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Abstract

We consider the existence of several different kinds of factors in 4-connected claw-free
graphs. This is motivated by the following two conjectures which are in fact equivalent
by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line
graph is hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner):
Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true
within the class of hourglass-free graphs, i.e. graphs that do not contain an induced
subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a
weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion
that there exists a connected spanning subgraph in which each vertex has degree two
or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker
conjectures in which the conclusion is replaced by the conclusion that there exists a
spanning subgraph consisting of a bounded number of paths.

Keywords: claw-free graph, line graph, Hamilton cycle, Hamilton path, factor
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1 Introduction

We use [1] for terminology and notation not defined here.
Most of the results in this paper are motivated by the following two conjectures due to

Thomassen [13] and Matthews and Sumner [10], respectively.
∗Research supported by grant GA ČR No. 201/97/0407

1



Conjecture 1
Every 4-connected line graph is hamiltonian.

Conjecture 2
Every 4-connected claw-free graph is hamiltonian.

A recent result on closures due to the third author [11] (Theorem 3 below) implies that
Conjecture 1 and Conjecture 2 are equivalent.

We first introduce some terminology and notation. All multigraphs considered in the sequel
are finite, undirected, and loopless. We use the term graph for a multigraph G = (V,E) in
order to indicate that G is simple, i.e. there is at most one edge joining two vertices. As
usual, V (G) or V denotes the vertex set and E(G) or E the edge set of a multigraph G. Let
A,B ⊆ V and a, b ∈ V . With [A,B]G we denote the set of edges between vertices of A and
B in G, and we let [a, b]G := [{a}, {b}]G. If [a, b]G = {e} for some e ∈ E, then we also use ab
or [a, b]G for e.

The submultigraph G[A] induced by the set A ⊆ V (G) is defined by G[A] := (A, [A,A]G),
and the degree of some vertex a ∈ V is denoted by dG(a) := |[{a}, V \ {a}]G|. Let NG(A) :=
{c ∈ V \ A | [A, {c}]G 6= ∅}, and let NG(a) := NG({a}). Clearly, dG(a) = |NG(a)| provided
that G is a graph. The submultigraph G[NG(a)] is called the neighborhood of a in G. By
dG(a, b) we denote the distance of a, b in G, i.e. the length of a shortest path between a and
b in G. If a, b are not in the same component of G, we simply set dG(a, b) :=∞.

A claw in the multigraph G is a set of four distinct vertices a, b, c, y such that a, b, c are
independent in G, i.e. pairwise nonadjacent in G, and a, b, c ∈ NG(y). G is called claw-free if
there exists no claw in G. Clearly, a multigraph is claw-free if it contains no induced subgraph
isomorphic to K1,3, but the converse is guaranteed only in graphs.

A spanning submultigraph H of G is called a factor of G, and a 2-factor (of G) if all
vertices of H have degree 2 in H. Hence a Hamilton cycle is a connected 2-factor. A circuit
C of G is a closed trail (possibly consisting of a single vertex), and it is said to be (edge)
dominating if every edge of G is incident with some vertex of C. If, moreover, V (G) = V (C)
holds then C is a spanning circuit.

The local completion of a graph G at a vertex v is the operation of joining all pairs of
nonadjacent vertices in NG(v), i.e. replacing the neighborhood of v by the complete graph on
NG(v).

In [11] the following has been proved.

Theorem 3
Let G be a claw-free graph, v a vertex of G whose neighborhood is connected, and G′ the
graph obtained from G by local completion at v. Then

(i) G′ is claw-free, and

(ii) for every cycle C ′ of G′ there exists a cycle C of G such that V (C ′) ⊆ V (C).
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For a claw-free graph G, we define the closure cl(G) of G as the graph obtained from G by
iteratively performing local completions at vertices with connected neighborhoods until no
more edges can be added. As shown in [11], cl(G) is uniquely determined by G, and cl(G) is
the line graph of a triangle-free graph. Moreover, in [11] it is shown that Theorem 3 has the
following consequences. Let c(G) denote the circumference of G, i.e. the length of a longest
cycle of G.

