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Abstract. Markov automata (MA) constitute an expressive continuous-
time compositional modelling formalism. They appear as semantic back-
bones for engineering frameworks including dynamic fault trees, Gener-
alised Stochastic Petri Nets, and AADL. Their expressive power has thus
far precluded them from effective analysis by probabilistic (and statisti-
cal) model checkers, stochastic game solvers, or analysis tools for Petri
net-like formalisms. This paper presents the foundations and underlying
algorithms for efficient MA modelling, reduction using static analysis,
and most importantly, quantitative analysis. We also discuss implemen-
tation pragmatics of supporting tools and present several case studies
demonstrating feasibility and usability of MA in practice.

1 Introduction

Markov automata (MA, for short) have been introduced in [13] as a continuous-
time version of Segala’s (simple) probabilistic automata [26]. They are closed
under parallel composition and hiding. An MA-transition is either labelled with
an action, or with a positive real number representing the rate of a negative
exponential distribution. An action transition leads to a discrete probability
distribution over states. MA can thus model action transitions as in labelled
transition systems, probabilistic branching, as well as delays that are governed
by exponential distributions.

The semantics of MA has been recently investigated in quite some detail.
Weak and strong (bi)simulation semantics have been presented in [13,12], whereas
it is shown in [10] that weak bisimulation provides a sound and complete proof
methodology for reduction barbed congruence. A process algebra with data for
the efficient modelling of MA, accompanied with some reduction techniques using
static analysis, has been presented in [29]. Although the MA model raises sev-
eral challenging theoretical issues, both from a semantical and from an analysis
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Fig. 1. (a) Confused GSPN, see [21, Fig. 21] with partial weights and (b) its
MA semantics

point of view, our main interest is in their practical applicability. As MA extend
Hermanns’ interactive Markov chains (IMCs) [17], they inherit IMC application
domains, ranging from GALS hardware designs [6] and dynamic fault trees [3]
to the standardised modeling language AADL [4,16]. The added feature of prob-
abilistic branching yields a natural operational model for generalised stochastic
Petri nets (GSPNs) [22] and stochastic activity networks (SANs) [23], both pop-
ular modelling formalisms for performance and dependability analysis. Let us
briefly motivate this by considering GSPNs. Whereas in SPNs all transitions
are subject to a random delay, GSPNs also incorporate immediate transitions,
transitions that happen instantaneously. The traditional GSPN semantics yields
a continuous-time Markov chain (CTMC), i.e., an MA without action transi-
tions, but is restricted to GSPNs that do not exhibit non-determinism. Such
“well-defined” GSPNs occur if the net is free of confusion. It has recently been
detailed in [18,11] that MA are a natural semantic model for every GSPN. With-
out going into the technical details, consider the confused GSPN in Fig. 1(a).
This net is confused, as the transitions t1 and t2 are not in conflict, but fir-
ing transition t1 leads to a conflict between t2 and t3, which does not occur
if t2 fires before t1. Transitions t2 and t3 are weighted so that in a marking
{p2, p3} in which both transitions are enabled, t2 fires with probability w2

w2+w3

and t3 with its complement probability. Classical GSPN semantics and analysis
algorithms cannot cope with this net due to the presence of confusion (i.e., non-
determinism). Figure 1(b) depicts the MA semantics of this net. Here, states
correspond to sets of net places that contain a token. In the initial state, there
is a non-deterministic choice between the transitions t1 and t2. Note that the
presence of weights is naturally represented by discrete probabilistic branching.
One can show that for confusion-free GSPNs, the classical semantics and the
MA semantics are weakly bisimilar [11].

This paper focuses on the quantitative analysis of MA—and thus (possibly
confused) GSPNs and probabilistic AADL error models. We present analysis
algorithms for three objectives: expected time, long-run average, and timed (in-
terval) reachability. As the model exhibits non-determinism, we focus on maxi-
mal and minimal values for all three objectives. We show that expected time and
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long-run average objectives can be efficiently reduced to well-known problems on
MDPs such as stochastic shortest path, maximal end-component decomposition,
and long-run ratio objectives. This generalizes (and slightly improves) the results
reported in [14] for IMCs to MA. Secondly, we present a discretisation algorithm
for timed interval reachability objectives which extends [33]. Finally, we present
the MaMa tool-chain, an easily accessible publicly available tool chain 1 for
the specification, mechanised simplification—such as confluence reduction [31],
a form of on-the-fly partial-order reduction—and quantitative evaluation of MA.
We describe the overall architectural design, as well as the tool components, and
report on empirical results obtained with MaMa on a selection of case studies
taken from different domains. The experiments give insight into the effectiveness
of our reduction techniques and demonstrate that MA provide the basis of a very
expressive stochastic timed modelling approach without sacrificing the ability of
time and memory efficient numerical evaluation.

Organisation of the paper. After introducing Markov Automata in Section 2, we
discuss a fully compositional modelling formalism in Section 3. Section 4 consid-
ers the evaluation of expected time properties. Section 5 discusses the analysis
of long run properties, and Section 6 focusses on reachability properties with
time interval bounds. Implementation details of our tool as well as experimental
results are discussed in detail in Section 7. Section 8 concludes the paper. Due
to space constraints, we provide the proofs for our main results in appendices.

2 Preliminaries

Markov automata. An MA is a transition system with two types of transitions:
probabilistic (as in PAs) and Markovian transitions (as in CTMCs). Let Act be
a universe of actions with internal action τ ∈ Act, and Distr(S) denote the set
of distribution functions over the countable set S.

Definition 1 (Markov automaton). A Markov automaton (MA) is a tuple
M = (S,A, −→ ,=⇒, s0) where S is a nonempty, finite set of states with initial
state s0 ∈ S, A ⊆ Act is a finite set of actions, and

– −→ ⊆ S ×A× Distr(S) is the probabilistic transition relation, and
– =⇒ ⊆ S × R>0 × S is the Markovian transition relation.

We abbreviate (s, α, µ) ∈ −→ by s α−−→µ and (s, λ, s′) ∈ =⇒ by s
λ

=⇒ s′. An
MA can move between states via its probabilistic and Markovian transitions.
If s a−→µ, it can leave state s by executing the action a, after which the prob-
ability to go to some state s′ ∈ S is given by µ(s′). If s

λ
=⇒ s′, it moves from s

to s′ with rate λ, except if s enables a τ -labelled transition. In that case, the MA
will always take such a transition and never delays. This is the maximal progress
assumption [13]. The rationale behind this assumption is that internal transi-
tions are not subject to interaction and thus can happen immediately, whereas

1 Stand-alone download as well as web-based interface available from
http://fmt.cs.utwente.nl/~timmer/mama.

http://fmt.cs.utwente.nl/~timmer/mama
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Fig. 2. A queueing system, consisting of a server and two stations. The two sta-
tions have incoming requests with rates λ1, λ2, which are stored until fetched by
the server. If both stations contain a job, the server chooses nondeterministically
(in state (1,1,0)). Jobs are processed with rate µ, and when polling a station,
there is a 1

10 probability that the job is erroneously kept in the station after
being fetched. Each state is represented as a tuple (s1, s2, j), with si the number
of jobs in station i, and j the number of jobs in the server. For simplicity we
assume that each component can hold at most one job.

the probability for a Markovian transition to happen immediately is zero. As an
example of an MA, consider Fig. 2.

We briefly explain the semantics of Markovian transitions. For a state with
Markovian transitions, let R(s, s′) =

∑

{λ | s
λ

=⇒ s′} be the total rate to move
from state s to state s′, and let E(s) =

∑

s′∈S R(s, s′) be the total outgoing
rate of s. If E(s) > 0, a competition between the transitions of s exists. Then,
the probability to move from s to state s′ within d time units is

R(s, s′)

E(s)
·
(

1− e−E(s)d
)

.

This asserts that after a delay of at most d time units (second factor), the MA

moves to a direct successor state s′ with probability P(s, s′) = R(s,s′)
E(s) .

