ACT4S0OC 2010

Marten van Sinderen and
Brahmananda Sapkota (Eds.)

Architectures, Concepts and
Technologies for Service
Oriented Computing

Proceedings of ACT4SOC 2010
4" International Workshop on
Architectures, Concepts and Technologies for Service Oriented Computing

In conjunction with ICSOFT 2010
Athens, Greece, July 2010

Marten Van Sinderen and
Brahmananda Sapkota (Eds.)

Architectures, Concepts and
Technologies for Service Oriented
Computing

Proceedings of the

4th International Workshop on

Architectures, Concepts and Technologies for Service Oriented
Computing

ACT4S0OC 2010

In conjunction with ICSOFT 2010
Athens, Greece, July 2010

SciTePress
Portugal

ii
Volume Editors

Marten Van Sinderen
University of Twente / CTIT / IICREST
The Netherlands

and

Brahmananda Sapkota

University of Twente
The Netherlands

4th International Workshop on
Architectures, Concepts and Technologies
for Service Oriented Computing

Athens, Greece, July 2010

Copyright (©) 2010
SciTePress
All rights reserved

Printed in Portugal

ISBN: 978-989-8425-20-1
Deposito Legal: 312841/10

Foreword

This volume contains the proceedings of the Fourth International
Workshop on Architectures, Concepts and Technologies for Service
Oriented Computing (ACT4SOC 2010), held on July 23 in Athens,
Greece, in conjunction with the Fourth International Conference on
Software and Data Technologies (ICSOFT 2010).

Service-Oriented Computing (SOC) has emerged as a new com-
puting paradigm for designing, building and using software applica-
tions to support business processes in heterogeneous, distributed and
continuously changing environments. The architectural foundation
for SOC is provided by the Service-Oriented Architecture (SOA),
which states that applications expose their functionality as services
in a uniform and technology-independent way such that they can
be discovered and invoked over the network. Claimed benefits of
SOC include cheaper and faster development of business applications
through repeated aggregation of services, better reuse of software ar-
tifacts and legacy applications through service wrappings, and easier
adaptation to changes in the business environment through replace-
ment and reconfiguration of services.

In order to realize these benefits routinely with SOC, for realistic
business settings with complex IT environments, many challenges
still need to be addressed. For example, supporting business pro-
cesses and collaborations in an open service-oriented world requires
a better understanding of integration problems along different di-
mensions. First of all, alignment between business demands and
application functions has to be achieved. This requirement for ver-
tical integration should drive the aggregation of services, from basic
IT services to rich business services, to achieve the desired or given
business processes. Secondly, horizontal integration has to be con-
sidered if business collaborations span multiple organizations. In
such cases, interoperability between the services has to be ensured
at different levels (syntactic, semantic and pragmatic) and on differ-
ent aspects (information and behavior). Thirdly, we have to assume
that business demands as well as I'T capabilities will change over
time. This evolution will impact existing solutions, and thus require
the adaptation, management and maintenance (e.g., versioning, re-
placing, updating) of services and service compositions. Moreover,
changes that occur at one level or on one aspect have to be propagat-
ed to other levels and aspects in order to keep the consistency of the

integration solution. And finally, all of the above challenges not only
exist at design-time, but at run-time as well. Service composition
may be on-demand, driven by an end-user service creation activity,
and running instances of composite services are subject to changes
concerning, for instance, the availability of resources. This implies
that service level agreements and associated quality-of-service need
to be negotiated, monitored, and controlled in multi-party and het-
erogeneous environments.

The goal of the workshop is to focus on the fundamental and prac-
tical challenges related to SOC, to discuss what theoretical, architec-
tural or technology foundation is needed, and how this foundation
can be supported or realized by new or enhanced infrastructures,
standards and/or technologies. The workshop aims at contribut-
ing to the dissemination of research results, establishment of a bet-
ter understanding, and identification of new challenges related to
SOC/SOA, by bringing together interested academic and industrial
researchers.

This year 10 papers out of 30 submissions were selected, based
on a thorough review process, in which each paper was reviewed
by at least 3 experts in the field. Due to the number of reviews
and the professionalism of the authors, program committee mem-
bers and reviewers, we are confident that all selected papers are of
high quality. The selected papers are also a good illustration of the
different challenges mentioned above. They have been grouped in
four presentation sessions during the workshop, named "SOA ap-
plications — logistics and online advertising", "Design and analysis
of service-oriented systems", "Web services compositionand "SOA
applications — homecare and emergency support".

We like to take this opportunity to express my gratitude to all
people who contributed to ACT4SOC 2010. Our thanks go to the
authors, who provided the main content for this workshop, and to
the program committee members and additional reviewers, who pro-
vided constructive comments that contributed to the quality of the
content. We also like to thank the ICSOFT secretariat, especially
Moénica Saramago and Vitor Pedrosa, for the excellent organization-
al support. Finally, we appreciate the opportunity given by the
ICSOFT co-chairs, José Cordeiro and Maria Virvou, to allow the
organization of this workshop in conjunction with ICSOFT 2010.

We wish all presenters and attendees an interesting and productive

workshop, and a pleasant stay in the historical city of Athens.
July 2010,

Marten Van Sinderen
University of Twente / CTIT / IICREST, The Netherlands

Brahmananda Sapkota
University of Twente, The Netherlands

Vil

Workshop Chairs

Marten van Sinderen
University of Twente / CTIT / IICREST
The Netherlands

and

Brahmananda Sapkota
University of Twente
The Netherlands

Program Committee

Marco Aiello, University of Groningen, The Netherlands
Markus Aleksy, University of Mannheim, Germany

Colin Atkinson, University of Mannheim, Germany

Sami Bhiri, Digital Enterprise Research Institute, Ireland
Barrett Bryant, University of Alabama at Birmingham, USA
Christoph Bussler, Saba Software, Inc., USA

Kuo-Ming Chao, Coventry University, UK

Remco Dijkman, University of Eindhoven, The Netherlands
Cléver Ricardo Guareis de Farias, University of Sao Paulo, Brazil
Walid Gaaloul, Télécom SudParis, France

Armin Haller, CSIRO ICT Centre, Canberra, Australia
Manfred Hauswirth, Digital Enterprise Research Institute, Ireland
Juan Miguel Gomez, Universidad Carlos III de Madrid, Spain
Ivan Ivanov, SUNY Empire State College, USA

Dimitris Karagiannis, University of Vienna, Austria

Haklae Kim, Samsung, Korea

Adrian Mocan, SAP, Germany

Michael Parkin, University of Tilburg, The Netherlands

Dick Quartel, Novay, The Netherlands

Dumitru Roman, SINTEF, Norway

Tony Shan, Keane Inc., USA

Boris Shishkov, University of Twente, The Netherlands

Ioan Toma, STI Innsbruck, Austria

Ken Turner, University of Stirling, Scotland

Tomas Vitvar, University of Innsbruck, Austria

Michal Zaremba, Seekda, Austria

viii

Additional Reviewers

Pavel Bulanov, University of Groningen, The Netherlands

Wassim Derguech, Digital Enterprise Research Institute, Ireland
Alejandro Rodriguez Gonzalez Universidad Carlos III de Madrid,
Spain,

Enrique Jiménez-DomingoUniversidad Carlos III de Madrid, Spain,
Eirini Kaldeli, University of Groningen, The Netherlands
Alexander Lazovik, University of Groningen, The Netherlands

Table of Contents

Foreword il
Workshop Chairs i vii
Program Committee, vii
Additional Reviewers viii

SOA Applications - Logistics and Online
Advertising

Enterprise Interoperability Ontology for SOC applied to

Logistics . ..o 3
Wout Hofman
A Diffusion Mechanism for Online Advertising Service Over 16

Social Mediao
Yung-Ming Li and Ya-Lin Shiu

Design and Analysis of Service-oriented Systems

Specifying Formal executable Behavioral Models for Structural
Models of Service-oriented Components
Elvinia Riccobene and Patrizia Scandurra

29

Optimizing Service Selection for Probabilistic QoS Attributes 42
Ulrich Lampe, Dieter Schuller, Julian Eckert and Ralf Steinmetz

From i* Models to Service Oriented Architecture Models 52
Carlos Becerra, Xavier Franch and Hernan Astudillo

Web Services Composition

An Evaluation of Dynamic Web Service Composition
Approaches
Ravi Khadka and Brahmananda Sapkota

67

Model Checking Verification of Web Services Composition .. 80
Abdallah Missaoui, Zohra Sbai and Kamel Barkaoui

Semi-automatic Dependency Model Creation based on Process

Descriptions and SLAs i 93
Matthias Winkler, Thomas Springer, Edmundo David Trigos and
Alexander Schill

SOA Applications - Homecare and Emer gency
Support

Service Tailoring: Towards Personalized Homecare Services 109
Mohammad Zarifi Eslami, Alireza Zarghami,

Brahmananda Sapkota and Marten van Sinderen
Enabling Publish / Subscribe with Cots Web Services across

122
Heterogeneous Networks
Espen Skjervold, Trude Hafsge, Frank T. Johnsen and Ketil Lund

Author Index ... 137

SOA APPLICATIONS - LOGISTICS
AND ONLINE ADVERTISING

Enterprise Interoperability Ontology for SOC
applied to Logistics

Wout Hofman

TNO, P.O. Box 5050, 2600 GB, Delft, The Netherlands
Wout.hofman@tno.nl

Abstract. The Service Oriented Architecture (SOA, [1]) can be applied to
enterprise integration. It creates an Internet of services for enterprises. Service
science [2] defines services in term of value propositions of enterprises to
customers. Both service science and the Internet of services require a form of
mediation between customer requirements and service capabilities like for
instance identified in [3]. However, mediation is not yet automated, thus can not
be applied real time. Furthermore, many business areas already have agreement
on semantics and interaction sequencing based on existing business documents,
thus, mediation is not always required for a certain business area. This paper
presents an ontology to support business services (Ontology Web Language
(OWL), [18]). The concepts shared at business level are based on existing
approaches like Resource, Event, Agent used for auditing and control [4] and
builds upon service frameworks like OWL-S [13]. The ontology will be
specialized to logistics and compared with other approaches that might be
applied to enterprise integration.

1 Introduction

Over the past decades, services have become the most important part of economies
[5]. Basically, the service economy refers to the service sector. It leads to more
sophisticated forms of cooperation, or what is called value co-creation [2]. As Spohrer
also points out, service systems are dynamic configurations of resources that interact
via value-proposition-based interactions with governance mechanisms.

Each value proposition can be supported by a service. One could distinguish
business services that directly relate to a value proposition, and IT services, mostly
known as web services [6]. From an IT perspective, IT services can be defined by
each individual service provider with its own semantics specified as ontology, thus
requiring mediation to match user requirements and leading to mash ups for enterprise
integration [3]. Mediation not only requires the matching of customer requirements to
provider’s capabilities, but also semantic mappings, and mapping of interaction
sequencing (the latter is also called ‘choreography’, [7]). An alternative is to develop
a shared ontology at business level for a particular class of business services common
to more than one actor, e.g. logistics, customs, etc. The basic research question of this
paper is on the feasibility of enterprise interoperability ontology common to all
business services or phrased otherwise: do all enterprises use identical concepts in
their business. To answer this question, we apply concepts from accountancy [4] to

interoperability, since these concepts already focus on value propositions and value
exchange. This ontology will then be the basis for defining application area specific
ontology. Firstly, we define the interoperability ontology, and secondly specialize it to
logistics. Finally, we discuss the relation between our interoperability ontology and
other approaches.

2 Concepts for Enterprise Interoperability

This section defines enterprise interoperability ontology. The concepts of this
ontology are based on value propositions, their supporting electronic business
documents and accountancy concepts. The concept ‘actor’ is used in this section to
represent ‘enterprise’, ‘organizational unit’, or ‘government organization’. Although
we discuss class - and data constraints, these are not formally shown in this paper.
Furthermore, we did not have a tool to visualize classes and their properties, we have
drawn such a visualization where classes are visualized by (blue) ellipses; the
instances as (grey) rectangles. Class constraints are visualized by arrows between a
domain and a range. First, the classes are defined and, second, briefly explained.
Finally, some guidance on the construction of a business system semantic model is
given.

2.1 Classes Representing Interoperability Concepts

The following classes represent enterprise interoperability concepts at business level:

e Business System Interoperability Model: a model of all business activities and a
business system semantic model for modelling interoperability in a given
business system or application area, e.g. logistics, customs, and supply chains.

e Business Activity (or activity): a generic activity provided by one or more actors
that is able to change the state of a business system for customers. ‘Capability’,
‘event’ and ‘state transition’ are synonyms for business activity as they express
state change that can be induced by an actor to the outside world.

e Business System Semantic Model: semantic model of all classes and their
constraints that are common to all business activities in a business system.

o Value proposition: a value offered by a particular actor based on a business
activity of that actor [2].

e Business Service: the constraint between an actor and a value proposition of that
actor. This definition implies that value propositions are the main concepts from
an actor’s viewpoint.

e Business Process: the internal process of an actor to provide a business activity.

e Business Activity Choreography: an ordered set of event types for the execution
of a business activity. A synonym is business activity protocol. A business
activity choreography can be common to more than one business activity (see
lateron).

e Event Type: a means to exchange data between a customer and a service provider
within the context of a business activity, see. REA [4]. Interaction type is a
synonym.

is of

Business Transaction: information exchange between a customer and provider for

actual value exchange referring to a particular business activity or value

proposition. A business transaction behaves according the business activity
choreography of the referred business activity.

