ < `. Let Q be defined by (6.3).

(a) If (6.34) holds then every semi-wavefront decreasing to 0 is positive
everywhere in its domain of definition.

(b) If (6.35) holds then every solution of this type with wave speed σ > 0
is such that its support is bounded above. Moreover, if (6.36) and
(6.4) hold every solution of this type with wave speed σ = 0 is positive
everywhere in its domain of definition. Whereas, if (6.36) and (6.5)
hold every solution of this type with wave speed σ = 0 is such that its
support is bounded above.
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Both of these theorems follow from Lemma 3, Lemma 5 and the lemma
below.

Lemma 13. Suppose that the introductory conditions of Theorem 20 hold.

(i) If σ > 0 there exists a 0 < δ < ` such that equation (6.2) has a unique
solution θ on [0, δ). Furthermore,

θ(s)
s
→ σ as s ↓ 0. (6.37)

(ii) If σ = 0 then (6.2) has a solution if and only if (6.36) holds for some
0 < δ < `, in which event there is a unique solution θ ≡ Q on [0, δ).

(iii) If σ < 0 then (6.2) has no solution.

Proof. We first show that (6.37) holds for any solution θ of equation (6.2)
on an interval [0, δ) with 0 < δ < `. To do this, we adapt an argument
in [268]. Observe that since ca′ ∈ C1(0, `), θ must be positive on (0, δ)
by Lemma 5. Moreover, in this light, (6.2) may be differentiated twice to
deduce that θ ∈ C2(0, δ). To be specific, differentiating once gives (6.20) for
all 0 < s < δ. While, multiplying (6.20) by θ(s) and differentiating again,

θ(s)θ′′(s) = {σ − θ′(s)}θ′(s)− (ca′)′(s) for 0 < s < δ. (6.38)

Suppose now that

lim inf
s↓0

θ′(s) < µ < lim sup
s↓0

θ′(s) (6.39)

for some real number µ. Then by the regularity of θ there must be sequences
{s±i }∞i=1 ⊂ (0, δ) such that s±i → 0 as i → ∞, θ′(s±i ) = µ and ±θ′′(s±i ) ≥ 0
for all i ≥ 1. Hence, noting that (ca′)′(s) → 0 as s ↓ 0 by the hypotheses
on ca′, substituting s = s±i in (6.38) and passing to the limit i → ∞, we
obtain ±(σ − µ)µ ≥ 0. This means that there are at most two values,
namely µ = σ and µ = 0, for which (6.39) might hold. On the other hand,
since θ′ ∈ C(0, δ), the set of such values should comprise an open interval.
This contradiction can only be resolved by the deduction that there are no
numbers µ for which (6.39) holds. In other words, the two entities on the
left- and right-hand side of (6.39) are equal. At the same time, from (6.20)
we know that θ′(ui) = σ for all i ≥ 1 such that ui < δ. Taken together these
conclusions imply that θ′(s) → σ as s ↓ 0. This gives (6.37) via l’Hôpital’s
rule. To proceed we distinguish the three cases in the statement of the
lemma.

(i) Choose 0 < A < σ2/4 and thereafter 0 < δ < ` so small that |(ca′)′(s)| ≤
A for all 0 ≤ s ≤ δ. Set ι := (σ −

√
σ2 − 4A)/2. Then deploying the

contraction-mapping argument used to prove part (i) of Lemma 12 it
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can be shown that (6.2) has a unique solution θ on [0, δ] such that
(σ− ι)s ≤ θ(s) ≤ (σ + ι)s for all 0 ≤ s ≤ δ. Combining this deduction
with (6.37) provides the desired result.

(ii) Multiplying (6.20) by 2θ(s) and integrating, the integral equation is
equivalent to

θ2(s) = −2
∫ s

0
c(r)a′(r) dr.

This readily justifies the conclusion of the lemma.

(iii) This conclusion follows immediately from our deduction that (6.37)
must hold for every solution of (6.2) . 2

The semi-linear equation

ut = uxx + c(u) (6.40)

with a smooth reaction term c has been studied by a great many authors
[20, 21, 25, 95, 96, 123, 130, 131, 137, 138, 192, 267, 268]. To close this section,
let us summarize the results we have obtained for this particular equation.

Corollary 21.1. Suppose that c is differentiable in I. Then every semi-
wavefront solution of equation (6.40) decreasing to 0 is necessarily positive
everywhere in its domain of definition. Moreover, the following is the case.

(a) If c(u) < 0 for all 0 < u < δ for some 0 < δ < `, then the equation has
exactly one distinct semi-wavefront solution decreasing to 0 for every
wave speed σ.

(b) If ∫ s

0
c(r) dr < 0 for all 0 < s < δ

for some 0 < δ < `, and, given any 0 < δ < ` there exists a 0 < u < δ
such that c(u) ≥ 0, then the equation has exactly one distinct semi-
wavefront solution decreasing to 0 for every wave speed σ ≥ 0, and, no
such solution for any σ < 0.

(c) If given any 0 < δ < ` there exists a 0 < u < δ such that c(u) ≤ 0 and
a 0 < s < δ such that∫ s

0
c(r) dr ≥ 0,

then the equation has exactly one distinct semi-wavefront solution de-
creasing to 0 for every wave speed σ > 0, and, no such solution for
any σ ≤ 0.
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(d) If c(u) > 0 for all 0 < u < δ for some 0 < δ < `, and, c′(0) = 0 then
the equation has a one parameter family of distinct semi-wavefront
solutions decreasing to 0 for every wave speed σ > 0 and no such
solution for any σ ≤ 0.

(e) If c′(0) > 0 then the equation has a one parameter family of distinct
semi-wavefront solutions decreasing to 0 for every wave speed σ >
2
√

c′(0) and no such solution for any σ < 2
√

c′(0). For σ = 2
√

c′(0)
the equation either has a one parameter family of distinct solutions
or no solution, whereby a sufficient condition for existence is c(u) ≤
c′(0)u for all 0 < u < δ for some 0 < δ < `.

Proof. In case (a) the existence of a distinct semi-wavefront for every σ is
given by Theorem 16. While, noting that the variable Q defined by (6.3) is
such that Q(s)/s →

√
|c′(0)| as s ↓ 0, the positivity of the travelling wave

is given by part (i) of Theorem 17(a). Cases (b) and (c) follow immediately
from Theorems 20 and 21(a). With regard to the remaining cases, one can
compute that the parameters defined by (6.14) and (6.15) take the values
λ1 = λ0 = c′(0). Furthermore, if c(u) ≤ c′(0)u for all 0 < u < δ for some
0 < δ < `, the parameter Λ1 defined by (6.16) is also equal to c′(0). Cases
(d) and (e) are subsequently a straightforward consequence of Theorems 18
and 19(a). 2

Equation (6.17) provides an explicit example to show that in the case (e)
above when the condition c(u) ≤ c′(0)u for all 0 < u < δ for some 0 < δ < `
does not hold, there may or may not be solutions with the wave speed
σ = 2

√
c′(0). As discussed in Subsection 6.2, if k ≤ 1/4 equation (6.17) has

a one parameter family of semi-wavefront solutions with the critical speed
2
√

c′(0) decreasing to 0, whereas if k > 1/4 it has no solutions with this
wave speed.
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7. Semi-wavefronts for power-law equations

We turn now to the application of the integral equation (1.9) for the defini-
tive analysis of semi-wavefront solutions for two specific classes of equa-
tion (1.1). The first of these is the class of equations

ut = (um)xx + b0 (un)x +
{

c0u
p for u > 0

0 for u = 0
(7.1)

where m, n, p, b0 and c0 are real parameters. Equations of this type have
long been of interest as a tractable prototype for more general equations
of the class (1.1). See for instance [117] and the many references cited
therein. Without the convection and reaction terms, equation (7.1) reduces
to the porous media equation. The integral equation approach leads to the
following characterization of travelling-wave solutions for this category of
equations.

Theorem 22. Let m > 0, n > 0, p + m > 0, b0 and c0 be real constants.

(a) Suppose that c0 < 0. Then for every wave speed σ equation (7.1) has
exactly one distinct semi-wavefront solution decreasing to 0. Moreover,
the support of this solution is bounded above if and only if the value q
in Table 1 satisfies the condition q < m.

(b) Suppose that c0 = 0. Then for every wave speed σ equation (7.1) has
at most one distinct semi-wavefront solution decreasing to 0. There is
such a solution if and only if there is a value q in Table 2. Moreover,
the support of this solution is bounded above if and only if q < m.

(c) Suppose that c0 > 0. Then for every wave speed σ equation (7.1) has
either a one parameter family of distinct semi-wavefront solution de-
creasing to 0 in the sense of Definition 7 or no such solution. There
are such solutions if and only if there is a value q in Table 3, where

b∗ = 2
√

mc0/n and σ∗ = 2
√

mc0.

Moreover, there is such a solution whose support is bounded above if
and only if q < m.

Proof. According to the theory we have developed in this paper, an equa-
tion of the class (1.1) admits a semi-wavefront solution with wave speed σ
decreasing to 0 if and only if the integral equation (1.9) admits a solution
satisfying the integrability condition. Moreover, there is a decreasing semi-
wavefront solution with bounded support if and only if (1.9) has a solution
θ on some interval [0, δ) for which (2.28) holds. Consequently, recalling that
even if equation (1.9) admits more than one solution, there is one which is
maximal; to determine whether or not (1.9) has a solution satisfying the
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n m + p b0 wave speed q

n < 1 m + p > 2n b0 > 0 all σ n
b0 < 0 all σ m + p− n

m + p ≤ 2n any b0 all σ (m + p)/2
n = 1 m + p > 2 any b0 σ > −b0 1

σ = −b0 (m + p)/2
σ < −b0 m + p− 1

m + p ≤ 2 any b0 all σ (m + p)/2
n > 1 m + p > 2n b0 > 0 σ > 0 1

σ = 0 n
σ < 0 m + p− 1

b0 < 0 σ > 0 1
σ = 0 m + p− n
σ < 0 m + p− 1

2n ≥ m + p > 2 any b0 σ > 0 1
σ = 0 (m + p)/2
σ < 0 m + p− 1

m + p ≤ 2 any b0 all σ (m + p)/2

Table 1: Value of q for which the solution of (7.2) or (7.5) with c0 < 0
satisfies (7.3) or (7.6) respectively.

n b0 wave speed q

n < 1 b0 > 0 all σ n
b0 < 0 all σ none

n = 1 any b0 σ > −b0 1
σ ≤ −b0 none

n > 1 b0 > 0 σ > 0 1
σ = 0 n
σ < 0 none

b0 ≤ 0 σ > 0 1
σ ≤ 0 none

Table 2: Value of q for which the solution of (7.2) or (7.5) with c0 = 0
satisfies (7.3) or (7.6) respectively.
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n m + p b0 wave speed q

n < 1 m + p > 2n b0 > 0 all σ n
b0 < 0 all σ none

m + p = 2n b0 ≥ b∗ all σ n
b0 < b∗ all σ none

m + p < 2n any b0 all σ none
n = 1 m + p > 2 any b0 σ > −b0 1

σ ≤ −b0 none
m + p = 2 any b0 σ ≥ σ∗ − b0 1

σ < σ∗ − b0 none
m + p < 2 any b0 all σ none

n > 1 m + p > 2n b0 > 0 σ > 0 1
σ = 0 n
σ < 0 none

b0 ≤ 0 σ > 0 1
σ ≤ 0 none

m + p = 2n b0 ≥ b∗ σ > 0 1
σ = 0 n
σ < 0 none

b0 < b∗ σ > 0 1
σ ≤ 0 none

2n > m + p > 2 any b0 σ > 0 1
σ ≤ 0 none

m + p = 2 any b0 σ ≥ σ∗ 1
σ < σ∗ none

m + p < 2 any b0 all σ none

Table 3: Value of q for which the maximal solution of (7.2) with c0 > 0
satisfies (7.3).
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integrabilty condition and possibly also (2.28), it suffices to investigate the
existence and behaviour of a maximal solution of this equation. For the
partial differential equation (7.1) the integral equation (1.9) reads

θ(s) = σs + b0s
n −mc0

∫ s

0

rm+p−1

θ(r)
dr. (7.2)

We assert that the maximal solution θ of (7.2) is necessarily such that

θ(s) ∼ θ0s
q as s ↓ 0 for some θ0 > 0 (7.3)

and q > 0 as stated in Tables 1 – 3. In this event, the number of semi-
wavefront solutions of equation (7.1) decreasing to 0 is given directly by
Theorems 1, 12 and 13. Furthermore, by substitution in (2.28), the existence
of a semi-wavefront solution with bounded support is determined by the
simple criterion q < m. To proceed, we define

Q(s) :=
√

2m |c0| /(m + p)s(m+p)/2

and λ := lims↓0(σs + b0s
n)/Q(s), and distinguish the three cases in the

statement of the theorem.

(a) When c0 < 0 the existence of a unique solution θ of (7.2) on [0,∞) is
given by Lemma A4(i) of the appendix. Moreover, when λ > −∞ its
behaviour as s ↓ 0 is given by Lemma A4(ii). Regarding its behaviour
when λ = −∞, consider equation (7.2) with σis + b(i)(s) := {1 −
(−1)iε}(σs + b0s

n) + θi(s), where

θi(s) :=
mc0s

m+p

{1− (−1)iε}(σs + b0sn)
,

0 < ε < 1 and i = 1, 2, in lieu of σs + b0s
n. It can be verified that θi

is a solution of this auxiliary equation for i = 1, 2. Furthermore, in a
small enough interval [0, δ) the functions s 7→ σ2s + b(2)(s)−σs + b0s

n

and s 7→ σs+b0s
n−σ1s−b(1)(s) are both nondecreasing. Subsequently

Lemma A6(i) implies that θ1 ≤ θ ≤ θ2 on [0, δ). The behaviour of θ
as s ↓ 0 follows by passing to the limit ε ↓ 0.

(b) When c0 = 0 the integral equation (7.2) reduces to the simple identity
θ(s) = σs + b0s

n. Subsequently, it is easy to check whether or not
there is a ‘solution’ satisfying the integrabilty condition and what its
behaviour as s ↓ 0 is. See Section 5 for further particulars of the
principles involved.

(c) When c0 > 0 Lemma A3 parts (i) and (ii) imply that equation (7.2)
has a solution if and only if λ ≥ 2. Moreover, when λ = ∞ the be-
haviour of the maximal solution θ of equation (7.2) as s ↓ 0 follows
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from Lemma A3(i). To obtain the corresponding behaviour of the
maximal solution θ when 2 < λ < ∞, consider (7.2) with σs + b0s

n

replaced by {λ + (−1)iε}Q(s) for some 0 < ε < λ − 2 and i = 1, 2.
By Lemma A7 part (ii) this auxiliary equation has a maximal solution
θi := ([λ + (−1)iε +

√
{λ + (−1)iε}2 − 4]/2)Q(s). While observing

that (λ + ε)Q(s) ≥ σs + b0s
n ≥ (λ− ε)Q(s) in a small enough interval

[0, δ), by Lemma A6(ii) there holds θ1 ≤ θ ≤ θ2 on [0, δ) for some
δ > 0. The required relation (7.3) follows by letting ε ↓ 0. For the
remaining case, λ = 2, an upper estimate of the behaviour of the max-
imal solution θ of equation (7.2) as s ↓ 0 may be obtained by following
the above argument. The corresponding lower estimate is given by
Lemma A3(i). 2

The second class of equations which we consider in this section are those
of the form

ut = (u |ln u|−m)xx + b0(u |ln u|1−n)x + c0u |ln u|2−p (7.4)

where m, n, p, b0 and c0 are real parameters. Equations of this type fall
into the class (1.1) if we take the interval I = [0, `] with 0 < ` < 1 and
implicitly define the coefficients for u = 0 by continuity. Equations of this
type constitute a weak perturbation of the linear version of (1.1).

Theorem 23. Let m, n, p, b0 and c0 be real constants.

(a) Suppose that c0 < 0. Then for every wave speed σ equation (7.4) has
exactly one distinct semi-wavefront solution decreasing to 0. Moreover,
the support of this solution is bounded above if and only if the value q
in Table 1 satisfies the condition q < m.

(b) Suppose that c0 = 0. Then for every wave speed σ equation (7.4) has
at most one distinct semi-wavefront solution decreasing to 0. There is
such a solution if and only if there is a value q in Table 2. Moreover,
the support of this solution is bounded above if and only if q < m.

(c) Suppose that c0 > 0. Then for every wave speed σ equation (7.4) has
either a one parameter family of distinct semi-wavefront solution de-
creasing to 0 or no such solution. There are such solutions if and only
if there is a value q in Table 3 with the corrections in Table 4, where

b∗ = σ∗ = 2
√

c0.

Moreover, there is such a solution whose support is bounded above if
and only if q < m.
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n m + p b0 adaptation wave speed q

n < −1 m + p = 2n b0 = b∗ m > n− 1 all σ none
n = −1 m + p = 2n b0 = b∗ m > −2 all σ none

m = −2 σ ≥ −√c0/4 n
σ < −√c0/4 none

−1 < n < 0 m + p = 2n b0 = b∗ m > n− 1 all σ none
m = n− 1 σ ≥ 0 n

σ < 0 none
n = 0 m + p = 2n b0 = b∗ any m σ ≥ (m + 1)

√
c0 n

σ < (m + 1)
√

c0 none
0 < n < 1 m + p = 2n b0 = b∗ m > n− 1 σ > 0 n

σ ≤ 0 none
m ≤ n− 1 σ ≥ 0 n

σ < 0 none
n = 1 m + p = 2 any b0 m > 0 σ > σ∗ − b0 1

σ ≤ σ∗ − b0 none
1 < n < 2 m + p = 2n b0 = b∗ m > n− 1 σ > 0 1

σ ≤ 0 none
m + p = 2 b0 < 0 any m σ > σ∗ 1

σ ≤ σ∗ none
n = 2 m + p = 2n b0 = b∗ m > 1 σ > 0 1

σ ≤ 0 none
m + p = 2 any b0 m > b0/

√
c0 σ > σ∗ 1

σ ≤ σ∗ none
2 < n < 3 m + p = 2n b0 = b∗ m > n− 1 σ > 0 1

σ ≤ 0 none
m + p = 2 b0 ≥ 0 m > 0 σ > σ∗ 1

σ ≤ σ∗ none
b0 < 0 m ≥ 0 σ > σ∗ 1

σ ≤ σ∗ none
n = 3 m + p = 2n b0 = b∗ m > 2 σ > 0 1

σ ≤ 0 none
m + p = 2 b0 ≥ −

√
c0/4 m > 0 σ > σ∗ 1

σ ≤ σ∗ none
b0 < −√c0/4 m ≥ 0 σ > σ∗ 1

σ ≤ σ∗ none
n > 3 m + p = 2n b0 = b∗ m > n− 1 σ > 0 1

σ ≤ 0 none
m + p = 2 any b0 m > 0 σ > σ∗ 1

σ ≤ σ∗ none

Table 4: Exceptions to Table 3 displaying the value of q for which the
maximal solution of (7.5) with c0 > 0 satisfies (7.6).
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Proof. The proof of this theorem is similar to that of the previous one. For
the partial differential equation (7.4) the integral equation (1.9) becomes

θ(s) = σs + b0s |ln s|1−n − c0

∫ s

0

r |ln r|2−m−p (1 + m |ln r|−1)
θ(r)

dr.

(7.5)

The corresponding behaviour asserted for the maximal solution θ of this
equation is

θ(s) ∼ θ0s |ln s|1−q as s ↓ 0 for some θ0 > 0 (7.6)

and q > 0. The appropriate variable which has to be examined to determine
this is

Q(s) :=
√
|c0|s |ln s|1−(m+p)/2

×
{

1 + (m− p + 2)s−2 |ln s|m+p−2
∫ s

0
r |ln r|1−m−p dr

}1/2

with corresponding limit λ := lims↓0(σs + b0s |ln s|1−n)/Q(s). The proof of
the theorem may subsequently be completed following the arguments used
above. To be specific, everything is analogous to the proof of Theorem 22
except for the existence result in the case c0 > 0 and λ = 2. In this case,
the calculations are more subtle. When c0 > 0 and λ = 2, Lemma A3 infers
that the integral equation (7.5) admits a solution if and only if µ ≥ −1/4,
where µ := lims↓0{(σs + b0s |ln s|1−n)/Q(s)− 2} |ln Q(s)|2. 2

We note that when b0 = 0 the value of n in equations (7.1) and (7.4)
is immaterial. To prevent any confusion, this possibility has therefore only
been included in Tables 1 – 4 under those values of n and m + p where this
leads to no ambiguity. The reader actively wishing to use the tables, should
search for b0 = 0 under n = 1.

Theorem 23 brings a mistake in [117] to light. Consider an arbitrary
solution u of an equation of the class (1.1) in the strip S := (−∞,∞)×(0, T ]
or the half-strip H := (0,∞) × (0, T ] with 0 < T < ∞. Assume that u is
continuous in H and define ζ(t) := sup{x ∈ (0,∞) : u(x, t) > 0} for all
0 ≤ t ≤ T with the convention that ζ(t) = 0 if the supremum is taken
over an empty set. Then the equation is said to display finite speed of
propagation if 0 < ζ(0) < ∞ infers that ζ(t) < ∞ for all 0 < t ≤ T . A
similar definition can be made for a solution u defined in the strip S or
the half-strip (−∞, 0) × (0, T ] with ζ(t) := inf{x ∈ (−∞, 0) : u(x, t) > 0}.
However, since we are considering a general equation of the class (1.1) by
the simple expedient of changing the variable x 7→ −x there is no loss
of generality in only considering the first alternative. The porous media
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equation, ut = (um)xx with m > 1, and the linear heat equation, ut = uxx,
are the archetypal examples of equations which do and do not display finite
speed of propagation respectively. Then in [115,117] it was effectively shown
that an equation of the class (1.1) displays finite speed of propagation if and
only if it admits a semi-wavefront solution whose support is bounded above.
Among other applications of this result, the parameter values for which
equation (7.1) and for which equation (7.4) with a slightly different notation
display finite speed of propagation were presented. ¿From Theorem 23 it is
clear that the conclusions presented in [117] for (7.4) are not entirely correct.
We give the true result below as a corollary of Theorem 23.

Corollary 23.1. Equation (7.4) with real parameters m, n, p, b0 and c0
admits finite speed of propagation if and only if one of the following hold.

(i) c0 < 0, n ≥ 1 or b0 = 0, and m > min{p, 1}.

(ii) c0 < 0, n < 1, b0 < 0 and p < min{m,n}.

(iii) c0 < 0, n < 1, b0 > 0, and m > min{n, p}.

(iv) c0 = 0, n ≥ 1 or b0 = 0, and m > 1.

(v) c0 = 0, n < 1, b0 > 0 and m > n.

(vi) c0 > 0, n ≥ 1 or b0 = 0, m > 1 and m + p ≥ 2.

(vii) c0 > 0, 0 ≤ n < 1, 0 < b0 < 2
√

c0, m > n and m + p > 2n.

(viii) c0 > 0, 0 ≤ n < 1, b0 ≥ 2
√

c0, m > n and m + p ≥ 2n.

(ix) c0 > 0, n < 0, 0 < b0 ≤ 2
√

c0, m > n and m + p > 2n.

(x) c0 > 0, n < 0, b0 > 2
√

c0, m > n and m + p ≥ 2n.

Proof. From Tables 1 – 4 it follows that the integral equation (7.5) admits
a solution θ for large values of σ if and only if one of the following ten
combinations hold. Moreover, if σ is sufficiently large then (7.6) holds with
the value of q stated below. The result is subsequently obtained by recalling
that the partial differential equation (7.4) admits finite speed of propagation
if and only if for a large enough wave speed σ the equation has a semi-
wavefront solution whose support is bounded above, while, by Theorem 23
such a travelling wave exists if and only if the appropriate value of q is less
than m.

(i) c0 < 0, n ≥ 1 or b0 = 0; with q = min{(m + p)/2, 1}.

(ii) c0 < 0, n < 1, b0 < 0; with q = max{m + p− n, (m + p)/2}.

(iii) c0 < 0, n < 1, b0 > 0; with q = min{n, (m + p)/2}.
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(iv) c0 = 0, n ≥ 1 or b0 = 0; with q = 1.

(v) c0 = 0, n < 1, b0 > 0; with q = n.

(vi) c0 > 0, n ≥ 1 or b0 = 0, m + p ≥ 2; with q = 1.

(vii) c0 > 0, min{m + 1, 0} ≤ n < 1, 0 < b0 < 2
√

c0, m + p > 2n; with
q = n.

(viii) c0 > 0, min{m + 1, 0} ≤ n < 1, b0 ≥ 2
√

c0, m + p ≥ 2n; with q = n.

(ix) c0 > 0, n < min{m + 1, 0}, 0 < b0 ≤ 2
√

c0, m + p > 2n; with q = n.

(x) c0 > 0, n < min{m + 1, 0}, b0 > 2
√

c0, m + p ≥ 2n; with q = n.

This rectifies Lemma 14 in [117] where the mistake occurs in not recognizing
the distinction between the cases min{m + 1, 0} ≤ n < 1 and n < min{m +
1, 0} for c0 > 0, and in subscribing the conclusions of (ix) and (x) to all
c0 > 0, n < 1. 2
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8. Wavefronts

The subject of this and the ensuing two sections is the existence of wavefront
solutions of equations of the class (1.1). Thus we shall be concerned with
solutions of equation (1.1) of the form u = f(x− σt) where f(ξ) is defined
and monotonic for −∞ < ξ <∞, and where f(ξ)→ `± as ξ → ±∞ for some
`± ∈ I for which c(`±) = 0 and `+ 6= `−. Such solutions connecting two
equilibrium states of the equation have long been of interest [25, 53, 90, 93,
172,192,267,268]. Without any loss of generality we shall take `− = ` <∞
and `+ = 0, and, in line with Definition 4, term the solution a wavefront
from ` to 0.

8.1. Admissible wave speeds

Our first result states that the set of speeds for which wavefront solutions
exist is connected.

Theorem 24. Suppose that ` <∞. Then if equation (1.1) has a wavefront
solution from ` to 0 with speed σ1 and with speed σ2 > σ1 the same can be
said for all σ1 ≤ σ ≤ σ2.

Proof. If equation (1.1) has a wavefront solution with wave speed σ1 from `
to 0 then by Theorem 2 the integral equation (1.9) with σ = σ1 has a solution
satisfying the integrability condition on [0, `]. While if equation (1.1) has a
wavefront solution with wave speed σ2 from ` to 0 then by Theorem 2 and
Lemma 6 the integral equation

Θ(s) = −σs + b(`− s)− b(`) +
∫ s

0

c(`− r)a′(`− r)
Θ(r)

dr (8.1)

with σ = σ2 has a solution satisfying the integrability condition on [0, `].
Subsequently, by Lemma A6(i) from the theory of the integral equation,
(1.9) has a solution satisfying the integrability condition on [0, `] for all
σ ≥ σ1, and equation (8.1) has a solution satisfying the integrability con-
dition on [0, `] for all σ ≤ σ2. Lemma 6 and Theorem 2 then provide the
required result. 2

We now provide the generalization of the so-called “variational principle”
for wavefront solutions of equation (1.1) propounded by Hadeler and Rothe
[138] and by Hadeler [131]. See also [78,129,130,132,133,266,268].

Theorem 25. Suppose that ` < ∞. Let R denote the set of nonnegative
continuous functions ψ defined on I such that∫ s1

s0

{1 + |c(r)|}a′(r)
ψ(r)

dr <∞ for all 0 < s0 < s1 < `, (8.2)
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let S0 denote the subset of functions in R such that ψ(0) = 0 and

lim
ε↓0

∫ s

ε

c(r)a′(r)
ψ(r)

dr exists and is finite for every 0 < s < `,

and let S1 denote the subset of functions in R such that ψ(`) = 0 and

lim
ε↓0

∫ `−ε

s

c(r)a′(r)
ψ(r)

dr exists and is finite for all 0 < s < `.

Define the functionals

Fs(ψ) := sup
0<r<s<`


ψ(s)− ψ(r)− b(s) + b(r) +

∫ s

r

c(w)a′(w)
ψ(w)

dw

s− r


and Fi similarly with “ sup” replaced by “ inf”,

Gs(ψ) := sup
0<s<`


ψ(s)− b(s) +

∫ s

0

c(r)a′(r)
ψ(r)

dr

s

 (8.3)

and

Gi(ψ) := inf
0<s<`


−ψ(s)− b(`) + b(s) +

∫ `

s

c(r)a′(r)
ψ(r)

dr

`− s


on R. Set σi := inf{Fs(ψ) : ψ ∈ S0} and σs := sup{Fi(ψ) : ψ ∈ S1}.
Then if σi < σs equation (1.1) has a wavefront solution from ` to 0 for all
wave speeds σi < σ < σs, such a solution with wave speed σi if and only if
σi = Fs(ψ) for some ψ ∈ S0, and, such a solution with wave speed σs if and
only if σs = Fi(ψ) for some ψ ∈ S1. If σi = σs equation (1.1) has a wavefront
solution from ` to 0 with wave speed σi if and only if σi = Fs(ψ) for some
ψ ∈ S0 and σs = Fi(ψ) for some ψ ∈ S1. In any event, equation (1.1) has
no wavefront solution from ` to 0 for any wave speed σ < σi nor any wave
speed σ > σs. Furthermore, when c(u) ≥ 0 for all 0 < u < `, there holds
σi = inf{Gs(ψ) : ψ ∈ R}, and, σi = Fs(ψ) for some ψ ∈ S0 if and only if
σi = Gs(ψ) for some ψ ∈ R. While, when c(u) ≤ 0 for all 0 < u < `, there
holds σs = sup{Gi(ψ) : ψ ∈ R}, and, σs = Fi(ψ) for some ψ ∈ S1 if and
only if σs = Gi(ψ) for some ψ ∈ R.

This theorem follows from Lemma 6 when a similar argument to that ap-
plied to prove Theorem 10 is used to characterize the set of values σ for
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which (1.9) has a solution satisfying the integrability condition on [0, `] and
the set of values σ for which (8.1) has a solution satisfying the integrability
condition on [0, `].

It follows from Theorems 24 and 25 that the set of wave speeds for which
equation (1.1) has a wavefront solution from ` to 0 is either empty, a single
value, or an interval. The next two theorems provide more information.

Theorem 26. Suppose that ` <∞.

(i) If c(u) < 0 for all 0 < u < `, the set of wave speeds for which (1.1) has
a wavefront solution from ` to 0 is either empty or a closed interval
which is unbounded below and bounded above.

(ii) If c(u) > 0 for all 0 < u < `, the set of wave speeds for which (1.1) has
a wavefront solution from ` to 0 is either empty or a closed interval
which is bounded below and unbounded above.

(iii) If ca′ is differentiable in (0, `), c(u) < 0 for all 0 < u < δ and c(u) < 0
for all `− δ < u < ` for some 0 < δ < `/2, the set of wave speeds for
which (1.1) has a wavefront solution from ` to 0 is either as in part (i)
or a bounded interval which contains its right endpoint but not its left.

(iv) If ca′ is differentiable in (0, `), c(u) > 0 for all 0 < u < δ and c(u) > 0
for all `− δ < u < ` for some 0 < δ < `/2, the set of wave speeds for
which (1.1) has a wavefront solution from ` to 0 is either as in part (ii)
or a bounded interval which contains its left endpoint but not its right.