Paths. A path in an MA is an infinite sequence π = s0
σ0,µ0,t0−−−−−−→ s1

σ1,µ1,t1−−−−−−→ . . .
with si ∈ S, σi ∈ Act ∪ {⊥}, and ti ∈ R≥0. For σi ∈ Act, si

σi,µi,ti−−−−−−→ si+1

denotes that after residing ti time units in si, the MA has moved via action

σi to si+1 with probability µi(si+1). Instead, si
⊥,µi,ti−−−−−→ si+1 denotes that after

residing ti time units in s, a Markovian transition led to si+1 with probability
µi(si+1) = P(si, si+1). For t ∈ R≥0, let π@t denote the sequence of states that
π occupies at time t. Due to instantaneous action transitions, π@t need not be
a single state, as an MA may occupy various states at the same time instant.
Let Paths denote the set of infinite paths. The time elapsed along the path π
is
∑∞

i=0 ti. Path π is Zeno whenever this sum converges. As the probability of a
Zeno path in an MA that only contains Markovian transitions is zero [1], an MA
is non-Zeno if and only if no SCC with only probabilistic states is reachable with
positive probability. In the rest of this paper, we assume MAs to be non-Zeno.

Policies. Nondeterminism occurs when there is more than one action transition
emanating from a state. To define a probability space, the choice is resolved
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using policies. A policy (ranged over by D) is a measurable function which yields
for each finite path ending in state s a probability distribution over the set of
enabled actions in s. The information on basis of which a policy may decide yields
different classes of policies. Let GM denote the class of the general measurable
policies. A stationary deterministic policy is a mapping D : PS → Act where PS
is the set of states with outgoing probabilistic transitions; such policies always
take the same decision in a state s. A time-abstract policy may decide on basis
of the states visited so far, but not on their timings; we use TA denote this class.
For more details on different classes of policies (and their relation) on models
such as MA, we refer to [24]. Using a cylinder set construction we obtain a σ-
algebra of subsets of Paths ; given a policy D and an initial state s, a measurable
set of paths is equipped with probability measure Prs,D.

Stochastic shortest path (SSP) problems. As some objectives on MA are reduced
to SSP problems, we briefly introduce them. A non-negative SSP problem is
an MDP (S,Act,P, s0) with set G ⊆ S of goal states, cost function c : S \
G × Act → R≥0 and terminal cost function g : G → R≥0. The accumulated
cost along a path π through the MDP before reaching G, denoted CG(π), is
∑k−1

j=0 c(sj , αj)+g(sk) where k is the state index of reachingG. Let cRmin(s,✸G)
denote the minimum expected cost reachability of G in the SSP when starting
from s. This expected cost can be obtained by solving an LP problem [2].

3 Efficient modeling of Markov automata

As argued in the introduction, MA can be used as semantical model for various
modeling formalisms. We show this for the process-algebraic specification lan-
guage MAPA (MA Process Algebra) [29]. This language is rather expressive and
supports several reductions techniques for MA specifications. In fact, it turns
out to be beneficial to map a language (like GSPNs) to MAPA so as to profit
from these reductions. We present the syntax and a brief informal overview of
the reduction techniques.

The Markov Automata Process Algebra. MAPA relies on external mechanisms
for evaluating expressions, able to handle boolean and real-valued expressions.
We assume that any variable-free expression in this language can be evaluated.
Our tool uses a simple and intuitive fixed data language that includes basic
arithmetic and boolean operators, conditionals, and dynamic lists. For expression
t in our data language and vectors x = (x1, . . . , xn) and d = (d1, . . . , dn), let
t[x := d] denote the result of substituting every xi in t by di.

A MAPA specification consists of a set of uniquely-named processes Xi, each
defined by a process equation Xi(xi : Di) = pi. In such an equation, xi is a
vector of process variables with type Di, and pi is a process term specifying the
behaviour of Xi. Additionally, each specification has an initial process Xj(t).
We abbreviate X((x1, . . . , xn) : (D1 × · · · ×Dn)) by X(x1 : D1, . . . , xn : Dn). A
MAPA process term adheres to the grammar:

p ::= Y (t) | c ⇒ p | p+ p |
∑

x:D p | a(t)
∑

•
x:D f : p | (λ) · p
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constant queueSize = 10, nrOfJobTypes = 3

type Stations = {1, 2}, Jobs = {1, . . . , nrOfJobTypes}

Station(i : Stations, q : Queue, size : {0..queueSize})

= size < queueSize ⇒ (2i+ 1) ·
∑

j:Jobs arrive(j) · Station(i, enqueue(q, j), size+ 1)

+ size > 0 ⇒ deliver(i,head(q))
∑

•
k∈{1,9}

k
10

: k = 1 ⇒ Station(i, q, size)

+ k = 9 ⇒ Station(i, tail(q), size− 1)

Server =
∑

n:Stations

∑

j:Jobs poll(n, j) · (2 ∗ j) · finish(j) · Server

γ(poll, deliver) = copy // actions poll and deliver synchronise and yield action copy

System = τ{copy,arrive,finish}(∂{poll,deliver}(Station(1, empty, 0) ||Station(2, empty, 0) || Server))

Fig. 3. MAPA specification of a polling system.

Here, Y is a process name, t a vector of expressions, c a boolean expression,
x a vector of variables ranging over a finite type D, a ∈ Act a (parameterised)
atomic action, f a real-valued expression yielding a value in [0, 1], and λ an
expression yielding a positive real number. Note that, if |x| > 1, D is a Carte-
sian product, as for instance in

∑

(m,i):{m1,m2}×{1,2,3} send(m, i) . . .. In a process

term, Y (t) denotes process instantiation, where t instantiates Y ’s process vari-
ables (allowing recursion). The term c ⇒ p behaves as p if the condition c
holds, and cannot do anything otherwise. The + operator denotes nondetermin-
istic choice, and

∑

x:D p a nondeterministic choice over data type D. The term
a(t)

∑

•
x:D f : p performs the action a(t) and then does a probabilistic choice

over D. It uses the value f [x := d] as the probability of choosing each d ∈ D.
We write a(t) · p for the action a(t) that goes to p with probability 1. Finally,
(λ) · p can behave as p after a delay, determined by an exponential distribution
with rate λ. Using MAPA processes as basic building blocks, the language also
supports the modular construction of large systems via top-level parallelism (de-
noted ||), encapsulation (denoted ∂), hiding (denoted τ), and renaming (denoted
γ), cf. [30, App. B]. The operational semantics of a MAPA specification yields
an MA; for details we refer to [29].

Example 1. Fig. 3 depicts the MAPA specification [29] of a polling system—
inspired by [27]—which generalised the system of Fig. 2. Now, there are incoming
requests of 3 possible types, each of which has a different service rate. Addition-
ally, the stations store these in a queue of size 10. ⊓⊔

Reduction techniques. To simplify state space generation and reduction, we use a
linearised format referred to as MLPPE (Markovian linear probabilistic process
equation). In this format, there is precisely one process consisting of a nondeter-
ministic choice between a set of summands. Each summand can contain a nonde-
terministic choice, followed by a condition, and either an interactive action with
a probabilistic choice (determining the next state) or a rate and a next state. Ev-
ery MAPA specification can be translated efficiently into an MLPPE [29] while
preserving strong bisimulation. On MLPPEs two types of reduction techniques
have been defined: simplifications and state space reductions:
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– Maximal progress reduction removes Markovian transitions from states also
having τ -transitions. It is more efficient to perform this on MLPPEs than
on the initial MAPA specification. We use heuristics (as in [32]) to omit all
Markovian summands in presence of internal non-Markovian ones.

– Constant elimination [19] replaces MLPPE parameters that remain con-
stants by their initial value.

– Expression simplification [19] evaluates functions for which all parameters
are constants and applies basic laws from logic.

– Summation elimination [19] removes unnecessary summations, transforming
e.g.,

∑

d:N d = 5 ⇒ send(d) · X to send(5) · X ,
∑

d:{1,2} a · X to a · X , and
∑

d:D(λ) ·X to (|D| × λ) ·X , to preserve the total rate to X .

– Dead-variable reduction [32] detects states in which the value of some data
variable d is irrelevant. This is the case if d will be overwritten before being
used for all possible futures. Then, d is reset to its initial value.

– Confluence reduction [31] detects spurious nondeterminism, resulting from
parallel composition. It denotes a subset of the probabilistic transitions of
a MAPA specification as confluent, meaning that they can safely be given
priority if enabled together with other transitions.