Theorem 4
Let G be a claw-free graph. Then

(i) c(cl(G)) = c(G).

(ii) If cl(G) is complete and |V (G)| ≥ 3, then G is hamiltonian.

(iii) Every nonhamiltonian claw-free graph is a factor of a nonhamiltonian line graph.

Theorem 4(iii) together with a result of Zhan [15] and, independently, Jackson [5] implies
that every 7-connected claw-free graph is hamiltonian. Moreover it yields the mentioned
equivalence of Conjecture 1 and Conjecture 2.

In the sequel we prove several results concerning the existence of certain factors in 4-
connected claw-free graphs or multigraphs.

In the next section we give a short proof of Conjecture 2 within the subclass of hourglass-
free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to the hourglass,
a graph consisting of two triangles meeting in exactly one vertex. This result also follows
from a recent result due to the second author [7].

In Section 3 we prove the validity of a weaker form of Conjecture 2 in which we replace
the conclusion by the conclusion that there exists a connected factor in which each vertex has
degree 2 or 4.

Finally, in Section 4 we show that Conjecture 1 and 2 are equivalent to seemingly weaker
conjectures in which we replace the conclusion by the conclusion that there exists a factor
consisting of a bounded number of paths.

2 Hourglass-free graphs

Our aim in this section is to prove that all 4-connected claw-free hourglass-free graphs are
hamiltonian. For this purpose we need the fact that all 4-connected inflations are hamiltonian.

We start this section by introducing some additional terminology. A multigraph G is called
essentially k-edge connected if it is connected and if every edge cutE′ ofG such that G−E′ has
at least two components containing an edge, has at least k edges. It is well-known and easy to
check that a line graph L(G) of a multigraph G is k-connected if and only if G is essentially k-
edge connected. The inflation I(G) of a graph G is the graph obtained from G by replacing all
vertices v1, v2, . . . , vn of G by disjoint complete graphs on d(vi) vertices vi,1, vi,2, . . . vi,d(vi), and
all edges vivj by disjoint edges vi,pvj,q (i, j ∈ {1, . . . , n}; p ∈ {1, . . . , d(vi)}; q ∈ {1, . . . , d(vj)}).
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Alternatively, as shown in [10, Lemma 2], I(G) is the line graph of the subdivision graph
S(G), i.e. the graph obtained from G by subdividing each edge of G once. We use the term
inflation for a graph that is isomorphic to the inflation of some graph. It is obvious that
inflations are claw-free and hourglass-free.

The following result has been observed by several graph theorists, but we have not found
it in literature (therefore, we include its proof).

Lemma 5
Every 4-connected inflation is hamiltonian.

Proof Let G be a 4-connected inflation. Then G = L(S(H)) for some essentially 4-edge
connected subdivision S(H) of a 4-edge connected graph H. As shown in [13], using the result
of Kundu [8] that H has two edge-disjoint spanning trees, it is easy to show that H contains
a spanning circuit, hence S(H) contains a dominating circuit. By a result of Harary and

Nash-Williams [3] this implies G = L(S(H)) is hamiltonian.

The connectivity bound in Lemma 5 cannot be decreased, since there are nonhamiltonian
3-connected inflations, e.g. the inflation of the Petersen graph. These graphs also show that
the connectivity bound in the next result is best possible.

Theorem 6
Every 4-connected claw-free hourglass-free graph is hamiltonian.

Proof Let G be a 4-connected claw-free hourglass-free graph. Then by a result in [2] cl(G)
is also claw-free and hourglass-free. Hence by Theorem 4 we can assume that G = cl(G). This
implies that the neighborhood of each vertex of G induces either a complete graph or a disjoint
union of two complete graphs. Since G is hourglass-free, in the latter case one of the complete
graphs is a K1. Hence G contains two types of edges, namely edges that are contained in
a complete subgraph on more than 2 vertices, and edges that are contained in a K2 only.
Moreover, all maximal complete subgraphs on more than two vertices contain two types of
vertices, namely vertices with a complete neighborhood (contained in the subgraph) which
are called simplicial vertices, and vertices with precisely one neighbor outside the subgraph.
It is not difficult to check that the graph G′ obtained from G by deleting all simplicial vertices
is a 4-connected inflation. Hence G′ is hamiltonian by Lemma 5. Clearly, a Hamilton cycle
in G′ contains at least one edge of each maximal complete subgraph on more than 2 vertices,
and all the maximal complete subgraphs of G containing simplicial vertices correspond to
such subgraphs. Hence a Hamilton cycle of G′ can easily be extended to a Hamilton cycle in
G.