(v) If c(u) ≤ 0 for all 0 < u < `, or, if ca′ is differentiable in (0, `) and
c(u) ≤ 0 for all 0 < u < δ for some 0 < δ < `, the set of wave speeds
for which (1.1) has a wavefront solution from ` to 0 is either empty,
contains a single value, or is an interval which is bounded above and
contains its right endpoint.

(vi) If c(u) ≥ 0 for all 0 < u < `, or, if ca′ is differentiable in (0, `) and
c(u) ≥ 0 for all ` − δ < u < ` for some 0 < δ < `, the set of wave
speeds for which (1.1) has a wavefront solution from ` to 0 is either
empty, contains a single value, or is an interval which bounded below
and contains its left endpoint.

(vii) If ca′ is differentiable in (0, `), c(u) ≤ 0 for all 0 < u < δ and c(u) ≥ 0
for all ` − δ < u < ` for some 0 < δ < `/2, the set of wave speeds
for which (1.1) has a wavefront solution from ` to 0 is either empty or
contains a single value.

Theorem 27. Consider equation (1.1) with two different sets of coefficients
ai, bi, ci on some bounded interval [0, `] for i = 1, 2.
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(a) Suppose that b2(u)−b2(`) ≥ b1(u)−b1(`) and (c1a
′
1)(u) ≤ (c2a

′
2)(u) < 0

for all 0 < u < `.

(b) Suppose that b2(u) ≥ b1(u) and (c1a
′
1)(u) ≥ (c2a

′
2)(u) > 0 for all

0 < u < `.

Then in both cases (a) and (b) the set of wave speeds for which (1.1) with
i = 1 admits a wavefront solution from ` to 0 is a subset of the wave speeds
for which (1.1) with i = 2 admits a solution of this type.

The proof of these theorems is aided by the next two lemmas.

Lemma 14. Fix 0 < δ ≤ ` with δ <∞, and let S denote the set of values σ
for which equation (1.9) has a solution satisfying the integrability condition
on [0, δ]. Suppose that S is not empty, define σi := inf S, and let θ(·;σ)
denote the maximal solution of (1.9) on [0, δ] for all σ ∈ S. Then,

S =
{

[σi,∞) if σi ∈ S
(σi,∞) if σi /∈ S,

the variable θ(s;σ∗) := limσ↓σ∗ θ(s;σ) is well-defined for all 0 ≤ s ≤ δ and
σ∗ ∈ S, and, the variable θ(s;σ∗) := limσ↑σ∗ θ(s;σ) is well-defined for all
0 ≤ s ≤ δ and σ∗ > σi. Next, for fixed σ ∈ S, let R denote the set of values
θ(δ) such that equation (1.9) has a solution θ satisfying the integrability
condition on [0, δ], and define ρi = inf R. Then,

R =
{

[ρi, θ(δ;σ)] if ρi ∈ R

(ρi, θ(δ;σ)] if ρi /∈ R,

θ(δ;σ) ∈ R if σ > σi, and, given any ρ ∈ R there exists a unique maximal
solution θ(·;σ; ρ) of (1.9) on [0, δ] taking the value ρ in δ. There holds
θ(s;σ; θ(δ;σ)) = θ(s;σ) for all 0 ≤ s ≤ δ, and, θ(s;σ; ρ(1)) ≤ θ(s;σ; ρ(2))
for all 0 ≤ s ≤ δ and ρ(1), ρ(2) ∈ R with ρ(1) ≤ ρ(2).

Proof. Lemmas A6 and A5 tell us that S is connected and unbounded
above and that θ(s;σ) is a monotonic function of σ ∈ S for all 0 ≤ s ≤ δ.
Thus the assertions concerning S and the definitions of θ and θ are proved.
A straightforward limit argument (cf. [114]) then shows that θ(·;σ) is a
solution of (1.9) on [0, δ] for every σ > σi, and that θ(·;σ) is a solution
of (1.9) on [0, δ] for every σ ∈ S. The uniqueness of the maximal solution
hereafter implies that θ(s;σ) ≤ θ(s;σ) for all 0 ≤ s ≤ δ and σ > σi, and,
θ(s;σ) = θ(s;σ) for all 0 ≤ s ≤ δ and σ ∈ S. Now, suppose that for
some σ ∈ S equation (1.9) admits a solution θ∗ satisfying the integrability
condition on [0, δ] with θ∗(δ) ≤ θ(δ;σ). Then by Lemmas A1, A5 and A6,
for any θ∗(δ) ≤ ρ ≤ θ(δ;σ), the equation

θ(s) = ρ + σ(s− δ) + b(s)− b(δ) +
∫ δ

s

c(r)a′(r)
θ(r)

dr (8.4)
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has a solution θ on [0, δ] such that θ∗(s) ≤ θ(s) ≤ θ(s;σ) for all s ∈ [0, δ].
Furthermore, it is possible to construct a unique maximal solution θ(·;σ; ρ)
of (8.4) with this property. Subsequently, it can be seen that θ(·;σ; ρ) is a
solution of (1.9) satisfying the integrability condition on [0, `] and θ(δ;σ; ρ) =
ρ. This proves the assertions concerning R. The assertions concerning
{θ(·;σ; ρ) : ρ ∈ R} follow from the general theory of equations of the form
(8.4) in the appendix. 2

Lemma 15. Let 0 < ` < ∞. Suppose that c(u) ≤ 0 for all 0 < u < `
or that ca′ is differentiable in (0, `) and c(u) ≤ 0 for all 0 < u < δ for
some 0 < δ < `. Suppose furthermore that the set S of values σ for which
equation (1.9) has a solution θ satisfying the integrability condition on [0, `]
and θ(`) = 0 is not empty. Then σs := supS ∈ S.

Proof. Pick σ0 ∈ S. Then, by definition and Lemmas A2(i), A5, A6, 5
and 7, equation (1.9) has a unique solution θ(·;σ) satisfying the integrabil-
ity condition on [0, `] for every σ ≥ σ0. Moreover, by the previous lemma,
θ(`;σ) is a continuous nondecreasing function of σ ≥ σ0. It follows that
σs = sup{σ ≥ σ0 : θ(`;σ) = 0}, and, either σs = ∞ or σs ∈ S. However,
by a lemma in [115], θ(`;σ) → ∞ as σ → ∞. So the first alternative is
excluded. 2

Proof of Theorem 26. We shall prove parts (i), (iii), (v) and (vii) only, since
the remaining parts may be obtained from these via Theorem 8.

(i) The key to the first part of the theorem is the observation that if c < 0
on (0, `) equation (1.9) automatically admits a solution on [0, `] which
is positive on (0, `) by Lemmas A4(i) and A5; while, any solution of
equation (8.1) on [0, `] automatically satisfies the integrability condi-
tion on [0, `] by Lemma 2. The task of finding wave speeds for which
(1.1) has a wavefront solution from ` to 0 is therefore reduced to the
task of finding σ for which (8.1) has a solution on [0, `]. In this light,
the result follows from Lemmas 14 and 15.

(iii) Let S denote that set of numbers σ such that equation (1.9) has a
solution θ on [0, `] which is positive on (0, `) and satisfies θ(`) = 0.
Then, in view of Theorem 2, Lemmas 5 and 15, to prove this part of
the theorem, it suffices to show that σi := inf S 6∈ S. To achieve this
we observe to begin with that by Lemma A4(i), equation (1.9) has a
unique solution θ(·;σ) in a right neighbourhood of zero for every σ.
We let ∆(σ) be such that θ(·;σ) is defined on [0,∆(σ)], positive on
(0,∆(σ)), and, ∆(σ) = ` or θ(∆(σ);σ) = 0. Lemmas A4(i), A5, A6, 5
and 2, imply that σ 7→ ∆(σ) is a well-defined nondecreasing function
(−∞,∞)→ (0, `]. We assert that this function is also continuous from
the left. To verify this assertion, suppose to its contrary that there
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exist a σ∗ such that ∆∗ := sup{∆(σ) : σ < σ∗} < ∆(σ∗). Pick 0 <
ρ < θ(∆∗;σ∗). By Lemmas A1 and A5, for every σ there exists a 0 ≤
s0(σ) < ∆∗ < s1(σ) ≤ ` such that equation (8.4) has a unique solution
θ∗(·;σ) on [s0(σ), s1(σ)], which is positive on (s0(σ), s1(σ)), and, such
that s0(σ) = 0 or θ∗(s0(σ);σ) = 0. In particular, since θ∗(s;σ∗) <
θ(s;σ∗) for all s0(σ∗) < s ≤ ∆∗ by Lemmas A6 and 7, there holds 0 <
s0(σ∗) < ∆∗ and θ∗(s0(σ∗);σ∗) = 0. Furthermore, Lemmas A6 and 7
imply that s0 and s1 are nondecreasing functions of σ, and, for fixed
0 < s < `, that θ(s;σ) is a nondecreasing function of σ > σi whenever
∆(σ) > s. Consequently, because θ∗(s0(σ∗);σ) → θ∗(s0(σ∗);σ∗) = 0
as σ ↑ σ∗ by extension of the argument in Lemma 14, we can find a
σ∗∗ < σ∗ so large that ∆(σ) > s0(σ∗) and θ(s0(σ∗);σ) > θ∗(s0(σ∗);σ)
for all σ > σ∗∗. However, by Lemmas A6 and 7, this means that
∆(σ) ≥ s1(σ) ≥ s1(σ∗∗) > ∆∗ for all σ∗∗ < σ < σ∗. This contradicts
our original supposition. So we conclude that σ 7→ ∆(σ) is indeed
continuous from the left. Now suppose that σi ∈ S. Then, ∆(σi) =
` > ∆(σ) for any σ < σi. While, ∆(σ) → ∆(σi) as σ ↑ σi. Hence
there exists a σ∗ < σi such that ∆(σ∗) > `− δ. For every σ∗ < σ < σi
this implies that Θ(s) := θ(∆(σ)− s;σ) is a solution of equation (8.1)
with ` replaced by ∆(σ) on [0,∆(σ)], while, by Lemma A3(ii) such a
solution cannot exist. Thus, the supposition σi ∈ S is refuted.

(v) This part of the theorem is a straightforward corollary of Theorem 2
and Lemma 15.

(vii) To verify this part of the theorem, suppose that there are two wave
speeds σ1 and σ2 ≥ σ1 such that equation (1.1) has a wavefront so-
lution from ` to 0. Then by Theorem 2 and Lemma 5 there exists a
solution θi of (1.9) with σ = σi on [0, `] which is positive on (0, `) and
such that θi(`) = 0 for i = 1, 2. Subsequently, the function Θi, defined
by Θi(s) := θi(` − s) for 0 ≤ s ≤ `, is a solution of (8.1) on [0, `]
with similar properties. By Lemmas A2(i), A6(i) and 7 there holds
θ2(s) ≥ θ1(s) for all s ∈ (0, `). While by the same lemmas applied
to equation (8.1) there holds Θ2(s) ≤ Θ1(s) for all s ∈ (0, `). This is
clearly incompatible unless σ1 = σ2. 2

Proof of Theorem 27. From the proof of Theorem 26 part (i), when c < 0
on (0, `), equation (1.1) admits a wavefront solution from ` to 0 with wave
speed σ if and only if (8.1) has a solution on [0, `]. The conclusion in case (a)
subsequently follows from Lemma A6. The conclusion in case (b) follows
hereafter via Theorem 8. 2

Theorem 26 part (vii) has been proved earlier for the specific case that (1.1)
has the form ut = uxx + c(u) by Fife and McLeod [96].

76



8.2. Number of wavefronts

Having analysed for which wave speeds an equation of the class (1.1) can
admit a wavefront solution, one may enquire as to how many distinct wave-
fronts with any given wave speed there can be. The next theorem provides
a partial answer to this enquiry.

Theorem 28. Suppose that ` < ∞. Let σ be any fixed wave speed. Then
equation (1.1) has at most one distinct wavefront solution from ` to 0 with
this wave speed whenever any one of the following hold.

(a) c(u) < 0 for all 0 < u < `.

(b) c(u) > 0 for all 0 < u < `.

(c) ca′ is differentiable in (0, `) and c(u) ≤ 0 for all 0 < u < δ for some
0 < δ ≤ `.

(d) ca′ is differentiable in (0, `) and c(u) ≥ 0 for all `− δ < u < ` for some
0 < δ ≤ `.

Proof. Parts (a) and (c) of the theorem are a simple consequence of Theo-
rem 12. Parts (b) and (d) follow from (a) and (c) respectively, by application
of Theorem 8. 2

8.3. Examples

Up to now the discussion of wavefront solutions has been concerned with
the general case. Let us now examine the consequences for two particular
examples investigated previously by other authors. Because it is helpful to
these examples, we first introduce two lemmas. The second represents a
variation on Lemma 6.

Lemma 16. Suppose that c(s) ≥ 0 for all 0 < s < δ for some 0 < δ < `.
Define β := lim sups↓0 b(s)/s and λ0 by (6.15). Then if (1.9) has a solution
θ necessarily σ ≥ 2

√
λ0 − β and

lim sup
s↓0

θ(s)
s
≤ σ + β +

√
(σ + β)2 − 4λ0

2
.

Proof. By a direct copy of the proof of part (i) of Lemma 10 it can be shown
that (1.9) has a solution θ on [0, δ) only if σ ≥ 2

√
Λ0−B, where Λ0 is given

by (6.18) and B := sup{b(s)/s : 0 < s < δ}, and only if

θ(s) ≤ σ + B +
√

(σ + B)2 − 4Λ0

2
s for all 0 < s < δ.

The assertion follows by noting that in this copy, δ may be chosen arbitrarily
small. 2
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Lemma 17. Suppose that 0 < α < ` < ∞. Then equation (1.9) has a
solution on [0, `] taking the value 0 in `, only if (1.9) has a solution θ on
[0, α] and (8.1) has a solution Θ on [0, ` − α] such that θ(α) = Θ(` − α).
Conversely, equation (1.9) has a solution on [0, `] taking the value 0 in `,
if (1.9) has a solution θ on [0, α] and (8.1) has a solution Θ on [0, ` − α]
such that θ(α) = Θ(` − α) > 0. Idem ditto, equation (1.9) has a solution
satisfying the integrability condition on [0, `] and taking the value 0 in `, only
if (1.9) has a solution θ satisfying the integrability condition on [0, α] and
(8.1) has a solution Θ satisfying the integrability condition on [0, `−α] such
that θ(α) = Θ(` − α). Conversely, equation (1.9) has a solution satisfying
the integrability condition on [0, `] and taking the value 0 in `, if (1.9) has
a solution θ satisfying the integrability condition on [0, α] and (8.1) has a
solution Θ satisfying the integrability condition on [0, `−α] such that θ(α) =
Θ(`− α) > 0.

Proof. The “only if” assertions of the lemma have been previously estab-
lished in the course of the proof of Lemma 6. Furthermore, under the nec-
essary conditions it can be checked that the function ψ defined by

ψ(s) :=
{

θ(s) for 0 ≤ s ≤ α
Θ(`− s) for α < s ≤ `,

is a candidate for a solution of (1.9) on [0, `] taking the value 0 in `. The
only disputable point is whether ca′/ψ has sufficient integrability properties
in a neighbourhood of α to qualify ψ as a solution of (1.9). The condition
ψ(α) > 0 takes care of this. Likewise, if θ and Θ satisfy the integrability
condition on [0, α] and [0, `−α] respectively, the condition ψ(α) > 0 ensures
that ψ satisfies the integrability condition on the whole of [0, `]. 2

The first example below has been previously examined in [166,191,192].

Example 9. The equation

ut + kuux = uxx + u(1− u), (8.5)

where k is a real constant, admits a wavefront solution from 1 to 0 with wave
speed σ if and only if σ ≥ σ∗, where

σ∗ :=
{

2 if k ≤ 2
(k2 + 4)/2k if k > 2.

Furthermore, for each wave speed σ ≥ σ∗ the wavefront solution f is unique
modulo translation, and such that 0 < f(ξ) < 1 and

−A ≥ f ′(ξ)
f(ξ) {1− f(ξ)} ≥ −B for all −∞ < ξ <∞

where A and B are as stated below.
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(a) If k ≤ 0, or, if 0 < k < 2 and σ < (k2 + 4)/2k,

A =
2

σ − k +
√

(σ − k)2 + 4
and B =

2
σ +
√

σ2 − 4
.

(b) If k > 0 and σ = (k2 + 4)/2k,

A = B =
k

2
.

(c) If k > 0 and σ > (k2 + 4)/2k,

A =
2

σ +
√

σ2 − 4
and B =

2
σ − k +

√
(σ − k)2 + 4

.

Proof. Equation (8.5) is of the form (1.1) with a(u) = u, b(u) = −ku2/2 and
c(u) = u(1−u). Subsequently, by Lemma 6, the equation admits a wavefront
solution of the sought-after type if and only if the integral equations

θ(s) = σs− k

2
s2 −

∫ s

0

r(1− r)
θ(r)

dr (8.6)

and

Θ(s) = −σs +
k

2
s(2− s) +

∫ s

0

r(1− r)
Θ(r)

dr (8.7)

admit solutions satisfying the integrability condition on [0, 1]. However, by
Lemmas A4(i) and A5 equation (8.7) admits a unique solution on [0, 1] which
is positive on (0, 1) for any σ. Whereas, by Lemma 16, equation (8.6) admits
a solution θ on [0, 1] only if σ ≥ 2 and

lim sup
s↓0

θ(s)
s
≤ σ +

√
σ2 − 4
2

. (8.8)

To proceed we distinguish between the cases k ≤ 2 and k > 2. For k ≤ 2
we observe that the function θ(s) := s(1− s) satisfies (8.6) with σ = 2 and
k = 2 on [0, `]. Thus, by Lemma A6, equation (8.6) has a solution for any
σ ≥ 2 and k ≤ 2 on [0, `]. On the other hand, for k > 2 we observe that
θ1(s) := ks(1− s)/2 satisfies (8.6) with σ = (k2 + 4)/2k on [0, `]. Hence, by
Lemma A6, equation (8.6) has a solution for any σ ≥ (k2 +4)/2k and k > 2
on [0, `]. Furthermore, should θ denote a solution of (8.6) with 2 ≤ σ <
(k2 + 4)/2k on [0, `], then setting Θ(s) := θ(1 − s) and Θ1(s) := θ1(1 − s)
by Lemmas A2(i) and A6(i) applied to (8.7) necessarily Θ(s) > Θ1(s) for
all 0 < s < 1, and hence

lim sup
s↓0

θ(s)
s
≥ lim sup

s↓0

θ1(s)
s

=
k

2
. (8.9)
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Combining (8.8) and (8.9) yields σ +
√

σ2 − 4 ≥ k, which after some el-
ementary manipulation can be shown to contradict the assumption that
2 ≤ σ < (k2 + 4)/2k and k > 2. Thus for this range of parameter values,
such a solution θ cannot exist. This confirms the existence result for the
wavefront solutions. The uniqueness result is given by Theorem 28. The
remaining assertions of the example follow from estimates of the unique so-
lution of (8.7). We note that the function Θ1(s) = As(1− s) is a solution of
(8.7) on [0, 1] with −σs + ks(2− s)/2 replaced by b1(s) := s(A− 1/A−As).
Subsequently since s 7→ −σs + ks(2− s)/2− b1(s) is nondecreasing on [0, 1],
there holds Θ(s) ≥ Θ1(s) for the unique solution Θ of (8.7) on [0, 1]. Sim-
ilarly we deduce that Θ(s) ≤ Θ2(s) := Bs(1 − s) for all 0 ≤ s ≤ 1. This
gives the required result noting that for this particular example the corre-
spondence between a wavefront solution f of (1.1) and a solution θ of the
integral equation is given by f ′ = −θ(f) = −Θ(1− f). 2

The estimates on f ′ in this example show that as the wave speed σ → ∞
then f ′ behaves like −f(1 − f)/σ which conclusion was previously reached
by dimensional analysis by Kelley [166].

The second example we consider extends known results on diffusion-
convection-reaction equations generalizing the Nagumo equation [250].

Example 10. Suppose that ca′ is differentiable in (0, `), c(u) < 0 for all
0 < u < α, c(u) > 0 for all α < u < `, and, (ca′)′(α) > 0, for some 0 < α <
` < ∞. Then there exists a unique wave speed σ such that equation (1.1)
has a wavefront solution from ` to 0, and, this wavefront solution is unique
modulo translation.

Proof. By Lemmas A4(i) and A5 equation (1.9) has a unique solution θ(·;σ)
on [0, α] which is positive on (0, α) and equation (8.1) has a unique solution
Θ(·;σ) on [0, `−α] which is positive on (0, `−α) for any σ. Furthermore, by
Lemma 14, the function F (σ) := θ(α;σ)−Θ(`−α;σ) depends continuously
on σ, and, by a lemma in [115], F (σ) → ±∞ as σ → ±∞. Consequently
there exists at least one value σ such that F (σ) = 0. We assert that for such
a value necessarily θ(α;σ) = Θ(` − α;σ) > 0. For if this is not the case,
Θ̃(s) := θ(α− s;σ) defines a solution of

Θ̃(s) = −σs + b(α− s)− b(α) +
∫ s

0

c(α − r)a′(α− r)

Θ̃(r)
dr

on [0, α], and θ̃(s) := Θ(`− α− s) defines a solution of

θ̃(s) = σs + b(α + s)− b(α)−
∫ s

0

c(α + r)a′(α + r)

θ̃(r)
dr
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on [0, `− α]. However, by Lemma 16 for the existence of Θ̃ necessarily

−σ ≥ 2
√

(ca′)′(α) + b′(α), (8.10)

and for the existence of θ̃ necessarily

σ ≥ 2
√

(ca′)′(α)− b′(α), (8.11)

while, (8.10) and (8.11) are incompatible because (ca′)′(α) > 0. Thus there
exists at least one real value σ such that θ(α;σ) = Θ(` − α;σ) > 0. Sub-
sequently by Lemma 17 and Theorem 2, equation (1.1) has a wavefront
solution from ` to 0. The uniqueness of the wave speed and of the wavefront
are provided by Theorems 26(vii) and 28 respectively. 2

8.4. Multiple equilibria

When c(0) = c(α) = c(`) = 0 for some 0 < α < ` <∞, it is conceivable that
equations of the class (1.1) admit wavefront solutions from ` to 0, from ` to
α, and, from α to 0. One may then enquire into the relationship between the
corresponding sets of admissible wave speeds. For the particular equation
ut = uxx + c(u) this question has been studied heuristically by Shkadinskii,
Barelko and Kurochka [241], and, under the assumption that c ∈ C1([0, `]),
in more depth by Fife and McLeod [96], by Vol’pert [267], and, by Vol’pert,
Vol’pert and Vol’pert [268]. Below, we shall extend their findings to the
general case.

Theorem 29. Suppose that c(α) = 0 for some 0 < α < ` < ∞, and equa-
tion (1.1) has a wavefront solution from ` to 0 with wave speed σ∗.

(i) Suppose furthermore that (1.1) has a wavefront solution from α to 0
with wave speed σ0. Then, either σ0 < σ∗, or, (1.1) has a wavefront
solution from α to 0 with wave speed σ for every σ∗ ≤ σ ≤ σ0. In
particular, if c(u) ≤ 0 for all 0 < u < α, or, ca′ is differentiable in
(0, α) and c(u) ≤ 0 for all 0 < u < δ for some 0 < δ < α, and, if (1.1)
has exactly one distinct wavefront solution from ` to 0 with wave speed
σ∗, then σ0 < σ∗.

(ii) Suppose furthermore that (1.1) has a wavefront solution from ` to α
with wave speed σ1. Then, either σ1 > σ∗, or, (1.1) has a wavefront
solution from ` to α with wave speed σ for every σ1 ≤ σ ≤ σ∗. In
particular, if c(u) ≥ 0 for all α < u < `, or, ca′ is differentiable in
(α, `) and c(u) ≥ 0 for all `−δ < u < δ for some 0 < δ < `−α, and, if
(1.1) has exactly one distinct wavefront solution from ` to 0 with wave
speed σ∗, then σ1 > σ∗.
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Proof. We prove part (i) only, since part (ii) may be proved similarly or
obtained from part (i) via Theorem 8. By Theorem 2, equation (1.9) with
σ = σ∗ has a solution satisfying the integrability condition on [0, `], and,
thus also on [0, α]. Simultaneously, by Theorem 2 and Lemma 6, equa-
tion (8.1) with σ = σ0 and ` replaced by α has a solution satisfying the
integrability condition on [0, α]. Lemma A6 then implies that (1.9) has a
solution satisfying the integrability condition on [0, α] for every σ ≥ σ∗,
while (8.1) with ` replaced by α has a solution satisfying the integrability
condition on [0, α] for every σ ≤ σ0. The main assertion of part (i) of the
theorem subsequently follows from Theorem 2 and Lemma 6. Suppose now
that σ0 ≥ σ∗. Then, by what we have already established, equation (1.9)
with σ = σ∗ has a solution θ1 satisfying the integrability condition on [0, `]
such that θ1(`) = 0, and, a solution θ2 satisfying the integrability condition
on [0, α] such that θ2(α) = 0. However, if c(u) ≤ 0 for all 0 < u < α, or, ca′

is differentiable in (0, α) and c(u) ≤ 0 for all 0 < u < δ for some 0 < δ < α,
Lemmas A2(i), A5, 5 and 7 tell us that θ1 ≡ θ2 on [0, α]. Hence, in partic-
ular, θ1(α) = 0. Lemma 4 subsequently infers that (1.1) has more than one
distinct wavefront solution from ` to 0 with wave speed σ∗. Thus, the sub-
sidiary assertion of part (i) of the theorem is established by a contradiction
argument. 2

Theorem 30. Suppose that c(α) = 0 for some 0 < α < ` < ∞. Suppose
furthermore that equation (1.1) has a wavefront solution from α to 0 with
wave speed σ0, and, a wavefront solution from ` to α with wave speed σ1.
Then if σ0 < σ1, and, there is no σ0 ≤ σ ≤ σ1 such that (1.1) has a both
a wavefront solution from α to 0 and a wavefront solution from ` to α with
wave speed σ, there exists a σ0 ≤ σ∗ ≤ σ1 such that (1.1) has a wavefront
solution from ` to 0 with wave speed σ∗.

Proof. The proof of this theorem is a refinement of the argument used to
confirm Example 10. Since equation (1.1) has a wavefront solution from α to
0 with wave speed σ0, equation (1.9) with σ = σ0 has a solution θ0 satisfying
the integrability condition on [0, α] and θ0(α) = 0. Subsequently, adopting
the notation of Lemma 14, we can define the set Γ0 := {(σ0, ρ) : 0 ≤ ρ ≤
θ(α;σ0)} ∪ {(σ, ρ) : θ(α;σ) ≤ ρ ≤ θ(α;σ) and σ > σ0}. By Lemma 14, Γ0 is
a continuous monotonic graph, and, for every (σ, ρ) ∈ Γ0 equation (1.9) has
a unique maximal solution θ satisfying the integrability condition on [0, α]
and θ(α) = ρ. Similarly, equation (8.1) with σ = σ1 admits a solution Θ1
satisfying the integrability condition on [0, `−α] and Θ1(`−α) = 0. Further-
more, we can define a continuous monotone graph Γ1 with the properties
(σ1, 0) ∈ Γ1, {σ : (σ, ρ) ∈ Γ1} = (−∞, σ1], and, for every (σ, ρ) ∈ Γ1 there
exists a unique maximal solution Θ of equation (8.1) satisfying the integra-
bility condition on [0, `−α] and Θ(`−α) = ρ. Now, by the continuity of Γ0
and Γ1, there exists a (σ∗, ρ∗) ∈ Γ0 ∩ Γ1. Moreover ρ∗ > 0, for otherwise by
Theorem 2 equation (1.1) would have both a wavefront solution from α to
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0 and a wavefront solution from ` to α with wave speed σ∗. This gives the
result via Lemma 17 and Theorem 2. 2

We shall return to the subject of Theorem 30 in our discussion of wavefront
solutions of reaction-diffusion equations of the type (1.1) with the convection
term omitted, in Subsection 10.4.
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9. Wavefronts for convection-diffusion

As mentioned earlier, when the reaction term in (1.1) is absent and the
partial differential equation is

ut = (a(u))xx + (b(u))x, (9.1)

the integral equation (1.9) reduces to the simple identity θ(s) = σs + b(s).
Subsequently, if this ‘equation’ is to have a nonnegative solution on [0, `]
with ` < ∞ such that θ(`) = 0 then necessarily σ = −b(`)/` and θ(s) =
b(s) − sb(`)/` ≥ 0 for all 0 ≤ s ≤ `. By Lemma 5 though θ satisfies the
integrability condition if and only if it is positive on (0, `). We conclude the
following.

Theorem 31. Suppose that ` < ∞. Then equation (9.1) has a wavefront
solution from ` to 0 if and only if `b(u) > ub(`) for all 0 < u < `, in
which case the wave speed σ = −b(`)/`. Furthermore, the solution f is
unique modulo translations, and if it is so translated that f(0) = ν for some
0 < ν < ` is given by

f(ξ) = ` for ξ ≤ Ξ1∫ ν

f(ξ)

`a′(s)
`b(s)− sb(`)

ds = ξ for Ξ1 < ξ < Ξ0

f(ξ) = 0 for ξ ≥ Ξ0

(9.2)

where

Ξ0 :=
∫ ν

0

`a′(s)
`b(s)− sb(`)

ds and Ξ1 := −
∫ `

ν

`a′(s)
`b(s)− sb(`)

ds. (9.3)

A corollary of this theorem is that if Ξ0 < ∞ then there exists a ξ∗ ∈
(−∞,∞) such that f(ξ) = 0 for all ξ ≥ ξ∗, while if Ξ0 =∞ then necessarily
f(ξ) > 0 for all −∞ < ξ < ∞. Similarly, if Ξ1 > −∞ then there exists a
ξ∗∗ ∈ (−∞,∞) such that f(ξ) = ` for all ξ ≤ ξ∗∗, while on the other hand
if Ξ1 = −∞ then f(ξ) < ` for all −∞ < ξ <∞.

Note the similarity between the above result and that which can be
obtained for the hyperbolic conservation law

ut = (b(u))x. (9.4)

Following Kruzhkov [174,175] and in analogy to Definition 1, when b satisfies
Hypothesis 1(ii) we say that a function f defined in an open interval Ω is
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a travelling-wave entropy solution of equation (9.4) with speed σ if f ∈
L∞loc(Ω), and∫

Ω
[σ |f −K|+ signum(f −K) {b(f)− b(K)}]φ′ dξ ≤ 0 (9.5)

for any function φ ∈ C∞0 (Ω) and number K ∈ I. Furthermore, noting that
any bounded monotonic function is continuous almost everywhere, when
` < ∞ a wavefront entropy solution of equation (9.4) from ` to 0 may
be defined as in Definition 4. Analysis of (9.5) then shows that for the
existence of a wavefront entropy solution of equation (9.4) from ` to 0 it is
necessary that `b(u) ≥ ub(`) for all 0 < u < `, and that the wave speed
must be σ = −b(`)/` for this equation too. Moreover, if `b(u) > ub(`) for
all 0 < u < `, it can be determined that the wavefront entropy solution of
(9.4) is distinct, and modulo translations is given by the ‘vanishing viscosity’
limit of (9.2),(9.3), i.e.

f(ξ) =


` for ξ < 0
ν for ξ = 0
0 for ξ > 0

for some 0 ≤ ν ≤ `. See [118] for a further discussion of the relation between
solutions of (9.1) and (9.5).