4 Expected time objectives

The actions of an MA are only used for composing models from smaller ones.
For the analysis of MA, they are not relevant and we may safely assume that
all actions are internal2. Due to the maximal progress assumption, the outgo-
ing transitions of a state s are all either probabilistic transitions or Markovian
transitions. Such states are called probabilistic and Markovian, respectively; let
PS ⊆ S and MS ⊆ S denote these sets.

LetM be an MA with state space S and G ⊆ S a set of goal states. Define the
(extended) random variable VG : Paths → R∞

≥0 as the elapsed time before first
visiting some state inG. That is, for an infinite path π = s0

σ0,µ0,t0
−−−−−→s1

σ1,µ1,t1
−−−−−→· · · ,

let VG(π) = min {t ∈ R≥0 | G ∩ π@t 6= ∅} where min(∅) = +∞. (With slight
abuse of notation we use π@t as the set of states occurring in the sequence
π@t.) The minimal expected time to reach G from s ∈ S is defined by

eTmin(s,✸G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Prs,D(dπ)

whereD is a policy on M. Note that by definition of VG, only the amount of time
before entering the first G-state is relevant. Hence, we may turn all G-states into
absorbing Markovian states without affecting the expected time reachability. In
the remainder we assume all goal states to be absorbing.

2 Like in the MAPA specification of the queueing system in Fig. 3, the actions used
in parallel composition are explicitly turned into internal actions by hiding.
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Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =



























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) if s ∈ PS \G

0 if s ∈ G.

For a goal state, the expected time obviously is zero. For a Markovian state
s 6∈ G, the minimal expected time to G is the expected sojourn time in s plus
the expected time to reach G via its successor states. For a probabilistic state,
an action is selected that minimises the expected reachability time according to
the distribution µs

α corresponding to α. The characterization of eTmin(s,✸G)
in Thm. 1 allows us to reduce the problem of computing the minimum expected
time reachability in an MA to a non-negative SSP problem [2,9].

Definition 2 (SSP for minimum expected time reachability). The SSP
of MA M = (S,Act, −→ ,=⇒, s0) for the expected time reachability of G ⊆ S is
sspet(M) = (S,Act ∪ {⊥} ,P, s0, G, c, g) where g(s) = 0 for all s ∈ G and

P(s, σ, s′) =











R(s,s′)
E(s)

if s ∈ MS, σ = ⊥

µs
σ(s

′) if s ∈ PS, s σ−−→µs
σ

0 otherwise, and

c(s, σ) =

{

1
E(s)

if s ∈ MS \G, σ = ⊥

0 otherwise.

Terminal costs are zero. Transition probabilities are defined in the standard way.
The reward of a Markovian state is its expected sojourn time, and zero otherwise.

Theorem 2. For MA M, eTmin(s,✸G) equals cRmin(s,✸G) in sspet(M).

Thus here is a stationary deterministic policy on M yielding eTmin(s,✸G).
Moreover, the uniqueness of the minimum expected cost of an SSP [2,9] now
yields that eTmin(s,✸G) is the unique fixpoint of L (see Thm. 1). The uniqueness
result enables the usage of standard solution techniques such as value iteration
and linear programming to compute eTmin(s,✸G). For maximal expected time
objectives, a similar fixpoint theorem is obtained, and it can be proven that
those objectives correspond to the maximal expected reward in the SSP problem
defined above. In the above, we have assumed MA to not contain any Zeno cycle,
i.e., a cycle solely consisting of probabilistic transitions. The above notions can all
be extended to deal with such Zeno cycles, by, e.g., setting the minimal expected
time of states in Zeno BSCCs that do not contain G-states to be infinite (as such
states cannot reach G). Similarly, the maximal expected time of states in Zeno
end components (that do not containg G-states) can be defined as ∞, as in the
worst case these states will never reach G.

5 Long run objectives

Let M be an MA with state space S and G ⊆ S a set of goal states. Let
1G be the characteristic function of G, i.e., 1G(s) = 1 if and only if s ∈ G.
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Following the ideas of [8,20], the fraction of time spent in G on an infinite path
π in M up to time bound t ∈ R≥0 is given by the random variable (r. v.)

AG,t(π) = 1
t

∫ t

0 1G(π@u) du. Taking the limit t → ∞, we obtain the r. v.

AG(π) = lim
t→∞

AG,t(π) = lim
t→∞

1

t

∫ t

0

1G(π@u) du.

The expectation of AG for policy D and initial state s yields the corresponding
long-run average time spent in G:

LRAD(s,G) = Es,D(AG) =

∫

Paths

AG(π) Prs,D(dπ).

The minimum long-run average time spent in G starting from state s is then:

LRAmin(s,G) = inf
D

LRAD(s,G) = inf
D

Es,D(AG).

For the long-run average analysis, we may assume w.l.o.g. that G ⊆ MS, as the
long-run average time spent in any probabilistic state is always 0. This claim
follows directly from the fact that probabilistic states are instantaneous, i.e.
their sojourn time is 0 by definition. Note that in contrast to the expected time
analysis, G-states cannot be made absorbing in the long-run average analysis. It
turns out that stationary deterministic policies are sufficient for yielding minimal
or maximal long-run average objectives.

In the remainder of this section, we discuss in detail how to compute the
minimum long-run average fraction of time to be in G in an MA M with initial
state s0. The general idea is the following three-step procedure:

1. Determine the maximal end components3 {M1, . . . ,Mk} of MA M.
2. Determine LRAmin(G) in maximal end component Mj for all j ∈ {1, . . . , k}.
3. Reduce the computation of LRAmin(s0, G) in MA M to an SSP problem.

The first phase can be performed by a graph-based algorithm [7,5], whereas the
last two phases boil down to solving LP problems.

Unichain MA. We first show that for unichain MA, i.e., MA that under any sta-
tionary deterministic policy yield a strongly connected graph structure, comput-
ing LRAmin(s,G) can be reduced to determining long-ratio objectives in MDPs.
Let us first explain such objectives. Let M = (S,Act,P, s0) be an MDP. Assume
w.l.o.g. that for each state s in M there exists α ∈ Act such that P(s, α, s′) > 0.
Let c1, c2 : S × (Act ∪ {⊥}) → R≥0 be cost functions. The operational inter-
pretation is that a cost c1(s, α) is incurred when selecting action α in state s,

3 A sub-MA of MA M is a pair (S′,K) where S′ ⊆ S and K is a function that
assigns to each s ∈ S′ a non-empty set of actions such that for all α ∈ K(s), s α−−→µ
with µ(s′) > 0 or s

λ
=⇒ s′ imply s′ ∈ S′. An end component is a sub-MA whose

underlying graph is strongly connected; it is maximal w.r.t. K if it is not contained
in any other end component (S′′,K).
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and similar for c2. Our interest is the ratio between c1 and c2 along a path. The
long-run ratio R between the accumulated costs c1 and c2 along the infinite path
π = s0

α0−−→ s1
α1−−→ . . . in the MDP M is defined by4:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)

∑n−1
j=0 c2(sj , αj)

.

The minimum long-run ratio objective for state s of MDP M is defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑

π∈Paths

R(π) · Prs,D(π).

Here, Paths is the set of paths in the MDP, D an MDP-policy, and Pr the
probability mass on MDP-paths. From [7], it follows that Rmin(s) can be ob-
tained by solving the following LP problem with real variables k and xs for each
s ∈ S: Maximize k subject to:

xs ≤ c1(s, α)− k · c2(s, α) +
∑

s′∈S

P(s, α, s′) · xs′ for each s ∈ S, α ∈ Act.

We now transform an MA into an MDP with 2 cost functions as follows.

Definition 3 (From MA to two-cost MDPs). Let M = (S,Act, −→ ,=⇒, s0)
be an MA and G ⊆ S a set of goal states. The MDP mdp(M) = (S,Act ∪
{⊥},P, s0) with cost functions c1 and c2, where P is defined as in Def. 2, and

c1(s, σ) =

{

1
E(s)

if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{

1
E(s)

if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average residence time in state s
whereas c1 only does so for states in G.

Theorem 3. For unichain MA M, LRAmin(s,G) equals Rmin(s) in mdp(M).