3 Connected factors with degree restrictions

By Theorem 3.1 in [6], every connected claw-free graph has a 2-walk, i.e. a (closed) walk
which passes every vertex at most twice. Clearly, the edges of a 2-walk induce a connected
factor of maximum degree at most 4.
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The aim of this section is to prove that every 4-connected claw-free graph contains a
connected factor with vertices of degree 2 or 4. We start with a series of lemmas on congruent
factors of multigraphs, i.e. factors of a multigraph G which have the same parity of degrees
at every vertex. Lemma 7 will allow us to apply the closure introduced in Section 1 later
on. (Note that cl(G) can be constructed from G by iteratively adding the missing edge in a
subgraph K4 − e.)

Lemma 7
Let F be a connected factor of a multigraph G and let e be an edge contained in some complete
subgraph K4 of G. Then G − e has a connected factor F ′ such that dF ′(x) ≡ dF (x) mod 2
for all x ∈ V (G).

Proof For two multigraphs G1, G2 we define G1 ∪G2 := (V (G1)∪ V (G2), E(G1)∪E(G2)),
G1∩G2 := (V (G1)∩V (G2), E(G1)∩E(G2)), and G1∆G2 := (G1∪G2)−E(G1∩G2). (G1∆G2

is the symmetric difference of G1 and G2.)
Let w, x, y, z be the vertices of the subgraph H ∼= K4 which contains e, say e ∈ [w, x].

The conclusion of the lemma is obviously true if e 6∈ E(F ). So we may assume e ∈ E(F ). We
define the following four w, x-subpaths of H: Q := w, y, x, R := w, z, x, S := w, y, z, x, and
T := w, z, y, x. It is easy to see that if F ′ is the symmetric difference of F −e and any of these
paths, then dF ′(u) ≡ dF (u) mod 2 holds for all u ∈ V (H). Hence it suffices to prove that
the symmetric difference F ′ of one of these paths and F − e contains a connected spanning
subgraph of H. We denote (F − e) ∩H by H ′.

If dH′(y) = 3, then F ′ := (F − e)∆R will serve, if dH′(y) = 0 and dH′(z) 6= 0 then
F ′ := (F − e)∆Q will do, and if dH′(y) = dH′(z) = 0 then D′ := (F − e)∆T will. So we may
assume that y and, by symmetry, z have degree 1 or 2 in H ′.

Without loss of generality, we may assume that dH′(w) ≥ dH′(x). We distinguish three
cases.

Case 1. dH′(w) = 2 and dH′(x) ≥ 1. Without loss of generality, x is adjacent to y in H ′.
Since dH′(y) 6= 3, there is no edge between y and z in H. It follows that F ′ := (F − e)∆S is
an appropriate factor.

Case 2. dH′(w) = 2 and dH′(x) = 0. If y is adjacent to z in H ′, then F ′ := (F − e)∆Q
will do; otherwise F ′ := (F − e)∆S will.

Case 3. dH′(w) = 1. Without loss of generality, w is adjacent to y in H. If x is not
adjacent to z, then F ′ := (F − e)∆R will do; in the other case, dH′(x) = 1 as well, and
F ′ := (F − e)∆T contains a connected spanning subgraph of H ′, since it contains all edges
of H ′ except possibly an edge beetween y, z.

Lemma 8 guarantees the existence of a connected low degree factor in a claw-free multigraph
which is congruent to a given one.