As a simple illustration of Theorem 31, consider the Burgers equation

ut + uux = uxx. (9.6)

Example 11. Equation (9.6) admits a global travelling-wave solution f with
speed σ such that f(ξ)→ `± as ξ → ±∞ for some real numbers `− 6= `+ if
and only if `− > `+ and σ = (`− + `+)/2, in which case

f(ξ) =
`− + `+

2
− `− − `+

2
tanh

{
`− − `+

4
(ξ − ξ0)

}
for all −∞ < ξ <∞ and some −∞ < ξ0 <∞.

Proof. Setting v = (u − `+)/(`− − `+), the Burgers equation (9.6) can be
transformed into the equation

vt = vxx + (b(v))x where b(v) := −v{`+ + (`− − `+)v/2}. (9.7)

Furthermore, it can be verified that the Burgers equation admits a solution
of the sought-after type if and only if (9.7) admits a wavefront solution from
1 to 0. However by Theorem 31, (9.7) has a solution of this type if and only
if b(v) > vb(1) for all 0 < v < 1, in which case σ = −b(1), and the solution
g is given by

2
`− − `+ ln

{
1− g(ξ)

g(ξ)

}
= ξ +

2
`− − `+ ln

{
1− ν

ν

}
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for −∞ < ξ < ∞ for some 0 < ν < 1. The example may be completed by
transferring these conclusions to the original equation. 2

The above class of explicit travelling wave solutions of the Burgers equation
was documented by the person after whom the equation is named in [59,60].
It may also be found in [123,173,215,235].

For a further illustration of Theorem 31, consider the foam drainage
equation

ut = (u3/2)xx + (u2)x. (9.8)

Example 12. Equation (9.8) admits a global travelling-wave solution f with
speed σ such that f(ξ)→ `± as ξ → ±∞ for some nonnegative real numbers
`− 6= `+ if and only if `− < `+ and σ = −`−− `+. In which case, for `− > 0
the solution is given implicitly by

3
`+ − `−

(
√

`+ arctanh

√
f(ξ)
`+ −

√
`− arctanh

√
`−

f(ξ)

)
= ξ − ξ0,

(9.9)

and, for `− = 0 explicitly by

f(ξ) = `+ tanh2

(√
`+

3
max{ξ − ξ0, 0}

)
, (9.10)

for all −∞ < ξ <∞ and some −∞ < ξ0 <∞.

The proof of this example is similar to that of the previous one, and is
omitted. The explicit solution (9.10) of the foam drainage equation was
recorded earlier in [120] and [263]. While the implicitly-defined solution
(9.9) was documented previously in [264]. See also [275].

The Burgers equation (9.6) and the foam drainage equation (9.8) may
both be viewed as special cases of the porous media equation with convec-
tion,

ut = (um)xx + b0(un)x. (9.11)

Of note is that any nonnegative wavefront solution of the Burgers equation
is necessarily positive everywhere, while the foam drainage equation admits
a nonnegative wavefront solution whose support is bounded below. The next
example indicates precisely when the porous media equation with convection
admits a nonnegative wavefront solution whose support may be bounded on
one side. Since the sign of b0 is assumed to be arbitrary, without loss of
generality attention is restricted to solutions with support bounded above.
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Example 13. Suppose that m > 0, n > 0 and b0 and are real constants.
Suppose furthermore that 0 < ` <∞. Then equation (9.11) has a wavefront
solution from ` to 0 if and only if (n− 1)b0 < 0, in which case the solution
f necessarily has wave speed σ = −b0`

n−1 and is given for all −∞ < ξ <∞
and some −∞ < ξ0 <∞ by the following formulae.

(a) When m > min{n, 1}:

m

b0

∫ f(ξ)

0

sm−2

sn−1 − `n−1 ds = max{ξ0 − ξ, 0}. (9.12)

(b) When m ≤ min{n, 1}:

m

b0

∫ `/2

f(ξ)

sm−2

sn−1 − `n−1 ds = ξ − ξ0. (9.13)

Proof. The main conclusions may be read from Theorem 31. Furthermore,
this theorem says that the distinct wavefront solution f of equation (9.11)
is given modulo translations by f(ξ) = 0 for ξ ≥ Ξ0 and

m

b0

∫ `/2

f(ξ)

sm−2

sn−1 − `n−1 ds = ξ for ξ < Ξ0,

where

Ξ0 :=
m

b0

∫ `/2

0

sm−2

sn−1 − `n−1 ds.

The formulae (9.12) and (9.13) may be obtained by computing that Ξ0 <∞
if and only if m > min{n, 1} and performing a suitable translation of the
wavefront. 2

The porous media equation with convection (9.11) incorporates the mo-
del of Buckmaster [54] for the flow of a thin viscous film over a flat plate
as a special case. In this model, u denotes the thickness of the fluid film, t
time, x distance, b0 the angle of inclination of the plate, m = 4 and n = 3.
To fix ideas, let us imagine that x increases in a line running from left to
right. Then, if the plate slopes upwards from left to right b0 > 0, if the
plate is horizontal b0 = 0, and, if the plate slopes downwards b0 < 0. Sub-
sequently, in searching for a wavefront solution from ` to 0, we are looking
for a profile in which the fluid film has a limiting thickness ` to the left and
a limiting thickness 0 to the right. Example 13 shows that such a profile
is possible if and only if the plate is inclined downhill from left to right.
Moreover, the fluid film cannot cover the whole plate, and the flow must
exhibit a leading edge which moves (like the rest of the profile) at a speed
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which is determined by the angle b0 of the plate and the limiting thickness `.

As a final illustration of the application of Theorem 31, we consider a
model for the behaviour of a reactive solute in a porous medium [48]. This
model describes the transport of a single species dissolved in an incompress-
ible fluid flowing through a homogeneous porous matrix with which the
species reacts. If C denotes the concentration of the species per unit volume
in the fluid, and S the concentration absorbed per unit mass on the matrix,
then mass conservation implies

∂

∂t
(θC + ρS) + div q = 0

where t stands for time, θ the volumetric fluid content, ρ the bulk density
of the matrix, and q the flux. The latter is viewed as being comprised of a
diffusive component described by Fick’s law and an advective component,
which yields

q = −D grad C + Cv

where D denotes the coefficient of diffusivity and v the fluid flux. Addi-
tionally, assuming that the concentration of the species in the fluid and the
concentration absorbed by the porous matrix are in equilibrium,

S = F (C)

for some fixed relation F known as the isotherm. The Langmuir and the
Freundlich isotherms are the most well known. If finally the transport is
supposed to be one-dimensional, and the fluid flow constant, combining the
above equations and normalizing leads to

(u + F (u))t = uxx − kux (9.14)

where u denotes the normalized concentration, F (u) the rescaled isotherm
and k the rescaled fluid flux.

Example 14. Suppose that F is differentiable in [`−, `+] with F ′(u) > −1
for all `− < u < `+ for some `− < `+ and that k is a constant. Set

G(u) :=
F (`+)(u− `−) + F (`−)(`+ − u)

`+ − `−
− F (u)

and

m := 1 +
F (`+)− F (`−)

`+ − `−
.
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Then the model (9.14) admits a global travelling-wave solution f with speed σ
such that f(ξ)→ `± as ξ → ±∞ if and only if kG(u) > 0 for all `− < u < `+

and σ = k/m, in which case∫ f(ξ)

(`++`−)/2

m

kG(s)
ds = ξ − ξ0 for all −∞ < ξ <∞ (9.15)

and some −∞ < ξ0 <∞.

Proof. Define the function a on [0, 1] by

F
(
`+ −m(`+ − `−)a(v)

)
+ `+ −m(`+ − `−)a(v)

= {F (`+) + `+}(1 − v) + {F (`−) + `−}v,

and note that a(0) = 0, a′(v) > 0 for all 0 < v < 1, and a(1) = 1/m. Then
by making the substitution u = `+−m(`+− `−)a(v), it can be verified that
u is a solution of (9.14) if and only if v is a solution of the equation

vt = (a(v))xx − k(a(v))x. (9.16)

This last equation satisfies our basic hypotheses with coefficients defined
on [0, 1]. Furthermore, a function f is a travelling-wave solution of (9.14)
with the sought-after properties if and only if the function g defined via
f = `+ −m(`+ − `−)a(g) is a wavefront solution of (9.16) from 1 to 0. By
Theorem 31 though, equation (9.16) has such a solution if and only if

kv > kma(v) for all 0 < v < 1, (9.17)

in which case there is exactly one distinct such solution with speed σ = k/m,
which modulo translations is given by∫ ν

g(ξ)

ma′(s)
ks− kma(s)

ds = ξ for Ξ1 < ξ < Ξ0, (9.18)

with 0 < ν < 1 and with Ξ0 and Ξ1 defined accordingly. Reformulating
(9.17) in terms of the original equation justifies the necessary and sufficient
condition for the existence of the travelling wave f . While reformulating
(9.18) in the original variables gives the expression (9.15) for f in the interval
Ξ− < ξ < Ξ+ where

Ξ± = ξ0 +
∫ `±

(`++`−)/2

m

kG(s)
ds

for some −∞ < ξ0 <∞. However, since F is differentiable in [`−, `+] so too
is G, and therefore G(s) = G′(`±)(s− `±) + O(s− `±) as s ↑ `+ and s ↓ `−

respectively. Whence it can be determined that Ξ± = ±∞, and (9.15) holds
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for all ξ. 2

The above example covers results of Rhee, Bodin and Amundson [223], Bolt
[48], and, van der Zee and Riemsdijk [281]. Extensions to situations in which
the absorption processes is not an equilibrium process can be found in [80–85,
121, 224, 225, 242, 280]. Related results on the multi-dimensional equivalent
of (9.14) in which the coefficients F and k have a periodic dependence on
the spatial variables are included in [277,278].
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10. Wavefronts for reaction-diffusion

Throughout this section we consider only reaction-diffusion equations of the
form

ut = (a(u))xx + c(u) (10.1)

where a and c satisfy Hypothesis 1 with ` <∞.

Since the pioneering work of Fisher [98] and of Kolmogorov, Petro-
vskii and Piskunov [172], much attention has been paid to the study of
wavefront solutions of reaction-diffusion equations of the class (10.1) [25,
53, 78, 93, 123, 191, 192, 267, 268]. Among the many results obtained we
specifically refer to those of Aronson and Weinberger [15, 20, 21], Atkinson,
Reuter and Ridler-Rowe [22], Berestycki, Nicolaenko and Scheurer [40, 41],
Fife and McLeod [95–97], Grindod and Sleeman [124], Hadeler [129–133],
Hadeler and Rothe [138], Hosono [150], McKean [183], de Pablo and Sánchez
[207], de Pablo and Vázquez [209], Pauwelussen and Peletier [213], Sánchez-
Garduño and Maini [232], Uchiyama [254, 256], and, Vol’pert, Vol’pert and
Vol’pert [268]. Many of these results have also been extended to a higher
number of dimensions in [42, 43]. The goal of this section is to show how
the correspondence between travelling wave solutions of equation (1.1) and
solutions of the integral equation (1.9) may be invoked to generalize the
earlier results on wavefront solutions of (10.1). Theorems 16 – 21 cover the
previous results on semi-wavefront solutions.

For an equation such as the Nagumo equation, ut = uxx+u(1−u)(u−α)
with 0 < α < 1, there are diverse possibilities for a wavefront solution, viz.
from α to 0, from 0 to α, from 1 to α, from α to 1, from 0 to 1, and, from 1
to 0. To begin with, we shall consider these possibilities separately. In each
case, by redefining the dependent variable one may regard the wavefront as
one for the general equation ut = uxx + c(u) from some ` to 0, where in the
first four cases c(u) has a fixed sign for 0 < u < ` and in the last two cases
c(u) has one sign change for 0 < u < `. As we shall see later, the results
obtained under these conditions may be easily transferred to the various
possibilities for a wavefront solution of the Nagumo equation. The same, of
course, applies to other equations with a similar structure.

Our first result is one for which the primary conclusions are well-known
for the semi-linear version of equation (10.1) [21, 78, 92, 93, 96, 131, 192, 267,
268].

Theorem 32. Let ` <∞ and

κ :=
∫ `

0
c(s)a′(s) ds. (10.2)
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(a) Suppose that κ > 0. Then equation (10.1) has a wavefront solution
from ` to 0 with wave speed σ only if σ > 0 and∫ `

u
c(s)a′(s) ds > 0 for all 0 < u < `.

(b) Suppose that κ = 0. Then equation (10.1) has a wavefront solution
from ` to 0 with wave speed σ if and only if σ = 0,∫ u

0
c(s)a′(s) ds ≤ 0 for all 0 < u < `,

and

θ(s) :=
∣∣∣∣2∫ s

0
c(r)a′(r) dr

∣∣∣∣1/2
satisfies the integrability condition on (0, `).

(c) Suppose that κ < 0. Then equation (10.1) has a wavefront solution from
` to 0 with wave speed σ only if σ < 0 and∫ u

0
c(s)a′(s) ds < 0 for all 0 < u < `.

The main conclusions are classically obtained directly from the ordinary
differential equation (a(f))′′ + c(f) + σf ′ = 0 for a travelling-wave solution
u = f(x− σt) of (10.1) [78,131,192]. All the conclusions can also be easily
deduced from the integral equation, following ideas in [21, 93, 96, 268]. For
a reaction-diffusion equation of the form (10.1), the integral equation (1.9)
becomes

θ(s) = σs−
∫ s

0

c(r)a′(r)
θ(r)

dr. (10.3)

Differentiating (10.3) gives

θ′(s) = σ − c(s)a′(s)
θ(s)

for almost all s. (10.4)

Whence, multiplying by θ and integrating from 0 to s there holds

1
2
θ2(s) = σ

∫ s

0
θ(r) dr −

∫ s

0
c(r)a′(r) dr. (10.5)

While, if θ is defined on [0, `] and θ(`) = 0, multiplying (10.4) by θ and
integrating from s to ` there holds

−1
2
θ2(s) = σ

∫ `

s
θ(r) dr −

∫ `

s
c(r)a′(r) dr. (10.6)
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Therefore, since Theorem 2 states that (10.1) has a wavefront solution from
` to 0 with speed σ only if (10.3) has a solution θ satisfying the integrability
condition on [0, `] and θ(`) = 0, we have that (10.5) and (10.6) necessarily
hold for all 0 ≤ s ≤ ` for such a function. In particular,

σ

∫ `

0
θ(s) ds = κ. (10.7)

The identities (10.5) – (10.7) give Theorem 32.

Theorem 32 can be demonstrated explicitly for a number of particu-
lar equations. Three will be examined below. Each contains a number of
parameters which influence the sign of κ.

Example 15. Consider the equation

ut = uxx +
{

u(`p − up)(up − αp) for u > 0
0 for u = 0

(10.8)

with 0 < α < ` <∞.

(a) When p > 0 equation (10.8) admits a wavefront solution from ` to 0
with speed σ = {`p− (p+1)αp}/

√
p + 1 and no other wave speed. The

corresponding wavefront solution is given for some −∞ < ξ0 <∞ by

f(ξ) = `

[
1 + exp

{
p√

p + 1
`p(ξ − ξ0)

}]−1/p

(10.9)

for all −∞ < ξ <∞.

(b) When 0 > p > −1 equation (10.8) admits a wavefront solution from `
to 0 with speed σ = {(p + 1)αp − `p}/

√
p + 1 and no other wave speed.

The corresponding wavefront solution is given for some −∞ < ξ0 <∞
by

f(ξ) = `

[
1− exp

(
−p√
p + 1

`p min{ξ − ξ0, 0}
)]−1/p

(10.10)

for all −∞ < ξ <∞.

Proof. By Theorem 26 part (vii), equation (10.8) has a wavefront solution
from ` to 0 for at most one wave speed, and, by Theorem 28 for any wave
speed the equation has at most one distinct wavefront solution. In the light
of our integral equation theory, to confirm the main assertions of the ex-
ample, it consequently suffices to show that for the stated value of σ the
appropriate integral equation (10.3) admits a solution θ satisfying the inte-
grability condition on [0, `] and θ(`) = 0. An easy computation verifies that
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θ(s) = s |`p − sp| /
√

p + 1 fits the bill. Hereafter, it is enough to note that
the solutions (10.9) and (10.10) may be constructed explicitly following the
procedure outlined in Subsection 2.2. 2

For equation (10.8), κ = p`p+2{`p− (p+1)αp}/{2(p+1)(p+2)}. Thus with
regard to Theorem 32 and the critical wave speed σ one can easily see that
for p{α−(p+1)−1/p`} < 0 there holds σ > 0 and κ > 0, for α = (p+1)−1/p`
there holds σ = 0 and κ = 0, while for p{α − (p + 1)−1/p`} > 0 there holds
σ < 0 and κ < 0.

In the case that p = 1, equation (10.8) is the Nagumo equation in one
of its many guises, and for this equation the results presented above are
far from new. The critical wave speed in this case was obtained earlier by
Hadeler and Rothe [138]. See also [78, 129, 130, 192]. Moreover, according
to McKean [183] the explicit solution (10.9) with p = 1 was found by Huxley.

The case p = 0 is necessarily excluded from Example 15. For this case,
equation (10.8) can be supplanted by its singular limit

ut = uxx +
{

u ln (`/u) ln (u/α) for u > 0
0 for u = 0.

(10.11)

Example 16. Equation (10.11) with 0 < α < ` < ∞ admits a wavefront
solution from ` to 0 with speed σ = ln (`/α) − 1 and no other wave speed.
The corresponding wavefront solution is given for some −∞ < ξ0 < ∞ by
f(ξ) = ` exp{− exp(ξ − ξ0)} for all −∞ < ξ <∞.

Proof. The logic behind the proof of this example is the same as that em-
ployed for the previous one. The solution of (10.3) in this case is θ(s) =
s ln(`/s). 2

The value of (10.2) for Example 16 is κ = `2{ln(`/α) − 1}/4. So, for this
example also, the conclusion of Theorem 32 is evident. The wave speed σ
and κ always have the same sign according to whether α < `/e, α = `/e or
α > `/e.

A revealing illustration of Theorem 32 is provided by a model studied by
Barelko, Kurochka, Merzhanov and Shkadinskii [23]. This model is a sim-
plified description of an exothermic heterogeneous reaction on a catalytic
wire, such as the oxidation of ammonium on the surface of a wire of plat-
inum. The basic ingredient of the model is the linear heat equation with a
nonlinear source or sink term. This term is the net difference of two com-
ponents. The first component is the heat energy generated per unit length
of the wire by the reaction, and the other is the energy lost per unit length
of wire to the environment. Supposing that by approximation the energy
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generation component may be described by a step-function, while the en-
ergy loss is given by a linear radiation condition, the net source or sink term
becomes a piecewise linear function of the temperature with one discontinu-
ity. Subsequently, normalizing the temperature of the environment to 0, the
temperature at which the energy generation is in equilibrium with the radi-
ation to `, and the coefficient of thermal diffusivity in the equation to unity,
the model takes the form of equation (10.12) below in which the unknown
u denotes the normalized temperature.

Example 17. The equation

ut = uxx +
{
−u for 0 ≤ u < α
`− u for α ≤ u ≤ `

(10.12)

for some 0 < α < ` <∞ admits a wavefront solution from ` to 0 with speed

σ =
`− 2α√
α(`− α)

(10.13)

and no other wave speed. Moreover for some −∞ < ξ0 < ∞ the wavefront
solution has the form

f(ξ) =


`− (`− α) exp

{√
α

`− α
(ξ − ξ0)

}
for ξ < ξ0

α exp

{√
`− α

α
(ξ0 − ξ)

}
for ξ ≥ ξ0.

(10.14)

Proof. By Lemma A4(ii) with α = β = σ the appropriate equation of the
form (10.3) has a unique solution

θ(s;σ) :=
√

σ2 + 4 + σ

2
s

on [0, α]. While by the same token, the appropriate equation corresponding
to (8.1) has a unique solution

Θ(s;σ) :=
√

σ2 + 4− σ

2
s

on [0, ` − α]. Following Lemma 17, we can subsequently find a solution of
(10.3) satisfying the integrability condition on [0, `] and taking the value 0
in ` if and only if we can find a σ such that θ(α;σ) = Θ(` − α;σ) > 0. It
is easy to verify that this is possible if and only if σ takes the value (10.13).
The wavefront solution f can be constructed accordingly. 2
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For this example one can compute κ = `(` − 2α)/2. When α < `/2 there
holds κ > 0 and the travelling-wave solution of equation (10.12) has a pos-
itive speed σ. The investigators Barelko et al. [23] term such a wavefront
an ignition wave. When α > `/2 there holds κ < 0 and the wavefront has
negative speed and is called an extinction wave. The stationary wave which
occurs in the marginal case when α = `/2 and κ = 0 is referred to as an
indifferent equilibrium. This nomenclature is motivated by the asymptotic
behaviour of the profile u(x, t) = f(x − σt) as t → ∞. In the case of an
ignition wave, u(x, t) → ` as t → ∞ for all x, and in the case of an extinc-
tion wave, u(x, t) → 0 as t → ∞ for all x, irrespective of any translation
ξ0. On the other hand, in the case of an indifferent equilibrium, there is
an infinite number of possible steady-states dependent upon the value of ξ0
in (10.14). The inference is that it is the value of κ, which is prescribed
solely by the reaction term, that determines the asymptotic behaviour of an
arbitrary process.

10.1. Fixed sign

To proceed we consider the case of equation (10.1) in which c(u) is positive
for 0 < u < `. Recall that via Theorem 8 any results for this case apply
mutatis mutandi to the case that c(u) is negative for 0 < u < `.

Our main result is the following. A prominent feature when compared
to those in the works [20,21,53,78,93,138,254,267,268], for instance, is that
no more continuity on c is required than that stated in Hypothesis 1.

Theorem 33 (Existence). Suppose that ` < ∞ and c(u) > 0 for all 0 <
u < `. Set

λ1 := lim sup
r↓0

{
1
r

∫ r

0

c(u)a′(u)
u

du

}
. (10.15)

(a) If λ1 =∞ equation (10.1) has no wavefront solution from ` to 0.

(b) If λ1 <∞ there exists a σ∗ > 0 such that the equation has exactly one
distinct wavefront solution from ` to 0 for every wave speed σ ≥ σ∗

and no such solution for any wave speed σ < σ∗.

Proof. By Theorem 2 and Lemma 6, equation (10.1) has a wavefront solution
of the sought-after type if and only if (10.3) and the equation

Θ(s) = −σs +
∫ s

0

c(`− r)a′(`− r)
Θ(r)

dr (10.16)

admit solutions satisfying the integrability condition on [0, `]. However,
by Lemma A4(i) equation (10.16) has a unique solution on [0, `] which is
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positive on (0, `) for every σ. While, by Lemma 10 equation (10.3) has a
solution satisfying the integrability condition on [0, `] for large σ if and only
if Λ1(`) <∞, where

Λ1(s) := sup
0<r<s

{
1
r

∫ r

0

c(u)a′(u)
u

du

}
. (10.17)

Plainly though Λ1(`) <∞ if and only if λ1 <∞. The theorem subsequently
follows as a resumé of Theorems 26(i), 28(a) and 32. Moreover, in case (b),
the critical wave speed σ∗ can be characterized as the minimal value σ for
which (10.3) has a solution on [0, `]. 2

Equipped with two spatial variables, the equations

ut = uxx + u |ln u| (10.18)

and

ut = uxx − u |ln u| (10.19)

are exceptional in the group-theoretical classification of second-order para-
bolic equations [12,104]. Regarding the first, we easily deduce the following
from Theorem 33.

Example 18. Equation (10.18) admits no wavefront solutions from 1 to 0.

On the other hand, Theorems 8 and 33 tell us that there is a negative
number such that (10.19) has exactly one distinct wavefront solution from
1 to 0 for every wave speed less than or equal to this number and no such
solution for any wave speed greater than this number. It transpires that
we can determine this critical number and the asymptotic behaviour of any
wavefront solution of the equation explicitly. In the course of the remainder
of this subsection, we shall validate the following.

Example 19. Equation (10.19) admits exactly one distinct wavefront solu-
tion f from 1 to 0 for every wave speed σ ≤ −2 and no such solution for
any wave speed σ > −2. Furthermore,

{1− f(ξ)}−1f ′(ξ)→ − 2√
σ2 − 4− σ

as ξ → −∞

and

f−1(ξ) |ln f(ξ)|−1/2 f ′(ξ)→ −1 as ξ →∞.
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10.1.1. The critical wave speed

In the light of Theorem 25 the critical wave speed in Theorem 33 can be
characterized as σ∗ = min{Gs(ψ) : ψ ∈ R}, where R denotes the set of non-
negative continuous functions ψ defined on I such that (8.2) holds, and Gs
denotes the functional defined onR by (8.3). More substantially, the magni-
tude of the critical wave speed can be estimated in terms of the parameters
λ1 and Λ1 given by (10.15) and (10.17) respectively,

λ0 := lim inf
r↓0

{
1
r

∫ r

0

c(u)a′(u)
u

du

}
,

Λ0(s) := inf
0<r<s

{
1
r

∫ r

0

c(u)a′(u)
u

du

}
and

Λ2 :=
∫ `

0

c(s)a′(s)
s2 ds.

Note that 0 ≤ Λ0(s) ≤ λ0 ≤ λ1 ≤ Λ1(s) < Λ2 for all 0 < s ≤ `. Define

Φ(z0, z1) :=
{

(2z1 − z0)/
√

2(z1 − z0) for 0 ≤ 3z0 < 2z1
2
√

z0 for 0 ≤ 2z1 ≤ 3z0
(10.20)

and

Φ∗ := sup{Φ(Λ0(s),Λ1(s)) : 0 < s < `}.

Theorem 34 (Critical speed estimates). Suppose that the hypotheses
of Theorem 33(b) hold. Then

Φ∗ ≤ σ∗ ≤ 2
√

Λ1(`), (10.21)

Φ∗ < σ∗ if Φ∗ > Φ(λ0, λ1) (10.22)

and

σ∗ < min{2
√

Λ1(`),
√

2Λ2} if Λ1(`) > λ1. (10.23)

The next lemma will be used to prove this theorem.

Lemma 18. Let the hypotheses of Theorem 33(b) hold.

(i) If σ > σ∗ or σ ≥ 2
√

Λ1(`) any solution θ of (10.3) on [0, `] satisfying
θ(`) = 0 cannot be the maximal solution of this equation.

100



(ii) If σ = σ∗ > 2
√

λ1 any solution θ∗ of (10.3) on [0, `] satisfying θ∗(`) = 0
must be the maximal solution of this equation.

Proof. (i) Let θ(·;σ) denote the maximal solution of (10.3) on [0, `] for each
σ ≥ σ∗. By Lemma A6(ii) we can estimate θ(s;σ) ≥ (σ−σ∗)s+θ(s;σ∗)
for all 0 ≤ s ≤ `. Subsequently when σ > σ∗ the maximal solution
of (10.3) cannot vanish in `. When σ ≥ 2

√
Λ1(`), this conclusion is

provided by Lemma 10 part (iv).

(ii) By Lemma A4(i), equation (10.16) has a unique solution Θ(·;σ) on
[0, `] which is positive on (0, `) for every σ. Thus by the proof of
Lemma 6, θ∗(s) = Θ(`−s;σ∗) for all 0 ≤ s ≤ `. While, by Theorem 2,
necessarily Θ(`;σ) > 0 for every σ < σ∗. Now, choose 0 < δ < ` so
small that Λ1(δ) < (σ∗)2/4. By Lemma 10(iv), for every σ ≥ 2

√
Λ1(δ)

equation (10.3) has a maximal solution θ(·;σ) on [0, δ] such that

θ(s;σ) ≥ σ +
√

σ2 − 4Λ1(δ)
2

s for all 0 < s < δ. (10.24)

Subsequently, since for any σ∗ > σ > 2
√

Λ1(δ) both θ(·;σ) and Θ(`−
s;σ) satisfy the equation

θ(s) = θ(0) + σs−
∫ s

0

c(r)a′(r)
θ(r)

dr

on [0, δ], while Θ(`;σ) > θ(0;σ), applying Lemma A6(ii) there holds

Θ(`− s;σ) > θ(s;σ) for all 0 ≤ s ≤ δ. (10.25)

Combining (10.24) and (10.25), and invoking Lemma 14 for equa-
tion (10.16) to justify passage to the limit σ ↑ σ∗, yields (10.24) with
θ∗ and σ∗ in place of θ(·;σ) and σ respectively. By Lemmas 10(iv)
and 12(i) though, equation (10.3) with σ = σ∗ admits at most one
solution on [0, δ) satisfying such an inequality, namely its maximal so-
lution θ(·;σ∗). Hence, θ∗ ≡ θ(·;σ∗) on [0, δ). Hereafter, by Lemma 7,
θ∗ has to be the maximal solution of (10.3) with σ = σ∗ on the whole
of [0, `]. 2

Proof of Theorem 34. Recalling that σ∗ is essentially the minimum value
σ such that (10.3) has a solution on [0, `], Lemma 10 parts (ii) and (iv)
give (10.21). To confirm (10.22) we note that Φ is nondecreasing in both
its arguments. In particular, Φ(λ0, λ1) ≥ Φ(Λ0(s), λ1) = Φ(Λ0(s),Λ1(s)) for
all 0 < s ≤ ` such that Λ1(s) = λ1, and, Φ(λ0, λ1) ≥ 2

√
λ0 ≥ 2

√
Λ0(s) =

Φ(Λ0(s),Λ1(s)) for all 0 < s ≤ ` such that 3Λ0(s) ≥ 2Λ1(s). Consequently,
if Φ∗ > Φ(λ0, λ1) there exists a 0 < s∗ ≤ ` such that Φ∗ = Φ(Λ0(s∗),Λ1(s∗)),
Λ1(s∗) > λ1, and, 3Λ0(s∗) < 2Λ1(s∗). Lemma 10 part (iii) then provides
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(10.22). With regard to (10.23), Lemma 18 parts (i) and (ii) preclude equal-
ity on the right-hand side of (10.21) when Λ1(`) > λ1. It therefore suffices
to show that σ <

√
2Λ2 whenever Λ2 <∞. To achieve this, we adapt ideas

in [22]. Without risk of ambiguity, we drop the asterix from the notation
of σ∗ and thereafter let θ denote the unique solution of equation (10.3) on
[0, `] such that θ(`) = 0. Noting that if Λ2 < ∞ necessarily λ0 = λ1 = 0,
Lemmas 10, 12 and 18(ii) imply that θ(s)/s → σ as s ↓ 0. Simultaneously,
multiplying (10.4) by θ(s)/s there holds(

θ2

s2

)′
= 2
{σs− θ(s)}θ(s)

s3 − 2
c(s)a′(s)

s2 for almost all 0 < s < `.

So, integrating from 0 to `, we have

σ2 = 2
∫ `

0

c(s)a′(s)
s2 ds− 2

∫ `

0

{σs− θ(s)}θ(s)
s3 ds.

This provides the outstanding inequality. 2

We contend that Theorem 34 covers and improves previous estimates
[20,21,53,78,93,130,131,138,254,267,268] of the critical speed σ∗ in Theo-
rem 33(b). This can be discerned from the following.