To summarise, computing the minimum long-run average fraction of time
that is spent in some goal state in G ⊆ S in an unichain MA M equals the
minimum long-run ratio objective in an MDP with two cost functions. The latter
can be obtained by solving an LP problem. Observe that for any two states s, s′

in a unichain MA, LRAmin(s,G) and LRAmin(s′, G) coincide. We therefore omit
the state and simply write LRAmin(G) when considering unichain MA.

Arbitrary MA. Let M be an MA with initial state s0 and maximal end com-
ponents {M1, . . . ,Mk} for k > 0 where MA Mj has state space Sj . Note that
each Mj is a unichain MA. Using this decomposition of M into maximal end
components, we obtain the following result:

4 In our setting, R(π) is well-defined as the cost functions c1 and c2 are obtained from
non-Zeno MA. Thus for any infinite path π, c2(sj , αj) > 0 for some index j.
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Theorem 4. 5 For MA M = (S,Act, −→ ,=⇒, s0) with MECs {M1, . . . ,Mk}
with state spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

LRAmin(s0, G) = inf
D

k
∑

j=1

LRAmin
j (G) · PrD(s0 |= ♦✷Sj),

where PrD(s0 |= ♦✷Sj) is the probability to eventually reach and continuously
stay in some state in Sj from s0 under policy D and LRAmin

j (G) is the LRA of
G ∩ Sj in unichain MA Mj.

Computing minimal LRA for arbitrary MA is now reducible to a non-negative
SSP problem. This proceeds as follows. In MA M, we replace each maximal
end component Mj by two fresh states qj and uj. Intuitively, qj represents
Mj whereas uj represents a decision state. State uj has a transition to qj and
contains all probabilistic transitions leaving Sj . Let U denote the set of uj states
and Q the set of qj states.

Definition 4 (SSP for long run average). The SSP of MA M for the LRA
in G ⊆ S is ssplra(M) = (S \

⋃k
i=1Si ∪ U ∪Q,Act ∪ {⊥},P′, s0, Q, c, g), where

g(qi) = LRAmin
i (G) for qi ∈ Q and c(s, σ) = 0 for all s and σ ∈ Act ∪ {⊥}. P′

is defined as follows. Let S′ = S \
⋃k

i=1Si. P
′ equals P for all s, s′ ∈ S′. For the

new states uj:

P
′(uj , τ, s

′) = P(Sj , τ, s
′) if s′ ∈ S′ \ Sj and P

′(ui, τ, uj) = P(Si, τ, Sj) for i 6= j.

Finally, we have: P′(qj ,⊥, qj) = 1 = P′(uj ,⊥, qj) and P′(s, σ, uj) = P(s, σ, Sj).

Here, P(s, α, S′) is a shorthand for
∑

s′∈S′ P(s, α, s′); similarly, P(S′, α, s′) =
∑

s∈S′ P(s, α, s′). The terminal costs of the new qi-states are set to LRAmin
i (G).

Theorem 5. For MA M, LRAmin(s,G) equals cRmin(s,♦U) in SSP ssplra(M).

6 Timed reachability objectives

This section presents an algorithm that approximates time-bounded reachabil-
ity probabilities in MA. We start with a fixed point characterisation, and then
explain how these probabilities can be approximated using digitisation.

Fixed point characterisation. Our goal is to come up with a fixed point charac-
terisation for the maximum (minimum) probability to reach a set of goal states
in a time interval. Let I and Q be the set of all nonempty nonnegative real inter-
vals with real and rational bounds, respectively. For interval I ∈ I and t ∈ R≥0,
let I ⊖ t = {x− t | x ∈ I ∧ x ≥ t}. Given MA M, I ∈ I and a set G ⊆ S of goal
states, the set of all paths that reach some goal states within interval I is denoted

5 This theorem corrects a small flaw in the corresponding theorem for IMCs in [14].
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by ♦I G. Let pMmax(s,♦
I G) be the maximum probability of reaching G within

interval I if starting in state s at time 0. Here, the maximum is taken over all
possible general measurable policies. The next result provides a characterisation
of pMmax(s,♦

I G) as a fixed point.

Lemma 1. Let M be an MA, G ⊆ S and I ∈ I with inf I = a and sup I = b.
Then, pMmax(s,♦

I G) is the least fixed point of the higher-order operator Ω : (S×
I ֌ [0, 1]) ֌ (S × I ֌ [0, 1]), which for s ∈ MS is given by:

Ω(F )(s, I) =

{

∫ b

0 E(s)e−E(s)t
∑

s′∈S P(s,⊥, s′)F (s′, I ⊖ t) dt s /∈ G

e−E(s)a +
∫ a

0
E(s)e−E(s)t

∑

s′∈S P(s,⊥, s′)F (s′, I ⊖ t) dt s ∈ G

and for s ∈ PS is defined by:

Ω(F )(s, I) =

{

1 s ∈ G ∧ a = 0

maxα∈Act\⊥(s)

∑

s′∈S P(s, α, s′)F (s′, I) otherwise.

This characterisation is a simple generalisation of that for IMCs [33], reflecting
the fact that taking an action from an probabilistic state leads to a distribution
over the states (rather than a single state). The above characterisation yields an
integral equation system which is in general not directly tractable [1]. To tackle
this problem, we approximate the fixed point characterisation using digitisation,
extending ideas developed in [33]. We split the time interval into equally-sized
digitisation steps, assuming a digitisation constant δ, small enough such that
with high probability at most one Markovian transition firing occurs in any
digitisation step. This allows us to construct a digitised MA (dMA), a variant
of a semi-MDP, obtained by summarising the behaviour of the MA at equidis-
tant time points. Paths in a dMA can be seen as time-abstract paths in the
corresponding MA, implicitly still counting digitisation steps, and thus discrete
time. Digitisation of MA M = (S,Act, −→ ,=⇒, s0) and digitisation constant δ,
proceeds by replacing =⇒ by =⇒δ = { (s, µs) | s ∈ MS }, where

µs(s′) =

{

(1− e−E(s)δ)P(s,⊥, s′) if s′ 6= s

(1− e−E(s)δ)P(s,⊥, s′) + e−E(s)δ otherwise.

Using the above fixed point characterisation, it is now possible to relate reach-
ability probabilities in an MA M to reachability probabilities in its dMA Mδ.

Theorem 6. Given MA M = (S,Act, −→ ,=⇒, s0), G ⊆ S, interval I = [0, b] ∈
Q with b ≥ 0 and λ = maxs∈MS E(s). Let δ > 0 be such that b = kbδ for some
kb ∈ N. Then, for all s ∈ S it holds that

pMδ
max(s,♦

[0,kb] G) ≤ pMmax(s,♦
[0,b] G) ≤ pMδ

max(s,♦
[0,kb]G)+1−e−λb

(

1+λδ
)kb .

This theorem can be extended to intervals with non-zero lower bounds; for the
sake of brevity, the details are omitted here. The remaining problem is to com-
pute the maximum (or minimum) probability to reach G in a dMA within a step
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bound k ∈ N. Let ♦[0,k]G be the set of infinite paths in a dMA that reach a
G state within k steps, and pDmax(s,♦

[0,k] G) denote the maximum probability
of this set. Then we have pDmax(s,♦

[0,k] G) = supD∈TA Prs,D(♦[0,k] G). Our algo-
rithm is now an adaptation (to dMA) of the well-known value iteration scheme
for MDPs.

The algorithm proceeds by backward unfolding of the dMA in an iterative
manner, starting from the goal states. Each iteration intertwines the analysis
of Markov states and of probabilistic states. The key issue is that a path from
probabilistic states to G is split into two parts: reaching Markov states from
probabilistic states in zero time and reaching goal states from Markov states in
interval [0, j], where j is the step count of the iteration. The former computation
can be reduced to an unbounded reachability problem in the MDP induced by
probabilistic states with rewards on Markov states. For the latter, the algorithm
operates on the previously computed reachability probabilities from all Markov
states up to step count j. We can generalize this recipe from step-bounded
reachability to step interval-bounded reachability, details are described in [15].

7 Tool-chain and case studies

This section describes the implementation of the algorithms discussed, together
with the modelling features resulting in our MaMa tool-chain. Furthermore, we
present two case studies that provide empirical evidence of the strengths and
weaknesses of the MaMa tool chain.