Customer: an actor that consumes a business activity (or business service) by

initiating a business transaction.

Service Provider: an actor providing a particular business activity with related

value propositions.

Resources: two types of resources are distinguished, namely operand and operant

resources [2]:

— Operant resources (also called t-resources): the persons and/or means to
execute a business process.

— Operand resources (also called d-resources): the actual resources that are
exchanged between a customer and a service provider. Three types of
resources are distinguished: goods, services, and rights [4].

Resource Allocation: the mechanism to assign operant resources to one or more

business transactions.

Bound resources: those operant resources that are assigned to one or more

business transactions.

Business Transaction Phases: the different phases in the initiation and execution

of a business transaction. Together, these phases compose a business activity

choreography.

We will discuss these classes in more detail in the next section. The classes and
their class constraints are shown in the following figure; an OWL representation of
this model is constructed with Protégé. The concepts all comprise a business system
interoperability model. The business system semantic model is not visualized, see
later.

== =) =

is_ 4 supports———
pport
& . is of type
is_i
publishes of
- relates to “business service
I

is part of

has a

relates to

initiated by
provided by

business
transaction

is of type transferred by

Fig. 1. Interoperability classes and their class properties.

2.2 Explaining the Classes

The classes need further explanation. This section elaborates on the difference
between classes representing dynamic and static concepts, class constraints, and
clarifies the core concept ‘business activity’.

Firstly, we distinguish between static and dynamic concepts, meaning that dynamic
concepts change more frequent than static ones. Static concepts are shown in blue;
dynamic ones in grey. It implies for instance that a business activity of an actor will
change less frequent than business transactions referring to those business activities,
i.e. the core business activity of an enterprise will probably not change during years.

Second, we will define class constraints. Business activity, value proposition,
business transaction, business activity choreography, event type, and event are the
central concepts. A business activity has choreography of event types. Choreography
of event types is not modelled in this figure; we will discuss this aspect later on. A
business transaction consists of a specific sequence of events that are of a type and
need to be exchanged according to the business transaction choreography. The right
part of the figure shows actors and their support of business activities. An actor
supports a business activity and can define value propositions for those business
activities. These value propositions are published as business services. An actor has a
business process that supports one or more activities and their value propositions. As
a business process supports a business activity, it must also support the related
business transaction protocol and its choreography. The left part of the figure shows
the resource types, which can be the operand and operant resource types. The operant
resources are owned by an actor and can be allocated at a specific time and location to
a business process for the execution of one or more business transactions. These
business transactions control the exchange of the so-called operand resources: goods,
service or rights. It implies that all information exchanged in a business transaction
must be sufficient to exchange the goods, service or right.

Thirdly, the core concept ‘business activity’ needs clarification. We have defined a
business system interoperability model that defines all real world aspects shared by
actors and modelled by business activities provided by those actors, e.g. the
transportation of containers from one place to another, financial risk management, and
insurances against risk. These real world aspects, that either have a physical or a
virtual nature, are considered as business activities that are provided by actors. The
semantics that those business activities have in common are given by the business
system semantic model. A business activity, or in short activity, is able to change the
state of the real world by exchanging a resource (an operand resource defined
according to [4]) according to a particular value proposition. Thus a state transition of
a business system can be induced by executing a business activity. Thus, a business
system interoperability model consists of a state space, modelled by a business system
semantic model, and state transitions on that state space, modelled by business
activities.

State transitions, and thus activities, in general consist of [8]:

e Pre-conditions: a set of conditions (or predicates) that must always be true

before the execution of an activity.

e Post-condition: the actual result of the execution of an activity. The result can

be defined as the state in case an activity is executed successfully.

e Firing rule: the (ordered) set of rules that are executed when all pre-conditions
are met and result in the post-condition. A firing rule actually changes the state
of the world. In our interoperability framework, a firing rule behaves according
business activity choreography.

Pre- and post-conditions can be expressed in terms of the state space, i.e. the real
world effects that can be changed by their activity. These pre- and post-conditions can
be expressed at different abstraction levels that require different knowledge. An
abstract specification by logical expressions can for instance not be understood by
business persons, whereas they are the ones that specify the activities and thus the
pre- and post-condition.

Finally, we have stated that firing rules between pre- and post-conditions are
specified by business activity choreography. The latter can consist of different
transaction phases as for instance [11] and [12] distinguish a negotiation and an
execution phase after activity discovery. In the negotiation phase, all data needs to be
exchanged to allow that pre-conditions can be met, whereas in the execution phase all
required data for actual firing an activity is required. One could state that an activity
can logically be decomposed into two activities that reflect transaction phases. Each
of these phases consists of ordered set of event types exchanged between customer
and service provider. The phases need to be completed by a rollback phase, see [11]
and [12]. One could argue that business activity choreography always consists of the
same set of phases. However, one could also distinguish between choreography for
public and commercial services. The main difference would be that in public services
there is no negotiation on prices and conditions of a value proposition, but a public
service provider has to state officially that pre-conditions are met and a firing rule can
be executed (in Dutch: ‘ontvankelijkheidverklaring’). Execution results in a decision
(e.g. an ordinance or a grant; Dutch ‘beschikking’), e.g. a building permission,
permission for transportation of goods, and the reception of unemployment benefit. A
decision can always be followed by an official objection or a different viewpoint. A
decision is always according to the request, negative, or partly positive.

2.3 Refining Pre- and Post-conditions for an Application Area

In this section of the paper, we try to combine physical business systems and more
abstract systems by introducing the concept of ‘place’. This latter concept represents
either a physical location or a state. A place is always connected to a business activity
and a place can contain zero, one or more resources at a given time. In our
framework, a business activity equals a state transition with pre- and post-conditions.
Pre-conditions consume so-called operant resources that are produced as a post-
condition according to firing rules and their choreography utilising operand resources.
For instance, in case a business activity is the assembly of cars as output resources,
the input resources are its parts and assembly machines and personnel the operand
resources. This example illustrates that all its parts need to be present at a given time
to assemble a car at a given time.
We take the approach formulated in [12] and [14] and state that:
e A pre-condition of a business activity specifies the types and number of
operand resources that are required for its execution and the types and

number of operant resources that are input to the activity. Pre-conditions are
connected to a place by an input connector.

e A post-condition of a business activity specifies the types and number of
operand resources that are produced as a result of the business activity,
including the duration between consumption of the input operand resources
and the output operand resources. Post-conditions are connected to a place by
an output connector.

e Between two actors, a business transaction shares the availability of
resources of type operant resources in a place connected to a pre-condition
and the availability of resources, also of type operant resources, that are
produced by a post-condition in a place connected to that post-condition via
an output connector.

The concepts ‘place’, ‘connector’ and ‘availability’ to our ontology (see next
figure) support the ability to express availability of resources in a given place at a
given time. Time is expressed as ‘availability’ that refers to a place (or state) in a
Petrinet and resources. At any given time, a place can contain various resources
belonging to different business transactions for a business activity. In this approach,
an input connector relates to a pre-condition and an output-connector to a post-
condition. This extension expresses that a business transaction must always consider
‘time’, ‘resource’ and ‘place’ to be shared by two actors that participate in that
business transaction. Place can represent a physical location or a state in a state space
shared by two (or more) actors.

mmm@—ws a—»(resource lype <—can contai

is_a

output connector-(business ammy\<—
input connector

value propositi

) relates to

relates to

nperand

e availability

is of type

is of type \d

business
transaction

allocated resource resource

transferred by

Fig. 2. Adding place and time to ontology.

According to Abstract State Machines [8], the relation between pre- and post-
conditions is not expressed, which is however the case according to [14] by places
and connectors. The latter means that a Petrinet of processors, places, and connectors
exists and each place can contain object types. In our approach, these object types are
resources and a business activity is equal to a processor. In some application areas, it
might be worthwhile to specify such a network explicitly with a Petrinet, e.g. in
transport a network of ports exists between which sea transport is possible. In other
application areas like government, the network can become very complex due to the
large number of business activities, each of which changes part of the state space, and
an approach based on ASM will suit better. In the latter case, a Petrinet has to be
constructed to validate that state transitions are really executable (although it can be
complex to visualize due to the large number of states, see [15]).

3 Specialization to Logistics and Transport

Logistics and transport consists of several actors that utilize each others resources to
transport goods from one physical location to another. The transportation process can
be quite complex, involving a variety of actors. International container transport by
sea for instances consists of transport by truck to a port (pre-carriage), loading a
container in a vessel, sea transport, discharge of the container in the port of
destination, short sea shipment from that port to another port, and final transport by
truck to the final destination. In other occasions, large shippers have regional
warehouse in close to a port, in which the goods are stored for regional distribution.
This paper only presents ‘transport’ as a business activity, whereas others like
‘transshipment’ and ‘storage’ are other business activities. First of all, we define
‘transport’ as activity and secondly we present a semantic model for this particular
activity.

3.1 The activity ‘transport’

‘Transport’ is a specialization of ‘business activity’. Quite a number of actors offer
‘transport’ as a value proposition, e.g. a number of shipping lines offer transport of
containers between for instance specific ports in Europe and the Asian Pacific. One
organization can also offer a variety of transport services, e.g. express delivery (the
same day), air cargo and an international parcel service. Although each transport
service will have a different price, is offered for a different type of cargo, and has
different durations, all value propositions for ‘transport” have common elements. A
specialization of ‘business activity’ called ‘transport’ defines those common elements:
the physical movement of cargo between two places with duration, cost, and a
specific transport means as an allocated resource. Specific transport means have a so-
called transport mode and will give restrictions to the type of goods that can be
transported, e.g. a container vessel can for instance only carry 20 or 40 feet containers
and an airplane requires the particular containers that fit that type of plane. Thus a
particular transport activity can be expressed by the number and type of operant
resources that can be transported using a particular operand resource. The relation
between operand and operant resources is expressed by the business activity, although
it can also be expressed as a constraint between operand and operant resources.
Duration also gives restrictions to type of cargo, e.g. heavy cargo needs more
attention and will take more time. The pre- and post-conditions for ‘transport’ are
derived from the above mentioned parameters and can be expressed quite simply:
e Pre-conditions are defined as in terms of the operant resources that can be
consumed via input connectors:
— The cargo offered by a customer is part of the set of cargo types defined by a
service provider.
— The weight of the cargo offered must be between the minimal and maximal
weight defined by a service provider.
— The physical dimensions of the cargo must be between a minimal and
maximal dimension defined by a service provider.

10

e Post-condition: the cargo offered by a customer is transported by a service
provider to a place of delivery according to the agreed duration and costs. It is
said to be produced in a place connected to the post-condition by an output
connecter.

Although the values of pre-conditions differ per value proposition, type and number
of cargo are the only concepts requiring a value. Considering that ‘transport’ activity
can be this simple, we still have to connect an activity to places with resource types.
This connection can be specific for each value proposition of each service provider,
although of course different service providers can use the same places (e.g. in terms
of ports or other types of hubs for transshipment). By connecting places to ‘transport’
activities, a so-called transport network is defined. Such a network can be defined in
various ways, €.g.:

e A transport activity is within a certain country, implying it is only national
transport. Transport can in principle take place between any physical location
within that country.

o A transport activity is in a region covering various countries or part of countries,
e.g. between the Netherlands and northern part of Italy via Austria and Germany
or between the EU and the Asian Pacific. The EU can also be an example of a
region.

e A transport activity is defined from any place in a region and a particular
location, e.g. a port. This transport activity is normally offered as inland
transport in combination with sea-transport (see next example).

o A transport activity is defined between two physical locations, e.g. between two
ports. By combining transport activities between various ports, a so-called
voyage is defined. In this particular case, various value propositions between
different ports can be defined on the same voyage!.

o A similar approach to the last is to construct a so-called hub network. Between
the hubs, that are physical locations, a transport activity is defined at a regular
basis (e.g. daily between those hubs). Thus, a distribution network can be
defined.

Additionally, a transport activity utilizes particular resources with a particular
transport mode, e.g. vessels for sea transport and trucks for road transport. Whilst
value propositions may differ for each transport mode, a customer may request a
particular transport mode to be used. Considering a transport network, a business
transaction has to contain the following information:

e The place of acceptance and delivery as indicated by a customer are in the

geographical area that is connected to a pre-condition by an input connector and
a post-condition by an output connector.

e The required transport mode is in the set offered by a service provider.

o The difference between the expected date and time of delivery and acceptance

must be greater than or equal to the duration of the requested business activity.

! In sea-transport, a voyage most often has a port at which it starts and a port at which it ends, related to a
particular time of start and end. In the meantime, the voyage passes different ports. A voyage is
independent of the vessel used as an operand resource; that vessel can pass a port with different voyages
in a given time period.