Corollary 34.1. Suppose that ` < ∞, c(u) > 0 for all 0 < u < `, ca′

is differentiable in 0, and, (ca′)(0) = 0. Then there exists a σ∗ > 0 such
that equation (10.1) admits precisely one distinct wavefront solution from `
to 0 for every wave speed σ ≥ σ∗ and no such solution for any wave speed
σ < σ∗. Moreover:

(a) If Λ1(`) = (ca′)′(0) then σ∗ = 2
√

(ca′)′(0).

(b) If Λ1(`) > (ca′)′(0) then σ∗ ≥ 2
√

(ca′)′(0), 2
√

Λ1(`) > σ∗ >
√

2Λ1(`),
and,

Λ1(`) < sup
0<u<`

{
c(u)a′(u)

u

}
. (10.26)

Proof. In the present situation it can be verified that λ0 = λ1 = (ca′)′(0) and
hence Φ(λ0, λ1) = 2

√
(ca′)′(0). Moreover, Φ(Λ0(`),Λ1(`)) > Φ(0,Λ1(`)) =√

2Λ1(`) if Λ0(`) > 0, while Φ(Λ0(`),Λ1(`)) =
√

2Λ1(`) > 0 = Φ(λ0, λ1)
if Λ0(`) = 0. Thus the estimates on the magnitude of σ∗ are easily de-
rived from Theorem 34. The essential new element is (10.26) in case (b).
This inequality without the strictness is deducible by elementary analysis.
The strictness follows from the observation that equality would imply that
c(u)a′(u) ≤ (ca′)′(0)u for all 0 ≤ u ≤ `; in which event, case (a) would apply.

2
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In general the inequality σ∗ ≥ 2
√

(ca′)′(0) in part (b) will not be strict, as
an example considered by Hadeler and Rothe [138] and another by Aldushin,
Khudyaev and Zel’dovich [7] have shown.

The well-known results [74, 172, 267, 268] on the existence of wavefront
solutions of the KPP equation are a simple consequence of Corollary 34.1.
The critical wave speed asserted in Example 19 is also given by this corollary
when one first takes Theorem 8 into consideration.

In the study of the stability properties of travelling-wave solutions of the
semi-linear version of equation (10.1),

ut = uxx + c(u),

Stokes [246] made a distinction between wavefront solutions with the critical
wave speed σ∗ according to whether or not σ∗ = 2

√
c′(0). If σ∗ = 2

√
c′(0)

Stokes calls such a wavefront solution a pulled wave, whereas if σ∗ > 2
√

c′(0)
this wave is called a pushed wave. See also [213,256,262]. These designations
are motivated by the observation that in the first case the critical speed is
determined as it were by the behaviour of c(u) as u ↓ 0 and this is reflected
in the front (or pulling edge) of the wave f(ξ) as ξ →∞. On the other hand,
in the second case the critical speed is also influenced by the behaviour of
c(u) for u > 0 and this is reflected in the body of the wave f (pushing from
behind). Lemma 18 implies that in the sense of Stokes [246] any pushed
wave necessarily corresponds with a maximal solution of the integral equa-
tion (10.3). A pulled wave may or may not correspond with such a solution.
In the concluding paragraph of [246], Stokes remarks that if the wavefront
solution with the critical speed σ∗ = 2

√
c′(0) corresponds with a maximal

solution of (10.3) then with respect to the stability properties this wave may
be regarded as being both pushed and pulled. This corresponds with a hy-
pothesis known in physics as the marginal stability principle [39,75,230,231].
Other terms which have been used in this context are linear front speed and
Kolmogorov speed for the wave speed σ = 2

√
c′(0), nonlinear front speed

for the critical wave speed σ∗ > 2
√

c′(0), and, nonlinear front for a pushed
wave [122,222].

For an illustration of Theorems 33 and 34, let us consider the following.

Example 20. The equation

ut = uxx + u(`p − up)(c0`
p + c1u

p), (10.27)

where ` > 0, p > 0, and, c0 and c1 are real constants such that c0`
p+c1u

p > 0
for all 0 < u < `, admits exactly one distinct wavefront solution from ` to 0
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for every wave speed σ ≥ σ∗ and no such solution for any wave speed σ < σ∗,
where

σ∗ =


2
√

c0`
p if c1 ≤ (p + 1)c0

(p + 1)c0 + c1√
(p + 1)c1

`p if c1 > (p + 1)c0.

Proof. Computing that λ0 = λ1 = c0`
2p and hence Φ(λ0, λ1) = 2

√
c0`

p,
there holds σ∗ ≥ 2

√
c0`

p by Theorem 34. The key to the full result is the
observation that when c1 > 0 the integral equation (10.3) admits the explicit
solution

θ̂(s) :=
√

c1

p + 1
s(`p − sp)

for the wave speed

σ̂ :=
(p + 1)c0 + c1√

(p + 1)c1
`p.

Thus, since following the proof of Theorem 33, σ∗ is the minimal value of σ
such that the integral equation (10.3) has a solution on [0, `], we also have
σ∗ ≤ σ̂ for c1 > 0. To proceed, we distinguish three cases.

(a) c1 > (p + 1)c0. In this case there holds

lim
s↓0

θ̂(s)
s

=
√

c1

p + 1
`p >

√
p + 1

c1
c0`

p =
σ̂ −
√

σ̂2 − 4λ1

2
.

So, by Lemma 12(i), θ̂ must be the maximal solution of equation (10.3)
with σ = σ̂. However, since θ̂(`) = 0, Lemma 18(i) then implies that
σ∗ = σ̂.

(b) c1 = (p+1)c0. In this case σ̂ = 2
√

c0`
p. So the inequalities σ∗ ≤ σ̂ and

σ∗ ≥ 2
√

c0`
p identify σ∗.

(c) c1 < (p + 1)c0. By Theorem 27(b), σ∗ is a nondecreasing function of
c1. Using the previous case we therefore deduce that σ∗ ≤ 2

√
c0`

p.
In combination with the earlier deduction that the reverse inequality
must hold, this determines σ∗ in this final case. 2

This example has been considered in the case p = 1 in [78,129,130,138,192].

Three particular equations which may be considered as benchmarks in
the study of general equations of the form (10.1) are special cases of Exam-
ple 20. The results for these equations are well-known [53,74,78,93,98,123,
172,191,192].
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• The Fisher equation

ut = uxx + u(1− u)

admits precisely one distinct wavefront solution from 1 to 0 for every
wave speed σ ≥ 2 and no such solution for any wave speed σ < 2.

• The Newell-Whitehead equation

ut = uxx + u(1− u2)

likewise admits precisely one distinct wavefront solution from 1 to 0
for every wave speed σ ≥ 2 and no such solution for any wave speed
σ < 2.

• The Zeldovich equation

ut = uxx + u2(1− u)

admits precisely one distinct wavefront solution from 1 to 0 for every
wave speed σ ≥ 1/

√
2 and no such solution for any wave speed σ <

1/
√

2.

For all three of the above equations one one needs to take the parameter
values ` = p = 1 in Example 20. In addition, for the Fisher equation c0 = 1
and c1 = 0, for the Newell-Whitehead c0 = c1 = 1, and, for the Zeldovich
equation c0 = 0 and c1 = 1.

Without going into the nitty-gritty of the calculations, we note the fol-
lowing consequences of the explicit determination of the critical speed σ∗ in
Example 20:

σ∗ = Φ(λ0, λ1) when c1 ≤ (p + 1)c0,

σ∗ = 2
√

Λ1(`) when c1 ≤ c0,

and,

σ∗ ∼ Φ∗ ∼
√

2Λ2 as p→∞ when c0 = 0.

Thus, in general, the estimates in (10.21) and (10.23) are sharp. Further-
more, since Λ1(`) = λ1 if and only if c1 ≤ c0, the condition Λ1(`) > λ1
may be viewed as both necessary and sufficient for strict inequality on the
right-hand side of (10.21). Whereas this condition can be seen not to be
sufficient for strictness on the left-hand side of (10.21). This is further con-
firmation that σ∗ = 2

√
(ca′)′(0) cannot be excluded from the conclusions

of part (b) of Corollary 34.1. Finally, because Φ(λ0, λ1) = Φ∗ < σ∗ when
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(p + 1)c0 < c1 ≤ (p + 3)c0 — and the last inequality is not sharp — it
can be deduced that although the condition Φ∗ > Φ(λ0, λ1) is sufficient for
strictness on the left-hand side of (10.21), it is not necessary.

In the past, the critical wave speed has been identified in a number of
specific cases of Example 20 using the marginal stability principle [39, 75,
230, 231]. In chronological order, this has been achieved when p = 1 and
c0 = c1 by Dee and Langer [75], when p = 1 and c0c1 > 0 by Ben-Jacob,
Brand, Dee, Kramer and Langer [39], and, when p = 2 and c1 = c0`

4 by
van Saarloos [231]. Combination of the marginal stability principle together
with results in [221] lead Goriely [122] to conjecture that for the equation

ut = uxx + k`m−1u + (1− k)`m−nun − um (10.28)

with 0 < k < 1 and integers m > n > 1, the critical wave speed is

σG :=


2(m− n) + (m + 1)(n− 1)k

2
√

γ(1 + γ){m− n + (n− 1− γ)k}
`(m−1)/2 if k < kG

2
√

k`(m−1)/2 if k ≥ kG,

where

γ :=

√
(m− 1)(n− 1)

2
and kG :=

2(m− n)
(m− 3)(n− 1) + 4γ

.

Example 20 with p = (m− 1)/2, c0 = k and c1 = 1 shows this conjecture to
be true when n = (m + 1)/2. However, in general, it can be refuted, as the
following application of Corollary 34.1 shows.

Example 21. Let k ≥ 0, ` > 0 and m > n > 1 be real parameters. Then
there exists a σ∗ > 0 such that equation (10.28) admits precisely one distinct
wavefront solution from ` to 0 for every wave speed σ ≥ σ∗ and no such
solution for any wave speed σ < σ∗. Moreover:

(a) If k < 1 there holds 4K > (σ∗)2`1−m > Φ2(k,K), where Φ is given by
(10.20) and

K := k +
m− n

m(n− 1)

{
m(n− 1)
n(m− 1)

(1− k)
}(m−1)/(m−n)

.

(b) If k ≥ 1 there holds (σ∗)2`1−m = 4k.

Proof. Rewriting equation (10.28) as ut = uxx + k`m−nu(`n−1 − un−1) +
un(`m−1 − um−1), it can be seen to satisfy the prerequisites of Theorem 33.
Furthermore, one can compute that λ1 = λ0 = k`m−1, that Λ1(`) = λ1
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when k ≥ 1, and, that there exists a 0 < s∗ < ` such that Λ1(`) = Λ1(s∗) =
K`m−1 > Λ0(s∗) = λ0 when k < 1. Application of Theorems 33 and 34
subsequently yields the result. 2

To refute the conjecture of Goriely, we merely note that when 0 < k < 1
and n = 2 there holds (σG)2`1−m − 4K → k2/2 as m→ ∞. Thus for large
m, even under the constraint that m is an integer, the critical speed σG
conjectured by Goriely violates a proven upper bound for the true critical
wave speed σ∗.

Our next example was studied earlier by Hayes in [141]. The specific
interest in [141] was in the unusual behaviour of the wavefront profile in the
limit ∆ ↓ 0.

Example 22. The equation

ut = (D(u)ux)x + u(1− u)

where

D(u) =
1 + ω

2
+

1− ω

2
tanh

(
u− u0

∆

)
for some parameters 0 < ω < 1, 0 < u0 < 1 and ∆ > 0 admits a wavefront
solution from 1 to 0 with speed σ if and only if σ ≥ σ∗ for some value σ∗

with

2
√

D(0) ≤ σ∗ < 2
√

D(1). (10.29)

Proof. In this example c(u)a′(u) = u(1 − u)D(u). Thus (ca′)′(0) = D(0)
and since D is strictly increasing on [0, `] we can estimate Λ1(1) < D(1).
Theorem 33 and Corollary 34.1 give the result from these estimates. 2

Since D(0) > w and D(1) < 1 the estimate (10.29) improves on that given
by Hayes [141].

Additional useful information on the critical speed can be obtained from
the following three theorems.

Theorem 35. Consider equation (10.1) with two different sets of coeffi-
cients a1, c1 and a2, c2 such that the conditions of Theorem 33(b) hold on
the same interval [0, `]. Let κi, λ(i)

1 , and σ∗i denote the appropriate parame-
ters associated with (10.1) for i = 1, 2. Then if c1(u)a′1(u) ≥ c2(u)a′2(u) for
all 0 < u < ` there holds σ∗1 ≥ σ∗2. Moreover, if κ1 > κ2 and

σ∗1 > 2
√

λ(2)
1 (10.30)

there holds σ∗1 > σ∗2.
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Proof. The first assertion is a restatement of Theorem 27(b). To prove the
second assertion, suppose to its contrary that σ∗1 = σ∗2. Let θi denote the so-
lution of (10.3) with σ = σ∗i and c(r)a′(r) = ci(r)a′i(r) such that θi satisfies
the integrability condition on [0, `] and θi(`) = 0 for i = 1, 2. By Lemma A6,
equation (10.3) with σ = σ∗2 and c(r)a′(r) = c2(r)a′2(r) has a maximal so-
lution θ∗2 on [0, `] such that θ∗2(s) ≥ max{θ1(s), θ2(s)} for all 0 ≤ s ≤ `.
Moreover, by Lemma 7, either θ∗2 ≡ θ2 or θ∗2(`) > θ2(`). The latter alter-
native however is ruled out by Lemma 18(ii). So, θ2(s) = θ∗2(s) ≥ θ1(s) for
all 0 ≤ s ≤ `. Recalling (10.7) this implies κ2 ≥ κ1. Hence, by reductio ad
absurdum, the assertion must be true. 2

Note that on its own the assumption κ1 > κ2 is insufficient to guarantee
strict inequality in the conclusion of this theorem. In fact, even the as-
sumption that c1(u)a′1(u) > c2(u)a′2(u) for all 0 < u < ` is inadequate.
This is demonstrated by Example 20. For fixed 0 < ` < ∞, p > 0 and
c0 > 0, the source term in equation (10.27) is a strictly increasing function
of c1 ≥ −c0 for every 0 < u < `. However, σ∗ increases strictly with c1 if
and only if c1 ≥ (p + 1)c0. Moreover, noting that for equation (10.27) one
has σ∗ = 2

√
λ1 if and only if c1 ≤ (p + 1)c0, this example shows that, in

general, the condition (10.30) is both necessary and sufficient for strict in-
equality in the conclusion of the theorem. Theorem 35 generalizes results of
Pauwelussen and Peletier [213] and of Vol’pert, Vol’pert and Vol’pert [268].

Theorem 36. Consider equation (10.1) with a fixed set of coefficients and
with a sequence of coefficients {an, cn}∞n=1 such that the conditions of The-
orem 33(b) hold on the same interval [0, `]. Let σ∗ and {σ∗n}∞n=1 denote the
corresponding critical wave speeds. Define

c̃n(u)ã′n(u) := sup{cj(u)a′j(u) : j ≥ n} for 0 < u < `,

and, let λ̃(n)
1 denote the parameter defined by the relations (10.17) and (10.15)

with c(u)a′(u) replaced by c̃n(u)ã′n(u). Suppose that cna
′
n → ca′ in L1(0, `)

as n→∞. Then lim infn→∞ σ∗n ≥ σ∗. Moreover, if c̃nã
′
n ∈ L1(0, `) for large

n and

σ∗ ≥ lim
n→∞

2
√

λ̃(n)
1 (10.31)

there holds σ∗n → σ∗ as n→∞.

Proof. For the proof of the main assertion, we do not need the functions c̃nã
′
n

from the statement of the theorem. We therefore introduce no ambiguity if
we temporarily redefine c̃n(s)ã′n(s) := inf{cj(s)a′j(s) : j ≥ n} for 0 < s < `.
Then, by hypothesis, c̃nã

′
n → ca′ in L1(0, `) as n → ∞. Furthermore,

c̃n(s)ã′n(s) ≤ c̃n+1(s)ã′n+1(s) ≤ c(s)a′(s) and c̃n(s)ã′n(s) ≤ cn(s)a′n(s) for
almost all 0 < s < ` and all n ≥ 1. Moreover, although equation (10.1)
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with a and c replaced by ãn and c̃n might not satisfy Hypothesis 1 nor the
hypotheses of Theorem 33(b), the equation

θn(s) = σs−
∫ s

0

c̃n(r)ã′n(r)
θn(r)

dr (10.32)

does fit into the integral equation theory presented in the appendix. Thus,
recalling that σ∗ and σ∗n are essentially the minimum values of σ such that
(10.3) and

θ(s) = σs−
∫ s

0

cn(r)a′n(r)
θ(r)

dr (10.33)

respectively have a solution on [0, `], if we define σ̃∗n as the minimum value
of σ such that (10.32) has a solution on [0, `], by Lemma A6 there holds
σ̃∗n ≤ σ̃∗n+1 ≤ σ∗ and σ̃∗n ≤ σ∗n for all n ≥ 1. Set σ̃∗∞ := limn→∞ σ̃∗n. Now let
σ > σ̃∗∞ be arbitrary. Then for each n ≥ 1, equation (10.32) has a maximal
solution θn on [0, `], and, by Lemma A6 there holds θn(s) ≥ θn+1(s) for all
0 ≤ s ≤ ` and n ≥ 1. Whence, c̃n(r)ã′n(r)/θn(r) ≤ c̃n+1(r)ã′n+1(r)/θn+1(r)
for almost all 0 < r < ` and n ≥ 1. So by the Monotone Convergence
Theorem, if we define θ∞(s) := limn→∞ θn(s) for all 0 ≤ s ≤ `, we may let
n → ∞ in (10.32) to deduce that θ∞ satisfies (10.3) on [0, `]. This infers
that σ ≥ σ∗. Hence, in view of the arbitrariness of σ, we have σ̃∗∞ ≥ σ∗.
Since, σ̃∗∞ ≤ lim infn→∞ σ∗n, this proves the main assertion of the theorem.
To confirm the remaining assertion, we restore c̃nã

′
n to its original definition.

Without loss of generality we assume that c̃nã
′
n ∈ L1(0, `) and λ̃(n)

1 <∞ for
all n ≥ 1. Subsequently, arguing as above, we can once more define σ̃∗n as the
minimum value of σ such that (10.32) has a solution on [0, `], and, conclude
that σ̃∗n ≥ σ̃∗n+1 ≥ σ∗ and σ̃∗n ≥ σ∗n for all n ≥ 1. The proof of the theorem is
complete if we can show that (10.31) implies that σ̃∗∞ := limn→∞ σ̃∗n ≤ σ∗.
To effectuate this, suppose to the contrary, that there exists a σ∗ < σ < σ̃∗∞.
Choose N so large that 4λ̃(N)

1 < σ2 and thereafter 0 < δ < ` so small that
Λ(N)

1 (δ) < σ2/4, where Λ(N)
1 is defined by (10.17) with c̃N (u)ã′N (u) in lieu

of c(u)a′(u). Following the proof of Lemma 10(iv), equation (10.32) has a
maximal solution θn on [0, δ] such that (10.24) holds with θn and Λ(N)

1 in the
place of θ(·, σ) and Λ1 respectively for every n ≥ N . Moreover, if [0, δn] de-
notes the maximal interval of existence of θn contained in [0, `] such that θn
is positive on (0, δn), δn+1 ≥ δn, and, θn+1(s) ≥ θn(s) for all 0 ≤ s ≤ δn and
n ≥ N . So, we can define δ∞ := limn→∞ δn, and, θ∞(s) := limn→∞ θn(s)
for 0 ≤ s < δ∞. Letting n → ∞ in (10.32) we subsequently deduce that
θ∞ solves (10.3) on [0, δ∞], and, (10.24) holds with θ∞ and Λ(N)

1 in the roles
of θ(·, σ) and Λ1 respectively. By Lemma 12(i) though, this means that θ∞
must be the maximal solution of (10.3). Thus, since (10.3) has a unique
solution θ on [0, `] which is positive on (0, `) and such that θ(`) = 0, there
holds δ∞ = `. On the other hand, utilizing the existence of Θ(s) := θ(`−s),
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the equation (10.16) with c(` − r)a′(` − r) replaced by c̃N (` − r)ãN
′(` − r)

has a unique solution ΘN ≥ Θ on [0, `] by Lemma A6. Moreover, since
σ < σ̃∗N , necessarily ΘN (`) > 0. Subsequently, by the comparison argument
employed in the proof of Lemma 18, we have θn(s) ≤ ΘN (` − s) for all
0 ≤ s ≤ δn and n ≥ N . Whence, we deduce that θ∞(s) ≤ ΘN(s) for all
0 ≤ s ≤ δ∞. So, in particular, θ∞(`) = 0. However, recalling Lemma 18(i),
this contradicts the assumption that σ > σ∗. Thus the result is proved by
contradiction. 2

We remark that the main result of Theorem 36 can hardly be improved.
Starting from a pair of coefficients a, c and any value µ > σ∗, by modification
of ca′ in a neighbourhood of 0, it easy to construct a sequence of coefficients
{an, cn}∞n=1 such that the corresponding parameter λ(n)

0 = µ2/4 for all n ≥ 1,
while cna

′
n converges to ca′ in L∞(0, `) as n→∞. Whence by Theorem 34

we have σ∗n ≥ µ > σ∗ for all n. Theorem 36 improves on results of Hadeler
[131–133] and of Pauwelussen and Peletier [213].

Theorem 37. Suppose that the hypotheses of Theorem 33(b) hold.

(a) Let S denote the set of nonincreasing, nonnegative, absolutely continu-
ous functions on (0, `) such that∫ `

0
ψ(s) ds = 1. (10.34)

For ψ ∈ S define the functional

F(ψ) := 2
∫ `

0

{
c(s)a′(s)ψ(s)

∣∣ψ′(s)∣∣}1/2
ds.

(b) Let S denote the set of nonincreasing, nonnegative, absolutely continu-
ous functions ψ on (0, `) such that ψ′(s) < 0 for almost all 0 < s < `,
s2ψ(s)→ 0 as s ↓ 0, and,∫ `

0

ψ2(s)
|ψ′(s)| ds = 1. (10.35)

For ψ ∈ S define the functional

F(ψ) :=
{

2
∫ `

0
c(s)a′(s)ψ(s) ds

}1/2

.

Then in both cases, σ∗ = sup{F(ψ) : ψ ∈ S}. In particular, if σ∗ > 2
√

λ1
there exists a ψ ∈ S such that F(ψ) = σ∗.

Proof. Fix σ = σ∗. By Theorem 2 and Lemma 2, equation (10.3) admits a
solution θ on [0, `] which is positive on (0, `) and satisfies θ(`) = 0.
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(a) Multiplying (10.4) by ψ ∈ S there holds

(θψ)′ = θψ′ + σψ − ca′ψ

θ
(10.36)

almost everywhere in (0, `). Simultaneously, it is easily verified that
sψ(s)→ 0 as s ↓ 0 for any function ψ ∈ S. Thus, invoking Lemma 10
there holds θ(s)ψ(s) → 0 as s ↓ 0 and s ↑ `. Integrating (10.36) from
0 to ` and recalling (10.34) then yields

σ = −
∫ `

0

{
θ(s)ψ′(s)− c(s)a′(s)ψ(s)

θ(s)

}
ds,

or, rearranging,

σ = F(ψ) +
∫ `

0

{
θ(s)

√
|ψ′(s)| −

√
c(s)a′(s)ψ(s)

}2

θ(s)
ds. (10.37)

This gives σ ≥ sup{F(ψ) : ψ ∈ S}. Moreover, it implies that σ =
F(ψ) for a ψ ∈ S whenever the last integrand in (10.37) vanishes.
Elementary analysis shows that this occurs if and only if

ψ(s) = Aθ(s) exp

{∫ `/2

s

σ

θ(r)
dr

}
(10.38)

for some constant A > 0. Now, if σ > 2
√

λ1, θ must be the maximal
solution of (10.3) by Lemma 18(ii). Whence, by Lemma 10(iv),

lim inf
s↓0

θ(s)
s
≥ σ +

√
σ2 − 4λ1

2
.

In which case, it can be ascertained that the function ψ given by
(10.38) is integrable on (0, `). Consequently, for a suitable choice of
A this function ψ belongs to S, and, we have σ = F(ψ). This proves
the theorem in the case σ > 2

√
λ1. When σ ≤ 2

√
λ1, let us fix 0 <

µ < σ2/4λ1, define cn(s) := µc(s) for 0 ≤ s < `/n and cn(s) := c(s)
otherwise, and, let σn denote the critical wave speed σ∗ associated
with equation (10.1) with c replaced by cn for n ≥ 1. By the previous
theorem, σn → σ as n → ∞. On the other hand, by what we have
already proved of the present theorem, there exists a function ψn ∈ S
such that

σn = 2
∫ `

0

{
cn(s)a′(s)ψn(s)

∣∣ψ′n(s)∣∣}1/2
ds ≤ F(ψn)

for every n ≥ 1 such that σn > 2
√

µλ1. Thus σ ≤ lim supn→∞F(ψn) ≤
sup{F(ψ) : ψ ∈ S}. Whereupon, the theorem is proved in this case
too.
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(b) The proof of this part is similar to that of the previous one. Instead of
multiplying (10.4) by ψ we multiply this identity by 2θψ with ψ ∈ S.
This gives

(θ2ψ)′ = θ2ψ′ + 2σθψ − 2ca′ψ

in lieu of (10.36). Subsequently integrating from 0 to ` and using
(10.35) and the other stated properties of ψ ∈ S, we deduce

σ2 = F2(ψ) +
∫ `

0

{θ(s)ψ′(s) + σψ(s)}2
|ψ′(s)| ds. (10.39)

This implies σ ≥ sup{F(ψ) : ψ ∈ S}, and, in addition that σ = F(ψ)
for some ψ ∈ S if we can find such a function for which the last
integrand in (10.39) vanishes. Here, analysis shows that this occurs if
and only if

ψ(s) = A exp

{∫ `/2

s

σ

θ(r)
dr

}
for some constant A > 0. In which case, by the argument employed
in the proof of part (a), when σ > 2

√
λ1 an A can be chosen so that

such a function lies in S. The extension to the case σ ≤ 2
√

λ1 follows
analogously. We omit further details. 2

Theorem 37 expands on the work of Benguria and Depassier [33,35–38] and
of Benguria, Cisternas and Depassier [32]. Indeed, the most essential ideas
behind the proof of part (a) can be found in [32,33,35,36, 38] and part (b)
in [37].

10.1.2. Wavefront properties

In 1958 Oleinik, Kalashnikov and Zhou published their seminal paper [204]
on the nonlinear degenerate diffusion equation ut = (a(u))xx, with the
Cauchy problem for the porous media equation for m > 1 as prototype.
Under suitable assumptions on the coefficient a and the initial data, they
established the existence and uniqueness of an appropriately-defined weak
solution. Furthermore, they proved that such a solution would exhibit finite
speed of propagation. This is to say, that given initial data with compact
support, the solution would continue to have compact support with respect
to the spatial variable x at all later times. This property is in stark contrast
to that exhibited by solutions of the heat equation. Given an initial data
function which is nonnegative but not identically zero, the corresponding
solution of the linear heat equation will always be positive everywhere. As
a matter of interest in the framework of the present paper, expanding on
work of Barenblatt and Vishik [26], Oleinik et al. proved the occurrence
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of finite speed of propagation using travelling-wave solutions of the equa-
tion. It was probably Gurtin and MacCamy [128] who, precisely due to this
property of finite speed of propagation, first recognized the potential of-
fered by degenerate diffusion equations for modelling biological population
migration, although such an equation was proposed earlier as a model of
biological population dispersal by Gurney and Nisbet [126]. Today, degen-
erate diffusion-reaction equations of the type (10.1) are an accepted tool in
mathematical biology [192].

The above naturally leads to the question of whether or not wavefront so-
lutions of degenerate nonlinear diffusion-reaction equations reflect the prop-
erty of finite speed of propagation. To be specific, given a wavefront solution
f of equation (10.1) satisfying f(ξ)→ 0 as ξ →∞ and f(ξ)→ ` as ξ → −∞,
is it true that

f(ξ) = 0 for all ξ ≥ ξ∗ some −∞ < ξ∗ <∞, (10.40)

or, is

f(ξ) > 0 for all −∞ < ξ <∞? (10.41)

Of course, one may equally as well ask, is

f(ξ) = ` for all ξ ≤ ξ∗∗ some −∞ < ξ∗∗ <∞, (10.42)

or, is

f(ξ) < ` for all −∞ < ξ <∞? (10.43)

Example 1 with k ≥ 0 shows that both (10.40) and (10.42) may occur. These
questions have received considerable interest in recent years, significant con-
tributions having been made in chronological order by Aronson [15], Atkin-
son, Reuter and Ridler-Rowe [22], Grindod and Sleeman [124], de Pablo
and Vázquez [209], Sánchez-Garduño and Maini [232], and, de Pablo and
Sánchez [207]. Terms which have been used to designate wavefront solutions
satisfying (10.40), include “weak” (sic) [124], finite [18, 148, 207, 209], and,
of sharp type [232]. Oppositely to the last two terms, wavefront solutions
for which (10.41) holds have been referred to as positive [207], and, of front
type [232], respectively.

Our next theorem addresses these questions using the integral equa-
tion approach. Rather than presenting the most general result possible, we
present a conclusion which succinctly covers the previous work [15, 22, 124,
207, 209, 232]. We use the next two lemmas. The reader so inclined may
use these lemmas to formulate a more general result. Even then, it should
be noted that the lemmas are not stated in the most general form possi-
ble. Details which can be used for constructing alternatives can be found in
Section 6, cf. Theorems 17 and 19.
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Lemma 19. Suppose that c(s) > 0 for all 0 < s < δ and some 0 < δ < `,
and, that λ0 = λ1.

(i) If σ > 2
√

λ1, or, if σ = 2
√

λ1 and c(s)a′(s)/s → λ1 as s ↓ 0, then the
maximal solution θ of equation (10.3) satisfies

θ(s)
s
→ σ +

√
σ2 − 4λ1

2
as s ↓ 0.

(ii) If σ ≥ 2
√

λ1, and, c(s)a′(s)/s → λ1 as s ↓ 0, then any solution θ of
(10.3) other than the maximal solution satisfies

θ(s)
s
→ σ −

√
σ2 − 4λ1

2
as s ↓ 0.

(iii) If σ ≥ 2
√

λ1, ca′ is differentiable on [0, δ), (ca′)(0) = 0, and, there
holds (ca′)′(s)→ λ1 as s ↓ 0, then any solution θ of (10.3) other than
the maximal solution satisfies

θ(s)
c(s)a′(s)

→ 2
σ +
√

σ2 − 4λ1
as s ↓ 0.

Lemma 20. Suppose that c(s) ≤ 0 for all 0 < s < δ and some 0 < δ < `.
Define

Q(s) :=
∣∣∣∣2∫ s

0
c(r)a′(r) dr

∣∣∣∣1/2 .

Suppose furthermore that (10.3) has a unique solution θ on [0, δ).

(i) If σ = 0, or, if Q(s)/s→∞ as s ↓ 0, then

θ(s)
Q(s)

→ 1 as s ↓ 0.

(ii) If Q(s)/s→ µ as s ↓ 0 for some 0 ≤ µ <∞, then

θ(s)
s
→ σ +

√
σ2 + 4µ2

2
as s ↓ 0.