7.1 MaMa tool chain

Our tool chain consists of several tool components: SCOOP [28,29], IMCA [14],
and GEMMA (realized in Haskell), see Figure 4. The tool-chain comprises about
8,000 LOC (without comments). SCOOP (in Haskell) supports the generation
from MA from MAPA specifications by a translation into the MLPPE format.
It implements all the reduction techniques described in Section 3, in particular
confluence reduction. The capabilities of the IMCA tool-component (written in
C++) have been lifted to expected time and long-run objectives for MA, and ex-
tended with timed reachability objectives. It also supports (untimed) reachabil-
ity objectives which are not further treated here. A prototypical translator from

SCOOP IMCA Results

MAPA spec + Property

Goal states

MA

reduce

GEMMA
Property

MAPA-spec

GSPN + Property

Fig. 4. Analysing Markov Automata using the MaMa tool chain.
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GSPNs to MA, in fact MAPA specifications, has been realized (the GEMMA
component). We connected the three components into a single tool chain, by
making SCOOP export the (reduced) state space of an MLPPE in the IMCA
input language. Additionally, SCOOP has been extended to translate properties,
based on the actions and parameters of a MAPA specification, to a set of goal
states in the underlying MA. That way, in one easy process systems and their
properties can be modelled in MAPA, translated to an optimised MLPPE by
SCOOP, exported to the IMCA tool and then analysed.

7.2 Case studies

This section reports on experiments with MaMa. All experiments were con-
ducted on a 2.5 GHz Intel Core i5 processor with 4GB RAM, running on Mac
OS X 10.8.3.

Processor grid. First, we consider a model of a 2 × 2 concurrent processor ar-
chitecture. Using GEMMA, we automatically derived the MA model from the
GSPN model in [21, Fig. 11.7]. Previous analysis of this model required weights
for all immediate transitions, requiring complete knowledge of the mutual be-
haviour of all these transitions. We allow a weight assignment to just a (possibly
empty) subset of the immediate transitions—reflecting the practical scenario of
only knowing the mutual behaviour for a selection of the transitions. For this
case study we indeed kept weights for only a few of the transitions, obtaining
probabilistic behaviour for them and nondeterministic behaviour for the others.

Table 1 reports on the time-bounded and time-interval bounded probabilities
for reaching a state such that the first processor has an empty task queue. We
vary the degree of multitasking K, the error bound ǫ and the interval I. For each
setting, we report the number of states |S| and goal states |G|, and the generation
time with SCOOP (both with and without the reductions from Section 3).

The runtime demands grow with both the upper and lower time bound, as
well as with the required accuracy. The model size also affects the per-iteration
cost and thus the overall complexity of reachability computation. Note that our
reductions speed-up the analysis times by a factor between 1.7 and 3.5: even more
than the reduction in state space size. This is due to our techniques significantly
reducing the degree of nondeterminism.

Table 2 displays results for expected time until an empty task queue, as
well as the long-run average that a processor is active. Whereas [21] fixed all
nondeterminism, obtaining for instance an LRA of 0.903 for K = 2, we are
now able to retain nondeterminism and provide the more informative interval
[0.8810, 0.9953]. Again, our reduction techniques significantly improve runtimes.

Polling system. Second, we consider the polling system from Fig. 3 with two sta-
tions and one server. We varied the queue sizes Q and the number of job types N ,
analysing a total of six different settings. Since—as for the previous case—
analysis scales proportionally with the error bound, we keep this constant here.
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unreduced reduced
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2 2,508 1,398 0.6 1,789 1,122 0.8

10−2 [0, 3] 0.91 58.5 31.0 0.95 54.9 21.7
10−2 [0, 4] 0.96 103.0 54.7 0.98 97.3 38.8

10−2 [1, 4] 0.91 117.3 64.4 0.96 109.9 49.0

10−3 [0, 3] 0.910 580.1 309.4 0.950 544.3 218.4

3 10,852 4,504 3.1 7,201 3,613 3.5

10−2 [0, 3] 0.18 361.5 202.8 0.23 382.8 161.1
10−2 [0, 4] 0.23 643.1 360.0 0.30 681.4 286.0

10−2 [1, 4] 0.18 666.6 377.3 0.25 696.4 317.7

10−3 [0, 3] 0.176 3,619.5 2,032.1 0.231 3,837.3 1,611.9

4 31,832 10,424 9.8 20,021 8,357 10.5 10−2 [0, 3] 0.01 1,156.8 614.9 0.03 1,196.5 486.4

Table 1. Interval reachability probabilities for the grid. (Time in seconds.)
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2 1.0000 0.3 0.1 1.2330 0.7 0.3 0.8110 1.3 0.7 0.9953 0.5 0.2
3 11.1168 18.3 7.7 15.2768 135.4 40.6 0.8173 36.1 16.1 0.9998 4.7 2.6
4 102.1921 527.1 209.9 287.8616 6,695.2 1,869.7 0.8181 505.1 222.3 1.0000 57.0 34.5

Table 2. Expected times and long-run averages for the grid. (Time in seconds.)
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2 3 1,497 567 0.4 990 324 0.2
10−3 [0, 1] 0.277 4.7 2.9 0.558 4.6 2.5

10−3 [1, 2] 0.486 22.1 14.9 0.917 22.7 12.5

2 4 4,811 2,304 1.0 3,047 1,280 0.6
10−3 [0, 1] 0.201 25.1 14.4 0.558 24.0 13.5
10−3 [1, 2] 0.344 106.1 65.8 0.917 102.5 60.5

3 3 14,322 5,103 3.0 9,522 2,916 1.7
10−3 [0, 1] 0.090 66.2 40.4 0.291 60.0 38.5

10−3 [1, 2] 0.249 248.1 180.9 0.811 241.9 158.8

3 4 79,307 36,864 51.6 50,407 20,480 19.1
10−3 [0, 1] 0.054 541.6 303.6 0.291 578.2 311.0
10−3 [1, 2] 0.141 2,289.3 1,305.0 0.811 2,201.5 1,225.9

4 2 6,667 1,280 1.1 4,745 768 0.8
10−3 [0, 1] 0.049 19.6 14.0 0.118 19.7 12.8

10−3 [1, 2] 0.240 83.2 58.7 0.651 80.9 53.1

4 3 131,529 45,927 85.2 87,606 26,244 30.8
10−3 [0, 1] 0.025 835.3 479.0 0.118 800.7 466.1

10−3 [1, 2] 0.114 3,535.5 2,062.3 0.651 3,358.9 2,099.5

Table 3. Interval reachability probabilities for the polling system. (Time in
seconds.)
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2 3 1.0478 0.2 0.1 2.2489 0.3 0.2 0.1230 0.8 0.5 0.6596 0.2 0.1
2 4 1.0478 0.2 0.1 3.2053 2.0 1.0 0.0635 9.0 5.2 0.6596 1.3 0.6
3 3 1.4425 1.0 0.6 4.6685 8.4 5.0 0.0689 177.9 123.6 0.6600 26.2 13.0
3 4 1.4425 9.7 4.6 8.0294 117.4 67.2 0.0277 7,696.7 5,959.5 0.6600 1,537.2 862.4
4 2 1.8226 0.4 0.3 4.6032 2.4 1.6 0.1312 45.6 32.5 0.6601 5.6 3.9
4 3 1.8226 29.8 14.2 9.0300 232.8 130.8 – timeout (18 hours) – 0.6601 5,339.8 3,099.0

Table 4. Expected times and long-run averages for the polling system. (Time
in seconds.)
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Table 3 reports results for time-bounded and time-interval bounded proper-
ties, and Table 4 displays probabilities and runtime results for expected times
and long-run averages. For all analyses, the goal set consists of all states for
which both station queues are full.

8 Conclusion

This paper presented new algorithms for the quantitative analysis of Markov
automata (MA) and proved their correctness. Three objectives have been con-
sidered: expected time, long-run average, and timed reachability. The MaMa

tool-chain supports the modelling and reduction of MA, and can analyse these
three objectives. It is also equipped with a prototypical tool to map GSPNs onto
MA. The MaMa is accessible via its easy-to-use web interface that can be found
at http://wwwhome.cs.utwente.nl/~timmer/mama. Experimental results on a
processor grid and a polling system give insight into the accuracy and scalability
of the presented algorithms. Future work will focus on efficiency improvements
and reward extensions.
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A Proof of Theorem 1

Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =



























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) if s ∈ PS \G

0 if s ∈ G.