11

Thus, one could basically state that pre- and post-conditions can be simple,
whereas complexity is in the network of places, connectors, activities, and resource
types in those places. The structure is for all actors providing a ‘transport’ activity
identical, but values will differ. The firing rule of ‘transport’ activity requires exact
data of the cargo, e.g. the number and type of packages, container numbers, and other
actors involved.

3.2 Transport Interoperability Ontology

Transport interoperability ontology is the specialization of the concepts introduced in
section 2. Basic classes are already discussed in the previous part. The OWL
document of the business system interoperability model is imported in an OWL
document for transport and extended with the following concepts and class constraints
for transport (see also the next figure):

Fig. 3. Classes of transport ontology.

e Specialization of operant resources to transport means and packaging types.
Transport means are further specialized to vessel, truck, barge, airplane, and
train. Each of these transport means has a specific transport modality and its own
characteristics, e.g. a truck has a license plate and a vessel a Radio Call Sign.
Packaging types can be further specialized in those that are used once (e.g.
cartons and boxes) and those that are used several times (e.g. containers and
pallets). Note that these operant resources can also take the role of operand
resources in which case the use is given to another actor (see for instance REA
that defines ‘use’ [4]).

o Specialization of operand resources ‘goods’ to cargo. Cargo can be further
specialized to ‘goods items’ and ‘equipment’. Goods items are further
specialized to packaged goods and bulk cargo (either liquid or solid).
Equipment, e.g. containers, can be both operant and operand resources: they can
be used to facilitate transport and have to be allocated, and they are cargo.

12

e At the highest level, the concept transport modality representing a particular
transport mode (sea, air, road, inland waterways) is introduced. Sea can be
further decomposed into deep-sea and short sea.

e A number of specific properties is introduced like a property that a transport
means has a modality (a specialized transport means like a truck should have
modality ‘road’). Additional properties can be defined like the fact that a certain
transport means can only be used for container transport.

Fig. 3 shows the specialization of the overall model to transport. The figure only
shows the classes, not the required class and data properties. It needs further extension
for the support of for instance dangerous and temperature controlled cargo.
Introducing these specializations also gives a number of additional properties like
stowage restrictions to dangerous cargo. Further work needs to be done to complete
this model.

4 Reference to Other Approaches

We have combined various concepts of other approaches to construct our ontology:
Resource, Event, Agent (REA, [4]), Semantic Markup for Web Services (OWL-S,
[13]), Web Service Modeling Ontology [3], and timed, colored Petrinets [14]. We will
briefly discuss their relation to our framework.

REA is an accountancy framework to describe exchange of goods, money and
rights between two organizations. The latter are called agents. Goods, money, and
rights are called resources: a resource is a collection of rights associated with it:
ownership, usage, and copy rights. An economic event is the transfer of rights
associated with a resource from one economic agent to another. Resources, agents,
and events can be of a type. Resources and their types are part of our model since they
are exchanged between any two agents. An agent type is modeled as an actor and an
event type as a business activity. Whereas REA distinguishes different event types
like ‘produce’, ‘consume’, and ‘use’, those are part of pre- and post-conditions of
‘business activity’, e.g. a pre-condition consumes one or more resources and a post-
condition produces them. In case there is no post-condition, a resource is said to be
‘consumed’. The term ‘event’ in our model is restricted to information exchanged
within the context of a business transaction. ‘Business transaction’ in our ontology
seems to be identical to ‘event’ in REA. The approach taken in REA is to specialize
these basic concepts to an application area, e.g. the production and consumption of
pizza’s or lending of books as illustrated in [4].

Semantic Markup for Web Services, OWL-S, defines a semantic model of all
concepts required for a web service, or more generic, a service. A service has a profile
(what it does), a grounding (how to access it), and a model (how it works). In our
model, we do not describe grounding. A service profile defines aspects like pre- and
post-conditions, input and output and a process. The process describes how to interact
with a service; it can be constructed with a number of constructs like ‘split” and ‘join’.
One of the core concepts in our ontology is ‘business activity’ with pre- and post-
conditions, input and outputs, and a choreography. In this approach, a business
activity can be compared with ‘service’. However, we have taken the approach that

13

many actors can have identical business activities, whereas each actor can have its
particular value proposition. The combination of ‘business activity’ and ‘value
proposition’ seems to be identical to ‘service’. Inputs and outputs are in our model
defined as resource types that can be consumed or produced in places, and
choreography describes the way to interact with a business activity.

Web Service Modeling Ontology is based on Abstract State Machines (ASM [8]).
The core concepts are ‘goal’ to represent a customer requirement and ‘capability’ to
represent a service, including their grounding to technical standards like XML
Schema. Whereas OWL-S does not give guidance on the specification of input and
output semantics, WSMO does by applying OWL. Goal and capability are expressed
by pre- and post-conditions of an ontology. Furthermore, goal and capability have
interfaces with choreography. Mediation is meant to match a goal and a capability.
Thus, WSMO uses similar concepts as defined in OWL-S, but slightly different. We
will not discuss differences, but one could state that similar to OWL-S our concepts
‘business activity’ and ‘value proposition’ are identical to ‘capability’. They all reflect
the concept of ‘state transition’ within ASM.

Finally, we have introduced concepts from timed colored Petrinets. We define
actors in terms of the business activities they can provide according to a value
proposition. A business activity is identical to a Petrinet ‘process’ that has connectors
to places. These places can contain tokens with a color that can be modeled by
ontology. The concept ‘state’ is expressed by all tokens in all places at a given time.
Thus, the concept ‘state’ is defined different from that in Abstract or Finite State
Machines, where it refers to a specific object (e.g. the ‘state’ of a container). Whereas
in Petrinets all processes need to be connected to places, Abstract State Machines
specify the individual state transitions (the ‘processes’) on states which are arbitrary
data structures. In ASM, ‘state’ can be derived from any pre- or post-condition,
whereas in timed colored Petrinets, this part of state is reflected by the color of tokens
that can be consumed or produced. Whereas Petrinets present (graphically) a
complete model connected processes via places, ASM needs chaining of state
transitions based on logical expressions defining pre- and post-conditions.

5 Conclusions and further Research

We have presented enterprise interoperability ontology for Service Oriented
Computing at business level and applied it to logistics. The ontology is based on an
accountancy model called REA, extended with concepts from existing service
frameworks like WSMO, and defines concepts that can be shared amongst different
classes of business services. It seems obvious that business transactions and their
events contain all relevant information for executing a business activity, e.g. the
availability of resources in a particular place. We have not discussed business activity
or value proposition discovery, which differs from service discovery. It is described in
more detail for a particular case [10].
There are still a number of issues for further research:
1. We have taken the basic concepts of timed colored Petrinets and applied them
to enterprise interoperability for transport. However, other cases are better
modeled with Abstract State Machines, see for instance [8]. Both approaches

14

offer identical functionality and a combination of approaches needs to be
considered.

2. The concepts consider both process and semantic aspects, e.g. it models
choreography as a concept and semantics of exchanged information.
Choreography should be further refined, e.g. by applying process modeling
approaches as defined for instance in OWL-S [13] or YAWL [16].

3. Relevant aspects like organizational issues and grounding need to be
considered further. As grounding is clear, organizational issues consider the
maintenance of models, service directories, etc. Furthermore, integration of
semantic models of different application areas has to be considered. This is
especially the case in for instance government interoperability where each
government organization is responsible for (part of the) government data. Is a
common model of enterprise interoperability meeting these requirements?
Ontology import might offer some solution. Is it also allowed for actors to
define their specific models based on a generic model? What is the impact of
actor-refined models on an execution environment?

4. An execution environment should combine dynamic service mediation
supported by user interaction, with automatic service mediation based on rules.
What is the role of enterprise interoperability concepts in an execution
environment? What would be the architecture and functionality of such an
execution platform? Can this functionality be offered by for instance the
DynamiCoS framework [17] or the SESA execution environment [3]?

5. There are some practical issues to consider when defining semantic models for
an application area. One can for instance define a complete model for
international logistics or a separate model for each modality. Another approach
is to define separate models for each activity. Again, practical issues are the
integration of different models to create different views on logistics, e.g. a
customs view may differ from a transporters view.

6. Currently, practical applications still need the specification of the information
exchanged in particular events that are of a type. Each event type only contains
that specific information that is required by a particular value proposition.
Further research supported by a Proof-of-Concept is required to investigate the
impact in practice regarding interoperability without specific semantic models
for each event type.

7. We have only applied the model to logistics in this particular paper. However,
we also have examples of the application of our proposed enterprise
interoperability ontology to government services [10].

References

1.

2.

3.

T. Erl, Service-Oriented Architecture — concepts, technology, and design, Prentice Hall,
2005.

J. Spohrer. and S.K. Kwam, Service Science, Management, Engineering and Design
(SSMED) — An emerging Discipline — Outline and references, International Journal on
Information Systems in the Service Sector, May 2009.

D. Fensel, M. Kerrigan, M. Zaremba (eds.), Implementing Semantic Web Services — the
SESA framework, Springer-Verlag, 2008.

vk

10.

11

13.
14.

15.

16.

17.

18.

15

P. Hruby, Model-Driven Design using Business Patterns, Springer-Verlag, 2006.

J. Heineke, M. Davis, The emergence of service operations management as an academic
discipline, Journal of Operations Management 25 (2007) 364-374.

Y-H Tan, W.J. Hofman, J. Gordijn, J. Hulstijn, A framework for the design of service
systems, Springer-Verlag (to appear in Service Sciences).

Business Process Modelling Notation (BPMN), version 1.2, january 2009.

E. Borger: "High Level System Design and Analysis Using Abstract State Machines",
Proceedings of the International Workshop on Current Trends in Applied Formal Method:
Applied Formal Methods, p.1-43, October 07-09, 1998

M. Holtkamp, W.J. Hofman, Semantic Web Technology — state of the art report, Internal
TNO report, 2009.

W.J. Hofman, M. van Staalduinen, Dynamic Public Service Mediation, eGov2010.

. J.L.G. Dietz, Enterprise Ontology, Theory and methodology, Springer-Verlag, 2006.
12.

W.J. Hofman, A conceptual model of a business transaction system, Uitgeverij Tutein
Nolthenius, 1994.

OWL-S, Semantic Markup for Web Services, W3C member submission, 2004.

K.M. van Hee, Information systems engineering: a formal approach, Cambridge University
Press, 1994

H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst ... [et al.], Visualizing state spaces
with Petri Nets, Eindhoven : Technische Universiteit Eindhoven, 2007.

A.HM. ter Hofstede, W.M.P. van der Aalst, M. Adams, N. Russel, Modern business
process automation: YAWL and its support environmnet, Springer-Verlag, 2009.

E. Silva, L. Ferreira Pires, M. van Sinderen, Supporting Dynamic Service Composition at
Runtime based on End-user Requirements, 1% International Workshop on User-Generated
Services, 2009.

P. Hitzler, M. Krotzsch, S. Rudolph, Foundation of semantic web technologies, CRC Press,
2009.

A Diffusion Mechanism for Online Advertising Service
Over Social Media

Yung-Ming Liand Ya-Lin Shiu

Institute of Information Management, National ChiaoTung University, Hsinchu, Taiwan
{yml, ayaa.iim97g}email.nctu.edu.tw

Abstract. Social media has increasingly become a popular platform for diffus-
ing information, through the message sharing of numerous participants in a so-
cial network. Recently, companies attempt to utilize social media to expose
their advertisements to appropriate customers. The success of message propaga-
tion in social media highly depends on the content relevance and closeness of
social relationships. In this paper, considering the factors of user preference,
network influence, and propagation capability, we propose a social diffusion
mechanism to discover the appropriate and influential endorsers from the social
network to deliver relevant advertisements broadly. The proposed mechanism
is implemented and verified in one of the most famous micro-blogging system-
Plurk. Our experimental results shows that the proposed model could efficiently
enhance the advertising exposure coverage and effectiveness.

1 Introduction

In recent years, social media has been flourished and raised high much popularity and
attention. Social media provides a great platform to diffuse information through the
numerous populations. Common social media marketing tools include Twitter, You-
tube, Facebook and so on. An overwhelming majority (88%) of marketers are using
social media to market their businesses, and a significant 81% of marketers indicate
that their efforts in social media have generated effective exposure for their business-
es, according to a social media study by Michael Stelzner[12].In 2010, one of the
most popular micro-blogging websites, Twitter, announced an innovative advertising
model, ” Promoted Tweets”. Promoted Tweets makes tweets as ads, which are dis-
tinctive from both traditional search ads and recent social ads. They measure the
advertising performance and the payment of sponsored tweets by “resonance” - the
interactions between users and a particular sponsored tweet such as retweet, reply, or
bookmarking [13]. How to choose the right people to deliver the information, how to
take the advantage of the social media, and how to design an ads diffusion mechan-
ism to widen the spreading coverage are crucial issues in the online advertising cam-
paign. In this paper, to address these issues, we design a social media diffusion me-
chanism, based on the concepts of content recommendation and network routing.
Once the appropriate messages and diffusion paths are identified, message can be
effectively delivered with support of the generated information. Considering the fac-
tors of user preference, network influence, and propagation capability, our system can

17

effectively identify the most appropriate nodes in the social network for delivering
the relevant ads and recommend the friends for information sharing for an interme-
diate node.