(iii) If c(u) < 0 for all 0 < u < δ, ca′ is differentiable on (0, δ), (ca′)(0) = 0,
(ca′)′(s) → −µ2 as s ↓ 0 for some 0 ≤ µ < ∞, and,

√
σ2 + 4µ2 > σ,

then

θ(s)
|c(s)a′(s)| →

2√
σ2 + 4µ2 − σ

as s ↓ 0.
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Lemma 19 follows from Lemmas 10 and 12. While, if Q is positive on (0, δ),
Lemma 20 is a corollary of Lemma 9. On the other hand, if Q is not positive
on (0, δ), then necessarily ca′ = 0 almost everywhere in an interval (0, δ∗)
with 0 < δ∗ < δ. Subsequently, the ‘solution’ of equation (10.3) is θ(s) = σs
for 0 ≤ s ≤ δ∗ and Lemma 20 is easily obtained.

Lemmas 19 and 20 complete the proof of Example 19 when they are
applied in combination with Theorem 8 to the theory of Section 2.

The following is the promised result on finite speed of propagation. It
may be viewed as a highlight of this section.

Theorem 38 (Bounded support). Suppose that ` <∞, c(u) > 0 for all
0 < u < `, and the parameter defined λ1 by (10.15) is finite. Let σ∗ > 0
denote the critical value such that equation (10.1) has a distinct wavefront
solution from ` to 0 for every wave speed σ ≥ σ∗ and no such solution for
any wave speed σ < σ∗.

(i) Suppose furthermore that ca′ is differentiable on [0, δ] for some 0 < δ <
`, (ca′)(0) = 0, and, (ca′)′(u)→ (ca′)′(0) as u ↓ 0. Then the following
alternatives are mutually exclusive.

(a) Every wavefront solution from ` to 0 satisfies (10.40). This occurs
if and only if∫ δ

0

1
c(s)

ds <∞.

(b) Every wavefront solution from ` to 0 with wave speed σ∗ satisfies
(10.40), whereas, every such solution with wave speed σ > σ∗

satisfies (10.41). This occurs if and only if∫ δ

0

a′(s)
s

ds <∞ =
∫ δ

0

1
c(s)

ds.

(c) Every wavefront solution from ` to 0 satisfies (10.41). This occurs
if and only if∫ δ

0

a′(s)
s

ds =∞.

(ii) Suppose furthermore that ca′ is differentiable on [` − δ, `] for some
0 < δ < `, (ca′)(`) = 0, and, (ca′)′(u) → (ca′)′(`) as u ↑ `. Then the
following alternatives are mutually exclusive.
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(a) Every wavefront solution from ` to 0 satisfies (10.42). This occurs
if and only if∫ `

`−δ

1
c(s)

ds <∞.

(b) Every wavefront solution from ` to 0 satisfies (10.43). This occurs
if and only if∫ `

`−δ

1
c(s)

ds =∞.

Proof. For σ ≥ σ∗ let θ denote the unique solution of equation (10.3) on
[0, `] satisfying θ(`) = 0. If σ = σ∗ > 2

√
(ca′)′(0), θ must be the maximal

solution of the equation by Lemma 18(ii). Hence, by Lemma 19(i),

θ(s) ∼ σ +
√

σ2 − 4(ca′)′(0)
2

s as s ↓ 0. (10.44)

While, if σ = σ∗ = 2
√

(ca′)′(0), irrespective of whether θ is the maximal
solution of equation (10.3) or not, (10.44) holds by Lemma 19 parts (i) and
(ii). Meanwhile, if σ > σ∗, θ cannot be the maximal solution of the equation,
by Lemma 18(i). So, by Lemma 19(iii),

θ(s) ∼ 2
σ +

√
σ2 − 4(ca′)′(0)

c(s)a′(s) as s ↓ 0.

This gives part (i) of the theorem via Corollary 2.4. To establish part (ii), we
draw on the observation that Θ(s) := θ(`−s) must be the unique solution of
equation (10.16) on [0, `]. See, for instance, the proof of Lemma 6. Applying
Lemma 20(iii) to equation (10.16) yields

θ(s) ∼ 2
σ +

√
σ2 − 4(ca′)′(`)

c(s)a′(s) as s ↑ `.

Corollary 2.4 then confirms the assertions. 2

The proof of Theorem 38 also readily yields the next result, recalling
how wavefront solutions can be constructed from solutions of the integral
equation as described in Section 2.

Theorem 39 (Asymptotics). Let f denote a wavefront solution of equa-
tion (10.1) from ` to 0 with wave speed σ.

(i) Suppose that the conditions of Theorem 38 part (i) hold. Define

Ξ0 := sup{ξ ∈ (−∞,∞) : f(ξ) > 0}. (10.45)
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Then, if σ = σ∗ there holds

(a(f))′(ξ)
f(ξ)

→ −σ +
√

σ2 − 4(ca′)′(0)
2

as ξ ↑ Ξ0,

whereas, if σ > σ∗ there holds

f ′(ξ)
c(f(ξ))

→ − 2
σ +

√
σ2 − 4(ca′)′(0)

as ξ ↑ Ξ0.

(ii) Suppose that the conditions of Theorem 38 part (ii) hold. Define

Ξ1 := inf{ξ ∈ (−∞,∞) : f(ξ) < `}. (10.46)

Then
f ′(ξ)

c(f(ξ))
→ − 2

σ +
√

σ2 − 4(ca′)′(`)
as ξ ↓ Ξ1.

For the semi-linear equation ut = uxx + c(u) with c ∈ C1([0, 1]), c(0) =
c(1) = 0 and c(u) > 0 for 0 < u < 1, it follows from Lemma 4 and The-
orem 38 that any wavefront solution f from 1 to 0 is necessarily strictly
decreasing in (−∞,∞). Prior studies of the asymptotic behaviour of f(ξ)
as ξ → ±∞ for such an equation were conducted by Uchiyama [254], by
Vol’pert [269]. and by Vol’pert, Vol’pert and Vol’pert [268]. It can be veri-
fied that Theorem 39 covers, and in some instances improves on, their results.
Results similar to those contained in Theorem 39 have also been obtained for
particular examples of equations falling into the class (10.1) by Atkinson,
Reuter and Ridler-Rowe [22]. These examples will be discussed in detail
later in this subsection. All of the afore-mentioned authors [22,254,267,269]
present some analysis concerning the higher order asymptotics of a wave-
front solution f(ξ) as ξ → ±∞.

It may of significance that as a supplement to the results in Theorem 39,
estimates for the solution of the integral equation (10.3) on the whole of
[0, `] may be used to obtain global estimates of wavefront solutions. This
builds on the work of Kelley [167].

Theorem 40. Suppose that ca′ is continuous in [0, `] and differentiable in
(0, `), (ca′)(0) = (ca′)(`) = 0 and c(u) > 0 for 0 < u < `. Set A :=
inf{(ca′)′(u) : 0 < u < `} and B := sup{(ca′)′(u) : 0 < u < `}. Then any
wavefront solution f of (10.1) with wave speed σ from ` to 0 satisfies

f ′(ξ)
c(f(ξ))

≤ − 2
σ +
√

σ2 − 4A
for all −∞ < ξ <∞,

and for any such wavefront solution with wave speed σ ≥ 2
√

B there holds

f ′(ξ)
c(f(ξ))

≥ − 2
σ +
√

σ2 − 4B
for all −∞ < ξ <∞.
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Proof. Note that for this example A < 0 ≤ λ0 = λ1 ≤ Λ1(`) ≤ B. The
results follow from the observation that setting β1 := 2/(σ +

√
σ2 − 4A)

and β2 := 2/(σ +
√

σ2 − 4B) when σ ≥ 2
√

B, the functions Θi(s) :=
βic(`−s)a′(`−s) are solutions of equation (10.16) on [0, `] with −σs replaced
by Θi(s)−s/βi for i = 1, 2 respectively. Moreover, s 7→ −σs−Θ1(s)+s/β1 is
an increasing function on [0, `], and, s 7→ −σs−Θ2(s)+ s/β2 is a decreasing
function on [0, `] for σ ≥ 2

√
B. Consequently Lemmas A2 and A6 imply

that the unique solution Θ of (10.16) on [0, `] is such that Θ ≥ Θ1 on [0, `],
and, such that Θ ≤ Θ2 on s ∈ [0, `] if σ ≥ 2

√
B. Recalling how f is defined

in terms of the solution θ of (10.3) satisfying the integrability condition on
[0, `] with θ(`) = 0 and how this function θ is defined in terms of Θ yields
the desired estimates. 2

A corollary of this theorem is that for large σ one has the estimates

−B +O(σ−2) ≤ σ3 f ′(ξ)
c(f(ξ))

+ σ2 ≤ −A +O(σ−2)

for −∞ < ξ < ∞. This led Kelley [167] to search for and obtain estimates
of the form

−Bσ−2 ≤ σ3 f ′(ξ)
c(f(ξ))

+ σ2 + (ca′)′(f(ξ)) ≤ −Aσ−2,

where

A < inf{
(
2{(ca′)′}2 + ca′(ca′)′′

)
(s) : 0 < s < `}

and

B > sup{
(
2{(ca′)′}2 + ca′(ca′)′′

)
(s) : 0 < s < `},

for large enough σ. Under the additional assumptions that (ca′)′ is bounded
and differentiable in (0, `) and ca′(ca′)′′ is bounded, these estimates can also
be found by applying the technique used above to estimate solutions of the
integral equation (8.1). The appropriate test functions are

Θi(s) := σ−3 {σ2 + (ca′)′(`− s) + σ−2βi
}

c(`− s)a′(`− s)

where β1 = A and β2 = B.

We close this subsection by considering two further examples of reaction-
diffusion equations which have attracted especial interest in the past. The
first is Murray’s model of biological dispersal in which the unknown u rep-
resents population density [192]. This is the equation

ut = (um−1ux)x + up(1− uq) (10.47)
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in which m, p and q are positive parameters. This model includes the Fisher
equation as a special case. Travelling-wave solutions of this equation have
been investigated extensively in the past: for m ≥ 1 and p = q = 1 by
Aronson [15] and by Atkinson, Reuter and Ridler-Rowe [22], for m > 1 and
q = 1 by de Pablo and Vázquez [209], for m > 1, p < 1 and q = 1 by
de Pablo and Sánchez [207], for m > 1 and p ≥ 1 by Biro [45, 46], and, for
m = 1, p ≥ 1 and q = 1 by Needham and Barnes [196].

Example 23. Suppose that m, p and q are positive constants.

(i) If m + p < 2 then equation (10.47) does not admit a wavefront solution
from 1 to 0.

(ii) If m+p ≥ 2 then there exists a σ∗ > 0, which depends only on m+p and
q, such that equation (10.47) admits precisely one distinct wavefront
solution from 1 to 0 for every wave speed σ ≥ σ∗ and no such solution
for any wave speed σ < σ∗. The critical wave speed σ∗ is a continuous
function of m + p and q, for fixed q is a strictly decreasing function
of m + p, for fixed m + p is a strictly increasing function of q, and,
satisfies

σ∗ = 2 if m + p = 2,

σ∗ >
1√

m + p− 1
if m + p < q + 2, (10.48)

σ∗ =
1√

q + 1
if m + p = q + 2, (10.49)

σ∗ <
1√

m + p− 1
if m + p > q + 2, (10.50)

and, √
2Λ1(1) < σ∗ < min{2

√
Λ1(1),

√
2Λ2} if m + p > 2,

(10.51)

where

Λ1(1) :=
q{(m + p− 2)(m + p + q − 1)}(m+p−2)/q

{(m + p− 1)(m + p + q − 2)}(m+p+q−2)/q

and

Λ2 :=
q

(m + p− 2)(m + p + q − 2)
.

119



(a) If p < 1 then the support of every wavefront solution f from 1 to
0 is bounded above, and, defining Ξ0 by (10.45), there holds

fm−2(ξ)f ′(ξ)→ − 2
σ +
√

σ2 − 4
if m + p = 2, (10.52)

fm−2(ξ)f ′(ξ)→ −σ if m + p > 2 and σ = σ∗, (10.53)

and,

f−p(ξ)f ′(ξ)→ − 1
σ

if m + p > 2 and σ > σ∗ (10.54)

as ξ ↑ Ξ0.

(b) If m > 1 and p ≥ 1 then the support of every wavefront solution
f from 1 to 0 with wave speed σ∗ is bounded above, and, defining
Ξ0 by (10.45), f satisfies (10.53) as ξ ↑ Ξ0. Whereas, the support
of every such solution f with wave speed σ > σ∗ is not bounded
above, and, f satisfies (10.54) as ξ →∞.

(c) If m ≤ 1 then the support of every wavefront solution f from 1
to 0 is not bounded above, and, f satisfies (10.52) – (10.54) as
ξ →∞.

Every wavefront solution f from 1 to 0 with wave speed σ is such that
f(ξ) < 1 for all −∞ < ξ <∞, and,

{1 − f(ξ)}−1f ′(ξ)→ − 2q

σ +
√

σ2 + 4q
as ξ → −∞.

Proof. In terms of the general theory, for this example (ca′)(s) = sm+p−1(1−
sq). So we easily compute that λ1 =∞ if m + p < 2, λ0 = λ1 = Λ1(1) = 1
if m + p = 2. While, λ0 = λ1 = 0, and, Λ1(1) and Λ2 are as stated, if
m + p > 2. Theorem 33 then gives the existence results, Theorem 34 the
exact value of σ∗ in the case m + p = 2, and, the estimate (10.51) in the
case m + p > 2, Theorem 35 the monotonicity of σ∗, and, Theorem 36 the
continuity of σ∗. Furthermore, noting that ca′ ∈ C1([0, 1]) if m + p ≥ 2,
Theorems 38 and 39 give the results on the behaviour of a wavefront solution
for large |ξ|. To establish (10.48) – (10.50), we note that if m + p < q + 2
there holds sm+p(1− sq) > sm+p(1− sm+p−2), if m + p = q + 2 there holds
sm+p(1 − sq) = sm+p(1 − sm+p−2), while, if m + p > q + 2 there holds
sm+p(1 − sq) < sm+p(1 − sm+p−2) for all 0 < s < 1. However, by Exam-
ple 20, we know that the critical wave speed associated with the equation
ut = uxx+um+p(1−um+p−2) is σ = 1/

√
m + p− 1. The inequalities (10.48)

– (10.50) subsequently follow from Theorem 35. 2
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In the case that q = 1 is fixed but m > 1 and p < 1 may vary, de Pablo
and Sánchez [207] have shown that the critical wave speed σ∗ is an analytic
function of m + p ≥ 2. Their proof is based on the theory of anomalous
exponents developed by Aronson and Vázquez [18, 19], who discussed the
case with p = q = 1 and variable m in [18,19].

Our final example in this subsection is the equation

ut = (um−1(1− u)n−1ux)x + u(1− u) (10.55)

where m and n are positive numbers. By including this example, we fulfil
our earlier-stated objective of covering the equations studied by Atkinson,
Reuter and Ridler-Rowe [22]. They were concerned with the case m = 1 ≥
n ≥ 0.

Example 24. Suppose that m and n are positive constants.

(i) If m < 1 then equation (10.55) does not admit a wavefront solution from
1 to 0.

(ii) If m ≥ 1 then there exists a σ∗ > 0, which depends only on m and
n, such that equation (10.55) admits precisely one distinct wavefront
solution from 1 to 0 for every wave speed σ ≥ σ∗ and no such solution
for any wave speed σ < σ∗. The critical wave speed σ∗ is a continuous
function of m and n, for fixed n is a strictly decreasing function of m,
for fixed m is a strictly decreasing function of n, and, satisfies σ∗ = 2
if m = 1, and, σ∗ = 1/

√
2 if m = 2 and n = 1.

(a) If m = 1 then the support of every wavefront solution f from 1
to 0 is not bounded above, and,

f−1(ξ)f ′(ξ)→ − 2
σ +
√

σ2 − 4
as ξ →∞.

(b) If m > 1 then the support of every wavefront solution f from 1
to 0 with wave speed σ∗ is bounded above, and, defining Ξ0 by
(10.45),

fm−2(ξ)f ′(ξ)→ −σ as ξ ↑ Ξ0.

Whereas, the support of every such solution f with wave speed
σ > σ∗ is not bounded above, and,

f−1(ξ)f ′(ξ)→ − 1
σ

as ξ →∞.
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Every wavefront solution f from 1 to 0 with wave speed σ is such that
f(ξ) < 1 for all −∞ < ξ <∞, and,

{1 − f(ξ)}(n−3)/2f ′(ξ)→ −
√

2
n + 1

if n < 1,

{1 − f(ξ)}−1f ′(ξ)→ − 2
σ +
√

σ2 + 4
if n = 1,

and,

{1 − f(ξ)}−1f ′(ξ)→ − 1
σ

if n > 1

as ξ → −∞.

Proof. The proof of this example runs along the same lines as that of the
previous one. The only complication is that if n < 1 the conditions assumed
in part (ii) of Theorem 38 are not met. For this case, we fall back on
Lemma 20 part (i) applied to equation (10.16), where Θ(s) = θ(1 − s), to
deduce that the unique solution θ of the integral equation (10.3) on [0, 1]
satisfying θ(1) = 0 is such that

θ(s) ∼
√

2
n + 1

(1− s)(n+1)/2 as s ↑ 1.

With this information, we can use the same strategy as in Example 23. We
leave the details to the reader. 2

In the paper [22], Atkinson et al. also considered the case m = 1 and n = 0.
Ostensibly this falls out of the scope of our theory, since when this equation
is written in the general form (10.1) one does not have the hypothesis that
a is continuous on the whole of I, but merely that a is continuous on (0, `).
This objection can be overcome by the expedient of tightening the definition
of a wavefront solution. If a(u) becomes unbounded as u ↓ 0 one has to
impose the additional requirements that any wavefront solution f of the
equation from ` to 0 is such that f(ξ) > 0 for all ξ ∈ (−∞,∞), and, that
(a(f))′(ξ) → 0 as ξ →∞. When a(u) remains bounded as u ↓ 0, the latter
property is a natural consequence of the convergence of f(ξ) as ξ →∞, cf.
Corollary 2.1. Similarly, if a(u) becomes unbounded as u ↑ ` < ∞ one has
to impose the additional requirements that any wavefront solution f of the
equation from ` to 0 is such that f(ξ) < ` for all ξ ∈ (−∞,∞), and, that
(a(f))′(ξ)→ 0 as ξ → −∞. With these adaptations, it can be seen that our
proof of Theorem 2 remains valid. In which case, the above example extends
to the case m = 1 and n = 0. Indeed, with the adaptations suggested, the
conclusions of the example apply to any m > −1 and n > −1.

122



10.2. One sign change

The previous section has been concerned with nonlinear reaction-diffusion
equations of the type (10.1) where the reaction term is strictly positive on
(0, `). By implication, through Theorem 8, this also covers the case where
the reaction term is strictly negative on (0, `). We turn now to the case
that the reaction term has one change of sign on (0, `). By this we mean
that there is a 0 < α < ` such that (α − u)c(u) ≥ 0 for all 0 < u < `, or,
(α − u)c(u) ≤ 0 for all 0 < u < `. Notwithstanding, in the first of these
two cases, it can be determined that an equation of the form (10.1) cannot
possibly admit a wavefront solution from ` to 0, as a consequence of The-
orem 32. Therefore, we shall only pursue the second case. We call α the
point of sign change.

Since we shall use the following notation repeatedly in the rest of this
subsection, let us forthwith define

Q0(s) :=
∣∣∣∣2∫ s

0
c(r)a′(r) dr

∣∣∣∣1/2 (10.56)

and

Q1(s) :=
∣∣∣∣2∫ `

s
c(r)a′(r) dr

∣∣∣∣1/2 . (10.57)

Our first result in this subsection concerns sufficient criteria for the ex-
istence of a wavefront solution. Complementary necessary criteria are pro-
vided by Theorem 32.

Theorem 41 (Existence). Suppose that c(u) ≤ 0 for all 0 < u < α, and,
c(u) ≥ 0 for all α < u < `, for some 0 < α < ` < ∞. Let κ be defined by
(10.2). Suppose furthermore that one of the following hold:

(a) κ > 0, and, c(u) > 0 for all α < u < `;

(b) κ = 0, Q0(u) > 0 for all 0 < u < α, and, Q1(u) > 0 for all α < u < `;

(c) κ < 0, and, c(u) < 0 for all 0 < u < α.

Then there exists a real number σ∗ such that equation (10.1) has exactly
one distinct wavefront solution from ` to 0 with wave speed σ∗ and no such
wavefront solution with any other wave speed.

Proof. Invoking Lemma A2(i), let S0 denote the set of values σ such that
(10.3) has a unique solution θ(s;σ) on [0, α], S1 denote the set of values
σ such that (10.16) has a unique solution Θ(s;σ) on [0, ` − α], and, S :=
S0 ∩ S1. By substitution, it is easily verified that Q0 solves (10.3) with
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σ = 0 on [0, α], while Q1(` − s) solves (10.16) with σ = 0 on [0, ` − α]. So,
by Lemma 14, S0 is an interval containing [0,∞) with θ(s; 0) = Q0(s), and,
S1 is an interval containing (−∞, 0] with Θ(s; 0) = Q1(`− s). Furthermore,
using equation (10.3) it can be determined that θ(α;σ) → ∞ as σ → ∞,
and, similarly using (10.16) that Θ(` − α;σ) → ∞ as σ → −∞, cf. [115].
For σ ∈ S, we define F (σ) := θ(α;σ) − Θ(` − α;σ). By Lemma 14, F is a
continuous function of σ ∈ S. While,

F (0) = Q0(`)−Q1(α) = − 2κ
Q0(α) + Q1(`)

.

Recalling Theorem 2 and Lemma 17, to prove that the existence of a wave
speed σ∗ for which equation (10.1) has a wavefront solution from ` to 0 it
suffices to show that there is a σ∗ ∈ S for which F (σ∗) = 0, θ(·;σ∗) > 0 on
(0, α], and, Θ(·;σ∗) > 0 on (0, ` − α]. For this purpose, we distinguish the
three cases in the statement of the theorem.

(a) In this case S1 = (−∞,∞) by Lemma A4(i) applied to equation (10.16).
Hence, S contains [0,∞). Furthermore, we have F (0) < 0 and F (σ)→
∞ as σ → ∞. The continuity of F subsequently infers the existence
of a σ∗ > 0 such that F (σ∗) = 0. Moreover, since by (10.3) there
holds θ(s;σ∗) ≥ σ∗s for all 0 < s ≤ α, and, by Lemma A4(i) applied
to (10.16) there holds Θ(s;σ∗) > 0 for all 0 < s < `−α, the functions
θ(·;σ∗) and Θ(·;σ∗) possess the required properties.

(b) In this case the hypotheses are such that σ∗ = 0 fulfils the criterion.

(c) This case is the ‘mirror image’ of the first one. The set S contains
(−∞, 0], F (0) > 0, and, F (σ) → −∞ as σ → −∞. We omit further
details.

Now, since θ(α;σ∗) = Θ(` − α;σ∗) > 0, by application of Lemma A6(i) to
equations (10.3) and (10.16) there holds F (σ) < 0 for all σ ∈ S ∩ (−∞, σ∗),
and, F (σ) > 0 for all σ ∈ S ∩ (σ∗,∞). So, by Theorem 2 and Lemma 17,
σ∗ is the only wave speed for which equation (10.1) can admit a wavefront
solution from ` to 0. The distinctness of the wavefront solution finally follows
Lemma 4. 2

Corollary 41.1. Suppose that c(u) < 0 for all 0 < u < α, and, c(u) > 0
for all α < u < `, for some 0 < α < ` <∞. Then there exists a real number
σ∗ such that equation (10.1) has exactly one distinct wavefront solution from
` to 0 with wave speed σ∗ and no wavefront solution from ` to 0 for any other
wave speed.

Examples 15 – 17 are illustrations of the above corollary.

In Examples 15 – 17, the unique wave speed σ∗ can be computed explic-
itly. For the general case, we have the following estimates of its magnitude.
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Theorem 42 (Critical speed estimates). Suppose that the hypotheses
of Theorem 41 hold. Define Q0 and Q1 by (10.56) and (10.57) respectively.
Let σ∗ denote the unique wave speed such that equation (10.1) has a wave-
front solution from ` to 0.

(a) In case (a) of Theorem 41 there holds

max
γ≤s≤`

Q1(α) −Q0(α)−Q1(s)
s

< σ∗ <

min
α≤s≤γ

√
2κ−Q1(α) + Q0(α) + Q1(s)−Q0(s)

s
(10.58)

and

max
γ≤s≤`

Q2
0(s)

2
∫ s

0 Q1(r) dr
< σ∗ <

κ∫ γ
0 Q0(r) dr

, (10.59)

where γ is the unique point in [α, `) at which Q0 vanishes.

(b) In case (b) of Theorem 41 there holds σ∗ = 0.

(c) In case (c) of Theorem 41 there holds

max
γ≤s≤α

Q0(α)−Q1(α) −
√
−2κ + Q0(s)−Q1(s)

`− s

< σ∗ < min
0≤s≤γ

Q1(α)−Q0(α) + Q0(s)
`− s

and

κ∫ `
γ Q1(r) dr

< σ∗ < min
0≤s≤γ

−Q2
1(s)

2
∫ `
s Q0(r) dr

,

where γ is the unique point in (0, α] at which Q1 vanishes.

Proof. We prove part (a) only. Part (b) is already covered by Theorem 32,
while part (c) may be obtained by analogy to part (a). Let θ denote the
unique solution of (10.3) with σ = σ∗ on [0, `] such that θ(`) = 0. Building
on the proof of Theorem 41, we know that σ∗ > 0, and, applying Lemmas
A5 and A6(i), that θ(s) = θ(s;σ∗) > θ(s; 0) = Q0(s) for all 0 < s ≤ γ,
θ(s) > 0 for all γ ≤ s < `, and θ(s) = Θ(` − s;σ∗) < Θ(` − s; 0) = Q1(s)
for all 0 ≤ s < `. Substituting these inequalities in (10.3) with σ = σ∗ there
holds

Q1(s) > σ∗s + Q1(r)
∣∣∣α
0

+ Q0(r)
∣∣∣s
α

for all α ≤ s ≤ γ
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and

0 < σ∗s + Q0(r)
∣∣∣α
0

+ Q1(r)
∣∣∣s
α

for all γ ≤ s ≤ `.

Alternatively substituting them in (10.5) with σ = σ∗,

1
2
Q2

1(s) > σ∗
∫ s

0
Q0(r) dr +

1
2
Q2

0(s) for all 0 ≤ s ≤ γ

and

0 < σ∗
∫ s

0
Q1(r) dr − 1

2
Q2

0(s) for all γ ≤ s ≤ `.

Rewriting these inequalities yields (10.58) and (10.59). 2

Corollary 42.1. Suppose that c(u) = 0 for all 0 < u < α, and, c(u) > 0
for all α < u < `, for some 0 < α < ` < ∞. Let κ > 0 be given by (10.2).
Then there exists a real number

√
2κ
`

< σ∗ <

√
2κ
α

(10.60)

such that equation (10.1) has exactly one distinct wavefront solution from `
to 0 with wave speed σ∗ and no wavefront solution from ` to 0 for any other
wave speed.

Proof. If c ≡ 0 on [0, α) then Q0(α) = 0, Q1(α) =
√

2κ and γ = α in the
terms of Theorem 42(a). Combining Theorem 41 and (10.58) with s = `
substituted in the left-hand side yields the corollary. 2

Corollary 42.1 was essentially deduced by Zel’dovich in his highly acclaimed
paper [282] published in 1948. It has been proven under more restrictive
regularity assumptions on the functions a and c than those imposed in this
paper by Berestycki, Nicolaenko and Scheurer [40, 41]. The proof of Theo-
rem 42 has essentially been obtained by amalgamating ideas in [40,41] with
the study of the integral equation (10.3). As pointed out by Zel’dovich [282],
in the singular limit κ 6→ 0 as α ↑ `, the upper and lower bounds in (10.60)
coincide. Thus, in a certain sense, the estimates in (10.58) are sharp. By
implication through Theorem 8 the same subsequently also applies to their
counterparts in Theorem 42 part (c).

As supplements to Theorem 42 we state the following.

Theorem 43. Consider equation (10.1) with two different sets of coeffi-
cients a1, c1 and a2, c2 such that the conditions of Theorem 41 hold on the
same interval [0, `]. Let κi and σ∗i denote the appropriate parameters asso-
ciated with (10.1) for i = 1, 2. Suppose that c1(u)a′1(u) ≥ c2(u)a′2(u) for all
0 < u < `, and, κ1 > κ2. Then σ∗1 > σ∗2.
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Proof. From the proof of Theorem 41, equation (10.3) with σ = σ∗i and
c(r)a′(r) = ci(r)a′i(r) admits a unique solution θi on [0, `] which is positive
on (0, `) and satisfies θi(`) = 0. Now, if σ∗1 ≤ σ∗2 and c1a

′
1 ≥ c2a

′
2 on (0, `),

we have θ1 ≤ θ2 on [0, `] by Lemma A6(i). However, by (10.7) this means
that κ1 ≤ κ2. Thus, the hypotheses that c1a

′
1 ≥ c2a

′
2 on (0, `) and κ1 > κ2

can lead to no other conclusion than that asserted. 2

Theorem 44. Consider equation (10.1) with a fixed set of coefficients and
with a sequence of coefficients {an, cn}∞n=1 such that the conditions of The-
orem 41 hold on the same interval [0, `]. Let σ∗ and {σ∗n}∞n=1 denote the
corresponding critical wave speeds, and, θ∗ be the unique solution of equa-
tion (10.3) with σ = σ∗ on [0, `]. Suppose that

sup
0<u<`

|cn(u)a′n(u)− c(u)a′(u)|
θ∗(u)

→ 0 as n→∞.

Then σ∗n → σ∗ as n→∞.

Proof. Define the function θ∗n for the reaction-diffusion equation with co-
efficients an, cn by analogy to θ∗ for equation (10.1) with coefficients a, c.
Pick ε > 0 and let N be so large that cn(s)a′n(s) ≤ c(s)a′(s) + εθ∗(s) for
all 0 < s < ` and n ≥ N . Consider equation (10.3) with σ = σ∗ + ε and
c(r)a′(r) replaced by c(r)a′(r) + εθ∗(r). It is easily checked that θ∗ itself
solves this equation on [0, `]. Hence, by Lemma A6(i), the integral equation
(10.33) with σ = σ∗ + ε has a solution θn ≥ θ∗ on [0, `] for every n ≥ N .
Now, should there hold σ∗n > σ∗ + ε for n ≥ N , by a second application of
Lemma A6(i) to equation (10.33), there must hold θ∗n ≥ θn on [0, `]. How-
ever, this infers that θn is a solution of (10.33) with σ = σ∗ + ε on [0, `],
that θn is positive on (0, `), and, θn(`) = 0. So, by Theorem 2, the reaction-
diffusion equation with coefficients an, cn has a wavefront solution from ` to
0 with wave speed σ∗+ε. This contradicts the uniqueness of the wave speed
σ∗n proven in Theorem 41. We conclude that σ∗n ≤ σ∗ + ε for all n ≥ N . In
view of the arbitrariness of ε, this leads to the result: lim supn→∞ σ∗n ≤ σ∗.
The assertion that lim infn→∞ σ∗n ≥ σ∗ can be proved similarly, with equa-
tion (10.16) in the role of (10.3). 2

Earlier results of the same ilk as Theorem 43 were obtained by Pauwelus-
sen and Peletier [213] and by Vol’pert et al. [268]. Theorem 43 includes
these results. Previous results similar to Theorem 44 were obtained by
Hadeler [131–133]. These results can be seen to fall under Theorem 44 if
one invokes Lemma 20 to identify the behaviour of the function θ∗(u) as
u ↓ 0 and u ↑ `.