Lemma 8
Let F be a connected factor of a claw-free multigraph G. Then there exists a connected
factor F ′ of G without vertices of degree exceeding 4 such that dF ′(x) ≡ dF (x) mod 2 for all
x ∈ V (G).
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Proof Throughout the proof, we call a connected factor F ′ with dF ′(x) ≡ dF (x) mod 2 for
all x ∈ V (G) a good factor. Among all good factors we choose one, say F ′, with a minimum
number of edges. We claim that F ′ contains no vertex of degree exceeding 4.

Suppose to the contrary that x ∈ V (G) had degree at least 5 in F ′. We distinguish two
cases.

Case 1. F ′−x is connected. First note that there is no pair of distinct edges e, f ∈ E(F ′)
between x and some y ∈ V (G), for otherwise F ′− e−f would be a good factor, contradicting
the choice of F . So |NF ′(x)| ≥ 5. Let e ∈ [y, z]G be an edge in G[NF ′(x)]. Then e ∈ E(F ′),
too, for otherwise (F ′−[x, y]−[x, z])+e would be a good factor, a contradiction. Furthermore,
e is a bridge of F ′ − x, for otherwise F ′ − [x, y] − [x, z] − e is a good factor, which is absurd
again. So every edge in G[NF ′(x)] is a bridge of F ′−x, and in particular, G[NF ′(x)] contains
no cycle. But then NF ′(x) must contain three independent vertices (since |NF ′(x)| ≥ 5),
which form a claw together with x, a contradiction.

Case 2. F ′−x is not connected. First note that there is no triple e, f, h ∈ E(F ′) between
x and some y ∈ V (G), for otherwise F ′ − e− f would be a good factor. Let C,D be distinct
components of F ′ − x, and let Y := NF ′(x) ∩ V (C) and Z := NF ′(x) ∩ V (D). There is no
edge in G between a vertex of Y and one of Z, for otherwise there were edges e ∈ [x, y]F ′ ,
f ∈ [x, z]F ′ , h ∈ [y, z]G \ E(F ′) for some y ∈ Y , z ∈ Z, and (F ′ − e − f) + h would be
a good factor, a contradiction. In particular, C and D are the only components of F ′ − x.
Since G is claw-free, Y and Z are complete in G. Without loss of generality, we may assume
that there are at least three edges between x and vertices of Y (otherwise we swap the roles
of Y and Z). Then Y must be complete in F ′ as well, for otherwise there would be edges
e ∈ [x, y]F ′ , f ∈ [x, z]F ′ , h ∈ [y, z]G \ E(F ′), and so (F ′ − e− f) + h would be a good factor,
a contradiction. It follows that there cannot be a pair e, f of distinct edges between x and
y ∈ Y , for otherwise F ′ − e − f would be a good factor, a contradiction. So |Y | ≥ 3. But
then F ′ − [x, y] − [x, z] − e is a good factor for arbitrary e ∈ [y, z]F ′ 6= ∅, y, z ∈ Y , our final
contradiction.

Lemma 9 deals with the existence of a connected even factor in 4-connected line graphs of
multigraphs.

Lemma 9
Every 4-connected line graph of a multigraph contains a connected factor which has degree
two or four at each vertex.

Proof Let G be a multigraph such that L(G) is 4-connected. Suppose that x is a vertex of
degree 3 in G. If a neighbor y of x has degree less than 3, then G− {x, y} must be edgeless,
since L(G) is 4-connected. In this case, the assertion of the theorem can be checked easily by
exhaustion. So doubling an edge e incident with x, i.e. adding a further, new edge e+ with
the same endvertices as e, will not produce a vertex of degree less than four at one of its ends.
So there exists a set E′ ⊆ E(G) such that doubling each edge of E′ (once) produces a graph
G′ without vertices of degree 3, with E(G′) = E(G)∪{e+ | e ∈ E′}, and with V (G′) = V (G).
Furthermore, no edge e ∈ E′ has endvertices of degree one or two in G.
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By [7], there exists a dominating circuit of G which contains all vertices of degree at least
4 in G′, and here we can achieve that if it contains exactly one of e and e+, then it contains
e. Among all dominating circuits with these properties we choose one, say F , with as few
edges as possible. It follows that if F contains both edges e and e+ for some e ∈ E′, then
F − e − e+ is disconnected. The edges of F induce a dominating circuit T , which we orient
according to one way of traversing the circuit, starting at an arbitrary vertex. Since F−e−e+

is disconnected whenever e and e+ are in F for some e ∈ E′, e and e+ are oriented oppositely
(if they are both in F ).