2 Related Literature

2.1 Social Media

Social media are Internet platforms designed to disseminate information or messages
through social interaction, using highly accessible and scalable publishing techniques.
Social media is composed of content (information) and social interaction interface
(intimate community engagement and social viral activity). With its emerging trend
and promising popularity, researchers have put academic efforts in analyzing the
characteristics and functionalities of social media. For example, Kaplan and Haenlein
[6] examine the challenges and opportunities of social media and recommend a set of
ten rules that companies should follow when developing their own social media strat-
egy. To effectively communicate with customers, researchers engaged in analyzing
marketing trends and social relations. Gilbert and Karahalios [4] develop a predictive
model that maps data of social activity to tie strength so as to improve design ele-
ments of social media.To better figure out the users’ behaviors, many researchers
analyze the social influence, social interactions, and information diffusion in social
media[3].Comparing to the existing works, the study of information diffusion me-
chanism design of social media is apparently rare and new.

2.2 Online Advertising

The issue of online advertising has aroused much academic interests and been spot-
lighted for decades. Online advertising usually could be categorized into two types: 1)
targeting advertising, which deliver the ads based on user’s preference profiles, 2)
social advertising, which deliver the deliver the ads the influential users determined
by social relationship[11]. Targeted advertising usually applies the content-based and
collaborative-based approaches to discover users’ personal preferences. Compared
with the traditional online advertising, social advertising is a form of advertisement
that addresses people as part of a social network and uses the social relations and
social influences between people for selling products [14]. Some researchers measure
the influential strength by analyzing the number of network links and users’ relation
and interaction in the network to identify the influential nodes for social advertis-
ing[11, 14]. In this paper, considering the factors of user preference, network influ-
ence, and propagation capability, we propose a social diffusion mechanism to identify
the appropriate and influential endorsers from the social network to deliver relevant
advertisements broadly.

18

2.3 Information Diffusion and Social Routing

Researchers analyze information diffusion in the social network based on individual’s
characteristics. Some based on the bond percolation, graph theory or probabilistic
model to extract the influential nodes, considering the aspect of dynamic characteris-
tics, such as distance, time, and interaction and so on [7-8]. By revealing influential
factors and realizing the processes of the information diffusion, marketers can predict
when and how the information spreads over social networks to maximize the ex-
pected spreading result [5]. In this paper, we include static and dynamic factors di-
mensions to evaluate the propagation ability of nodes in social network.The design of
social diffusion mechanism is conceptually similar to that of computer network
routing process in selecting paths to switching the packet. Routing directs packets to
be forwarded from their source toward their ultimate destination through intermediate
nodes; hardware devices usually called routers. However, in the context of social
network, the links in social networks are formed by social relations and interaction
and researchers focus on the study of the issue: delivering the right information to the
right nodes and spreading widely. The goal can be achieved by implementing feasible
approaches to discover the influential nodes and leveraging the social relations to
diffuse the information between users further.In our paper, we incorporate the con-
cept of network routing to develop a social endorser engine to generate “social
routing tables” to support the information diffusion in a social network.

3 System Architecture

Analogous to the routing process in computer networks, we design a social diffusion
mechanism which sends a recommended list of users to our initial nodes with suitable
path for information diffusion. The recommendation lists suggest the users who have
strong propagation abilities in social networks. The users are referred as social en-
dorsers potentially willing to transmit the information to all his/her friends.

Notice that the proposed social diffusion mechanism is different from spamming.
We recommended those friends based on their preferences, social influence, and
propagation abilities via quantitative measurement. The advertising message will be
guided to right people by user’s judgments with the support of the system recommen-
dation. If users deliver ads to their friends, it means that users also think their friends
like the ads. The mechanism takes the advantage of content relevance and social
relation to reduce the negative impression of the advertisement and gain the advertis-
ing effectiveness. Social media provided us the source data of individual’s preference,
social relation and social influence. Preference is an important issue in target advertis-
ing. The social influence between users of the social media happened when they are
affected by others. It is likely that we are usually influenced by our friends or our
family. The social relation is a crucial factor to empower the social influence. If a
user frequently interacts with someone, to some extent, there are more similarities
and closeness between them. Therefore, we incorporate these components into our
proposed social endorser discovery engine.

19

3.1 Social Endorser Discovery Engine

Effective information diffusion on social networks is grounded on the relevance of
individual preference and closeness of social relations. Therefore, the main functio-
nality of the proposed social endorser discovery engine is to identify the nodes with
the strong propagation ability in disseminating relevant messages as wider as possi-
ble. In order to identify the appropriate social endorsers so as to achieve a better dif-
fusion performance, in this research, we not only consider the static factor, but also
dynamic factor in the evaluation of nodes’ diffusion capability - transmit information
towards the most suitable friends and spread widely further. Figure 1 displays the
main components and procedures of our social endorser discovery engine.

Goal Main
Critera

Content Degree
Influence

strength
< Measurement

| Analytic Hierarchy Process

— o 8

AdPlurker

Fig. 1. Architecture of endorser discovery engine.

User Preference Analysis Module

As people trend to share information interesting to the receiver, discovering users’
preference is an important factor to be considered in the social endorser discovery. By
analyzing users’ preference, we can better understand what kinds of information are
suitable to be shared between the users. In order to realize user’s affinity levels of
information categories, we adopt a tree-like structure to categorize a set of informa-
tion and users’ preference. Tree-like structure is practically employed in many re-
searches, such as product taxonomy [1, 9].Besides, we utilize a distance-based ap-
proach to calculate the similarity between user categories and information categories.
The preference of a user and the type of an advertising message are described by a
catalog node they belong. Assume and stand for the category 1 (a user’s prefe-
rence) and catalog 2 (an advertisement type) belong to respectively and represent the
catalog of the first mutual parent nodes of catalogs 1 and 2. The fitness degree of the
ads to a user can be calculated by the following formula:

Simp (Cy.Cy) = ———L (1
P\~1-%2

20

Network Influence Analysis Module

Connection Degree Influence. For the purpose of evaluating the relative importance
of user position in the whole network, social network analysis is applied. Degree
centrality is defined as the number of direct connections/links upon a node. Specifi-
cally, in-degree is a count of the number of connections directed to the node, and out-
degree is the number of connections that the node directs to others. In this research,
first, we consider the spammer or bots attempt to follow many people in order to gain
attention. Secondly, based on in-degree or out-degree ignores the ability for a user to
interact with content in the social network. Therefore, we use mutual relation (friend-
ship) to measure the degree centrality as in practice, mutual degree represents the
number of friends a user has. Mutual degree for user i is measured as

wo=% " E @

where is 1 if an edge from node i to j exists and an edge from node j to node i ex-
ists, too, otherwise it is O.

Content Degree Influence. Content Degree Influence is used to evaluate the popu-
larity of what a user posts. We measure the content degree of a user by the count of
the total responses and message forwards by people. We denoted as the total number
of the elements in a set. The formula for content degree measure can be expressed as:

| (Dreponse(i) |+ @ Sorwrad|(i) |
| D

CD(i) = 3)

post(i) |

[OJER
where 7 stands for a set of the messages posted by user i,

reponseli) represents the set of the responses on user i ‘s posts , and () js the

set of i’s posts forwarded by others. The aggregate network influence score is the

MD() and the content degree value CD() .

sum of the mutual degree value
Propagation Strength Analysis Module

Social Similarity. Social similarity aims to measure the similarity of two people from
implicit social structure and behaviors, such as “friend-in-common” and “‘content-in-
common”. The more friends-in-common of two people generally reflects the higher
connection level between them. If two people have more common friends, their inter-
ests should be more similar and the possibility that a people will forward a message

bl

. . . F(i .
he feels interesting to the other becomes higher. Denote ()as a set of user i ’s
friends. The similarity of friend-in-common between user i and friend j , is measured
as:

Sim - (i, J) :—‘ F(i)mF(j)| 4)
Cr Max (| F (i) | F(J)1)
In addition, the more content-in-common posted by two people, the higher similar-
ity degree between them. Semantic analysis can be use to evaluate the social similari-
ty measure in the aspect of content-in-comment and to discover potential preference

21

of users [2]. Specifically, traditional information retrieval (IR) technology can be
used to analyze the semantics of content. To examine the semantic similarity among
posts, we use CKIP Chinese word segmentation system to parse and stem the crawled
contents and apply the analysis of frequency—inverse document frequency (TF-IDF)
weight to measure how important a word is to a document in a collection or corpus.

f"@qz',j

&)

. . . max, (ﬁ’eqU)
where freq; jas the raw frequency of term i appear in post j and ’
is the number of times the most frequent index term, 1, appears in post j . The inverse
document frequency for term i is formulated as

. N
idf, = logn— (6)

1

where N is the total number of posts and " js the number of posts in which the
term i appears. The relative importance of term i to post j can be obtained by calculat-
ing
Then, we measure the similarity degree between people by a cosine similarity metric.
The similarity of corpus between user i and friend jis defined as:

~.!

. P e ;'
Sime (l,j)ZCOS(l,j)Z H

| (N

where [and ; are the two vectors in the m dimensional user space which is the

~.}

keywords to a person in a collection or corpus.

Finally, the total social similarity (SS) score is the sum of “friend-in-common” and
“content-in-comment” value.

Social Interaction. Social interaction is different from social similarity since social
interaction explicitly catches the factor of dynamic actions between people. It can be
used to evaluate the intimacy between two users. For instance, it is common for a user
to respond or forward someone’s message. It is reasonable to assume that more inte-
raction activities would lead to a higher probability to transmit the information as
they are usually interested in mutual messages. Given two users i,j ,social interaction
between them can be formulated as:

| (Drespmzse(i,j) ‘ n | q)forward(i,j) |

SIG, j) =)

®

| response(i) | Sorward (i) |

response(i.) is the set of responses generated by user j to user i’s posts and

Cberward([’ 7) is the set of forwards conducted by user j to user s posts.
Socail Activeness. Social activeness is used to calculate the activity intensity of a

user. A user with higher activeness indicates a lager level the user is engaged in in-
formation sharing or discussion with others and a higher probability to transmit the

22

information. We calculate the activeness of a user by the count of post records during
a period of time in a social platform. The formula is defined as below:

T
z,‘:1 @ messages (i,t)|

T

C))

SA®i) =

where ‘ is the total number of messages posted by user i at time period t.

D messages(i,t)

The propagation strength measurement is used to evaluate the user whose network
propagation capability of a user. The propagation strength of a user is measured by
aggregating the propagation strength and can be computed in a recursive way. To
enhance advertising efficiently, it is important to pay attention on next layer’s propa-
gation capability. Though advertisers delivered advertisements to a social endorser
with high propagation capability, they can’t ensure the social endorser’s friends with
high propagation capabilities equally. Therefore, we thought friends’ propagation
capabilities would affect a social endorser’s propagation capability. Friends’ propaga-
tion capabilities became a dimension to measure a social endorser propagation capa-
bility. In other words, individual’s propagation capability is affected by their friends.

The propagation strength is formulated as below:

PA(®i) = SA(i) + Z PA(j)-(SS(, j)+SI(i,))) (10)

JeF ()

where F (i) denotes a set of user i’s friends.

4 Experiments

Micro-blogging service has become one of the top tools for social media marketing.
Compared to traditional blogging, micro-blogging allows users to publish brief mes-
sages make people easy to read and repost.These characteristics: brief messages,
instant, easy to read and easy to share make micro-blogging become a good platform
to conduct social media marketing Therefore, in this research, we apply and validate
our proposed mechanism in micro-blogging systems. We conduct our experiments in
Plurk.According to Alexa, 2010, the user of Plurk is more than Twitter and 34.4% of
Plurk's traffic comes from Taiwan. Users of Plurk can connect with their friends via
lots of functions such as updating instant messages, sharing image or video to your
friends and responding friends’ messages. Besides the well-constructed network
structure, another important reason of choosing Plurk as our platform is they provide
the APIs for developers to easily request the data of users and networks which is
helpful to crawl more complete data to conduct our experimental work.

4.1 Data Description

In our mechanism, AdPlurker will send private messages with ads to users whom we
discover by different approaches. Users who receive the messages, which include

23

brief information of the ads and a recommended list of users who are also interested
in the ads and have higher propagation capabilities in their network. User can click
the hyperlinks of brief information to get detailed information and the click-through
record will be collected for evaluation work. Also, users can share the messages with
their friends who are recommended by the system. The transmitted message records
will be collected. To preventing click fraud, we recorded one click for each individual
user for the same advertisement. We conduct the experiment during the period of 11
April to 13 May.