Just as in the case that the reaction term is positive or negative, when
c has one sign change, one may analyse the question of whether or not a
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wavefront solution of an equation of the form (10.1) displays finite speed
of propagation. The next theorem provides an answer. As in the previous
subsection, we shall not strive to present the most general result. We contend
ourselves with a result which covers the work of Hosono [150], Grindod and
Sleeman [124], and, Wang [271].

Theorem 45 (Bounded support). Let f be a wavefront solution of equa-
tion (10.1) from ` to 0 with wave speed σ. Define κ by (10.2), Q0 by (10.56),
and, Q1 by (10.57).

(i) Suppose that c ≤ 0 on (0, δ] for some 0 < δ < `/2 <∞, ca′ is differen-
tiable on [0, δ], (ca′)(0) = 0, and, (ca′)′(u)→ (ca′)′(0) as u ↓ 0.

(a) If κ > 0 then f satisfies (10.40) if and only if∫ δ

0

a′(s)
s

ds <∞.

(b) If κ = 0, and, Q0 > 0 on (0, δ], then f satisfies (10.40) if and
only if∫ δ

0

a′(s)
Q0(s)

ds <∞.

(c) If κ < 0, and, c < 0 on (0, δ], then f satisfies (10.40) if and only
if ∫ δ

0

1
|c(s)| ds <∞.

(ii) Suppose that c ≥ 0 on [` − δ, `) for some 0 < δ < `/2 < ∞, ca′ is
differentiable on [` − δ, `], (ca′)(`) = 0, and, (ca′)′(u) → (ca′)′(`) as
u ↑ `.

(a) If κ > 0, and, c > 0 on [` − δ, `), then f satisfies (10.42) if and
only if∫ `

`−δ

1
c(s)

ds <∞.

(b) If κ = 0, and, Q1 > 0 on [`− δ, `), then f satisfies (10.42) if and
only if∫ `

`−δ

a′(s)
Q1(s)

ds <∞.
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(c) If κ < 0 then f satisfies (10.42) if and only if∫ `

`−δ

a′(s)
`− s

ds <∞.

This theorem is a corollary of the next one. This in turn follows from
Theorems 2, 32 and 41, and, Lemmas 6 and 20.

Theorem 46 (Asymptotics). Let f be a wavefront solution of (10.1) from
` to 0 with wave speed σ. Define Ξ0 by (10.45) and Ξ1 by (10.46).

(i) Suppose that the conditions of Theorem 45 part (i) hold.

(a) If κ > 0 then

(a(f))′(ξ)
f(ξ)

→ −σ +
√

σ2 − 4(ca′)(0)
2

as ξ ↑ Ξ0.

(b) If κ = 0, and, Q0 > 0 on (0, δ], then

(a(f))′(ξ)
Q0(f(ξ))

→ −1 as ξ ↑ Ξ0.

(c) If κ < 0, and, c < 0 on (0, δ], then

f ′(ξ)
|c(f(ξ))| → −

2√
σ2 − 4(ca)′(0) − σ

as ξ ↑ Ξ0.

(ii) Suppose that the conditions of Theorem 45 part (ii) hold.

(a) If κ > 0, and, c > 0 on [`− δ, `), then

f ′(ξ)
c(f(ξ))

→ − 2
σ +

√
σ2 − 4(ca′)′(`)

as ξ ↓ Ξ1.

(b) If κ = 0, and, Q1 > 0 on [`− δ, `), then

(a(f))′(ξ)
Q1(f(ξ))

→ −1 as ξ ↓ Ξ1.

(c) If κ < 0 then

(a(f))′(ξ)
`− f(ξ)

→ −
√

σ2 − 4(ca′)(`)− σ

2
as ξ ↓ Ξ1.
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The above summarizes the results of Hosono [150], of Grindod and Sleeman
[124], and, of Wang [271] in a general setting. Previous authors who have
investigated the asymptotic behaviour of wavefront solutions of reaction-
diffusion equations where the reaction term has one change of sign are
Aronson and Weinberger [21], Berestycki, Nicolaenko and Scheurer [40,41],
Uchiyama [256], Hosono [150], Vol’pert [269], and, Vol’pert, Vol’pert and
Vol’pert [268].

As an illustration of the amalgamated results of this subsection, let us
consider the following fusion of the porous media equation and the Nagumo
equation. This example was the prototype for the results in [124, 150, 271].
The lion’s share of the conclusions for this example is covered by Example 15
and Theorems 32, 41, and 43 – 46. The missing details can be deduced from
Lemma 20 along the lines of the proof of Theorems 45 and 46.

Example 25. For every m > 0 and 0 < α < 1 the equation

ut = (um)xx + u(1− u)(u− α) (10.61)

admits exactly one distinct wavefront solution f from 1 to 0 with a unique
wave speed σ and no other wavefront solutions from 1 to 0. The unique
wave speed is equal to (1− 2α)/

√
2 if m = 1, and, for fixed m, is a strictly

decreasing and continuous function of α which vanishes for α = (m+1)/(m+
3). There holds f(ξ) < 1 for all −∞ < ξ <∞, and,

{1− f(ξ)}−1f ′(ξ)→ − 2m(1− α)
σ +

√
σ2 + 4m(1 − α)

as ξ → −∞.

(a) If m < 1 then the support of f is not bounded above, and,

f (m−3)/2(ξ)f ′(ξ)→ −
√

2α
m(m + 1)

as ξ →∞.

(b) If m = 1 then the support of f is not bounded above, and,

f−1(ξ)f ′(ξ)→ −σ +
√

σ2 + 4α
2

as ξ →∞.

(c) If m > 1 and α < (m + 1)/(m + 3) then the support of f is bounded
above, and, defining Ξ0 by (10.45), there holds

fm−2(ξ)f ′(ξ)→ − σ

m
as ξ ↑ Ξ0.

(d) If m > 1 and α = (m + 1)/(m + 3) then the support of f is bounded
above, and, defining Ξ0 by (10.45), there holds

f (m−3)/2(ξ)f ′(ξ)→ −
√

2
m(m + 3)

as ξ ↑ Ξ0.
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(e) If m > 1 and α > (m+1)/(m+3) then the support of f is not bounded
above, and,

f−1(ξ)f ′(ξ)→ α

σ
as ξ →∞.

In [124] it is stated that equation (10.61) with m = 1 and 0 < α < 1 ad-
mits a wavefront solution from 1 to 0 if and only if α ≤ 1/2. The above
example rectifies this statement. The condition α ≤ 1/2 is necessary and
sufficient for the equation to admit a wavefront solution from 1 to 0 with a
nonnegative wave speed. The confusion presumably arises because the main
interest in [124] was in establishing necessary and sufficient conditions for
(10.61) to admit a wavefront solution displaying finite speed of propagation
in the case m = 2. Example 25 shows that equation (10.61) with m > 0 and
0 < α < 1 admits a wavefront solution f from 1 to 0 such that the support
of f is bounded above, if, and only if, m > 1 and α ≤ (m + 1)/(m + 3). In
turn, the condition α ≤ (m+1)/(m+3) is equivalent to the conclusion that
the unique wave speed σ is nonnegative.

A significant area in which reaction-diffusion equations of the form (10.1)
arise is combustion theory. In particular the equation

ut = uxx + K(1− u)upe−E/u,

with K > 0, p, and, E > 0 constants, arises as a model of the flame produced
by combustion of a premixed fuel. In this equation, u denotes temperature
which has been normalized so that the adiabatic flame temperature is unity,
and, the reaction term is given by the Arrhenius law with E the scaled
activation energy. Since the term up is considered as a weak temperature
dependence, the constant p is frequently assumed to be zero. Let 0 < u0 < 1
denote the normalized ambient temperature at which the fuel is supplied.
Then, per definition, a plane deflagration flame is a wavefront solution from
1 to u0. It transpires however — from the theory of the previous subsection,
for instance — that the above equation cannot admit such a wavefront solu-
tion. This phenomenon is often referred to as the cold-boundary difficulty.
The modelling device employed to overcome this objection is to postulate
an ignition temperature α below which no combustion takes place. This
leads [31,55,56,282] to the reaction-diffusion equation

ut = uxx +
{

0 for 0 ≤ u < α

K(1− u)upe−E/u for α ≤ u ≤ 1.
(10.62)

Example 26. For any K > 0, p, E > 0, and, 0 ≤ u0 < α < 1, there
exists a unique wave speed σ such that equation (10.62) admits a wavefront
solution from 1 to u0. Moreover, for this wave speed, there is precisely one
distinct wavefront solution f from 1 to u0. The unique wave speed is a
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positive continuous function of K, p, E, u0 and α, and, if the remaining
variables are fixed, is a strictly increasing function of K and u0, and, a
strictly decreasing function of p and E, respectively. The wavefront f is
such that 1 > f(ξ) > u0 for all −∞ < ξ <∞,

{1− f(ξ)}−1f ′(ξ)→ − 2Ke−E

σ +
√

σ2 + 4Ke−E
as ξ → −∞

and

{f(ξ)− u0}−1f ′(ξ)→ −σ as ξ →∞.

Note that the conclusions of this example also apply without change to the
commonly-used [32,41] ‘linearization’ of equation (10.62)

ut = uxx +
{

0 for 0 ≤ u < α

Ke−E(1− u)upe−E(1−u) for α ≤ u ≤ 1.

The fact that these models admit a wavefront solution with a unique posi-
tive wave speed is of particular importance in the description of combustion
processes. It means that by supplying the combustive fuel mixture at the
appropriate rate in a counterflow, a steady flame can be sustained.

In [40, 41], Berestycki, Nicolaenko and Scheurer have investigated the
high activation energy limit of wavefront solutions of a more general class
of combustion models

ut = (a(u))xx +
{

0 for 0 ≤ u < α
c(u;E) for α ≤ u ≤ 1,

where a ∈ C1([0, 1]) and a′(u) > 0 for all 0 ≤ u ≤ 1.

To complete this subsection we refer to [190], where de Mottoni studied
travelling-wave solutions of an equation of the form (10.1) in which the
reaction term has a single sign change and the diffusion term a′(u) vanishes
for a connected range of values of u.

10.3. Smooth coefficients

Having dealt with reaction-diffusion equations of the form (10.1), where the
reaction term has a fixed sign or at worst one change of sign, but where
nothing beyond the basic assumptions in Hypothesis 1 has been assumed
about the smoothness of the coefficients, in this subsection we shall dis-
cuss the more general situation in which the coefficients have a prescribed
smoothness. This smoothness is exhibited by the prototypes of the Fisher
equation, the Newell-Whitehead equation, the Zeldovich equation, the KPP
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equation, and, the Nagumo equation.

The following is the main result of this subsection. It extends, sharpens,
and clarifies the theory of wavefront solutions of scalar semilinear reaction-
diffusion equations as developed by Vol’pert, Vol’pert and Vol’pert in [267]
and [268].

Theorem 47. Suppose that ` < ∞ and ca′ is differentiable in (0, `). Let
S denote the set of wave speeds for which equation (10.1) has a wavefront
solution from ` to 0. Then equation (10.1) has exactly one distinct wavefront
solution from ` to 0 with every wave speed σ ∈ S. Furthermore, if ca′ ∈
C1(I) and (ca′)(0) = (ca′)(`) = 0, the following alternatives are mutually
exclusive.

(a) If c(u) > 0 for all 0 < u < `, then S = [σ∗,∞) for some σ∗ > 0.

(b) If c(u) < 0 for all 0 < u < `, then S = (−∞, σ∗] for some σ∗ < 0.

(c) If c(u) > 0 for all 0 < u < α, c(α) = c(β) = 0, and, c(u) > 0 for
all β < u < `, for some 0 < α ≤ β < `, then either S is empty or
S = [σ∗, σ∗∗) for some 0 < σ∗ < σ∗∗.

(d) If c(u) < 0 for all 0 < u < α, c(α) = c(β) = 0, and, c(u) < 0 for
all β < u < `, for some 0 < α ≤ β < `, then either S is empty or
S = (σ∗∗, σ∗] for some σ∗∗ < σ∗ < 0.

(e) If c(u−i ) ≤ 0 for a sequence of values {u−i }∞i=1 ⊂ (0, `) such that u−i → 0
as i → ∞, and, c(u+

i ) ≥ 0 for a sequence of values {u+
i }∞i=1 ⊂ (0, `)

such that u+
i → ` as i → ∞, then either S is empty or S = {σ∗} for

a single value σ∗.

(f) If c(u) > 0 for all 0 < u < δ, and, c(u+
i ) ≤ 0 for a sequence of values

{u+
i }∞i=1 ⊂ (0, `) such that u+

i → ` as i → ∞, or, if c(u−i ) ≥ 0 for a
sequence of values {u−i }∞i=1 ⊂ (0, `) such that u−i → 0 as i→∞, and,
c(u) < 0 for all `− δ < u < `, for some 0 < δ < `, then S is empty.

It may be of interest to note that, according to part (c) of Theorem 47, if
the hypothesis c(u) > 0 for all 0 < u < ` is merely violated at a single point
u = α with 0 < α < `, this is enough to destroy the conclusion of part (a)
of the theorem. A similar remark applies to parts (b) and (d). By implica-
tion this also affects the existence results in Subsection 10.1. In an explicit
example, where c(u) > 0 for all 0 < u < α, c(α) = 0, and, c(u) > 0 for all
α < u < `, for some 0 < α < `, we shall see below that both alternatives in
parts (c) are viable. Using a more complicated explicit example we shall also
show that both alternatives in parts (d) and (e) can occur. In general, for
cases (c) – (e), necessary conditions for the existence of a wavefront solution
are provided by Theorems 8, 29 and 32. Sufficient conditions are given by
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Theorems 8 and 30. For case (e) further specific conditions can be found in
Theorems 32 and 41.

Proof of Theorem 47. Suppose to begin with that for some σ ∈ S, equa-
tion (10.1) has two distinct wavefront solutions from ` to 0. Then by The-
orem 2 and Lemmas 4 and 5, equation (10.3) has two different solutions θ1
and θ2 on [0, `] which are positive on (0, `) and satisfy θ1(`) = θ2(`) = 0.
Moreover, by Lemma 7, either θ1 ≥ θ2 on [0, `] or θ2 ≥ θ1 on [0, `]. However,
by (10.7) this implies that θ1 ≡ θ2 or σ = 0. Subsequently, (10.5) implies
that θ1 ≡ θ2 whatever the value of σ. Thus, we have a contradiction. This
proves the first assertion of the theorem. To prove the remainder of the
theorem, we consider the cases (a), (c), (e) and (f) in turn. The cases (b)
and (d) follow from (a) and (c) respectively via Theorem 8. We leave it to
the reader to check that (a) – (f) are mutually exclusive.

(a) This is just a restatement of Corollary 34.1.

(c) By Corollary 34.1 there exists a σ0 > 0 such that equation (10.1) has
a wavefront solution from α to 0 for every wave speed σ ≥ σ0 and
no such solution for any wave speed σ < σ0. Similarly, by a simple
redefinition of the dependent variable, ũ := u − β say, there exists
a σ1 > 0 such that (10.1) has a wavefront solution from ` to β for
every wave speed σ ≥ σ1 and no such solution for any wave speed
σ < σ1. It follows from Theorem 29 part (i) that S ⊆ [σ0,∞), and,
from Theorem 29 part (ii) that S ⊆ (−∞, σ1). Theorem 26(iv) then
gives the result.

(e) Suppose that S contains two values σ1 and σ2 ≥ σ1. Then by Theorem 2
and Lemma 5 there exists a solution θi of (10.3) with σ = σi on
[0, `] which is positive on (0, `) and such that θi(`) = 0 for i = 1, 2.
Simultaneously, the function Θi, defined by Θi(s) := θi(` − s) for
0 ≤ s ≤ `, is a solution of (10.16) with σ = σi on [0, `] with similar
properties. However, by Lemmas A2(i), A6, 7 and 13, there holds
θ2 ≥ θ1 on [0, `); while, by the same token, Θ2 ≥ Θ1 on [0, `). This is
clearly incompatible unless θ1 ≡ θ2 and σ1 = σ2.

(f) If c > 0 on (0, δ) for some 0 < δ < `, Theorem 32 says that every σ ∈ S
is necessarily positive. On the other hand, if c(u+

i ) ≤ 0 for a sequence
of values {u+

i }∞i=1 ⊂ (0, `) such that u+
i → ` as i → ∞, by Lemmas 6

and 13, equation (10.16) has a solution only if σ ≤ 0. Subsequently,
invoking Theorem 2 and Lemma 6, if both hypotheses hold, S must
be empty. Similarly, if c < 0 on (` − δ, `), for some 0 < δ < `, every
σ ∈ S has to be negative. While, if c(u−i ) ≥ 0 for a sequence of values
{u−i }∞i=1 ⊂ (0, `) such that u−i → 0 as i → ∞, equation (10.3) has a
solution only if σ ≥ 0. So S is empty in this case too. 2
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As illustrations of Theorem 47 let us consider the following two examples.
These aptly illustrate the strength of the integral equation approach for
determining the existence of travelling-wave solutions as compared to the
more time-honoured method of phase-plane analysis.

Example 27. Consider the equation

ut = uxx +
{

u(α− u)2 for 0 ≤ u ≤ α
k(`− u)(u− α)2 for α < u ≤ `,

(10.63)

where 0 < α < ` and k are real parameters.

(a) If k ≤ 8α2/(`−α)2 then equation (10.63) admits no wavefront solutions
from ` to 0.

(b) If k > 8α2/(` − α)2 then there exists a 2α ≤ σ∗ <
√

k/2(` − α) such
that (10.63) admits exactly one distinct wavefront solution from ` to
0 with wave speed σ for every σ∗ ≤ σ <

√
k/2(` − α) and no such

solution for any other wave speed.

Proof. In the light of Theorem 47(f), it suffices to restrict attention to
k > 0. In this case, by Corollary 34.1, equation (10.63) has a wavefront
solution from α to 0 with wave speed σ if and only if σ ≥ 2α. While, in
terms of the dependent variable ũ := u − α, Example 20 shows that the
equation has a wavefront solution from ` to α with wave speed σ if and
only if σ ≥ σ1 :=

√
k/2(` − α). Theorem 29 part (i) subsequently implies

that if (10.63) has a wavefront solution from ` to 0 with wave speed σ then
necessarily σ ≥ 2α. Whereas, recalling that by Theorem 47, wavefront
solutions of (10.63) are distinct, Theorem 29 part (ii) implies that σ <
σ1. Alternatively, by Theorem 30, given any 2α ≤ σ0 < σ1 there exists a
σ0 ≤ σ ≤ σ1 such that (10.63) has a wavefront solution from ` to 0 with
wave speed σ. Combining these deductions with Theorem 47(c) provides
the desired conclusions. 2

Example 28. Consider the equation

ut = uxx +
{

u(u− α)(β − u)2 for 0 ≤ u ≤ β
k(`− u)(u− β)2 for β < u ≤ `,

(10.64)

where 0 < α < β < ` and k are real parameters.

(a) If 5α < 2β then there exists a k∗ > 0, which depends only on α, β and `,
with the following property. When k ≤ k∗ equation (10.64) admits no
wavefront solutions from ` to 0. When k > k∗, there exists a number
σ∗ > 0 such that (10.64) admits exactly one distinct wavefront solution
from ` to 0 with wave speed σ∗ and no such solution with any other
wave speed.
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(b) If 5α = 2β then equation (10.64) admits no wavefront solutions from `
to 0 when k ≤ 0. When k > 0, there exists a number σ∗ > 0 such that
(10.64) admits exactly one distinct wavefront solution from ` to 0 with
wave speed σ∗ and no such solution with any other wave speed.

(c) If 5α > 2β then there exists a k∗ < 0, which depends only on α, β
and `, with the following property. When k ≤ k∗ equation (10.64)
admits no wavefront solutions from ` to 0. When k∗ < k < 0 there
exists numbers σ∗∗ < σ∗ < 0 such that (10.64) admits exactly one
distinct wavefront solution from ` to 0 with any wave speed σ∗∗ < σ ≤
σ∗ and no such solution with any other wave speed. When k ≥ 0
there exists a single number σ∗ such that (10.64) admits exactly one
distinct wavefront solution from ` to 0 with wave speed σ∗ and no
such solution with any other wave speed. In this event, σ∗ < 0 if
k < β3(5α− 2β)/5(`− β)4, σ∗ = 0 if k = β3(5α− 2β)/5(`− β)4, and,
σ∗ > 0 if k > β3(5α − 2β)/5(` − β)4.

Proof. Let S denote the set of wave speeds for which equation (10.64) has a
wavefront solution from ` to 0. By Corollary 41.1, there exists a number σ0,
which depends only on α and β, such that (10.64) has a wavefront solution
from β to 0 with wave speed σ0 and no other wave speed. Moreover, by
Theorem 32, σ0 > 0 if 5α < 2β, σ0 = 0 if 5α = 2β, and, σ0 < 0 if
5α > 2β. Theorem 29 part (i) implies that S ⊆ (σ0,∞). To proceed, we
distinguish according to the sign of k. However, first we observe that by
Theorem 2, Lemmas A2(i), A6, 5 and 7, and, the aforesaid; equation (10.1)
has a unique solution θ(·;σ) on [0, β] which is positive on (0, β) for every
σ ≥ σ0. Moreover, θ(β;σ0) = 0, and, by Lemmas 7 and 14, σ 7→ θ(β;σ) is a
strictly increasing, continuous function on [σ0,∞).

(i) Suppose that k > 0. Then, by the argument in the previous example,
equation (10.64) has a wavefront solution from ` to β with every wave
speed σ ≥ σ1 :=

√
k/2(` − β) and no other wave speed. Hence, by

Theorem 29 part (ii), S ⊆ (−∞, σ1). This implies that S is empty if
σ1 ≤ σ0. On the other hand, if σ1 > σ0, by Theorem 30 there exists a
σ0 ≤ σ∗ ≤ σ1 such that σ∗ ∈ S. Recalling Theorems 32 and 47(e) this
gives the desired results.

(ii) Suppose that k = 0. In this case, we note that any solution of equa-
tion (10.16) must have the form Θ(s;σ) := −σs on [0, ` − β]. Subse-
quently, by Theorem 2 and Lemma 17, σ ∈ S if and only if σ0 < σ < 0
and θ(β;σ) = Θ(` − β;σ) > 0. This is plainly not possible when
σ0 ≥ 0. On the other hand when σ0 < 0 elementary analysis shows
that there is a unique value σ∗ for which this holds.

(ii) Suppose that k < 0. Then, by assigning ũ := `−u to be the dependent
variable, Corollary 34.1 tells us that (10.63) has a wavefront solution

136



from ` to β with wave speed σ if and only if σ ≤ σ1 := −2
√
−k(`−β).

Hence, by Theorem 29(ii), S ⊆ (−∞, σ1]. It follows that if σ1 ≤ σ0,
then S is empty. Suppose therefore that σ1 > σ0. Then, by Lemmas
A5 and A6, equation (10.16), has a unique maximal solution Θ(·;σ)
on [0, `−β] which is positive on (0, `−β] for every σ ≤ σ1. Moreover,
by Lemmas A6 and 14, σ 7→ Θ(`−β;σ) is a decreasing function which
is continuous from the left on (−∞, σ1]. It follows that we can define
a σ∗ > σ0 by σ∗ := sup{σ ∈ (σ0, σ1] : θ(β;σ) ≤ Θ(`− β;σ)}. In which
case, by Lemma 8, for any σ0 < σ ≤ σ∗ there exists a unique solution
Θ of equation (10.16) on [0, ` − β] such that Θ(` − β) = θ(β;σ) > 0.
Theorem 2 and Lemma 17 then yield S = (σ0, σ

∗]. 2

With regard to the set S of wave speeds for which an equation of the
type (10.1) satisfying the hypotheses Theorem 47 may admit a wavefront
solution from ` to 0, Example 27 shows that both alternatives in Theorem 47
part (c) can occur dependent on the size of the parameter k > 0. Corre-
spondingly, Example 28 with k < 0 shows that both alternatives in part (d)
are possible, and, with k > 0 that both alternatives in Theorem 47 part (e)
may occur. Incidentally, Example 28 with k > 0 also shows that if, in The-
orem 41(a) and Corollary 41.1, the condition c(u) > 0 for all α < u < ` is
violated at just a single point u = β, α < β < `, the stated result need no
longer be true.

10.4. Multiple equilibria

The last topic we deal with in this survey of wavefront solutions of reaction-
diffusion equations is that of a single equation admitting wavefronts connect-
ing different zeros of the reaction term. In [267–269] a family of such solu-
tions is called a system of waves. A good starting point for this topic is a re-
sult of Hadeler and Rothe [138]. This result can also be found in [78,129,130].

Example 29. The Nagumo equation

ut = uxx + u(1− u)(u− α)

with 0 < α < 1 admits exactly one distinct wavefront solution from α to 0
for all wave speeds σ ≤ σ∗0, where

σ∗0 :=
{
−2
√

α(1 − α) for α < 2/3
−(2− α)/

√
2 for α ≥ 2/3;

exactly one distinct wavefront solution from 1 to α for all wave speeds σ ≥
σ∗1, where

σ∗1 :=
{

(1 + α)/
√

2 for α ≤ 1/3
2
√

α(1 − α) for α > 1/3;
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exactly one distinct wavefront solution from 1 to 0 with wave speed σ = σ∗,
where

σ∗ := (1− 2α)/
√

2;

and no other decreasing wavefront solutions.

Proof. Apply Examples 15 and 20 with p = 1 and the remaining constants
chosen appropriately. 2

The possibility that a more general equation of the form

ut = uxx + c(u) (10.65)

with c ∈ C1([0, `]) and c(0) = c(α) = c(`) = 0 for some 0 < α < ` < ∞
admit wavefront solutions from α to 0, from ` to α, and, from ` to 0 has
been studied in some detail in [95–97, 268]. In particular, among other re-
sults, Fife and McLeod [95] proved that if c ≤ 0 in a right neighbourhood of
zero, then any wavefront solution from ` to 0 necessarily moves faster than
one from α to 0. Likewise, if c ≥ 0 in a left neighbourhood of ` then any
wavefront solution from ` to α necessarily moves faster than one from ` to
0. These conclusions are borne out by the example of the Nagumo equation,
where σ∗0 < σ∗ < σ∗1 for every relevant value of α, and, have been generalized
in Theorem 29.

In [96] one may find a converse to Theorem 29. This says that should
equation (10.65) admit a wavefront solution from α to 0 with wave speed
σ0 and one from ` to α with wave speed σ1 > σ0, then it would admit a
wavefront solution from ` to 0 with some wave speed σ, where σ0 < σ < σ1.
With a heuristic argument as basis, this statement can also be found in [241].
In addition, under the supplementary hypotheses that c(u) ≤ 0 for all
0 < u < δ and c(u) ≥ 0 for all ` − δ < u < `, for some 0 < δ < `/2,
it is stated as a theorem in [267]. Unequivocally though, Example 28 pro-
vides a counter-example to this proposition. When k > 0, equation (10.64)
is such that c(u) < 0 for all 0 < u < α and c(u) > 0 for all β < u < `.
Moreover, if 5α < 2β there exists a unique wave speed σ0 > 0 such that the
equation has a wavefront solution from β to 0, and, there exists a σ∗1 > 0
such that (10.64) has a wavefront solution from ` to β with wave speed σ if
and only if σ ≥ σ∗1. Thus for every k > 0 it is possible to choose a σ1 > σ0
such that equation (10.64) has a wavefront solution from β to 0 with wave
speed σ0 and one from ` to β with wave speed σ1. However, if k is suffi-
ciently small, the equation does not admit any wavefront solution from ` to
0 whatsoever.
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The assertion to which equation (10.64) provides a counter-example is
justified in [96] with an argument based on our integral equation in differ-
ential form. The basis of the argument is that if (10.65) has a wavefront
solution from α to 0 with wave speed σ0 and one from ` to α with wave
speed σ1 > σ0, then for every σ ≥ σ0 there is a solution θ of the equa-
tion (10.3) on [0, α] and for every σ ≤ σ1 there is a solution Θ of (10.16)
on [0, ` − α]. Furthermore, since θ(α) = 0 for a solution of (10.3) with
σ = σ0 and the maximal solution of (10.3) is a nondecreasing function of
σ, while Θ(` − α) = 0 for a solution of (10.16) with σ = σ1 and the maxi-
mal solution of (10.16) is a nonincreasing function of σ, by continuity there
must be a σ0 < σ < σ1 for which a match θ(α) = Θ(` − α) occurs. In
this event, Lemma 17 would yield the desired conclusion. The aspect that
is overlooked is that this match may occur exclusively if θ(α) = Θ(`−α) = 0.

The converse of Theorem 29 is true under a suitable modification of the
more general statement in [96]. See Theorem 30 for details.
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11. Unbounded waves

One of the motivations for studying travelling-wave solutions of equations of
the class (1.1) is that these solutions may be used as a tool for determining
the properties of an arbitrary solution of the partial differential equation.
As one illustration we mention the characterization of finite speed of propa-
gation using semi-wavefront solutions in [116,117]. As another, Galaktionov
and Vázquez [105] have used travelling-wave solutions to characterize com-
plete and incomplete blow-up in diffusion-reaction processes. In [105] the
criterion for blow-up is whether or not the equation admits an unbounded
strict semi-wavefront solution. The authors call such a solution a singular
travelling wave.

In this section we shall summarize some elementary properties of un-
bounded travelling-wave solutions of equations of the type (1.1) which can
be derived simply from study of the integral equation (1.9). We recall that
an unbounded monotonic travelling-wave solution of equation (1.1) decreas-
ing to 0 is a solution of the form u = f(x−σt) where σ is a real number, and,
f is a function which is defined and monotonic in some domain Ω = (ω,∞)
with −∞ ≤ ω < ∞, f(ξ) → 0 as ξ → ∞, and, f(ξ) → ∞ as ξ ↓ ω. If
ω > −∞, we say that f is a strict semi-wavefront solution. If ω = −∞, it is
global. In both cases, σ is the wave speed.

Definition 8. Suppose that ` = ∞. The partial differential equation (1.1)
will be said to admit a one parameter family of distinct unbounded monotonic
travelling-wave solutions with wave speed σ decreasing to 0 when there exists
a continuous order-preserving bijective mapping from the interval [0, 1] onto
the set of all such solutions.

Theorem 48. Suppose that ` = ∞ and that c(u) < 0 for all u > 0. Then
equation (1.1) has exactly one distinct unbounded monotonic travelling-wave
solution decreasing to 0 for every wave speed σ.

Theorem 49. Suppose that ` = ∞ and c(u) > 0 for all u > 0. Then the
set of wave speeds for which equation (1.1) has an unbounded monotonic
travelling-wave solution decreasing to 0 is either empty or an interval of
the form [σ∗,∞) for finite σ∗. Moreover, in the latter case (1.1) has a one
parameter family of distinct unbounded monotonic travelling-wave solutions
decreasing to 0 in the sense of Definition 8 with every wave speed σ > σ∗,
and, exactly one such solution or a one parameter family of these solutions
with wave speed σ∗.