Now we produce a sequence T ′ of edges ofG by inserting some of the edges not in E(F ) (not
necessarily once) at some position into the sequence of edges corresponding to T , according
to the following rules:
1) If e and f with f = e+ or e = f+ are consecutive on T , then we insert two edges of
E(G) \ E(F ) incident with the outvertex of e (i.e. the invertex of f) at the position in
between e and f (such edges exist).
2) If e and f , and f+ and e+ are both consecutive on T , then we insert an edge incident with
the outvertex of f+ at the position in between f+ and e+ (such an edge exists).

The sequence T ′ need not be a circuit. Note that every inserted edge occurs at most
twice in T ′ and all others occur once in T ′; those which have been inserted twice never occur
consecutively in T ′. Neither e and e+ nor e+ and e are consecutive in T ′, and if e and f are
consecutive in T ′, then f+ and e+ are not.

Now we construct T ′′ from T ′ by inserting sequentially the remaining edges: If there is
an edge e in E(G) not inserted so far into T , then we insert it at a position between f and g,
whenever e, f and g have a common endvertex. If this is not possible, then e has a common
endvertex with the first and the last edge of T ′′, and we add e at the end of T ′′. All edges
inserted in the latter way into T ′ occur only once.

Finally, we construct T ′′′ from T ′′ by replacing each doubled edge e+, e ∈ E′, by the
original edge e.

T ′′′ is a sequence of edges of G with the following properties:
1) Any two consecutive edges have a common vertex, and the first and the last one have a
common vertex.
2) Two consecutive edges of T ′′′ are distinct.
3) If e, f ∈ E′ are consecutive in T ′′′, then f and e are not.
4) Every edge of G occurs in T ′ at least once, at most 3 · |E′| edges occur twice, and no edge
of G occurs more than twice.

Therefore, the edges of T ′′′ form a connected factor of L(G) with vertices of degree 2 or
4, and with at most 3|E′| vertices of degree 4.

In general, one cannot expect an upper bound for |E′| better than the number v3(G) of
vertices of degree 3 in G, which leads, according to the proof of Lemma 9, to an upper bound
of 3 ·v3(G) for the number of vertices of degree 4 in the factor. Unfortunately, this bound may
equal |V (L(G))|, for example if G is an essentially 4-edge-connected bipartite graph where
one color class consists of vertices of degree 3.

If one provides more structure on G, then one can improve this bound. For example, if in
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G the vertices of degree 3 are independent, then one gets |E′| ≤ v3(G) by similar arguments
as above. This implies, for example, that a 4-connected line graph with minimum degree 5
contains a connected factor with more than 2/3 of its vertices having degree 2 and all others
having degree 4.

Now we are able to establish the main result of this section.

Theorem 10
Every 4-connected claw-free graph contains a connected factor which has degree two or four
at each vertex.

Proof Let G be a 4-connected claw-free graph. Then cl(G) is a 4-connected line graph.
By Lemma 9, cl(G) contains a connected factor which has degree two or four at each vertex.
By Lemma 7, G contains a connected factor which has even degree at each vertex. Finally,
by Lemma 8, the assertion follows.

By the results of [7] it is also possible to prove the stronger result that between every pair of
distinct vertices in a 4-connected line graph there exists a spanning trail which passes every
vertex at most twice.

4 Factors consisting of a bounded number of paths

In this section we prove that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures
in which the conclusion that G is hamiltonian is replaced by the conclusion that G contains
a factor consisting of a number of paths bounded by a constant, or, more generally, by a
function which is sublinear in the number of vertices of the graph. In particular we show that
every k-connected claw-free graph is hamiltonian if and only if every k-connected claw-free
graph is traceable, i.e. contains a Hamilton path. For convenience we use the term r-path-
factor for a factor consisting of at most r paths. A path-factor is an r-path factor for some r,
and its endvertices are the vertices of degree less than 2 of its components.