In the preference module, we collect target users’ explicit preferences by ques-
tionnaires. Besides, in order to better realize users’ preferences, we collect implicit
preferences from the behaviors in Plurk. In the Plurk, “become fans” is a function for
users to follow others’ plurks and also declare their preferences for information type.
We use these data to match with the hierarchy of product category of Rakuten, one of
the famous online shopping mall, to structure the preference category tree of each
user. In the influence module, the out-degree measure and social popularity are taken
into consider. The friend links usually are the strongest links and imply the structural
influential in the network. A user is attention-getting since his/her plurks is often
replurked and responsed by others. It also means he/she is influential in content. In
propagation strength measurement, we analyze users’ occurring activities during the
recent six months: daily plurks, responses and replurks as the active and social inte-
raction measure, the similarity in friends and content as the social similarity measure.
We calculate the statistics of these as the propagation strength measurement.

We develop a Plurk robot named as AdPlurker and invite users who are active and
have used Plurk for a long time to join the experiments. Until April 2009, There are
107 users (55% male, 45% female) aging between 20-50. To simulate a real network
structure, our target users are formed with different locations and careers. There are
121,837 users and 971,014 plurks in our database. We collect data from the target
users to 3rd-4rd layers, due to the degrees of separation is limited the layer to 3rd-4rd
layer[10], and crawl their plurks, responses, and interactions with friends that hap-
pened within six months.

4.2 Experimental Results

In order to evaluate the performance of our proposed mechanism, we used the click-
through rate (CTR) [20] and repost-through rate (RTR) [13]. The former is a practical
statistics about advertising effectiveness; the latter is an effective means to evaluate
the eventual spread of the advertisement. Also, the two performance indicators are the
key measures in promoted tweets which is newly social advertisement platform pro-
posed by Twitter. The CTR formula is defined as:

Dclicks

CIR=———
Ddelivered an

where Pclicks i i the total number of clicks and Pdelivered ig total number of ads
delivered. The RTR formula is defined as:

24

Drepost

RIR=—"——
Ddelivered 12

where ®repost is the total number of repost and ®ddelivered is total number of ads

delivered. We compare four online advertising approaches, which are commonly used
in micro-blogging. These different approaches are described as follows.
In-degree. It is the most common measure used to evaluate the influence of micro
blogging by the number of fans. This measure is currently employed by many other
third-part services, such as twiiterholic.com and wefollow.com
Ratio-degree. The measure is similar to the ratio between the number of a user’s
followers and the number of other people that the user follows. It was proposed from
the Web Ecology Project, an interdisciplinary research group based in Boston, Mas-
sachusetts.
Preference + Out-degree. Discovering the topic-influential nodes for delivering
advertising message by taking the advantage of the target advertising and social in-
fluence.
Social Diffusion. The approach we proposed in this study. We applied analytic hie-
rarchy process (AHP) to realize the final weight combinations of three components.
Figure 2 shows the results of different advertising strategies. According to the da-
tabase, the advertisements of in-degree approach got total 0.157 CTR in 2042 deli-
very times. Ratio-degree approach got 0.176 CTR in 3922 deliveries. The hybrid
approach of preference and out-degree got 0.217 CTR in 4596 deliveries. Our social
diffusion mechanism got 0.299 CTR in 7356 deliveries. Comparing the diffusion
performance in the four advertising approaches, we can observe that our proposed
social diffusion approach has the best coverage and exposure in advertising cam-

paign.

0.35 0.045

0.0385 0.0361 0.0360

o 0.30 0.040 g

g 05 0.035 2

= 0.030 5

Ié"”O»ZO 0.025 3

2

'_E 0.15 0.020 |-E.

; =

% 0.10 0.015 3
= o.010 2 — CTR

0.05 0.005 &
0.00 0.000 —m=RTR

Fig. 2. Performance comparisons of various endorser discovering strategies.

5 Conclusions

In this paper, we propose a social diffusion mechanism to discover the nodes with the
strong propagation capability in delivering advertising information and recommend
each intermediate node a list of nodes with the high prior propagation so as to en-
hance the efficiency and effectiveness of spreading advertising message. We combine
the static factor, which includes individual preference and link structure of relation-

25

ship and the dynamic factor, which includes social interactions and social similarity
between the nodes, to develop our model. Our experimental results get positive out-
comes in both click-through rate and repost rate, and reveal some implicit connec-
tions between the components in the framework. A better CTR reflects that our me-
chanism can raise the visibility of advertising information. And a higher RTR indi-
cates a higher exposure of the advertising and reveals that users are interested in the
advertisement shared by friends and willing to share them with others. Our proposed
mechanism can widely extend the diffusion coverage of ads. It provides the advertis-
ing sponsors a powerful vehicle to successfully conduct advertising diffusion cam-
paigns.

References

1. Albadvi, A., Shahbazi, M. A hybrid recommendation technique based on product category
attributes. Expert Syst. Appl.(2009).

2. Berendt, B., Navigli, R. Finding your way through blogspace:Using semantics for cross-
domain blog analysis. 2006.

3. Delre, S. A., Jager, W., Bijmolt, T. H. A. and Janssen, M. A. Will it spread or not? The
effects of social influences and network topology on innovation diffusion. Journal of Prod-
uct Innovation Manageme(2010).

4. Gilbert, E., Karahalios, K. Predicting tie strength with social media. In Proceedings of the
Proceedings of the 27th international conference on Human factors in computing sys-
tems(2009) ACM.

5. Iribarren, J. L., Moro, E. Information diffusion epidemics in social networks. Physics and
Society(2007).

6. Kaplan, A. M., Haenlein, M. Users of the world, unite! The challenges and opportunities of
Social Media. Business Horizons 59-68.

7. Kempe, a., Kleinberg, J.,Tardos, E. Influential Nodes in a Diffusion Model for Social
Networks. Springer Verlag2005.

8. Kimura, M., Saito, K., Nakano, R., Motoda, H. Finding Influential Nodes in a Social Net-
work from Information Diffusio. Springer US 2009.

9. Leung, C. W.-k., Chan, S. C.-f.,Chung, F.-1. A collaborative filtering framework based on
fuzzy association rules and multiple-level similarity. Knowl. Inf. Syst.(2006) 357-381.

10. Li, Y.-M., Chen, C.-W. A synthetical approach for blog recommendation: Combining trust,
social relation, and semantic analysis. Expert Systems with Applications(2009) 6536-6547.

11. Li, Y.-M., Lien, N.-J. An endorser discovering mechanism for social advertising. In Pro-
ceedings of the Proceedings of the 11th International Conference on Electronic Com-
merce(2009) ACM.

12. Stelzner, M. Social Media Marketing Industry Report. 2009.

13. Twitter Promoted Tweets. 2010.

14. Wen, C., Tan, B. C. Y. and Chang, K. T.-T. Advertising Effectiveness on Social Network
Sites: An Investigation of Tie Strength, Endorser Expertise and Product Type on Consumer
Purchase Intention. 2009.

DESIGN AND ANALYSIS OF
SERVICE-ORIENTED SYSTEMS

Specifying Formal executable Behavioral Models for
Structural Models of Service-oriented Components*

Elvinia Riccobene! and Patrizia Scandurra®

! DTI - Universita degli Studi di Milano, Milan, Ttaly
elvinia.riccobene@unimi.it
2 DIIMM - Universita degli Studi di Bergamo, Bergamo, Italy
patrizia.scandurra@unibg.it

Abstract. This paper presents a behavioral formalism based on the Abstract
State Machine (ASM) formal method and intended for high-level, platform-in-
dependent, executable specification of Service-oriented Components. We com-
plement the recent Service Component Architecture — a graphical notation able
to provide the overall and the components structure — with an ASM-based for-
malism able to describe the workflow of the service orchestration and the ser-
vices internal behavior. The resulting service-oriented component model provides
an ASM-based representation of both the structural and behavioral aspects of
service-oriented systems, like service interactions, service orchestration, service
tasks and compensation. The ASM formal description of a service-oriented sys-
tem is suitable for rigorous execution-platform-independent analysis.

1 Introduction

The Service-Oriented paradigm is emerging as a new way to engineer applications that
are exposed as services for possible use through standardized protocols. Services are
loosely coupled, interoperable, evolvable, computational components available in a dis-
tributed environment. On top of these services, business processes and workflows are
used to compose services as service orchestration. The Service-Oriented Architecture
(SOA) is the architectural foundation for the Service-Oriented paradigm. SOA states
that applications expose their functionality as services in a uniform and technology-
independent way such that they can be discovered and invoked over the network. This
new programming style relies on interface-based design, composition and reusability.
It also requires specific modeling notations able to support the service-oriented system
engineering with intuitive and easy to adopt design and implementation techniques.
Recently, the Service Component Architecture (SCA) [21] project is proposed to
implement service construction based on the SOA principles. SCA provides a metamodel-
based visual notation to construct and assemble service components in a platform in-
dependent manner. The SCA initiative is divided into several specification documents,
such as the SCA assembly model specification, the SCA policy framework, etc. The
assembly model specifies the concept of service components and focuses on the re-
lationship between service components in a particular assembly. However, the SCA

* This work was partially supported by the Italian Government under the project PRIN 2007
D-ASAP (2007XKEHFA)

30

assembly model lacks of a precise definition. As a service programming model, it is not
enough for SCA to provide informal definition. A rigorous semantic model for SCA
is necessary to specify the dynamic behavior of a service-oriented system, which can
provide a formal foundation for the service component assembly and support to verify
the compatibility of the assembled components. Moreover, the use of the SCA nota-
tion should be integrated within a precise engineering methodology for SOA, which,
for high-level analysis purposes, requires a formal counterpart of the SCA description.
Indeed, service-based systems usually have requirements such as service availability,
functional correctness, protection of private data, etc. Implementing services satisfying
these requirements demands the use of software engineering methodologies that encom-
pass all phases of the software development process, from modeling to deployment, but
also exploit formal techniques for qualitative and quantitative verification of systems.

This paper presents a behavioral formalism based on the Abstract State Machine
(ASM) [5] formal method and intended for the specification and analysis of service-
oriented systems at a high level of abstraction and in a technology agnostic way (i.e.
independently of the hosting middleware and runtime platforms and of the program-
ming languages in which services are programmed). This is a first result of our ongoing
work towards the development of an ASM-based back-end framework, for high-level
specification and analysis of SCA descriptions of service-oriented component systems.
ASMs expressiveness and executability allow for the definition and analysis of behav-
ioral aspects of services (and complex structured interaction protocols) in a formal way
but without overkill. Moreover, the ASM design method is supported by a set of tools
(developed through model-driven engineering technology), the ASMETA toolset [13,
2], useful for validation and verification (essentially simulation, scenario-based valida-
tion, model-based testing, and model-checking) of ASM-based models of services.

A service-oriented component model is introduced to provide an ASM-based repre-
sentation of both the structural and behavioral aspects of service-oriented systems like
service interactions, service orchestration, service tasks and compensation. In particu-
lar, the component model integrates the orchestration modeling with the specification of
service behaviors, so integrating intra- and inter- component behavior in one formalism;
this is especially useful for analysis purposes to verify “global properties” that depend
on “local properties”. We start from the SCA standard [21] for the structural aspects
of service-oriented components, and we complement the graphical view of a service-
oriented system with a formal description which is then enriched with the executable
specification of the services internal behavior and services orchestration. In particular,
for modeling services behavior, the ASMs provide atomic (zero-time) parallel execution
of entire (sub)machines — used to model service tasks — whose computations, analyzed
in isolation, may have duration and may access the needed state portion, thus combin-
ing the atomic black box and the white box view of service-oriented components. For
modeling services interaction, we exploit high-level communication patterns defined in
[26] and adapted from [3]. They model in terms of the ASMs complex interactions of
distributed service-based (business) processes that go beyond simple request-response
sequences and may involve a dynamically evolving number of participants.

This paper is organized as follows. Some background concerning the SCA standard
and the ASM formal method are given in Sect. 2 and 3, respectively. The ASM-based

31

service-oriented component model is presented in Sect. 4, while an illustrative case
study is reported in Sect. 5. Sect. 6 provides a description of related work along the
same direction and outlines some future directions of our work.

2 Service Component Architecture

The Service Component Architecture (SCA) [21] is an XML-based metadata model
that describes the relationships and the deployment of services independently from
SOA platforms and middleware programming APIs (such as Java, C++, Spring, PHP,
BPEL, Web services, etc.). SCA is also supported by a graphical notation (a metamodel-
based language developed with the Eclipse-EMF environment) and runtime environ-
ments (like Apache Tuscany and FRAscaTI) that enable developers to create service
components, assemble them into composite applications, and run/debug them.

Service Reference
- Java interface - Java interface
- WSDL PortType - WSDL PortType
Property

.......... Properties
/ Composite
setting

Service H-----ooomeeoooo-S A -
! AService H BService ! : :
H g : :

| ' |
Wire Wire Wire

Binding Binding
Web Service Web Service
SCA SCA
JCA JCA
JMS JMS

sLsB ?}SB
Fig. 1. An SCA composite example (adapted from the SCA Assembly Model V1.00 spec.)