Theorem 50. Consider equation (1.1) with two sets of coefficients ai, bi and
ci on [0,∞) for i = 1, 2. Let σ1 and σ2 denote real parameters.
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(a) Suppose that u 7→ σ2u+ b2(u)−σ1u− b1(u) is a nondecreasing function
on (0,∞), and, (c2a

′
2)(u) ≤ (c1a

′
1)(u) for all u > 0.

(b) Suppose that σ2u + b2(u) ≥ σ1u + b1(u) and max{0, (c2a
′
2)(u)} ≤

(c1a
′
1)(u) for all u > 0.

(c) Suppose that in addition to the hypotheses of (b) there holds σ2u +
b2(u) > σ1u + b1(u) for some u > 0 and (c2a

′
2)(u) > 0 for all u > 0.

Then in both cases (a) and (b), if equation (1.1) with i = 1 admits an
unbounded monotonic travelling-wave solution with speed σ1 decreasing to
0, so does (1.1) with i = 2 and speed σ2. In particular, in case (c), the
last-mentioned equation admits a one parameter family of such solutions.
Idem ditto, if equation (1.1) with i = 1 admits an unbounded strict semi-
wavefront solution with speed σ1 decreasing to 0, so does (1.1) with i = 2
and speed σ2. Furthermore, in case (c), the last-mentioned equation admits
a one parameter family of such solutions.

Theorem 51. Suppose that ` =∞. Then the equation

ut = (a(u))xx + (b(u))x (11.1)

admits an unbounded monotonic travelling-wave solution decreasing to 0 if
and only if

sup
0<u<∞

{
−b(u)

u

}
<∞. (11.2)

Furthermore, the equation admits an unbounded strict semi-wavefront solu-
tion decreasing to 0 if and only if (11.2) holds and∫ ∞

1

a′(s)
max{s, b(s)} ds <∞.

Theorem 52. Suppose that ` = ∞ and c(u) ≤ 0 for all u > 0. Then the
equation

ut = (a(u))xx + c(u) (11.3)

admits an unbounded monotonic travelling-wave solution decreasing to 0.
Furthermore, the equation admits an unbounded strict semi-wavefront solu-
tion decreasing to 0 if and only if∫ ∞

1

a′(s)
max{s,Q(s)} ds <∞, (11.4)

where

Q(s) =
∣∣∣∣2∫ s

0
c(r)a′(r) dr

∣∣∣∣1/2 . (11.5)
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Theorem 53. Suppose that ` = ∞ and c(u) ≥ 0 for all u > 0. Then
equation (11.3) admits an unbounded monotonic travelling-wave solution de-
creasing to 0 if and only if

sup
0<s<∞

{
1
s

∫ s

0

c(u)a′(u)
u

du

}
<∞. (11.6)

Furthermore, the equation admits an unbounded strict semi-wavefront solu-
tion decreasing to 0 if and only if (11.6) holds and∫ ∞

1

a′(s)
s

ds <∞. (11.7)

At the risk of stating the obvious, if the conclusion of any of the last three
theorems is that the equation admits an unbounded monotonic travelling-
wave solution decreasing to 0, but, it does not admit an unbounded strict
semi-wavefront solution decreasing to 0, then every solution in the first-
mentioned category is necessarily global.

In the next section we shall complement the above results with a com-
plete characterization of global monotonic travelling-wave solutions and un-
bounded monotonic travelling-wave solutions for equations of the form (1.1)
with power-law coefficients. In particular, we shall see that all the different
alternatives implicit in Theorem 49 are viable.

By Theorem 3, the partial differential equation (1.1) admits an un-
bounded monotonic travelling-wave solution with speed σ decreasing to 0 if
and only if the integral equation (1.9) has a solution θ satisfying the integra-
bility condition on [0,∞). Moreover, by Corollary 3.4, equation (1.1) admits
an unbounded strict semi-wavefront solution with speed σ decreasing to 0 if
and only if (1.9) has such a solution θ satisfying the additional constraint∫ ∞

1

a′(s)
θ(s)

ds <∞. (11.8)

Plainly, to check this criterion, it suffices to consider the maximal solution
of the integral equation should the latter admit more than one solution. In
this light, Theorem 48 is a consequence of Lemmas A2(i) and A4(i). The
remaining theorems can be obtained as follows.

Proof of Theorem 49. Suppose that the set S of wave speeds for which equa-
tion (1.1) has an unbounded monotonic travelling-wave solution decreasing
to 0 is not empty. Then by Theorem 3 and Lemma A6, S is an interval
which is unbounded above. Define σ∗ := inf S, and, for every σ ∈ S let
θ(·;σ) denote the maximal solution of equation (1.9). By Lemma A6(ii)
there holds

θ(δ;σ2) ≥ θ(δ;σ1) + (σ2 − σ1)δ for all δ > 0 and σ2 ≥ σ1 (11.9)
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such that σ1 ∈ S. The absurdity of the passage to the limit σ1 → −∞
in this inequality demonstrates that σ∗ must be finite. Furthermore this
inequality shows that θ(s) := limσ↓σ∗ θ(s;σ) is well-defined for all s ≥ 0.
Applying the Monotone Convergence Theorem one may subsequently pass
to the limit σ ↓ σ∗ in (1.9) to deduce that θ satisfies (1.9) with σ = σ∗

on [0,∞). Whence, by Lemma 2, θ also satisfies the integrability condi-
tion on [0,∞). This proves that S = [σ∗,∞). Now, let us fix σ ≥ σ∗

and δ > 0. According to Lemma 8, for every 0 < % ≤ 1 equation (1.9)
has one and only one solution θ(·;σ; %) on an interval [0,∆(%)) with the
following properties: ∆(%) = ∞ or θ(s;σ, %) → 0 as s ↑ ∆(%), and, given
any 0 < %1 < %2 ≤ 1 there holds 0 < ∆(%1) ≤ ∆(%2) ≤ ∆(1) = ∞
and θ(s;σ, %1) < θ(s;σ, %2) ≤ θ(s;σ; 1) = θ(s;σ) for all 0 < s < ∆(%1).
Let R0 := {0 < % ≤ 1 : ∆(%) ≥ δ}, R1 := {% ∈ R0 : ∆(%) = ∞},
R2 := {% ∈ R0 : θ(δ;σ; %) ≥ θ(δ;σ∗)}, and, %∗i := inf Ri for i = 0, 1, 2.
From the proof of Lemma 8, it can be deduced that 0 < %∗0 < %∗1, %

∗
2 ≤ 1,

that %∗i ∈ Ri for i = 0, 1, 2, and, that the function % 7→ θ(δ;σ, %) is continu-
ous on [%∗0, 1]. Subsequently Lemma 7 implies that %∗1 ≤ %∗2. Meanwhile, by
(11.9), %∗2 < 1 if σ > σ∗. Hence either %∗1 = 1, in which case σ = σ∗ and
equation (1.9) has exactly one solution satisfying the integrability condition
on [0,∞), or, %∗1 < 1, in which case there is a continuous order-preserving
bijective mapping from [%∗, 1] onto the set of such solutions. Composing this
mapping with a linear mapping from [0, 1] onto [%∗, 1] and recalling Lemma 3
shows that in the latter case equation (1.1) has a one parameter family of
solutions in the sense of Definition 8. 2

Proof of Theorem 50. The comparison principle for solutions of the integral
equation (1.9), Lemma A6, readily yields the conclusions of the theorem
when hypotheses (a) or (b) hold. To obtain the conclusions of the theorem
under hypothesis (c), we fix δ > 0 such that σ2δ + b2(δ) > σ1δ + b1(δ). Sub-
sequently, identifying the hypothesized solution of equation (1.9) for i = 1
with θ(·;σ∗) and solutions of (1.9) for i = 2 with the functions θ(·; ρ, σ),
the argument yielding multiplicity of solutions for σ > σ∗ in the proof of
Theorem 49 can be applied in this case too. 2

Proof of Theorem 51. For the convection-diffusion equation (11.1) the in-
tegral equation (1.9) reduces to θ(s) = σs + b(s). So for the existence of
a nonnegative ‘solution’ on [0,∞) one plainly requires σ ≥ σ∗, where σ∗

denotes the quantity on the left-hand side of (11.2). On the other hand, for
every σ > σ∗ such a function θ is positive on (0,∞). This yields the first
assertion of the theorem. The second follows from the estimate

min{σ − σ∗, 1} ≤ θ(s)
max{s, b(s)} ≤ σ + 1

for all s > 0 and σ > max{σ∗, 0}, which can be obtained from the proof of
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Theorem 15. 2

Proof of Theorem 52. It is easy to check that when σ = 0 the integral
equation

θ(s) = σs−
∫ s

0

c(r)a′(r)
θ(r)

dr. (11.10)

associated with the reaction-diffusion equation (11.3) admits the solution
θ ≡ Q on [0,∞). Therefore, for every σ > 0, this equation has a unique so-
lution θ on [0,∞), by Lemmas A2(i) and A6(i). Moreover, θ ≥ Q on [0,∞).
Substituting this inequality in the right-hand side of (11.10) subsequently
yields σs ≤ θ(s) ≤ σs + Q(s) for all s > 0. So, combining these estimates,

min{σ, 1} ≤ θ(s)
max{s,Q(s)} ≤ σ + 1

for every s > 0. This gives the existence of a unique solution θ on [0,∞) for
every σ > 0, for which (11.4) and (11.8) are equivalent. 2

Proof of Theorem 53. Adapting the proof of Lemma 10, for the existence
of a solution of (11.10) necessarily Λ < ∞, where Λ denotes the quantity
on the left-hand side of (11.6). By the same token, for every σ ≥ 2

√
Λ this

integral equation has a maximal solution θ on [0,∞) satisfying

σ +
√

σ2 − 4Λ
2

≤ θ(s)
s
≤ σ

for all s > 0. This yields the result. 2

In [105], under the conditions of Theorem 53 plus some additional regu-
larity hypotheses, Galaktionov and Vázquez deduced that the necessary and
sufficient criterion for the existence of an unbounded monotonic travelling-
wave solution is

sup
0<s<∞

{
Q(s)

s

}
<∞, (11.11)

where Q is given by (11.5). Likewise, the necessary and sufficient criterion
for the existence of an unbounded strict semi-wavefront solution is that
(11.7) and (11.11) hold. The conclusions of Theorem 53 are equivalent to
the results in [105], representing a generalization. This can be deduced from
the identity∫ s

ε

c(u)a′(u)
u

du =
1
s

∫ s

ε
c(u)a′(u) du +

∫ s

ε

1
r2

∫ r

ε
c(u)a′(u) du dr
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for any 0 < ε < s < ∞. Whence, multiplying the limit as ε ↓ 0 by 2/s, we
obtain

2
{

1
s

∫ s

0

c(u)a′(u)
u

du

}
=

Q2(s)
s2 +

1
s

∫ s

0

Q2(r)
r2 dr

for all 0 < s <∞.
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12. Global waves for power-law equations

With the porous media equation as prototype, equations of the class (1.1)
with power-law coefficients have attracted much interest to date. See, for
instance, [117, 157] for an impression of the literature on this type of equa-
tion prior to 1996. In this section, we shall classify all the global monotonic
travelling-wave solutions decreasing to 0 and all the unbounded monotonic
semi-wavefront solutions decreasing to 0 for equations of this type. We begin
with the power-law convection-diffusion equation, proceed to the power-law
reaction-diffusion equation with linear convection, and, end with the full
equation.

In Section 7 we have seen that the integral equation associated with a
power-law reaction-convection-diffusion equation takes the form

θ(s) = σs + b0s
n −mc0

∫ s

0

rm+p−1

θ(r)
dr (12.1)

where m > 0, n > 0, m+p > 0, b0 and c0 are real parameters. Furthermore,
when this equation has a unique solution θ, there holds

θ(s) ∼ θ0s
q0 as s ↓ 0 for some θ0 > 0 and q0 > 0. (12.2)

Whereas when the integral equation admits more than one solution, its
maximal solution satisfies such a relation. As it turns out, (12.2) holds for
every solution θ of the integral equation (12.1) on [0,∞). Moreover, such a
function satisfies

θ(s) ∼ θ1s
q1 as s→∞ for some θ1 > 0 and q1. (12.3)

12.1. Convection-diffusion

The power-law convection-diffusion equation reads

ut = (um)xx + b0(un)x (12.4)

with m > 0, n > 0 and b0 parameters. Since for this partial differential
equation, our integral equation reads simply θ(s) = σs + b0s

n, the following
results are quite easy to obtain. To avoid the ambivalence with regard to the
value of n caused by b0 = 0, the latter parameter value will be considered
exclusively in tandem with n = 1.

Theorem 54 (Wavefronts). Let m > 0, n > 0 and b0 be real numbers.

(a) If n < 1 and b0 > 0, equation (12.4) has exactly one distinct wave-
front solution decreasing to 0 for every wave speed σ < 0 and no such
solution for any wave speed σ ≥ 0.
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n b0 wave speed q0 θ0 q1 θ1

n < 1 b0 > 0 σ > 0 n b0 1 σ
σ = 0 n b0 n b0
σ < 0 n b0 none none

n = 1 any b0 σ > −b0 1 σ − b0 1 σ − b0
n > 1 b0 > 0 σ > 0 1 σ n b0

σ = 0 n b0 n b0
b0 < 0 σ > 0 1 σ none none

Table 5: Values for which a solution of (12.1) with c0 = 0 satisfies (12.2)
and (12.3).

(b) If n > 1 and b0 < 0, equation (12.4) has exactly one distinct wave-
front solution decreasing to 0 for every wave speed σ > 0 and no such
solution for any wave speed σ ≤ 0.

(c) If n < 1 and b0 < 0, if n = 1, or, if n > 1 and b0 > 0, equation (12.4)
has no wavefront solutions decreasing to 0.

Theorem 55 (Behaviour). Fix m > 0, n > 0 and b0. Let f be a wave-
front solution of equation (12.4) decreasing to 0, and, q0 and θ0 be given by
Table 5. Then f is a wavefont solution from α := |σ/b0|1/(n−1) to 0. There
holds f(ξ) < α for all −∞ < ξ <∞, and,

{α− f(ξ)}−1f ′(ξ)→ −(n− 1)
m

σα1−m as ξ → −∞.

Furthermore, if m > q0, the support of f is bounded above, and,

fm−q0−1(ξ)f ′(ξ)→ −θ0

m
(12.5)

as ξ ↑ Ξ0, where Ξ0 := sup{ξ ∈ (−∞,∞) : f(ξ) > 0}. Whereas, if m ≤ q0,
the support of f is unbounded above, and, (12.5) holds as ξ →∞.

Theorem 56 (Unbounded waves). Let m > 0, n > 0 and b0 be real
numbers.

(a) If n < 1 and b0 > 0, equation (12.4) has exactly one distinct unbounded
monotonic travelling-wave solution decreasing to 0 for every wave speed
σ ≥ 0 and no such solution for any wave speed σ < 0. This solution
is global if and only if m ≥ 1, or, m ≥ n and σ = 0.

(b) If n = 1, equation (12.4) has exactly one distinct unbounded monotonic
travelling-wave solution decreasing to 0 for every wave speed σ > −b0
and no such solution for any wave speed σ ≤ −b0. This solution is
global if and only if m ≥ 1.
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(c) If n > 1 and b0 > 0, equation (12.4) has exactly one distinct unbounded
monotonic travelling-wave solution decreasing to 0 for every wave speed
σ ≥ 0 and no such solution for any wave speed σ < 0. This solution
is global if and only if m ≥ n.

(d) If n 6= 1 and b0 < 0, equation (12.4) has no unbounded monotonic
travelling-wave solutions decreasing to 0.

Theorem 57 (Behaviour). Fix m > 0, n > 0 and b0. Let f be an un-
bounded monotonic travelling-wave solution of equation (12.4) decreasing to
0, and, q0, θ0, q1, and θ1 be given by Table 5. Then if q1 ≤ m the solution
f is global and there holds

fm−q1−1(ξ)f ′(ξ)→ −θ1

m
(12.6)

as ξ → −∞. On the other hand, if q1 > m then f is a strict semi-wavefront
and (12.6) holds as ξ ↓ ω for some finite ω. Furthermore, if q0 < m the
support of f is bounded above, and, (12.5) holds as ξ ↑ Ξ0, where Ξ0 is
the maximum of the support of f . Whereas, if q0 ≥ m the support of f is
unbounded above and (12.5) holds as ξ →∞.

12.2. Reaction-diffusion with linear convection

Travelling-wave solutions of the equation

ut = (um)xx +
{

c0u
p for u > 0

0 for u = 0
(12.7)

have been studied in great depth by Herrero and Vázquez [148] and by
de Pablo and Vázquez [209]. In the earlier study [148], equation (12.7) was
analysed with c0 < 0 and no restriction on m and p. In the later paper,
the subject was (12.7) with c0 > 0, m > 1 and no restriction on p. In
both of these papers travelling waves were studied by means of a detailed
phase-plane analysis. Besides answering the question of the existence and
uniqueness of such solutions, these analyses provided explicit results on the
asymptotic behaviour of the waves. A nontrivial travelling-wave solution
whose support is bounded above is referred to as a finite travelling-wave.
The authors also adopt terminology first introduced by the second author
of the present paper in [168]. This is to say that if a travelling-wave has
speed σ > 0 it is said to be a heating-wave, and, if σ < 0 it is said to be
a cooling-wave. A travelling-wave with speed σ = 0 is called a stationary-
wave. In the earlier paper [148], a strict semi-wavefront solution is referred
to as a partial-wave .
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The results of Herrero and Vázquez [148] and de Pablo and Vázquez [209]
are confirmed by the following theorems for the equation

ut = (um)xx + b0ux +
{

c0u
p for u > 0

0 for u = 0.
(12.8)

Note that equation (12.8) with c0 6= 0 admits no bounded monotonic global
travelling-wave solutions decreasing to 0 whatsoever by Corollary 5.1.

Theorem 58 (Existence). Let m > 0, m + p > 0, b0 and c0 6= 0 be real
numbers.

(a) If c0 < 0, equation (12.8) has exactly one distinct unbounded monotonic
travelling-wave solution decreasing to 0 for every wave speed σ. This
solution is global if and only if m ≥ max{p, 1}, m ≥ p and σ ≤ −b0,
or, max{m, 1} ≥ p and σ < −b0.

(b) If c0 > 0 and m+ p = 2, equation (12.8) has a one parameter family of
distinct unbounded monotonic travelling-wave solutions decreasing to
0 in the sense of Definition 8 for every wave speed σ > 2

√
mc0 − b0,

exactly one such distinct solution with wave speed 2
√

mc0 − b0, and,
no such solution for any wave speed σ < 2

√
mc0− b0. These solutions

are global if and only if m ≥ 1.

(c) If c0 > 0 and m + p 6= 2, equation (12.8) has no unbounded monotonic
travelling-wave solutions decreasing to 0.

Theorem 59 (Behaviour). Fix m > 0, m + p > 0, b0 and c0 6= 0. Let
f be an unbounded monotonic travelling-wave solution of equation (12.8)
decreasing to 0, and, q0, θ0, q1, and θ1 be given by Table 6. Then, verba-
tim, the conclusions of Theorem 57 hold. Moreover, the number of distinct
travelling-wave solutions for which these conclusions apply is as stated in
Table 6.

In the light of Theorem 3 and its corollaries, to prove these theorems it
is enough to confirm the following lemma.

Lemma 21. Let m > 0, n = 1, m + p > 0, b0 and c0 6= 0 be real numbers.
Then the integral equation (12.1) admits a solution θ satisfying the integra-
bility condition on [0,∞) only for those values of c0, m + p and σ shown in
Table 6. Such a solution satisfies (12.2) and (12.3) with the values shown in
this table. Moreover, the number of solutions satisfying these relations is as
stated in Table 6.

Proof. Without loss of generality we may suppose that b0 = 0.
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c0 m + p wave speed q0 θ0 q1 θ1 No.

c0 < 0 m + p > 2 σ > −b0 1 σ + b0 (m + p)/2
√

2m
m+p |c0| 1

σ = −b0 (m + p)/2
√

2m
m+p |c0| (m + p)/2

√
2m
m+p |c0| 1

σ < −b0 m + p− 1 mc0/(σ + b0) (m + p)/2
√

2m
m+p |c0| 1

m + p = 2 all σ 1 σ+b0+
√

(σ+b0)2−4mc0
2 1 σ+b0+

√
(σ+b0)2−4mc0

2 1

m + p < 2 σ > −b0 (m + p)/2
√

2m
m+p |c0| 1 σ + b0 1

σ = −b0 (m + p)/2
√

2m
m+p |c0| (m + p)/2

√
2m
m+p |c0| 1

σ < −b0 (m + p)/2
√

2m
m+p |c0| m + p− 1 mc0/(σ + b0) 1

c0 > 0 m + p = 2 σ > 2
√

mc0 − b0 1 σ+b0+
√

(σ+b0)2−4mc0
2 1 σ+b0+

√
(σ+b0)2−4mc0

2 1

1 σ+b0−
√

(σ+b0)2−4mc0
2 1 σ+b0+

√
(σ+b0)2−4mc0

2 ∞

1 σ+b0−
√

(σ+b0)2−4mc0
2 1 σ+b0−

√
(σ+b0)2−4mc0

2 1

σ = 2
√

mc0 − b0 1
√

mc0 1
√

mc0 1

Table 6: Values for which a solution of (12.1) with n = 1 and c0 6= 0 satisfies
(12.2) and (12.3), and, the corresponding number of solutions.

(a) Suppose that c0 < 0. Then equation (12.1) has a unique solution θ on
[0,∞) which is positive on (0,∞) by Lemma A4(i). Moreover, by the
proof of Theorem 22, θ satisfies (12.2) for some θ0 > 0 and q0 > 0,
where the value of q0 can be read from Table 1. The corresponding
value of θ0 may be found by substitution in (12.1). It therefore remains
to examine the behaviour of θ(s) as s→∞. We distinguish six cases.
Throughout we let

Q(s) :=
√

2m
m + p

|c0|s(m+p)/2.

(i) σ = 0. In this case it can be verified that θ ≡ Q.
(ii) m + p = 2. In this case θ can also be computed explicitly as

θ(s) =
σ +
√

σ2 − 4mc0

2
s.

(iii) m + p > 2 and σ > 0. From Lemmas A2(i) and A6(i) and the
case (i) above, it follows that

θ(s) ≥ Q(s) for all s > 0. (12.9)
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Substituting this inequality in the right-hand side of (12.1) sub-
sequently yields

θ(s) ≤ σs + Q(s) for all s > 0. (12.10)

These two inequalities imply θ(s) ∼ Q(s) as s→∞.

(iv) m + p > 2 and σ < 0. Arguing analogously to in the previous
case, (12.9) and (12.10) hold with the inequalities reversed. This
gives the identical behaviour for s→∞.

(v) m + p < 2 and σ > 0. Following the proof of case (iii), the
solution θ of (12.1) again satisfies (12.10). Substituting (12.10)
in the right-hand side of (12.1) then also yields

θ(s) ≥ σs−mc0

∫ s

0

rm+p−1

σr + Q(r)
dr for all s > 0. (12.11)

Together, (12.10) and (12.11) yield θ(s) ∼ σs as s→∞.

(vi) m + p < 2 and σ < 0. This last case requires a little more work
than the previous ones. For fixed ε > 0 consider the function

ψ(s) := (1 + ε)
mc0

σ
sm+p−1.

We assert that there exists an s∗ > 0 such that

θ(s) ≤ ψ(s) for all s ≥ s∗. (12.12)

To confirm this assertion, suppose, to start with that there exists
an s0 > 0 such that

θ(s) ≥ ψ(s) for all s > s0. (12.13)

Then by (12.1)

θ(s1)− θ(s0) = σ(s1 − s0)−mc0

∫ s1

s0

rm+p−1

θ(r)
dr (12.14)

for all s1 > s0. Inserting (12.13) subsequently gives

(1 + ε)
mc0

σ
sm+p−1

1 − θ(s0) <
ε

1 + ε
σ(s1 − s0).

However, dividing by s1, this is nonsensical in the limit s1 →∞.
So, if our assertion is not true, there exist arbitrarily large s0 and
s1 > s0 such that

θ(si) = ψ(si) for i = 0, 1 (12.15)
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and

θ(s) > ψ(s) for s0 < s < s1. (12.16)

However, using (12.15) and (12.16) to eliminate θ from (12.14),
this implies

(1 + ε)
mc0

σ
(sm+p−1

1 − sm+p−1
0 ) <

ε

1 + ε
σ (s1 − s0) .

Whence, multiplying by (1+ ε)σ and using the Mean Value The-
orem, we obtain

εσ2 < (1 + ε)2m |(m + p− 1)c0| sm+p−2
0 .

This contradicts the supposition that s0 can be arbitrarily large.
Therefore our assertion must be true. Similarly, we can show that
there is an s∗ > 0 such that

θ(s) ≥ (1− ε)
mc0

σ
sm+p−1 for all s ≥ s∗. (12.17)

The inequalities (12.12) and (12.17) give the required behaviour.

(b) Suppose that c0 > 0 and m + p = 2. Then equation (12.1) has no
solution for σ < 2

√
mc0 by LemmaA3(ii). While if σ ≥ 2

√
mc0 the

results are given explicitly by Lemma A7.

(c) Suppose that c0 > 0 and m + p 6= 2. In this case, from the proof of
Theorem 22 it follows that equation (12.1) has no solution if m + p <
2, or, if m + p > 2 and σ ≤ 0. The outstanding task is therefore
to demonstrate that equation (12.1) has no solution on [0,∞) when
m + p > 2 and σ > 0. From (12.1) though, we have the estimate
θ(s) ≤ σs for any such solution θ. Substituting this inequality in the
right-hand side of (12.1) subsequently implies

θ(s) ≤ s

{
σ − mc0

(m + p− 1)σ
sm+p−2

}
.

Whence we have a contradiction for large s. 2

12.3. Reaction-convection-diffusion

Recently de Pablo and Sánchez [208] have conducted a thorough analysis
of semi-wavefront solutions decreasing to 0 for the full power-law reaction-
convection-diffusion equation

ut = (um)xx + b0(un)x +
{

c0u
p for u > 0

0 for u = 0
(12.18)
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with b0 6= 0 and c0 6= 0. Terms which are used in that analysis include a local
wave to distinguish a strict semi-wavefront solution from a global solution,
a finite wave for a travelling-wave solution whose support is bounded above
or below, and, a positive wave for a global travelling-wave solution whose
support is unbounded above and below. Also for the reader referring to [208],
at the risk of causing confusion where we intend to clarify, we mention that
a bounded wave in that article is synonymous with a global travelling-wave
solution, while an unbounded wave is an unbounded strict semi-wavefront
solution in our terminology. The analysis of [208] is a characterization of
unbounded monotonic travelling-wave solutions decreasing to 0 tantamount
to the following theorems.

Theorem 60. Let m > 0, 0 < n < 1 or n > 1, m + p > 0, b0 6= 0 and
c0 6= 0 be real numbers.

(a) If c0 < 0, equation (12.18) has exactly one distinct unbounded mono-
tonic travelling-wave solution decreasing to 0 for every wave speed σ.
When b0 > 0 this solution is global if and only if m ≥ max{n, p, 1},
m ≥ max{n, p} and σ ≤ 0, or, max{m, 1} ≥ max{n, p} and σ <
0. When b0 < 0 this solution is global if and only if max{m,n} ≥
max{p, 1}, max{m,n} ≥ p and σ ≤ 0, or, max{m,n, 1} ≥ p and
σ < 0.

(b) If c0 > 0, m + p = 2 and b0 > 0, equation (12.18) has a one pa-
rameter family of distinct unbounded monotonic travelling-wave solu-
tion decreasing to 0 in the sense of Definition 8 for every wave speed
σ ≥ 2

√
mc0 and no such solution for any wave speed σ < 2

√
mc0. All

these solutions are global if m ≥ max{n, 1}, precisely one solution with
every given wave speed is global if n > m ≥ 2−n, and, none are global
if m < min{2− n, 1}.

(c) If c0 > 0, 2max{n, 1} > m + p > 2min{n, 1} and b0 > 0, there exists
a σ∗ > 0 such that equation (12.18) has a one parameter family of
distinct unbounded monotonic travelling-wave solutions decreasing to
0 for every wave speed σ > σ∗, exactly one such solution with wave
speed σ = σ∗, and, no such solution for any wave speed σ < σ∗. All
these solutions are global if m ≥ max{n, 1}, precisely one solution with
every given wave speed is global if m < max{n, 1} and p ≤ max{n, 1},
and, none are global if p > max{n, 1}.

(d) If c0 > 0, m + p = 2n and b0 > 2
√

mc0/n, equation (12.18) has
a one parameter family of distinct unbounded monotonic travelling-
wave solution decreasing to 0 for every wave speed σ ≥ 0 and no such
solution for any wave speed σ < 0. All these solutions are global if
m ≥ max{n, 1}, precisely one solution with every given wave speed
σ > 0 is global and all the solutions with wave speed 0 are global
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if 1 > m ≥ n, precisely one solution with every given wave speed
σ > 0 is global and none of the solutions with wave speed 0 are global
if n > m ≥ 2n − 1, and, none at all of the solutions are global if
m < min{2n− 1, n}.

(e) If c0 > 0, m + p = 2n and b0 = 2
√

mc0/n, equation (12.18) has a
one parameter family of distinct unbounded monotonic travelling-wave
solution decreasing to 0 for every wave speed σ > 0, exactly one such
solution with wave speed σ = 0, and no such solution for any wave
speed σ < 0. All these solutions are global if m ≥ max{n, 1}, precisely
one solution with every given wave speed σ ≥ 0 is global if 1 > m ≥ n,
precisely one solution with every given wave speed σ > 0 is global and
the solution with wave speed 0 is not global if n > m ≥ 2n − 1, and,
none at all of the solutions are global if m < min{2n− 1, n}.

(f) If c0 > 0 and m + p > 2max{n, 1}, if c0 > 0 and m + p < 2min{n, 1},
if c0 > 0 and b0 < 0, or, if c0 > 0, m + p = 2n and b0 < 2

√
mc0/n,

equation (12.18) has no unbounded monotonic travelling-wave solu-
tions decreasing to 0.

Theorem 61 (Behaviour). Fix m > 0, 0 < n < 1 or n > 1, m + p > 0,
b0 6= 0 and c0 6= 0. Let f be an unbounded monotonic travelling-wave
solution of equation (12.18) decreasing to 0. Also, let q0, θ0, q1, and θ1
be given by Table 7, 8, 9 or 10 according to whether c0 < 0 and n < 1,
c0 < 0 and n > 1, c0 > 0 and n < 1, or, c0 > 0 and n > 1 respectively.
Then, verbatim, the conclusions of Theorem 57 hold. Moreover, when c0 > 0
the number of distinct travelling-wave solutions for which these conclusions
apply is as stated in Table 9 for n < 1 and Table 10 for n > 1.

We recall that by Corollary 5.1, when c0 6= 0 equation (12.18) admits no
bounded monotonic global travelling-wave solutions.

The characterization of unbounded monotonic travelling-wave solutions
of equation (12.18) decreasing to 0 by de Pablo and Sánchez [208] is ob-
tained using a sophisticated phase-plane analysis. This has the following
interpretation for solutions of the corresponding integral equation (12.1).

Lemma 22. Let the constraints of Theorem 60 hold.