Proof. We show that L(eTmin(s,✸G)) = eTmin(s,✸G), for all s ∈ S. Therefore,
we will distinguish three cases: s ∈ MS \G, s ∈ PS \G, s ∈ G.

(i) if s ∈ MS \G, we derive

eTmin(s,✸G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ)

= inf
D

∫ ∞

0

t · E(s)e−E(s)t +
∑

s∈S

P(s, s′) · E
s′,D(s

⊥,1,t−−−−→ ·)
(VG)dt

=

∫ ∞

0

t · E(s)e−E(s)t +
∑

s∈S

P(s, s′) · inf
D

E
s′,D(s

⊥,1,t−−−−→ ·)
(VG)dt

=

∫ ∞

0

t · E(s)e−E(s)t +
∑

s∈S

P(s, s′) · inf
D

Es′,D(VG)dt

=

∫ ∞

0

t · E(s)e−E(s)tdt+
∑

s∈S

P(s, s′) · eTmin(s′,✸G)

=
1

E(s)
+

∑

s∈S

P(s, s′) · eTmin(s′,✸G)

= L(eTmin(s,✸G)).

(ii) if s ∈ PS \G, we derive

eTmin(s,✸G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ)

= inf
D

∑

s
α,µ,0−−−−→ s′

D(s)(α) · E
s′,D(s

α,µ,0−−−−→ ·)
(VG).

Each action α ∈ Act(s) uniquely determines a distribution µs
α, such that the

successor state s′, with s
α,µs

α,0
−−−−−→ s′, satisfies µs

α(s
′) > 0.

α = argmin
s

α−−→µs
α

inf
D

∑

s′∈S

µs
α(s

′) · Es′,D(VG)
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Hence, all optimal schedulers choose α with probability 1, i.e. D(s)(α) = 1
and D(s)(σ) = 0 for all σ 6= α. Thus, we obtain

eTmin(s,✸G) = inf
D

min
s

α−−→µs
α

∑

s′∈S

µs
α(s

′) · E
s′,D(s

α,µs
α,0−−−−−→ ·)

(VG)

= min
s

α−−→µs
α

inf
D

∑

s′∈S

µs
α(s

′) · E
s′,D(s

α,µs
α,0−−−−−→ ·)

(VG)

= min
s

α−−→µs
α

inf
D

∑

s′∈S

µs
α(s

′) · Es′,D(VG)

= min
s

α−−→µs
α

∑

s′∈S

µs
α(s

′) · eTmin(s′,✸G)

= min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · eTmin(s′,✸G)

= L(eTmin(s,✸G)).

(iii) if s ∈ G, we derive

eTmin(s,✸G) = inf
D

∫

Paths

VG(π) Pr
s,D

(dπ) = 0 = L(eTmin(s,✸G)).

⊓⊔

B Proof of Theorem 2

Theorem 2. For MA M, eTmin(s,✸G) equals cRmin(s,✸G) in sspet(M).

Proof. As shown in [2,7], cRmin(s,✸G) is the unique fixpoint of the Bellman
operator L′ defined as

[L′(v)](s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′) +
∑

s′∈G

P(s, α, s′) · g(s′).

We show that the Bellman operator L for M defined in Theorem 1 equals L′ for
sspet(M). Note that by definition g(s) = 0 for all s ∈ G. Thus

[L′(v)](s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′).

We distinguish three cases, s ∈ MS \G, s ∈ PS \G, s ∈ G.

(i) If s ∈ MS\G, then |Act(s)| = 1 with Act(s) = {⊥} and therefore minα∈Act(s) =

⊥. Further c(s,⊥) = 1
E(s) and for all s′ ∈ S,P(s,⊥, s′) = R(s,s′)

E(s) . Thus

[L′(v)](s) =
1

E(s)
+
∑

s′∈S

R(s, s′)

E(s)
· v(s′) = [L(v)](s).
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(ii) If s ∈ PS \ G, for each action α ∈ Act(s) and successor state s′, with
P(s, α, s′) > 0 it follows P(s, α, s′) = µs

α(s
′). Further, c(s, α) = 0 for all

α ∈ Act.

[L′(v)](s) = min
α∈Act(s)

∑

s′∈S

P(s, α, s′) · v(s′) = min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) = [L(v)](s).

(iii) If s ∈ G, then by definition |Act(s)| = 1 with Act(s) = {⊥} and P(s,⊥, s) =
1 and c(s,⊥) = 0.

[L′(v)](s) =
∑

s′∈S

P(s, α, s′) · v(s′) = 0 = [L(v)](s)

⊓⊔

C Proof of Theorem 3

Theorem 3. For unichain MA M, LRAmin(s,G) equals Rmin(s) in mdp(M).

Proof. Let M be an unchain MA with state space S and G ⊆ S a set of goal
states. We consider a stationary deterministic scheduler D on M. As M is
unIchain, D will induce an ergodic CTMC with

R(s, s′) =

{

∑

{λ|s
λ

=⇒ s′} if s ∈ MS

∞ if s ∈ PS ∧ s
D(s)−−−−→µs

D(s) ∧ µs
D(s)(s

′) > 0

Hence, the behaviour of Markovian states is the same as before. In contrary,
for probabilistic states, the transitions induced by scheduler D and probability
distribution µs

D(s) are transformed into Markovian transitions with rate∞. Thus,
we simulate with the exponential distribution the instantaneous execution of the
probabilistic transition. Note, that this will not contradict the applied results for
CTMCs.
The long-run average for state s ∈ S and a set of goal states G is given by

LRAD(s,G) = Es,D(AG) = Es,D

(

lim
t→∞

1

t

∫ t

0

1G(Xu)du

)

where Xu is the random variable, denoting the state s at time point u. With the
ergodic theorem from [25] we obtain the following:

P

(

1

t

∫ t

0

1{xs=i}ds →
1

miqi
as t → ∞

)

= 1

where mi = Ei(Ti) is the expected return time to state si. Therefore, in our
induced ergodic CTMC, almost surely

Esi

(

lim
t→∞

1

t

∫ t

0

1{si}(Xu)du

)

=
1

mi ·E(si)
. (1)
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Thus, the fraction of time to stay in si in the long-run is almost surely 1
mi·E(si)

,

where we assume that 1
∞ = 0.

Let µi be the probability to stay in si in the long-run in the embedded DTMC

of our ergodic CTMC, where P(s, s′) = R(s,s′)
E(s) . Thus µ · P = µ where µ is the

vector containing µi for all states si ∈ S. Given the probability of µi of staying
in state si the expected return time is given by

mi =

∑

sj∈S µj ·E(sj)
−1

µi

. (2)

Gathering those results yields:

LRAD(s,G) = Es,D

(

lim
t→∞

1

t

∫ t

0

1(Xu)du

)

= Es,D

(

lim
t→∞

1

t

∫ t

0

∑

si∈G

1{si}(Xu)du

)

=
∑

si∈G

Es,D

(

lim
t→∞

1

t

∫ t

0

1{si}(Xu)du

)

(1)
=
∑

si∈G

1

mi ·E(si)

(2)
=
∑

si∈G

µi
∑

sj∈S µj ·E(sj)−1
·

1

E(si)
=

∑

si∈G µi · E(si)
−1

∑

sj∈S µj ·E(sj)−1

=

∑

si∈S 1G(si) · µiE(si)
−1)

∑

sj∈S µj ·E(sj)−1
=

∑

si∈S µi · (1G(si) · E(si)
−1)

∑

sj∈S µj · E(sj)−1

=

∑

si∈S µi · c1(si, D(si))
∑

sj∈S µj · c2(sj , D(sj))

[8]
= Es,D(R)

Thus, by definition there exists a one to one correspondence between the sched-
uler D of M and its corresponding MDP mdp(M). With the results from
above this yields that LRAmin(s,G) = infD LRAD(s,G) in MA M equals
Rmin(s) = infD Es,D(R) in MDP mdp(M). ⊓⊔

D Proof of Theorem 4

Theorem 4. For MA M = (S,Act, −→ ,=⇒, s0) with MECs {M1, . . . ,Mk}
with state spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

LRAmin(s0, G) = inf
D

k
∑

j=1

LRAmin
j (G) · PrD(s0 |= ♦✷Sj),

where PrD(s0 |= ♦✷Sj) is the probability to eventually reach and continuously
stay in some state in Sj from s0 under policy D and LRAmin

j (G) is the LRA of
G ∩ Sj in unichain MA Mj.