To get an overview of the architecture of SCA, we will now look at its basic building
blocks and their (inter-)relations. Fig. 1 shows an SCA composite (or SCA assembly)
as a collection of SCA components using the SCA graphical notation. Following the
principles of SOA, loosely coupled service components are used as atomic units or
building blocks to build an application.

An SCA component is a configured piece of software that has been configured to
provide its business functions (operations) for interaction with the outside world. This
interaction is accomplished through: services that are externally visible functions pro-
vided by the component; references (functions required by the component) wired to
services provided by other components or to references of the composite component
containing the component; properties allowing for the configuration of a component
implementation with externally set data values; and bindings that specify access mech-
anisms used by services and references according to some technology/protocol (e.g.
WSDL binding to consume/expose web services, JMS binding to receive/send Java
Message Service, etc.). Service and references are typed by interfaces that describe the

32

business function (operation). A particular business function is typically grouped with a
set of other related operations, as defined by an interface, which as a whole make up the
service offered by a provider component. Each invocation by a client component on a
reference operation causes one invocation of the operation on one service provider. The
provider may respond to the operation invocation with zero or more messages. These
messages may be returned synchronously or asynchronously to the requester client.

As unit of composition and hierarchical design, assemblies of service components
deployed together are supported in terms of composite components. A composite con-
sisting of: properties, services, service implementations organized as sub-components,
required services as references, wires connecting sub-components.

3 Abstract State Machines

Abstract State Machines (ASMs) are an extension of FSMs [6], where unstructured con-
trol states are replaced by states comprising arbitrary complex data. Although the ASM
method comes with a rigorous mathematical foundation [5], ASMs provides accurate
yet practical industrially viable behavioral semantics for pseudocode on arbitrary data
structures. This specification method is tunable to any desired level of abstraction, and
provides rigor without formal overkill.

The states of an ASM are multi-sorted first-order structures, i.e. domains of objects
with functions and predicates (boolean functions) defined on them, while the transition
relation is specified by rules describing how functions change from one state to the next.
Basically, a transition rule has the form of guarded update “if Condition then Updates”
where Updates are a set of function updates of the form f(¢y,...,t,) := ¢t which are
simultaneously executed® when Condition is true.

There is a limited but powerful set of rule constructors that allow to express si-
multaneous parallel actions (par) of a single agent self, either in an atomic way, Basic
ASMs, or in a structured and recursive way, Structured or Turbo ASMs, by sequential ac-
tions (seq), iterations (iterate, while, recwhile), and submachine invocations
returning values. Appropriate rule constructors also allow non-determinism (existential
quantification choose) and unrestricted synchronous parallelism (universal quantifica-
tion forall). Furthermore, it supports a generalization where multiple agents interact
in parallel in a synchronous/asynchronous way, Synch/Asynch Multi-agent ASMs.

Based on [5], an ASM can be defined as the tuple:

(header, body, main rule, initialization)

The header contains the name of the ASM and its signature“, namely all domain,
function and predicate declarations. Function are classified as derived functions, i.e.
those coming with a specification or computation mechanism given in terms of other
functions, and basic functions which can be static (never change during any run of
the machine) or dynamic (may change as a consequence of agent actions or updates).

3 f is an arbitrary n-ary function and ¢y, . ..,%n,t are first-order terms. To fire this rule to a
state S;, ¢ > 0, evaluate all terms ¢1,...,t,,t at S; and update the function f to t on pa-
rameters t1, . . ., t,. This produces another state S;11 which differs from S; only in the new

interpretation of the function f.
4 Import and export clauses can be also specified for modularization.

33

Dynamic functions are further classified into: monitored (only read, as events provided
by the environment), controlled (read and write), shared (read and write by an agent
and by the environment or by another agent) and output (only write) functions.

The body of an ASM consists of (static) domain and (static/derived) function def-
initions according to domain and function declarations in the signature of the ASM. It
also contains declarations (definitions) of transition rules. The body may also contains
definitions of axioms for invariants to assume over domains and functions of the ASM.

The (unique) main rule is a transition rule and represents the starting point of the
machine program (i.e. it calls all the other ASM transition rules defined in the body).
The main rule is closed (i.e. it does not have parameters) and since there are no free
global variables in the rule declarations of an ASM, the notion of a move does not
depend on a variable assignment, but only on the state of the machine.

The initialization of an ASM is a characterization of the initial states. An initial state
defines initial values for domains and functions declared in the signature of the ASM.
Executing an ASM means executing its main rule starting from a specified initial state.

A computation of an ASM M is a finite or infinite sequence Sy, S1, ..., Sy, ... of
states of M, where Sy is an initial state and each S, is obtained from .S,, by firing
simultaneously all of the transition rules which are enabled in S,

A lightweight notion of module is also supported. An ASM module is an ASM
without a main rule and without a characterization of the set of initial states.

In addition to its mathematical-based foundation, a general framework, the ASMETA
tool set [14,2], based on the Eclipse/EMF modeling platform is also available for de-
veloping, exchanging, simulating, testing and model checking ASM models.

4 Modeling Service-oriented Systems in ASMs

A service-oriented system is a distributed system: a system made of collection of dis-
tributed computational components (computers, software applications, devices, etc.)
perceived by a user as a single system. However, compared with classical distributed
systems, service-based systems are rather non predictable as many parts may be un-
known at a given time. Indeed services are volatile distributed entities; they may be
searched, discovered, and dynamically linked with the remained part of the system en-
vironment, and unlinked at a later moment. A business process may be provided that
acts as an orchestrator, i.e. an active entity that invokes available services according to
a given set of rules to meet some business requirements. A service orchestration is a
composition specification showing how services are composed in a workflow.

We represent in ASM a service-based system exploiting the notion of distributed
multi-agent ASMs. Essentially, each business participant (or partner role) has an associ-
ated ASM agent with a program (a set of transition rules) to execute. A service-oriented
component is an ASM endowed with (at least) one agent able to be engaged in conver-
sational interactions with other external agents by providing/requiring services to/from
other (partner) service-oriented components. Moreover, in a service assembly compo-
nent (a composite component made of other internal or external service-oriented com-
ponents), an agent may act as “orchestrator” by executing (as part of its own program)

34

module A module AService

import STDL/StandardLibrary /domains and functions for standard data types | | import STDL/StandardLibrary
import STDL/CommonBehavior /predefined rules for services interactions export *

import AService /provided services (interface) signature:

import BService //required services (interface) //decl. for business roles and functions
export x //all functions and rules are exported signature:

signature: domain AService subsetof Agent
//Property out getPA: Prod(Agent,String) —> D)|
shared pA: Agent —> D //D is a domain for a data type

//Reference

shared b: Agent —> BService

//Client agent to which the component’s agent will be linked to
shared client: Agent —> Agent

//Other user—defined domains and functions (if any)
controlled rcv: Agent —> String

definitions:
//Axioms (if any), i.e. assumptions and constraints on functions

//Rule for the provided business function getPA in the AService interface
rule r_getPA($a in AService, client in String) =

seq
... //Do something for the client
getPA($a,client) := ... /setting of the out business function location
endseq

//Other utility rules

//Agent’s program (life cycle): receive a request and handle it
ruler A () =
seq
r_wreceive(client(self),”’getPA”, rcv)
r_getPA(self,rcv) /direct service invocation
r-wreplay(client(self),”getPA”,getPA(self client))
endseq
//Constructor rule (invokable by the container composite)
macro rule r_init($a in AService) = ... /do initial properties settings and other

Fig.2. ASM modules for an SCA component A and its provided service interface AService.

an ASM rule capturing the behavior of the orchestration workflow. The resulting sys-
tem is therefore an asynchronous multi-agent ASM that will behave accordingly to the
behavior of each service (ASM agent) involved in. This main ASM also provides the
necessary initialization (such as appropriated component bindings) and initial startup
of all agents’ programs (in the main ASM rule) to make the system model executable.

4.1 Service-oriented Components and their Assemblies

A transformational semantic mapping is provided to transform SCA descriptions of
service structures into ASM-based formal descriptions. Listings in Fig. 2 and in Fig.
3 report the templates of an ASM module corresponding to an SCA component (like
the component 2 in Fig. 1) with its provided service interface (like the AService
interface provided by the A component) and to an SCA composite (like the composite
C in Fig. 1), respectively, using the Asmetal. notation of the ASMETA toolset.
Appropriate transformation rules map the SCA key modeling elements (compo-
nents, properties, services, references, wires, and composites) into ASM concepts. Es-
sentially, an SCA service-oriented component is mapped into an ASM module endowed
with (read: provides a type declaration for) at least one agent able to interact with other

35

module C

import A,B //import of ASM modules for subcomponents
export *

signature:

//Agents of the sub—components

static compA: AService

static compB: BService

//Properties

shared pA: D /D is a domain for a data type

shared ext: Agent //external reference
shared client: Agent —> Agent /Client agent to which the component’s agent A will be linked to
//Other user—defined domains and functions (if any)

definitions:
... //Axioms (if any), i.e. assumptions and constraints on functions
//Constructor rule
rule r_init =
par

//wires setting

client(compA) := client

b(compA):= compB

//Properties setting
pA(compA):= pA

//Agents program assignment
program(compA) :=r_A()
program(compA) :=r_B()
/lexecution of agents initialization routines
r-init(compA)
r-init(compB)

endpar

Fig. 3. ASM template for an SCA composite C.

external service-oriented components. Each service-oriented component with its busi-
ness role has, therefore, an associated ASM and an ASM agent with a program to ex-
ecute. An SCA component’s property is straightforwardly mapped into an ASM func-
tion. An interface is a description of business functions. Services and references of a
component are typed by interfaces. An interface is mapped into an ASM module con-
taining only a collection of declarations of signature elements (domains and functions)
for the business roles, declared in terms of subdomains of the predefined ASM Agent
domain, and business functions, declared as parameterized ASM out functions. This
ASM module is imported (through import clauses) by both the “provider” ASM mod-
ule and the “requester” ASM module in order to “provide” (by giving definitions for
those elements), respectively to “require” (by exposing an explicit reference typed by
the declared agent subdomain), the declared business functions.

The ASM module A shown in the left of Fig. 2 (corresponding to the component A in
Fig. 1), for example, provides definitions for the business functions declared in the im-
ported AService ASM module (corresponding to the provided AService interface)
shown in the right of Fig. 2. The A module also provides declarations for the property
PA, the reference b to a BService agent, a reference client to a generic client
agent, and other functions. The agent domain AService declared in the AService
module and the rule r_A characterize the agent associated to the component A.

The notion of service operation provided by a component is captured by a named
ASM turbo rule. It models the notion of submachine computation in a black-box view,

36

hiding the internals of the subcomputation by compressing them into one step. The
name of such a rule — it is a convention — is the same name of the out business function
declared in the typing service interface. In case of a return value, the body of such a rule
must contain, among other things, an update of such out function (location); the value
of such location denotes the value to be returned to the client. See, e.g., the r_getPA
rule in the ASM module A in Fig. 2 and the occurrence within it of the business function
getPA (declared in the AService module) on the left-side of an update-rule.

Services can be accessed through references in SCA. These are abstract access end-
points to services that will be possibly discovered at runtime. In the ASMs, references
are represented in terms of functions that have as codomain a subset of the Agent do-
main named with the name of the reference’s typing interface (see, e.g., the reference
b to a BService agent in the ASM module A in Fig. 2). This domain is declared in
the ASM module corresponding to the reference’s typing interface, and the ASM mod-
ule corresponding to the component exposing the interface has also to import the ASM
module for the interface. In this way we identify (even if it is not known at design time)
the partner’s business role (i.e. the agent type).

An SCA composite component (made of an assembly of components) is represented
by a composite ASM module that embeds (through import clauses) the ASM modules
corresponding to the sub-components of the SCA composite. Communication links be-
tween components are denoted in SCA by appropriated wires as configured by the as-
sembly. These links are created in the initial state or in an initialization (constructor) rule
of the ASM corresponding to the assembly component in terms of function (reference)
assignments. The ASM module C shown in Fig. 3 (corresponding to the composite C
in Fig. 1), for example, imports the ASM modules for the sub-components A and B,
and declares two references compA and compB to the agents of the subcomponents.
It also carries out in the constructor rule r_init the wires setting, properties setting,
agents’ program assignment, and initialization of the sub-components. A “top-level”
composite containing the overall assembly is mapped into composite ASM (read: the
main ASM) with a possible ASM initial state to initialize the ASM modules and their
agents as dictated by the configured sub-components.

We abstract from the SCA notion of binding, i.e. from several access mechanisms
used by services and references (e.g. WSDL binding, JMS binding, etc.). We assume
that components communicate over the communication links through an abstract asyn-
chronous and message-oriented mechanism (see next subsection), where a message en-
capsulates information about the partner link and the referenced service name and data.

4.2 Service Behavior: Orchestration and Interactions

The behavior of a service-oriented system is the description of the involved service ac-
tivities composed in a workflow (orchestration). Here we adopt a simple service compo-
sition technique. We compose services by embedding more than one service component
into a top-level composite component (the main ASM). A component embeds an ASM
agent executing (as its own program) an appropriate interactive behavior or a “piece” of
orchestration workflow. The overall orchestration is, therefore, spread throughout the

37

internal components® and consists of the patterns of interactions (or communication).