(i) If c0 < 0 then the integral equation (12.1) admits a unique solution θ
satisfying the integrability condition on [0,∞). Such a solution satisfies
(12.2) and (12.3) with the values shown in Table 7 for n < 1 and
Table 8 for n > 1.

(ii) If c0 > 0 then (12.1) admits a solution θ satisfying the integrability
condition on [0,∞) only for those values of m + p, b0 and σ shown in
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m + p b0 wave speed q0 θ0 q1 θ1

m + p > 2 b0 > 0 all σ n b0 (m + p)/2
√

2m
m+p |c0|

b0 < 0 all σ m + p− n mc0/nb0 (m + p)/2
√

2m
m+p |c0|

m + p = 2 b0 > 0 all σ n b0 1 σ+
√
σ2−4mc0

2

b0 < 0 all σ 2− n mc0/nb0 1 σ+
√
σ2−4mc0

2

2 > m + p > 2n b0 > 0 σ > 0 n b0 1 σ

σ = 0 n b0 (m + p)/2
√

2m
m+p |c0|

σ < 0 n b0 m + p− 1 mc0/σ

b0 < 0 σ > 0 m + p− n mc0/nb0 1 σ

σ = 0 m + p− n mc0/nb0 (m + p)/2
√

2m
m+p |c0|

σ < 0 m + p− n mc0/nb0 m + p− 1 mc0/σ

m + p = 2n b0 6= 0 σ > 0 n
b0+
√
b20−4mc0/n

2 1 σ

σ = 0 n
b0+
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2

σ < 0 n
b0+
√
b20−4mc0/n

2 2n− 1 mc0/σ

m + p < 2n b0 > 0 σ > 0 (m + p)/2
√

2m
m+p |c0| 1 σ

σ = 0 (m + p)/2
√

2m
m+p |c0| n b0

σ < 0 (m + p)/2
√

2m
m+p |c0| m + p− 1 mc0/σ

b0 < 0 σ > 0 (m + p)/2
√

2m
m+p |c0| 1 σ

σ = 0 (m + p)/2
√

2m
m+p |c0| m + p− n mc0/nb0

σ < 0 (m + p)/2
√

2m
m+p |c0| m + p− 1 mc0/σ

Table 7: Values for which the solution of (12.1) with n < 1, b0 6= 0 and
c0 < 0 satisfies (12.2) and (12.3).
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m + p b0 wave speed q0 θ0 q1 θ1

m + p > 2n b0 > 0 σ > 0 1 σ (m + p)/2
√

2m
m+p |c0|

σ = 0 n b0 (m + p)/2
√

2m
m+p |c0|

σ < 0 m + p− 1 mc0/σ (m + p)/2
√

2m
m+p |c0|

b0 < 0 σ > 0 1 σ (m + p)/2
√

2m
m+p |c0|

σ = 0 m + p− n mc0/nb0 (m + p)/2
√

2m
m+p |c0|

σ < 0 m + p− 1 mc0/σ (m + p)/2
√

2m
m+p |c0|

m + p = 2n b0 6= 0 σ > 0 1 σ n
b0+
√
b20−4mc0/n

2

σ = 0 n
b0+
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2

σ < 0 2n− 1 mc0/σ n
b0+
√
b20−4mc0/n

2

2n > m + p > 2 b0 > 0 σ > 0 1 σ n b0

σ = 0 (m + p)/2
√

2m
m+p |c0| n b0

σ < 0 m + p− 1 mc0/σ n b0

b0 < 0 σ > 0 1 σ m + p− n mc0/nb0

σ = 0 (m + p)/2
√

2m
m+p |c0| m + p− n mc0/nb0

σ < 0 m + p− 1 mc0/σ m + p− n mc0/nb0

m + p = 2 b0 > 0 all σ 1 σ+
√
σ2−4mc0

2 n b0

b0 < 0 all σ 1 σ+
√
σ2−4mc0

2 2− n mc0/nb0

m + p < 2 b0 > 0 all σ (m + p)/2
√

2m
m+p |c0| n b0

b0 < 0 all σ (m + p)/2
√

2m
m+p |c0| m + p− n mc0/nb0

Table 8: Values for which the solution of (12.1) with n > 1, b0 6= 0 and
c0 < 0 satisfies (12.2) and (12.3).
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m + p b0 wave speed q0 θ0 q1 θ1 No.

m + p = 2 b0 > 0 σ > 2
√

mc0 n b0 1 σ+
√
σ2−4mc0

2 1

2− n mc0/nb0 1 σ+
√
σ2−4mc0

2 ∞

2− n mc0/nb0 1 σ−
√
σ2−4mc0

2 1

σ = 2
√

mc0 n b0 1
√

mc0 1

2− n mc0/nb0 1
√

mc0 ∞

2 > m + p > 2n b0 > 0 σ > σ∗ n b0 1 σ 1

m + p− n mc0/nb0 1 σ ∞

m + p− n mc0/nb0 m + p− 1 mc0/σ 1

σ = σ∗ n b0 m + p− 1 mc0/σ 1

m + p = 2n b0 > 2
√

mc0/n σ > 0 n
b0+
√
b20−4mc0/n

2 1 σ 1

n
b0−
√
b20−4mc0/n

2 1 σ ∞

n
b0−
√
b20−4mc0/n

2 2n− 1 mc0/σ 1

σ = 0 n
b0+
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2 1

n
b0−
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2 ∞

n
b0−
√
b20−4mc0/n

2 n
b0−
√
b20−4mc0/n

2 1

b0 = 2
√

mc0/n σ > 0 n
√

mc0/n 1 σ ∞

n
√

mc0/n 2n− 1 mc0/σ 1

σ = 0 n
√

mc0/n n
√

mc0/n 1

Table 9: Values for which a solution of (12.1) with n < 1, b0 6= 0 and c0 > 0
satisfies (12.2) and (12.3), and, the corresponding number of solutions.
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m + p b0 wave speed q0 θ0 q1 θ1 No.

m + p = 2n b0 > 2
√

mc0/n σ > 0 1 σ n
b0+
√
b20−4mc0/n

2 1

2n− 1 mc0/σ n
b0+
√
b20−4mc0/n

2 ∞

2n− 1 mc0/σ n
b0−
√
b20−4mc0/n

2 1

σ = 0 n
b0+
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2 1

n
b0−
√
b20−4mc0/n

2 n
b0+
√
b20−4mc0/n

2 ∞

n
b0−
√
b20−4mc0/n

2 n
b0−
√
b20−4mc0/n

2 1

b0 = 2
√

mc0/n σ > 0 1 σ n
√

mc0/n 1

2n− 1 mc0/σ n
√

mc0/n ∞

σ = 0 n
√

mc0/n n
√

mc0/n 1

2n > m + p > 2 b0 > 0 σ > σ∗ 1 σ n b0 1

m + p− 1 mc0/σ n b0 ∞

m + p− 1 mc0/σ m + p− n mc0/nb0 1

σ = σ∗ 1 σ m + p− n mc0/nb0 1

m + p = 2 b0 > 0 σ > 2
√

mc0 1 σ+
√
σ2−4mc0

2 n b0 1

1 σ−
√
σ2−4mc0

2 n b0 ∞

1 σ−
√
σ2−4mc0

2 2− n mc0/nb0 1

σ = 2
√

mc0 1
√

mc0 n b0 ∞

1
√

mc0 2− n mc0/nb0 1

Table 10: Values for which a solution of (12.1) with n > 1, b0 6= 0 and c0 > 0
satisfies (12.2) and (12.3), and, the corresponding number of solutions.
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Table 9 for n < 1 and Table 10 for n > 1. Such a solution satisfies
(12.2) and (12.3) with the values shown in these tables. Moreover, the
number of solutions satisfying these relations is as stated in Tables 9
and 10.

Many of the conclusions of this lemma and therewith Theorems 60 and 61
can be obtained from results we have already established and straightforward
study of the integral equation (12.1). For instance, when c0 < 0 it follows
from Theorem 48 that equation (12.18) has exactly one distinct unbounded
monotonic travelling-wave solution decreasing to 0 for every wave speed.
Moreover, the behaviour of any such solution can be confirmed by proving
part (i) of Lemma 22 along the lines of Lemma 21 for c0 < 0. Alternatively,
when c0 > 0 it follows from (12.1) that any solution θ of this equation
satisfies

θ(s) < σs + b0s
n for all s > 0. (12.19)

Hence if n < 1 we can define L := lim sups→∞ θ(s)/s in the knowledge that
0 ≤ L < ∞. This means that given any ε > 0 there exists an increasing
sequence {si}∞i=0 ⊂ (0,∞) such that si →∞ as i→∞, (L− ε)si < θ(si) for
all i ≥ 0, and, θ(r) < (L + ε)r for all r > s0. Substituting these inequalities
in (12.1) gives

(L− ε)si < σsi + b0s
n
i −mc0

∫ s0

0

rm+p−1

θ(r)
dr

− mc0

(m + p− 1)(L + ε)
(sm+p−1
i − sm+p−1

0 )

for all i ≥ 0. Dividing by si and passing to the limit i→∞ yields m+p ≤ 2.
Whereupon passage to the limit ε ↓ 0 implies that σ ≥ L ≥ 0 if m + p < 2
and σ ≥ L + mc0/L = (

√
L−

√
mc0/L)2 + 2

√
mc0 ≥ 2

√
mc0 if m + p = 2.

Similarly, when σ = 0 or n > 1, by considering L := lim sups→∞ θ(s)/sn we
can deduce that m + p ≤ 2n, b0 ≥ 0 if m + p < 2n, and, b0 ≥ 2

√
mc0/n if

m + p = 2n. Amalgamating these deductions with Theorems 3 and 22, we
conclude that under the initial hypotheses of Theorem 60, equation (12.1)
admits an unbounded monotonic travelling-wave solution decreasing to 0
only if m + p = 2n, b0 ≥ 2

√
mc0/n and σ ≥ 0; m + p = 2, b0 > 0 and

σ ≥ 2
√

mc0; or, 2min{n, 1} < m+p < 2max{n, 1}, b0 > 0 and σ > 0. Now,
when m + p = 2n, b0 = 2

√
mc0/n and σ = 0, or, when m + p = 2, b0 = 0

and σ = 2
√

mc0, Lemma A7(i) states that equation (12.1) has a unique
solution on [0,∞) and this solution is positive on (0,∞). Theorems 49 and 50
subsequently give all the existence results for m+p = 2n and m+p = 2. The
outstanding situation is that in which 2min{n, 1} < m + p < 2max{n, 1}
and b0 > 0, for which we already know that equation (12.1) has a solution
on [0,∞) only if σ > 0. In this situation, in the light of Theorems 3 and
49, to prove the existence of a number σ∗ > 0 such that (12.18) admits an
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unbounded monotonic travelling-wave solution with wave speed σ decreasing
to 0 if and only if σ ≥ σ∗, it suffices to show that (12.1) has a solution
satisfying the integrability condition on [0,∞) for large σ. For this purpose,
we remark to begin with, that one need only consider the case n < 1.
This follows from a nifty transformation in [208] which is equivalent to the
observation that if θ is a solution of the integral equation (12.1) on [0,∞), so
too is s 7→ θ(s1/n) with σ, b0, n, c0 and m+p replaced by b0, σ, 1/n, c0/n and
(m + p)/n respectively. Also by rescaling the dependent and independent
variables in (12.1), without loss of generality one may assume that b0 = 1
and c0 = 1/m. Against this background, following [208] we introduce the
parameter

γ :=
m + p− n− 1

n− 1
(12.20)

and note that −1 < γ < 1. Suppose that γ ≤ 0. In this case, it can be veri-
fied that θ2(s) := (1 + γ)−(1+γ)/(1−γ)sm+p−1 is a solution of equation (12.1)
with c0 = 1/m and σs + b0s

n replaced by b2(s) := θ2(s) + sm+p/θ2(s)
on [0,∞). Moreover, when σ ≥ (1 − γ)(1 + γ)(1+γ)/(1−γ), there holds
σs + sn ≥ b2(s) for all s > 0. On the other hand, supposing that γ > 0, it
can be verified that θ2(s) := (1+γ)−1sn is similarly a solution of (12.1) with
c0 = 1/m and σs+ b0s

n replaced by b2(s) := θ2(s)+ sm+p/(m+ p−n)θ2(s).
Moreover, σs+sn ≥ b2(s) for all s > 0, when σ ≥ (1−γ)(1+γ)(1+γ)/(1−γ)(m+
p− n)−1/(1−γ). Invoking Lemma A6(ii), this proves that for large enough σ
equation (12.1) has a solution satisfying the integrability condition on [0,∞).

The exposition above provides an upper bound on the magnitude of the
critical value σ∗ in Theorem 60(c) when γ 6= 0 which is sharper than the
corresponding bound in [208]. By further analysis of the integral equation
(12.1) one can also obtain a lower bound for γ 6= 0 which is sharper than
that previously obtained. We summarize these and other findings in the
next theorem.

Theorem 62 (Critical speed estimates). Define γ by (12.20). Then
there exists a function ς, which depends only on γ and n, such that the
critical wave speed σ∗ described in Theorem 60 part (c) is given by

σ∗ = b
−(1+γ)/(1−γ)
0 (mc0)1/(1−γ)ς1/(1−γ)(γ, n) (12.21)

and

ς(γ, 1/n) = nς(−γ, n) (12.22)

for all −1 < γ < 1, 0 < n < 1 and n > 1. There holds

ς(γ, n) ≤ (1− γ)1−γ(1 + γ)1+γ

max{n, 1}+ min{γ(n− 1), 0} (12.23)
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and

ς(γ, n) ≥ (1− γ)1−γ(1 + γ)1+γ

max{n, 1}+ max{γ(n− 1), 0} (12.24)

with strict inequality on both counts if γ 6= 0. Furthermore, for fixed n, b0
and mc0 there holds

σ∗ → 2
√

mc0 as γ ↓ −1,

σ∗ → 0 as γ ↑ 1 if b0 ≥ 2
√

mc0/n

and

σ∗ →∞ as γ ↑ 1 if b0 < 2
√

mc0/n.

Proof. The first assertions of the theorem and (12.23) follow from the
discussion above. When γ 6= 0 moreover, since (12.18) has precisely one
unbounded monotonic travelling-wave solution decreasing to 0 with wave
speed σ∗, while the comparison argument providing (12.23) falls under cat-
egory (c) of Theorem 50, the last-mentioned theorem states that this in-
equality must be strict. To obtain (12.24), we make use of the analy-
sis applied to the phase-plane by de Pablo and Sánchez [208] and trans-
fer it to the integral equation (12.1). We assume b0 = 1, n < 1 and
c0 = 1/m until mentioned otherwise. We begin with the case γ < 0. Take
σ = (1−γ)(1+γ)(1+γ)/(1−γ){1−γ(1−n)}−1/(1−γ), and, suppose that equation
(12.1) has a solution θ on [0,∞). In view of (12.19), we can define a contin-
uous function on (0,∞) by A(s) := sup{θ(r)/rn : 0 < r ≤ s}. We let υ(s)
denote the largest number r in the interval (0, s] such that A(s) = θ(r)/rn

if such a number exists, and, υ(s) = 0 otherwise. Substitution in equa-
tion (12.1) gives

A(s)υn(s) = θ(υ(s)) = συ(s) + υn(s)−
∫ υ(s)

0

rm+p−1

θ(r)
dr

≤ συ(s) + υn(s)− 1
(m + p− n)A(s)

υm+p−n(s) (12.25)

for every s > 0 such that υ(s) > 0. In fact, because θ̃(r) = A(s)rn is not an
exact solution of (12.1) on (0, υ(s)], we obtain (12.25) with strict inequality.
Setting

F±(υ) =
συ + υn ±

√
(συ + υn)2 − 4υm+p/(m + p− n)

2υn
,

this implies F−(υ(s)) < A(s) < F+(υ(s)) for all s > 0 such that υ(s) > 0.
However, because F± are both strictly increasing functions on (0,∞) such
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that F−(υ∗) = F+(υ∗) = (1 + γ)−1 for some number υ∗ > 0 (cf. [208]), this
excludes the possibility that A(s) = (1 + γ)−1 for any s > 0. Subsequently,
recalling that A is continuous on (0,∞) and A(s) < (1 + γ)−1 for small
s > 0 by (12.19), we must have A(s) < (1 + γ)−1 for every s > 0. In other
words, θ(r) < (1 + γ)−1rn for all r > 0. Substituting this inequality in the
right-hand side of (12.1) and passing to the limit s→∞ we obtain a contra-
diction. Thus, we conclude that for the taken value σ, equation (12.1) has no
solution on [0,∞). This yields (12.24) with strictness. The proof in the case
γ > 0 is similar. Supposing that (12.1) with σ = (1−γ)(1+γ)(1+γ)/(1−γ) has
a solution θ on [0,∞) and examining A(s) := sup{θ(r)/rm+p−1 : 0 < r ≤ s},
it can be determined that θ(r) < (1 + γ)−(1+γ)/(1−γ)rm+p−1 for all r > 0,
which upon substitution in (12.1) again yields a contradiction. In the case
γ = 0 we note that θ(s) = sn is an explicit solution of equation (12.1)
with σ = 1 on [0,∞). Consequentially, taking σ = 1, the above argument
stagnates at the deduction that A(s) ≤ 1 for all s > 0 such that υ(s) ≤ 1.
Nonetheless, if we let θ(·;σ) denote the maximal solution of equation (12.1)
on [0,∞) for every σ ≥ σ∗, this does tell us that σ∗ ≤ 1 and θ(s; 1) = sn for
all s > 0. Hence, by Lemma A6(ii), θ(r;σ∗) ≤ rn for all r > 0. Substitut-
ing this inequality in the right-hand side of (12.1) and passing to the limit
s→∞ implies σ∗ = 1. This completes the proof of (12.24) for n < 1. The
corresponding inequality for n > 1 is immediate via (12.22). The remaining
conclusions of the theorem can be deduced from (12.21), (12.23) and the
argument used to prove the first assertion in Theorem 36. 2

Further properties of the function ς introduced in Theorem 62 can be found
in [208]. In particular, using the theory of anomalous exponents, for fixed
0 < n < 1 and n > 1, de Pablo and Sánchez [208] have shown that ς is an
analytic function of γ.
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A. Integral equation theory

The difficulty with any analysis of the integral equation (1.9) lies in its
singular kernel. Consider the more general equation

θ(s) = F(s)−
∫ s

0

g(r)
θ(r)

dr, (A.1)

where F is continuous in I with F(0) ≥ 0, and, g is integrable in every
bounded subset of I. Let

G(r, θ) =


g(r)/θ if θ > 0
−∞ if g(r) < 0 and θ = 0
0 if g(r) = 0 and θ = 0
∞ if g(r) > 0 and θ = 0.

Definition A1. A function θ is said to be a solution of equation (A.1) in
a right neighbourhood of zero [0, δ) ⊆ I if it is defined, real, nonnegative and
continuous on [0, δ),G(r, θ(r)) is integrable on every compact subset of (0, δ),∫ s

0
G(r, θ(r)) dr := lim

ε↓0

∫ s

ε
G(r, θ(r)) dr exists

and satisfies

θ(s) = F(s)−
∫ s

0
G(r, θ(r)) dr (A.2)

for all s ∈ (0, δ). A function θ is said to be a solution of (A.1) in a compact
right neighbourhood of zero [0, δ] if in addition θ is continuous on [0, δ] and
one may pass to the limit s ↑ δ in (A.2).

The variable

Q(s) :=
∣∣∣∣2∫ s

0
g(r) dr

∣∣∣∣1/2
plays an important role in the study of the integral equation (A.1). Results
on the equation which have been proven in [114] and have been used in this
paper are the following.

Lemma A1 (The nonsingular case). If F(0) > 0 equation (A.1) has a
unique positive solution θ in a right neighbourhood of zero [0, δ) such that
δ = ` or θ(s)→ 0 as s ↑ δ.

Lemma A2 (Uniqueness). Equation (A.1) has no solution, a unique so-
lution, or, an uncountable number of solutions which are majorized by a
unique maximal solution. Moreover:
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(i) If g(s) ≤ 0 for all s ∈ (0, δ) some 0 < δ ≤ ` then either (A.1) has no
solution in [0, δ) or it has a unique solution in [0, δ).

(ii) If g(s) ≥ 0 and Q(s) > 0 for all s ∈ (0, δ) some 0 < δ ≤ ` and
given any s ∈ (0, δ) there is an s∗ ∈ (s, δ) and a 0 < k < 2 such that
F(r) ≤ F(s)+ k{Q2(r)−Q2(s)}1/2 for all r ∈ (s, s∗) then either (A.1)
has no solution in [0, δ) or it has an uncountable number of solutions
in [0, δ).

Lemma A3 (Existence with a nonnegative integrand). Suppose that
g(s) ≥ 0 and Q(s) > 0 for all s ∈ (0, δ) some 0 < δ ≤ `. Define

L(s) := 1/ |ln Q(s)| and J(s) := 1/ |ln L(s)| . (A.3)

(i) If F(s) ≥ (2Q−QL2{1 + J2}/4)(s) for all s ∈ (0, δ) then (A.1) admits
a maximal solution θ in a right neighbourhood of zero. Moreover,
F(s) − (Q + QL{1 + J}2/2)(s) ≤ θ(s) ≤ F(s) for all s ∈ (0, δ∗) for
some 0 < δ∗ ≤ δ.

(ii) If F(s) ≤ (2Q−kQL2)(s) for all s ∈ (0, δ) for some k > 1/4 then (A.1)
has no solution in [0, δ).

(iii) If F(s) < {2/(
√

α2 + 4 + α)}Q(s) and F(r) ≤ F(s) + α{Q2(s) −
Q2(r)}1/2 for all r ∈ (0, s) for some 0 < s < δ and −∞ < α ≤ ∞ then
(A.1) has no solution in [0, δ).

Lemma A4 (Existence with a nonpositive integrand). Suppose that
g(s) ≤ 0 and Q(s) > 0 for all s ∈ (0, δ) some 0 < δ ≤ `.

(i) If for any s ∈ (0, δ) there is an s∗ ∈ (0, s) and a 0 < k < 2 such that
F(r) ≤ F(s) + k{Q2(s)−Q2(r)}1/2 for all r ∈ (s∗, s) then (A.1) has a
unique solution θ in [0, δ). Moreover, if there exists a point s ∈ (0, δ)
for which θ(s) = 0 then θ ≡ Q ≡ 0 in [0, s].

(ii) If αQ(s) ≤ F(s) ≤ βQ(s) for all s ∈ (0, δ) for some constants −∞ <
α ≤ β ≤ ∞ with α ≥ −2/(

√
β2 + 4 + β) then (A.1) has a unique

solution θ in [0, δ). Moreover, F(s)+{2/(
√

β2 + 4+β)}Q(s) ≤ θ(s) ≤
F(s) + {2/(

√
α2 + 4 + α)}Q(s) for all s ∈ [0, δ).

Lemma A5 (Extendibility). Any solution θ of equation (A.1) in a bounded
interval [0, δ) ⊆ I is a solution of (A.1) in [0, δ]. Moreover, δ = `, θ(s)→ 0
as s ↑ δ, or, θ is extendible onto an interval [0, δ∗) with δ < δ∗ ≤ `.

Lemma A6 (Comparison principles). Consider equation (A.1) with two
different sets of parameters and coefficients Fi and gi on an interval I for
i = 1, 2.
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(i) Suppose that F2(0) ≥ F1(0), s 7→ F2(s) − F1(s) is nondecreasing on
[0, δ), and, g2 ≤ g1 almost everywhere in (0, δ), for some 0 < δ ≤ `.
Then, if (A.1) with i = 1 has a solution θ1 in [0, δ) such that g2/θ1 ∈
L1

loc(0, δ), the equation with i = 2 has a solution θ2 in [0, δ) such
that θ2(s) ≥ θ1(s) for all s ∈ [0, δ). Moreover, if F2(s) − F1(s) >
F2(r) − F1(r) for all 0 ≤ r < s then θ2(s) = θ1(s) if and only if
θ2(s) = 0.

(ii) Suppose that F2 ≥ F1 on [0, δ), and, max{0, g2} ≤ g1 almost everywhere
in (0, δ) for some 0 < δ ≤ `. Then, if (A.1) with i = 1 has a solution
θ1 in [0, δ), the equation with i = 2 has a solution θ2 in [0, δ) such that
θ2(s) ≥ θ1(s) + F2(s)− F1(s) for all s ∈ [0, δ).

Lemma A7 (An explicit case). Suppose that g(s) ≥ 0, Q(s) > 0 and
F(s) = kQ(s) for all s ∈ (0, δ) for some k and 0 < δ < `. Define L(s) and
J(s) by (A.3).

(i) If k = 2 then (A.1) admits the maximal solution θ(s) = Q(s) in [0, δ),
for every real number γ a unique solution θγ in a right neighbourhood of
zero such that θγ(s) = (Q−QL+QL2J−1+γQL2)(s)+O((QL3J−2)(s))
as s ↓ 0, and no other solutions. Moreover, if [0, δγ) denotes the
maximal subinterval of [0, δ) in which θγ exists, then δγ = sup{s ∈
[0, δ) : Q(r) ≤ exp(γ − 1) for all r ∈ [0, s)}.

(ii) If k > 2 then setting β1 := (k−
√

k2 − 4)/2 and β2 := (k +
√

k2 − 4)/2,
equation (A.1) admits the maximal solution θ(s) = β2Q(s) in [0, δ),
for every real number γ a unique solution θγ in a right neighbourhood
of zero such that θγ(s) = (β1Q + γQβ2/β1)(s) +O(Q(2β2−β1)/β1(s)) as
s ↓ 0, and no other solutions. Moreover, if [0, δγ) denotes the maximal
subinterval of [0, δ) in which θγ exists, then for γ > 0 one has δγ = δ,
and θγ(s) ∼ β2Q(s) as s ↑ δ if Q(s) → ∞ as s ↑ δ; one has δ0 = δ
and θ0(s) = β1Q(s) for all s ∈ [0, δ); and finally for γ < 0 one has
δγ = sup{s ∈ [0, δ) : Qβ2−β1(r) ≤ ββ1

1 β−β2
2 (β2−β1)β2 |γ|−β1 for all r ∈

[0, s)}.

In both cases θ(s) > θγ∗(s) > θγ(s) for all s ∈ (0, δγ) and −∞ < γ < γ∗ <
∞.
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1–72.

[258] V. Vanaja & P.L. Sachdev, Asymptotic solutions of a generalized Burg-
ers equation, Quart. Appl. Math. 50 (1992), 627–640.

[259] J.L. Vazquez, The interfaces of one-dimensional flows in porous media,
Trans. Amer. Math. Soc. 285 (1984), 717–737.

[260] J.L. Vazquez, An introduction to the mathematical theory of the porous
medium equation, Shape Optimization and Free Boundaries (edited
by M.C. Delfour & G. Sabidussi), Kluwer Academic Publishers, Dor-
drecht, 1992, pp. 347-389.

[261] E.J.M. Veling, Travelling waves in an initial boundary value problem,
Proc. Roy. Soc. Edingburgh Sect. A 90 (1981), 41–61.

[262] E.J.M. Veling, Pushed travelling waves in an initial-boundary value
problem for Fisher type equations, Nonlinear Anal. 6 (1982), 1271–
1286.

[263] G. Verbist & D. Weaire, A soluble model for foam drainage, Europhys.
Lett. 26 (1994), 631–634.

188



[264] G. Verbist, D. Weaire & A.M.Kraynik, The foam drainage equation,
J. Phys. Condensed Matter 8 (1996), 3715–3731.

[265] P.-F. Verhulst, Notice sur la loi que la population suit dans son ac-
croissement, Correspondance Mathématique et Physique 10 (1838),
113–121.

[266] A.I. Vol’pert, Application of functionals to the investigation of travel-
ing waves (in Russian), Operator Equations and Set Functions (edited
by S.I. Khudyaev), Perm. Gos. Univ., Syktyvkar, 1985, pp. 30–35.

[267] A.I. Volpert, Propagation of waves described by nonlinear parabolic
equations, I.G. Petrowsky Selected Works Part II Differential Equa-
tions and Probability Theory (edited by O.A. Oleinik), Gordon and
Breach, Amsterdam, 1996, pp. 364–399.

[268] A.I. Volpert, V.A Volpert & V.A. Volpert, Traveling Wave Solutions of
Parabolic Systems, American Mathematical Society, Providence, R.I.,
1994.

[269] V.A. Vol’pert, Asymptotic behaviour of solution of a nonlinear diffu-
sion equation with a source term of general form, Siberian Math. J.
30 (1989), 25–36. Translation of: Sibirsk. Mat. Zh. 30 (1989), 35–47.

[270] Wang J., Weak travelling wave front solutions of generalized diffusion
equations with reaction, Chin. Ann. Math. Ser. B 15 (1994), 283–292.

[271] Wang M., Travelling wave solutions of degenerate parabolic equations
(in Chinese), Chinese Ann. Math. Ser. A 12 (1991), 627–635.

[272] M. Wang, S. Xiong & Q. Ye, Explicit wave front solutions of Noyes-
Field systems for the Belousov-Zhabotinskii reaction, J. Math. Anal.
Appl. 182 (1994), 705–717.

[273] X.Y. Wang, Exact and explicit solitary wave solutions for the gener-
alized Fisher equation, Phys. Lett. A 131 (1988), 277–279.

[274] X.Y. Wang, Z.S. Zhu & Y.K. Lu, Solitary waves solutions of the gen-
eralized Burgers-Huxley equation, J. Phys. A 23 (1990), 271–274.

[275] D. Weaire, S. Hutzler, G. Verbist & E. Peters, A review of foam
drainage, Advances in Chemical Physics Volume 102 (edited by I. Pri-
gogine & S.A. Rice), John Wiley & Sons, New York, 1997, pp. 315–374.

[276] T.P. Witelski, An asymptotic solution for traveling waves of a
nonlinear-diffusion Fisher’s equation, J. Math. Biol. 33 (1994), 1–16.

189



[277] J.X. Xin, Existence of multidimensional traveling waves in the trans-
port of reactive solutes through periodic porous media, Arch. Rational
Mech. Anal. 128 (1994), 75–103.

[278] J.X. Xin, Stabilty of traveling waves of a solute transport equation, J.
Differential Equations 135 (1997), 269–298.

[279] Z.J. Yang, R.A. Dunlap & D.J.W. Geldart, Exact travelling wave solu-
tions to nonlinear diffusion and wave eqautions, Internat. J. Theoret.
Phys. 33 (1994), 2057–2065.

[280] S.E.A.T.M. van der Zee, Analytical traveling wave solutions for trans-
port with nonlinear and nonequilibrium adsorption, Water Resources
Res. 26 (1990), 2563–2578, ibid. 27 (1991), 983.

[281] S.E.A.T.M. van der Zee & W.H. van Riemsdijk, Transport of reac-
tive solute in spatially variable soil systems, Water Resources Res. 23
(1987), 2059–2069.

[282] Y.B. Zeldovich, Theory of flame propagation, National Advisory Com-
mittee for Aeronautics Tehcnical Memorandum 1282 (1951), 39 pp.
Translation of: Zh. Fiz. Khim. 22 (1948), 27–49.

[283] Ya.B. Zel’dovich & Yu.P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena Volume I, Academic Press,
New York, 1966.

[284] Ya.B. Zel’dovich & Yu.P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena Volume II, Academic Press,
New York, 1967.

190