We start with an auxiliary result. Here a k-clique of a graph G is a subset of k vertices
of G inducing a complete subgraph in G.

Lemma 11
Let k ≥ 2 be an integer. If there exists a k-connected nonhamiltonian claw-free graph on n

vertices, then there exists a k-connected nonhamiltonian claw-free graph on at most 2n − 2
vertices containing a k-clique.

Proof Let G be a k-connected nonhamiltonian claw-free graph on n vertices, and assume
that G = cl(G). Hence G is the line graph of some triangle-free graph H. We may assume
k ≥ 4, since for If k ≤ 3 the claw-freeness clearly implies that there is a k-clique in G. If all
vertices of H have degree at least 4, then it is easy to see that H is 4-edge connected; by the
result of [14] G is hamiltonian. If there is a vertex in H with precisely one neighbor u, then
the edges incident with u induce a clique in G with at least k vertices. Hence we may assume
there is a vertex x of degree 2 or 3 in H. Therefore G contains a vertex whose neighborhood
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consists of disjoint cliques R and Q with |R| ≥ |Q| ∈ {1, 2}. If some vertex of G is contained
in a k-clique, then we are done. Hence we may assume that |R| = k − 2 and |Q| = 2. Now
consider two copies G1 and G2 of G with the same fixed vertex x called xi in Gi (i = 1, 2)
and the same partition of N(x) into two cliques Qi, Ri in Gi with |Qi| = 2 and |Ri| = k − 2
for i = 1, 2, respectively. Define the graph G′ on 2n− 2 vertices obtained from G1 and G2 by
deleting x1 and x2, and joining all vertices of Q1 to all vertices of Q2, and joining all vertices
of R1 to all vertices of R2. Denote by E′ the set of edges joining vertices of G1 − x1 and
G2 − x2. Then one easily checks that G′ is claw-free and k-connected, and that G′ contains
a k-clique. We complete the proof by showing that G′ is nonhamiltonian.

Suppose to the contrary that G′ has a Hamilton cycle C. Then Fi := C ∩ (Gi − xi) is a
path-factor of Gi − xi with all endvertices in Qi ∪ Ri. Either F1 contains no path between
the vertices of Q1, or F2 contains no path between the endvertices, for otherwise these two
paths, together with two edges of E′, would form a proper subcycle of C, which is absurd.
Without loss of generality, F1 contains no path between the endvertices of Q1.

Case 1. Q1 contains no endvertex of F1. Then F1 ∪ {x1} is a path-factor of G1 with all
endvertices in the clique R1 ∪ {x1}.

Case 2. Q1 contains endvertices of exactly one component P of F1. Then Q1 contains
precisely one endvertex of P , and hence (F1 − P ) ∪ (P + x1) is a path-factor of G1 with all
endvertices in the clique R1 ∪ {x1}.

Case 3. Q1 contains endvertices of two distinct components P 6= P ′ of F1. Then (F1 −
P − P ′) ∪ (P + x1 + P ′) is a path-factor of G1 with all endvertices in the clique R1.

Since a graph on at least 3 vertices is hamiltonian if and only if it has a path-factor
with all endvertices being contained in the same clique, it follows in either case that G1 is
hamiltonian, a contradiction.

We use the above lemma to prove the following result.

Theorem 12
Let k ≥ 2 and r ≥ 1 be two integers. Then the following statements are equivalent.

(1) There is a k-connected claw-free nonhamiltonian graph.

(2) There is a k-connected claw-free graph without an r-path-factor.

Moreover, if there is an example for (1) on n vertices, then there is an example for (2) with
at most (2r + 1)(2n − 2) vertices.

Proof It is clear that we only have to show that the existence of a k-connected claw-free
nonhamiltonian graph on n vertices implies the existence of a k-connected claw-free graph
without an r-path-factor on at most (2r + 1)(2n− 2) vertices.