Proof. We give here a sketch proof of Theorem 4. Let M be a finite MA with
maximal end components {M1, . . . ,Mk}, G ⊆ S a set of goal states, and π ∈
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s0 s1

s3

s2

s5 s4

2

0.6

0.4

α

α, 1 β, 1
1

3

1

(a) Example Markov automata.

s0 u1 q1

u2 q2

⊥, 1 ⊥, 1

α, 1

⊥, 1

⊥, 1

⊥, 1

(b) Induced SSP for MA in Figure 5(a).

Fig. 5. Example for Definition 4.

Paths(M) an infinite path in M. We consider D as a stationery deterministic
scheduler. Therefore π can be partitioned into an finite and infinite path fragment

πs0s = s0
α0,µ0,t0−−−−−−→ s1

α1,µ1,t1−−−−−−→ . . . αn,µn,tn−−−−−−−→ s, and

πω
s = s αs,µs,ts−−−−−−→ . . . αi,µi,ti−−−−−−→ s . . .

where πs0s is the path starting in initial state s0 and ends in s ∈ Mi. Further, all
states on path πω

s belong to maximal end component Mi. Note, that a state on
path πs0s can be part of another maximal end component Mj as in Example 2.
Hence, it is not sufficient to only check if eventually a MEC is reached, as done
in the corresponding theorem for IMCs in [14]. Thus, the minimal LRA will be
obtained when the LRA in each MEC Mi is minimal and the combined LRA of
all MECs is minimal according to their persistence under scheduler D. ⊓⊔

E Example of Definition 4

Definition 4 (SSP for long run average). The SSP of MA M for the LRA
in G ⊆ S is ssplra(M) = (S \

⋃k
i=1Si ∪ U ∪Q,Act ∪ {⊥},P′, s0, Q, c, g), where

g(qi) = LRAmin
i (G) for qi ∈ Q and c(s, σ) = 0 for all s and σ ∈ Act ∪ {⊥}. P′

is defined as follows. Let S′ = S \
⋃k

i=1Si. P
′ equals P for all s, s′ ∈ S′. For the

new states uj:

P
′(uj , τ, s

′) = P(Sj , τ, s
′) if s′ ∈ S′ \ Sj and P

′(ui, τ, uj) = P(Si, τ, Sj) for i 6= j.

Finally, we have: P′(qj ,⊥, qj) = 1 = P′(uj ,⊥, qj) and P′(s, σ, uj) = P(s, σ, Sj).

Example 2. Consider the MA M from Figure 5(a) with MECs M1 with S1 =
{s1, s2, s3, s4} andM2 with S2 = {s5}. We construct the corresponding ssplra(M)
due to Definition 4. Let Sssp = S \

⋃k
i=1Si ∪ U ∪ Q, where

⋃k
i=1Si = S1 ∪

S2 = {s1, s2, s3, s4, s5}. Further, we have to MECs and therefore fresh states
U = {u1, u2} and Q = {q1, q2}. Hence, Sssp = {s0, u1, u2, q1, q2}. (1) Consider
s, s′ ∈ S′. Since, S′ = {s0} and there exists no transition from s0 to s0 we
can omit this rule. (2) Consider outgoing transitions from MECs. For M1 there
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exists a transition from s3
α,1−−−→ s5 in the underlying MA, where s3 ∈ S1 and

s5 6∈ S1 but s5 ∈ S2. For the corresponding new state u1 it followsP
′(u1, α, u2) =

P(S1, α, S2) = 1 where P(Si, σ, Sj) =
∑

s∈Si

∑

s′∈Sj
P(s, σ, s′). (3) Consider all

states U and Q and add new transitions with P(ui,⊥, qi) = P(qi,⊥, qi) = 1
for i = 1, 2. Finally, consider all states s ∈ Sssp ∩ S with a transition into a
MEC. Hence, P′(s0,⊥, u1) = P(s0,⊥, s1) = 1. The resulting transition system
of ssplra(M) is depicted in Figure 5(b).

F Proof of Theorem 5

Theorem 5. For MA M, LRAmin(s,G) equals cRmin(s,♦U) in SSP ssplra(M).

Proof. We show that the reduction of the induced SSP is correct.

cRmin(s,✸Q) = inf
D

Es,D{g(XTQ
)} = inf

D

k
∑

i=1

g(XTqi
) · PrD(s |= ✸qi)

= inf
D

k
∑

i=1

LRAmin
i (G) · PrD(s |= ✸qi)

(∗)
= inf

D

k
∑

i=1

LRAmin
i (G) · PrD(s |= ✸✷Si)

= LRAmin(s,G).

Observe that in step (∗) we use the transformation from Definition 4 in reverse.
Hence, if PrD(s |= ✸qi) > 0, we eventually reach the maximal end component
Mi and always stay in it. Otherwise PrD(s |= ✸qi) = 0 and scheduler D chooses
an action such that we leave Mi or never even visit Mi. ⊓⊔

G Proof of Theorem 6

We assume the settings of Theorem 6 to hold: MA M = (S,Act, −→ ,=⇒, s0)
is given together with a set of goal states G ⊆ S, time interval I = [0, b] ∈ Q,
b ≥ 0. Let λ = maxs∈MS E(s) be the largest exit rate of any Markovian state
and δ > 0 be chosen such that b = kbδ for some kb ∈ N. We recall the definiton
of ♦IG as the set of all paths that reach the goal states in G within interval
I. We also define a random variable #J : Paths ֌ N, where J ∈ Q is a time
interval. Intuitively #J counts the number of Markovian jumps inside interval J .
For example #[0,δ] = 1 denotes the set of paths having one Markovian transition

in their first δ time units. Random vector #
J,∆ : Paths ֌ Nk with J ∈ Q, k

such that kδ = sup J and ∆ ∈ Q>0 is defined as the vector of Markovian jump
counts in each subinterval (digitisation step) of size ∆. For instance #

I,δ(π) with

π ∈ Paths is vector
(

#[0,δ), . . . ,#[(kb−2)δ,(kb−1)δ),#[(kb−1)δ,b]

)T
.
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Lemma 2. Let Mδ be the dMA induced by M with respect to digitisation con-
stant δ. Then for all s ∈ S:

pMδ
max(s,♦

[0,kb]G) = sup
D∈GM

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2).

Proof. As we discussed in Section 6, paths of Mδ are essentially the path from
M that carry only zero or one Markov transitions in each digitisation step δ.
For computing reachability in step interval [0, kb] in Mδ, it is enough to consider
paths in M bearing at most one Markovian jumps in each δ time units. This set
of paths can be described by

∥

∥#
I,δ
∥

∥

∞
< 2. ⊓⊔

Lemma 3. For all s ∈ S and D ∈ GM in M, Prs,D(♦IG | #[0,δ] < 2) ≤

Prs,D(♦IG).