For modeling service orchestration, basic control-flow constructs are easily sup-
ported in the ASMs by rule constructors such as the seq-rule for executing activities se-
quentially, the par-rule for synchronous parallel split of activities, the conditional rule
for alternative flows, etc.. Other control flow patterns (not reported here) can be easily
supported in ASM as formalized in [7]. For example, the “fork” and “merge” nodes (us-
ing the same terminology of the UML activity diagrams) can be used separately; a fork
node is to be intended as an asynchronous parallel split [7] that spawns finitely many
sub-agents using as underlying parallelism the concept of asynchronous ASMs. As an-
other example, the choice rule can be used to define non deterministic selection patterns
[7]. Moreover, more complicated workflow patterns like those introduced in the recent
OMG initiative Business Process Management Notation (BPMN)[24] on business pro-
cess modeling can be captured by ASM rule-patterns as well (some formalization work
for BPMN has been already done; see for example [8]).

In addition to control-flow patterns, we define three basic kinds of service activities:
(1) functional activities: they deal with data manipulation (assignments);

(ii) fault activities: they deal with faults or exceptions, and error recovery (by compen-
sation or exception handlers);

(iii) communication or interaction activities: they deal with message exchange between
services to interact. Activities (i) and (ii) do not require a special treatment as they can
be intuitively captured by means of ASM rules with no special rule constructor or rule
patterns. Compensation handlers can be, for example, specified in terms of named ASM
rules associated to certain services to be executed in case of faults. Communication ac-
tivities (iii) deserve more explanation, as better explained below.

Services are invoked (i.e. interact) through communication activities. To this pur-
pose, we take advantage of the precise high-level models for eight fundamental service
interaction patterns, given by Barros and Boerger in [3] in terms of the ASMs. They
define turbo ASM rules SEND,, RECEIVE;, SENDRECEIVE, ; and RECEIVESEND, ;
to capture the semantics of both asynchronous and synchronous message passing (the
non-blocking and blocking mode) and the semantics of service interactions beyond sim-
ple request-response sequences by involving acknowledgment, resending, etc. All these
variants are denoted by parameters s € {noAck, ackNonBlocking, ackblocking, noAckResend,
ackNonBlockingResend, ackBlockingResend} and t € {blocking, buffer, discard, noAckBlock-
ing, noAckBuffer, ackBlocking, ackBuffer} .

Therefore, we capture the semantics of common interaction actions send, receive,
sendd&receive, and replay by the following ASM submachines (turbo rules):

— WSEND,,, 4.k (Ink, op, snd): sends data snd without blocking to the partner link
Ink in reference to the service operation op.

— WRECEIVE 0 Ack Blocking(INK, 0Op, rcv): receives data in the location rcv from the

3 For the specification of the externally visible behavior of service components as provided to
or required from a partner, some proposals (such as [23]) adopt a (declarative) Protocol State
Machine formalism to specify which interaction a component can be engaged in which state
and under which condition. Similarly, in ASM the (unknown) behavior of an external required
component may be captured by a class of ASMs, named control-state ASMs, that specifies in
an abstract way the external partner agent’s life cycle when engaged in service interactions.

38

Restaurant
=
} vatRate
| RestaurantService billService gillService vatService
L9 VatService yat
Restaurant menyservice Bill ipService paspace
Service A Service R Component
Component Component
tipRate
TipSewics-hp
Service
MenuService
Menu Component
Service
Component

Fig. 4. SCA structure of the Restaurant case study.

partner link Ink in reference to the service operation op; it blocks until data are received.

— WREPLAY 4.k (Ink, op, snd): returns some data snd to the partner link Ink, as
response of a previous op request received from the same partner link.

— WSENDRECEIVE ;6 Ack,noAck Blocking (INK, op, snd,rcv): in reference to the service

operation op, some data snd are sent to the partner link /nk, then the action waits for
data to be sent back, which are stored in the receive location rcv.
These submachines have been already defined in [26] as “wrappers” of the general
patterns originally presented in [3]. Each of these communication rules describes one
side of the interaction and relies on a dynamic domain Message that represents message
instances managed by an abstract message passing mechanism.

Note that additional communication patterns can be supported in ASM (e.g. for
multi-party interactions) as specializations of the more abstract patterns formalized in
[3], allowing, therefore, more expressiveness in the service interactions specification.

5 Running Case Study

Fig. 4 shows the SCA assembly of the Restaurant case study taken from the SCA
distribution [21]. The Restaurant composite is a composition of five components:
RestaurantServiceComponent that allows a client to see the menus proposed
by the restaurant and also to compute the bill for a particular menu; MenuService-
Component that provides different menus; a Menu (as data type) is defined by a de-
scription and the price without taxes; BillServiceComponent that computes the
price of a menu with the different taxes; VATServiceComponent that computes the
VAT (Value Added Tax); and TipServiceComponent that computes the tip.

As example, Fig. 5 reports the ASM module for the BillServiceComponent.
The bill agents’ program and the service rule are a small orchestration example for the
coordination of the two helper services VAT and Tip.

39

module BillServiceComponent
import STDL/StandardLibrary
import STDL/CommonBehavior
import BillService //provided interface
import TipService /required interface
import VatService //required interface
export *
signature:
shared vatService: Agent —> VatService //reference
shared tipService: Agent —> TipService //reference
shared clientBillService: Agent —> Agent /Client agent to which the component is linked to
//Other functions used for internal computations
controlled priceWithTaxRate: Agent —> Real
controlled priceWithTipRate: Agent —> Real
controlled menuprice : Agent —> Real
definitions:
//Rule for the provided service operation getBill
rule r_getBill($a in Agent, $menuPrice in Real) =
seq
r-wsendreceive(vatService($a),” getPriceWithVat”,$menuPrice,priceWithTaxRate($a))
r-wsendreceive(tipService($a),”getPriceWithTip”,priceWithTaxRate($a),priceWith TipRate($a))
getBill($a,$menuPrice) := priceWithTipRate($a) /setting of the out business function location
endseq
rule r_BillServiceComponent = //Agent program (life cycle)
seq
r-wreceive(clientBillService(self),”getBill”,menuprice(self))
r_getBill(self,menuprice(self)) /direct service invocation
r_wreplay(clientBillService(self),”getBill”,getBill(self,menuprice(self)))
endseq
//Constructor rule
macro rule r_init($a in BillService) = skip //do nothing

Fig.5. ASM module of the BillServiceComponent.

6 Related Work and Future Directions

On the formalization of the SCA component model, some previous works, like [9, 10]
to name a few, exist. However, they do not rely on a practical and executable formal
method like ASMs. In [18], an analysis tool, Wombat, for SCA applications is pre-
sented; their approach is similar to our as their tool is used to perform simulation and
verification tasks by transforming each SCA module into one composed Petri net. We
are, however, not sure that their methodology scales effectively to large systems.

Lightweight visual notations for service modeling have been proposed such as the
OMG SoaML UML profile [20]. The SoaML profile, like the SCA initiative, is more
focused on architectural aspects of services.

Another UML extension for service modeling, named UML4SOA [23], has been
developed within the EU project SENSORIA [19]. The UMLA4SOA language is fo-

40

cused on modeling service orchestrations as an extension of UML2 activity diagrams.
In order to make UML4SOA models executable, some code generators for low level
target languages (such as BPEL/WSDL, Jolie, and Java) already exist [22]; however
the target languages do not provide the same rigor and preciseness of a formal method
necessary for early design exploration and analysis.

Within the EU project SENSORIA, another modeling notation specific to the SOA
domain, named SRML [25], has been developed. SRML is a declarative modeling lan-
guage for service-oriented systems with a computation and coordination model. We
believe it is worth to study the feasibility of defining an encoding from UML4SOA®
(or SRML) into ASMs, but we leave it as a challenge for future work. The goal of this
activity would be the definition of an executable operational semantics of UML4SOA
(SRML) models in terms of the ASMs and then explore ASM-based analysis tools.

Several process calculi for the specification of SOA systems have been designed
(see, e.g., [17,15,16,4]). They provide linguistic primitives supported by mathemati-
cal semantics, and verification techniques for qualitative and quantitative properties. In
particular, in [11] an encoding of UMLA4SOA in COWS (Calculus for the Orchestration
of Web Services), a recently proposed process calculus for specifying services while
modeling their dynamic behavior, is presented. Compared to these notations, the ASMs
have the advantage to be executable and formal without mathematical overkill.

Within the ASM community, the ASMs have been used in the SOA domain for the
purpose of formalizing business process modeling languages and middleware technolo-
gies related to web services, like [8,7,12, 1] to name a few. Some of these previous
formalization efforts are at the basis of our work.

As future work, we propose to complete the proposed ASM-based service-oriented
component model towards different directions. We have been developing several case
studies, some taken from the SCATuscany distribution and some other from the EU
SENSORIA project [19], in order to assure the approach scales effectively to large and
different systems. We have been also extending the Eclipse-based SCA Tools and ex-
ploiting the Tuscany runtime that allows extension modules to be plugged in, to provide
a direct support of the ASM-based component model and automate the transformation
from SCA to ASMs. We aim also at defining and developing synthesis patterns to gen-
erate code automatically (at least for some critical parts) from ASM models of services.

We plan to revise our component model (if necessary) to take in consideration also
the changes recently made to the SCA Assembly specification [21] to introduce some
extensions for Event Processing. Moreover, since service-oriented components can be
discovered and bound to other components at run-time to produce configurations, we
want to address the behavioral aspects of service discovery (for the lookup of service
provider interfaces and service locations) and self-adaptability by extending the service-
oriented component model in ASMs with specific “roles” of service agents.

In the future, we aim also at specifying and reasoning about “classes of properties”
of services through the ASMETA analysis tools, for example, to verify the compatibility
of the assembled components and check that the services resulting from a composition
meet desirable properties without manifesting unexpected behaviors.

® Such an encoding would be natural to carry out for the UML4SOA since we also inspired from
the UML4SOA communication activities for our interaction patterns.

41

References

1

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

M. Altenhofen, A. Friesen, and J. Lemcke. Asms in service oriented architectures. J. of
Universal Computer Science, 14(12):2034-2058, 2008.

. The ASMETA tooset website. http://asmeta.sf.net/, 2006.
. Alistair P. Barros and Egon Borger. A compositional framework for service interaction pat-

terns and interaction flows. In ICFEM’05 Proc., LNCS 3785, pages 5-35. Springer, 2005.

. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for structured

service programming. In FMOODS Proc., LNCS vol. 5051, pages 19-38. Springer, 2008.

. E. Borger and R. Stirk. Abstract State Machines: A Method for High-Level System Design

and Analysis. Springer Verlag, 2003.

. Egon Borger. The ASM method for system design and analysis. A tutorial introduction. In

Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005 Proc., LNCS vol.
3717, pages 264-283. Springer, 2005.

. Egon Borger. Modeling Workflow Patterns from First Principles. In C. Parent, K.-D. Schewe,

V. C. Storey, and B. Thalheim, editors, ER, LNCS vol. 4801, pages 1-20. Springer, 2007.

. E. Brger, O. Srensen, and B. Thalheim. On defining the behavior of or-joins in business

process models. J. of Universal Computer Science, 15(1):3-32, 2009.

. Zuohua Ding, Zhenbang Chen, and Jing Liu. A rigorous model of service component archi-

tecture. Electr. Notes Theor. Comput. Sci., 207:33-48, 2008.

Dehui Du, Jing Liu, and Honghua Cao. A rigorous model of contract-based service compo-
nent architecture. In CSSE (2), pages 409-412. IEEE Computer Society, 2008.

F. Tiezzi F. Banti, R. Pugliese. Automated verification of UML models of services. Submitted
for publication, 2009.

R. Farahbod, U. Glidsser, and M. Vajihollahi. A formal semantics for the business process ex-
ecution language for web services. In Savitri Bevinakoppa, Luis Ferreira Pires, and Slimane
Hammoudi, editors, WSMDEIS, pages 122—-133. INSTICC Press, 2005.

A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven language engineering: The
ASMETA case study. In Int. Conf. on Software Engineering Advances, ICSEA 2008.
Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A metamodel-based simula-
tor for ASMs. In Andreas Prinz, editor, /4th Int. ASM Workshop Proc., 2007.

C. Guidi et al. : A calculus for service oriented computing. In Asit Dan and Winfried
Lamersdorf, editors, ICSOC, LNCS 4294, pages 327-338. Springer, 2006.

I. Lanese, F. Martins, V. Thudichum Vasconcelos, and A. Ravara. Disciplining orchestration
and conversation in service-oriented computing. In SEFM, pages 305-314. IEEE, 2007.

A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In
LNCS, pages 33—47. Springer, 2007.

Axel Martens and Simon Moser. Diagnosing sca components using wombat. In Business
Process Management Proc., LNCS 4102, pages 378—388. Springer, 2006.

EU project SENSORIA, ist-2 005-016004 www.sensoria-ist.eu/.