Let G be a k-connected claw-free nonhamiltonian graph on n vertices. Then by Lemma 11
there is a k-connected claw-free nonhamiltonian graph H on at most 2n−2 vertices containing
a k-clique Q. We may assume that H = cl(H). Let Gr be the graph obtained from 2r + 1
disjoint copies ofH by joining all vertices corresponding to the k-clique Q in all copies, forming
a (2r+ 1)k-clique. Clearly, Gr is claw-free and k-connected and has at most (2r+ 1)(2n− 2)
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vertices. We complete the proof by showing that Gr admits no r-path-factor. Suppose to the
contrary that P is an r-path-factor of Gr. Then P has at most 2r vertices of degree zero or
one. Since Gr contains 2r + 1 disjoint copies of H, this implies that for at least one copy of
H, V (H) \ Q contains no endvertices of P . It is obvious that we can construct a Hamilton
cycle in this copy of H, contradicting the assumption that H is nonhamiltonian.

Theorem 12 has a number of interesting consequences, the first of which is obvious and given
without proof.

Corollary 13
Let k ≥ 2 be an integer. Then the following statements are equivalent.

(1) Every k-connected claw-free graph is hamiltonian.

(2) Every k-connected claw-free graph is traceable.

In particular Corollary 13 shows that Conjecture 2 is equivalent to the conjecture that every
4-connected claw-free graph is traceable. We can weaken the conclusion a little further. The
next consequences of Theorem 12 can be obtained by examining the order of the graph Gr in
the proof of the theorem.

Corollary 14
Let k ≥ 2 be an integer, and let f(n) be a function of n with the property that limn→∞

f(n)
n =

0. Then the following statements are equivalent.

(1) Every k-connected claw-free graph is hamiltonian.

(2) Every k-connected claw-free graph on n vertices has an f(n)-path-factor.

(3) Every k-connected claw-free graph on n vertices has a 2-factor with at most f(n) com-
ponents.

(4) Every k-connected claw-free graph on n vertices has a spanning tree with at most f(n)
vertices of degree one.

(5) Every k-connected claw-free graph on n vertices has a path of length at least n− f(n).

Proof We only prove that (2) implies (1). The other cases are similar and left to the reader.
Suppose (2) is true and suppose there exists a k-connected claw-free nonhamiltonian graph

on m vertices. Then by Theorem 12 there is a k-connected claw-free graph Gr without an
r-path-factor on nr ≤ (2r+1)(2m−2) vertices. If we let r tend to infinity, then Gr is a graph
on nr vertices without an r-path-factor, while limr→∞

r
nr
≥ 1

4m−4 for a fixed integer m > 1.
This contradicts the assumption that (2) is true.
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In particular Corollary 14 shows that Conjecture 2 is true if one could show that, e.g., every
4-connected claw-free graph on n vertices admits a factor consisting of a number of paths
which is sublinear in n.

Recently, in [4] it has been shown that a claw-free graph G has an r-path-factor if and
only if cl(G) has an r-path-factor. Similarly, in [12] it has been shown that a claw-free graph
G has a 2-factor with at most r components if and only if cl(G) has such a 2-factor. These
results immediately imply the equivalence of the following statements related to Conjecture 1.

Corollary 15
Let k ≥ 2 be an integer, and let f(n) be a function of n with the property that limn→∞

f(n)
n =

0. Then the following statements are equivalent.

(1) Every k-connected line graph is hamiltonian.

(2) Every k-connected line graph on n vertices has an f(n)-path-factor.

(3) Every k-connected line graph on n vertices has a 2-factor with at most f(n) components.

In particular Corollary 15 shows that Conjecture 1 is true if one could show that, e.g., every
4-connected line graph on n vertices admits a 2-factor consisting of a number of compo-
nents which is sublinear in n. The equivalences between (1) and (2) of Corollary 14 and of
Corollary 15 appear also in a sequence of equivalences in [9].
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[11] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory B 70 (1997)
217–224.
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