Proof. We assume b > 0, since for b = 0, Prs,D(♦IG | #[0,δ] < 2) = Prs,D(♦IG).
We have

Prs,D(♦IG)

= Prs,D(♦IG ∩ #[0,δ] > 0) + Prs,D(♦IG ∩ #[0,δ] = 0)

= Prs,D(♦IG ∩ #[0,δ] > 0) + Prs,D(♦IG | #[0,δ] = 0)Prs,D(#[0,δ] = 0). (3)

On the other hand we have

Prs,D(♦IG | #[0,δ] < 2)

= Prs,D(♦IG | #[0,δ] < 2,#[0,δ] = 1)Prs,D(#[0,δ] = 1 | #[0,δ] < 2)

+ Prs,D(♦IG | #[0,δ] < 2,#[0,δ] = 0)Prs,D(#[0,δ] = 0 | #[0,δ] < 2). (4)

We distinguish between two cases:

(i) s ∈ MS \G: In this case, (3) gives

Prs,D(♦IG) =

∫ δ

0

E(s)e−E(s)t
∑

s′∈S

P(s,⊥, s′) Pr
s′,D

(♦I⊖tG) dt

+ Prs,D(♦I⊖δG)e−E(s)δ. (5)

and for (4) we have

Prs,D(♦IG | #[0,δ] < 2) =

∫ δ

0

E(s)e−E(s)t
∑

s′∈S

P(s,⊥, s′) Pr
s′,D

(♦I⊖δG) dt

+ Prs,D(♦I⊖δG)e−E(s)δ. (6)

Since Prs,D(♦I⊖tG) is monotonically decreasing with respect to t, we have
Prs,D(♦I⊖δG) ≤ Prs,D(♦I⊖tG), t ≤ δ. Putting this in (5) and (6) leads to

Prs,D(♦IG | #[0,δ] < 2) ≤ Prs,D(♦IG)
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(ii) s ∈ IS \G: From the law of total probability, we split time bounded reach-
ability into two parts. First we compute the probability to reach the set of
Markovian states from s by only taking interactive transitions in zero time,
and then we quantify the probability to reach the set of goal states G from
Markovian states inside interval I. Therefore:

Prs,D(♦IG) =
∑

s′∈MS

Prs,D(♦[0,0]{s′})Prs′,D(♦IG)

(∗)

≥
∑

s′∈MS

Prs,D(♦[0,0]{s′})Prs′,D(♦IG | #[0,δ] < 2)

= Prs,D(♦IG | #[0,δ] < 2)

where (∗) follows from case (i) above. ⊓⊔

Lemma 4. For all s ∈ S \G and D ∈ GM in M, Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2) ≤

Prs,D(♦IG | #[0,δ] < 2).

Proof. The lemma holds for b = 0, since in this case, Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
<

2) = Prs,D(♦IG | #[0,δ] < 2). For b > 0, we decompose Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
<

2) as (4) to:

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2))

= Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2,#[0,δ] = 1)Prs,D(#[0,δ] = 1 |

∥

∥#
I,δ
∥

∥

∞
< 2)

+ Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2,#[0,δ] = 0)Prs,D(#[0,δ] = 0 |

∥

∥#
I,δ
∥

∥

∞
< 2).

(7)

We proof the lemma by induction over kb.

– kb = 1: This case holds because interval I = [0, δ] contains one digitisation
step and then Prs,D(♦IG |

∥

∥#
I,δ
∥

∥

∞
< 2) = Prs,D(♦IG | #[0,δ] < 2).

– kb− 1 ❀ kb: Let I be [0, b] and assume the lemma holds for interval [0, (kb−
1)δ] (i.e. I ⊖ δ):

Prs,D(♦I⊖δG |
∥

∥#
I⊖δ,δ

∥

∥

∞
< 2) ≤ Prs,D(♦I⊖δG | #[0,δ] < 2). (8)

In order to show that the lemma holds for I, we distinguish between two
cases:

(i) s ∈ S \MS: From (6) we have:

Prs,D(♦IG | #[0,δ] < 2) =
∑

s′∈S

P(s,⊥, s′) Pr
s′,D

(♦I⊖δG)(1− e−E(s)δ)

+ Prs,D(♦I⊖δG)e−E(s)δ. (9)
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Similarly from (7) we have:

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2)

=
∑

s′∈S

P(s,⊥, s′) Pr
s′,D

(♦I⊖δG |
∥

∥#
I⊖δ,δ

∥

∥

∞
< 2)(1− e−E(s)δ)

+ Prs,D(♦I⊖δG |
∥

∥#
I⊖δ,δ

∥

∥

∞
< 2)e−E(s)δ

(8)

≤
∑

s′∈S

P(s,⊥, s′) Pr
s′,D

(♦I⊖δG)(1 − e−E(s)δ)

+ Prs,D(♦I⊖δG)e−E(s)δ

(9)
= Prs,D(♦IG | #[0,δ] < 2)

(ii) s ∈ S \ IS: This case utilises the previously discussed idea of splitting
paths using the law of total proabilities into two parts. The first part
contains the set of paths that reach Markovian states from s in zero time
using interactive transitions, while the second includes paths reaching G
from Markovian states. Hence:

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2)

=
∑

s′∈MS

Prs,D(♦[0,0]{s′})Prs′,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2)

(∗)

≤
∑

s′∈MS

Prs,D(♦[0,0]{s′})Prs′,D(♦IG | #[0,δ] < 2)

= Prs,D(♦IG | #[0,δ] < 2)

where (∗) follows from case (i) above. ⊓⊔

Lemma 5. For all s ∈ S \G: pMδ
max(s,♦

[0,kb]G) ≤ pMmax(s,♦
IG).

Proof.

pMδ
max(s,♦

[0,kb]G)
Lem. 2
= sup

D∈GM

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2)

Lem. 3
≤ sup

D∈GM

Prs,D(♦IG | #[0,δ] < 2)

Lem. 4
≤ sup

D∈GM

Prs,D(♦IG) = pMmax(s,♦
IG)

⊓⊔

Lemma 6. For all s ∈ S \G:

pMmax(s,♦
IG) ≤ pMδ

max(s,♦
[0,kb]G) + 1− e−λb(1 + λδ)kb .
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Proof.

pMmax(s,♦
IG)

= sup
D∈GM

Prs,D(♦IG)

= sup
D∈GM

(

Prs,D(♦IG ∩
∥

∥#
I,δ
∥

∥

∞
< 2) + Prs,D(♦IG ∩

∥

∥#
I,δ
∥

∥

∞
≥ 2)

)

≤ sup
D∈GM

Prs,D(♦IG ∩
∥

∥#
I,δ
∥

∥

∞
< 2) + sup

D∈GM

Prs,D(♦IG ∩
∥

∥#
I,δ
∥

∥

∞
≥ 2)

≤ sup
D∈GM

Prs,D(♦IG |
∥

∥#
I,δ
∥

∥

∞
< 2) + sup

D∈GM

Prs,D(♦IG ∩
∥

∥#
I,δ
∥

∥

∞
≥ 2)

= pMδ
max(s,♦

[0,kb]G) + sup
D∈GM

Prs,D(♦IG ∩
∥

∥#
I,δ
∥

∥

∞
≥ 2)

≤ pMδ
max(s,♦

[0,kb]G) + sup
D∈GM

Prs,D(
∥

∥#
I,δ
∥

∥

∞
≥ 2)

It remains to find an upper bound for supD∈GM Prs,D(
∥

∥#
I,δ
∥

∥

∞
≥ 2 which is the

maximum probability to have more than one Markovian jump in at least one time
step among kb time step(s) of length δ. Due to independence of the number of
Markovian jumps in digitisation steps, this probability can be upper bounded by
kb independent Poisson processes, all parametrised with the maximum exit rate
exhibited inM. In each Poisson process the probability of at most one Markovian
jump in one digitisation step is e−λδ(1 + λδ), therefore the probability of a

violation of this assumption in at least one digitisation step is 1−e−λb
(

1+λδ
)kb .

Hence

pMmax(s,♦
IG) ≤ pMδ

max(s,♦
[0,kb]G) + sup

D∈GM

Prs,D(
∥

∥#
I,δ
∥

∥

∞
≥ 2)

≤ pMδ
max(s,♦

[0,kb]G) + 1− e−λb
(

1 + λδ
)kb

⊓⊔

Theorem 6. Given MA M = (S,Act, −→ ,=⇒, s0), G ⊆ S, interval I = [0, b] ∈
Q with b ≥ 0 and λ = maxs∈MS E(s). Let δ > 0 be such that b = kbδ for some
kb ∈ N. Then, for all s ∈ S it holds that

pMδ
max(s,♦

[0,kb] G) ≤ pMmax(s,♦
[0,b] G) ≤ pMδ

max(s,♦
[0,kb]G)+1−e−λb

(

1+λδ
)kb .

Proof. For s ∈ G we have that pMδ
max(s,♦

[0,kb] G) = pMmax(s,♦
[0,b]G) = 1. For

s ∈ S \G it follows from Lemma 5 and 6.
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