OMBG. The SoaML Profile, ptc/2009-04-01

OSOA. Service Component Architecture (SCA) www.osoa.org.

P. Mayer, A. Schroeder, and N. Koch. A model-driven approach to service orchestration. In
IEEE SCC (2), pages 533-536. IEEE, 2008.

P. Mayer et al. The UML4SOA Profile. Tech. Rep., LMU Muenchen, 2009.

OMG, Business Process Management Notation (BPMN). www.bpmn.org/, 2008.

SRML: A Service Modeling Language. http://www.cs.le.ac.uk/srml/, 2009.

E. Riccobene and P. Scandurra. An ASM-based executable formal model of service-oriented
component interactions and orchestration. Workshop on Behavioural Modelling - Founda-
tions and Application (BM-FA 2010), ACM DL Proc. ISBN 978-1-60558-961-9

Optimizing Service Selection for Probabilistic QoS
Attributes

Ulrich Lampe, Dieter Schuller, Julian Eckert and Ralf Steinmetz

Multimedia Communications Lab (KOM)
Technische Universitit Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Germany
{firstname.lastname}@KOM.tu-darmstadt.de

Abstract. The service selection problem (SSP) —i.e., choosing from sets of func-
tionally equivalent services in order to fulfill certain business process steps based
on non-functional requirements — has frequently been addressed in literature con-
sidering deterministic values for the Quality of Service (QoS) attributes. However,
the usage of deterministic values does not reflect the uncertainty about the actual
value of an attribute during execution, thus ignoring the risk of QoS violations.
In the paper at hand, a simulative step, based on stochastic QoS attributes, is per-
formed as complement for optimally solving the SSP using linear programming
methods. With this two-step approach, uncertainties in the selected set of services
can be explicitly revealed and addressed through repeated selection steps, thus
allowing to prevent the violation of QoS restrictions much more effectively.

1 Introduction

In Service-oriented Architectures (SOA), business processes can be realized by compos-
ing loosely coupled services. Depending on their granularity, these services provide a
more or less complex functionality [1]. Thereby, the services are not necessarily located
only within the boundaries of the own enterprise. In the Internet of Services, multiple
service providers offer their services at various service marketplaces [2]. If services with
substitutable functionalities are available at different cost and quality levels, service
requesters have the opportunity to decide which services from which service providers
to select, based on their preferences regarding Quality of Service (QoS). This service
selection problem (SSP) respectively its solution recently attracted a lot of attention in
the literature [3-6].

In this problem, an abstract representation of a workflow is assumed to be given
(e.g., in Business Process Modeling Notation — BPMN), as well as a list of functionally
equivalent services which are able to accomplish the tasks of the respective workflow
steps. The aim is to assign each workflow step exactly one service from the respective
set of functionally equivalent candidate services, so that the overall (workflow) QoS
is optimized and the requesters’ end-to-end QoS requirements are satisfied. In order
to compute an (optimal) solution, almost exclusively deterministic values for the QoS
attributes are considered at planning time in the literature. However, these values do not
reflect the uncertainty that is associated with an attribute during execution. E.g., response
times — i.e. the elapsed time period between the service invocation to the response arrival

43

—may fluctuate due to varying network or computational load, thus resulting in a violation
of the requester’s QoS requirements in the actual workflow execution.

Therefore, we propose to perform an additional simulation step that takes stochastic
distributions for the QoS attributes into account after having computed the optimal
solution to the SSP (considering only deterministic values). This simulation step allows
to detect potential violations of QoS restrictions in the actual execution, based on the
respective probability of such events. Depending on the requester’s preferences, the
outcome of the simulation may trigger repeated optimization steps using additional
restrictions. As a proof-of-concept, we implemented and evaluated a simulation for the
QoS attribute response time.

The remainder of this work is structured as follows: In Section 2, we will present our
approach for optimally solving the SSP using linear programming, based on deterministic
QoS values. In Section 3, the potential drawbacks of deterministic optimization will
be outlined. Based on the findings, a simulation process that relies on stochastic QoS
attributes will be presented and evaluated using a prototypical tool. The paper closes
with a conclusion and an outlook of our future work in Section 4.

2 Optimal Service Selection for Complex Workflows

In this section, we present our approach for the computation of an optimal solution to
the SSP. For this, we formulate a linear optimization problem, which can be solved
optimally — if a solution exists — using (mixed) integer linear programming (MILP)
techniques from the field of operations research [7]. The optimization problem consists
of a target function and a set of constraints. We perform a worst-case analysis — instead
of an average-case analysis — by applying our aggregation functions proposed in [8]
in order to make sure that all restrictions are satisfied at planning time. Performing an
average-case analysis would have led to a solution, where the restrictions are satisfied
only in average.

For the optimization, we consider the QoS attributes response time e (elapsed time
from the service invocation until the response arrival), costs ¢ (costs for the invocation
of a service), reliability r (the probability that the service successfully provides the
requested results), and throughput d (number of parallel service invocations), although
the mentioned simulation step will only be performed for response time e. With these
QoS attributes — in fact with a subset of these attributes — the aggregation types summa-
tion, multiplication and the min/max operator are covered. The integration of further
aggregation types is straightforward.

In the paper at hand, we concentrate on the workflow patterns sequence, parallel
split (AND-split), synchronization (AND-join), exclusive choice (XOR-split), simple
merge (XOR-join), and arbitrary cycles (Loop), which only form a subset of all workflow
patterns (cf. [9]). The patterns can be combined to create complex workflows. An
example for such a complex workflow is given in Figure 1.

We consider an abstract workflow (e.g., in BPMN)), consisting of n tasks respectively
process steps P.S;. For each PS; with i € I = {1,...,n}, a set J; of m; services
ji € J; = {1,...,m;}, able to realize PS;, exists. Each process step P.S; thereby is
realized by exactly one service j;. This is indicated by the demand for (binary) decision

44

PS1

Fig. 1: Example abstract workflow.

variables z;; € {0,1} (cf. condition (14)). The logical order of the process steps is
depicted from the abstract workflow as follows: in case PS} is a direct successor of
PS;, weadd PS; — PSi toaset DS = {PS; — PSy|PS}, direct successor of P.S;}.
DS, is the set of start tasks, i.e., the tasks that need to be executed first in the workflow.
In addition, we define DS, as the set of end tasks, i.e., tasks with no direct successor.
To give an example, we refer to Figure 1. Here, PS5 is a direct successor of P.S;. We
therefore add PSy; — PSsto DS.

With respect to XOR-splits and XOR-joins, we define a set L = {1, ..., 0} of o path
numbers for the paths within the XOR-split and -join — and name these paths XOR-paths.
Thereby, | € L represents the respective XOR-path number. The process steps PS;,
within an XOR-path are assigned to a set W;, P.S;, € W, = {P.S;|P.S; in XOR-path [},
and their respective process step numbers 7; are assigned to the set IW,, i, € W, =
{i|PS; € W;}. Further, S = {PS1, ..., PS, }\(W1 V ... V W,) represents a set of the
remaining process steps P.S; when removing process steps P.S;, from a set of all process
steps. 1S = I\(I{W; V ... V IW,) denotes the set of the corresponding process step
numbers.

Within an XOR-path, we assume a sequential arrangement of the process steps and
label the first and last process steps with PS}1 and PS¢ . The respective start times
for these process steps are labeled analogously with tgl and tf . The probability that
XOR-path [is executed, is indicated by p; . We demand Z;;l p=1.

Regarding the workflow pattern Loop, Ij,,, represents the set of process step num-
bers ¢ with a Loop. Further, p; denotes the respective probability that this Loop is
followed (cf. PS4 in Figure 1). Thereby, p is independent of whether the Loop was
followed or not before. If a Loop is followed multiple times, the respective process
steps are executed multiple times, too. As this affects the regarded, aggregated QoS
values, we define ejj in (1), c;‘j in (2), and r;‘j in (3) in dependence of a boundary value
consideration of p (cf. [8]). The throughput d;; is not effected by a Loop.

1 . .
«)i €ij if7 € Iloop (1)
€;j 1=
€;j , else
* 7171#0”' ,if1 € Iloop
¢y = T @
Cij , else
(A—=pi)rij i
v f g e I
* L 1—pirij ’ oop
i = piTij 3)
Tij , else

45

Based on our aggregation functions in [8], we propose Model 1 to perform the
proposed worst-case analysis. Here, QoS restrictions are labeled with b (bounds).

Model 1: Optimization Problem.

Objective Function
! minimize F(x Z Z Ciitij C))
i€l jeJ;
S.t.
ti=20 Vi € I|PS; € DS, 5)
tit > ehmiy <t Vi € I|PS; — PSy, € DS (6)
Jjed;
t; + Z 6;%‘”‘ < be Vi e I|PSl € DS 7
JjeJ;
1 * . e
max{(t;, + S ehma) <t Vi € I|PS;, — PS € DS 8)
i€IW, jEJ;
1 * - e
i€IW, jEJ;
DD e tmax{ Y Y ey} <be (10)
i€lS jeJ; i€IW; jEJ;
(H Zr:jx” mln{ H Zrzszj > b, (11)
i€lS jeJ; i€IW, jEJ;
mln{mln{z dijxij}, mln{ g}l&{z dijxij}}} > ba (12)
JEJ; JEJ;
inj =1 Viel (13)
Jjed;
Tij € {O, 1} Viel,Vjed; (14)

Regarding Model 1, it has to be noted that the workflow patterns AND-split and
AND-join are already covered in (8) to (12) (cf. [8]).

To compute an optimal solution using MILP techniques, a linear optimization
problem is required. As the min/max operator as well as the multiplication are non-linear
aggregation types regarding the decision variables x;;, we apply the approximation (15)
to (11) — which is very accurate for values z;; close to 1 (like reliability) [10] — and
exchange constraints (8)—(12) for (16)—(20). To explain this (second adaptation step), it
has to be noted that if the minimum (maximum) of a set of values has to be higher (lower)
or equal to a certain bound, each element of this set needs to satisfy this constraint.

n m; m;

HZzijxij =~ 1—2 1—22'1]371] (15)
i=1j=1 i=1
ot Y Y ey <ty Vi€ L,Vi € I|PS;, — PS, € DS (16)
ieIW, jed;
tht > enwiy <be Vi e L,Yi € I|PS{ € W, (17)

ieIW, jeJ;

46

S i < be viel (18)
ie(ISVIW,) j€J;

1= Y (=) rwg) =b, Viel (19)

1€(ISVIWY) Jj€J;
i > 2

Ilnel}l{; dijij} > ba (20)
MASEZ]

Having conducted these substitutions, an optimal solution can be obtained by apply-

ing MILP techniques.

3 Stochastic Simulation of Complex Workflows

In the previous section, we have outlined how an optimal set of services can be selected
for the process steps in a complex workflow, based on given QoS constraints. Because
the underlying optimization problem is solved using MILP, the usage of deterministic
QoS attributes is required. These fixed values commonly represent a lower or upper
bound that is guaranteed by a service provider with respect to a certain QoS attribute in
terms of a Service Level Agreement (SLA).

However, the usage of deterministic values does not reflect the uncertainty (or risk,
which we use as a synonym) that may be associated with QoS attributes. Response time,
e.g., is ultimately a stochastic variable that depends on various random determinants,
such as network and computational load. Consider two sets of services for the same
business process, where the second set has a slightly higher average response time for
each service. However, the variance in response time is much lower for the second set,
e.g., due to the usage of load-balancing techniques. While the first set is optimal with
respect to the objective of minimal (average) response time, it exhibits a much more
fluctuating behavior with respect to this attribute. This may lead to an increased risk of
exceeding certain reponse times threshold, which is undesired. Thus, we believe that
the notion of optimality in service selection needs to regard two aspects: the average
outcome of an QoS attribute as well as its fluctuation.

Accordingly, we propose to extend the representation and computation of QoS
attributes in a manner that appropriately incorporates uncertainty. Our approach adapts a
methodology suggested by Dawson and Dawson in the domain of project planning [11].
They introduce the notion of generalized activity networks [12]. Such networks consist
of nodes and edges. Nodes represent activities (or tasks); edges represent precedence
relationships and thus paths between the activities, where each task may have one or
more incoming and outgoing incident edges. For additional details and an example, we
refer to Dawson and Dawson [12]. Notably, the duration for each activity is given as
stochastic distribution, rather than a deterministic value, in generalized activity networks.
This is a well-known principle that has been applied in traditional planning techniques,
such as PERT, which was devised in the early 1960s [13]. Furthermore, if more than
one edge results from an activity, all edges are annotated with an execution probability.
These execution probabilities may also be correlated between edges.

Following the findings by Schonberger [14], who states that traditional planning
techniques such as PERT commonly underestimate the overall duration of an activity

47

network, Dawson and Dawson utilize simulation as a means of analyzing generalized
activity networks [11]. Le., the activity network is virtually executed a selected number
of times; in this process, the duration of each activity and choice of path execution
is drawn as a random variable. The individual durations of all executed activities are
then aggregated into an overall duration in each iteration. From the distribution of
aforementioned overall durations, conclusions can be drawn about the characteristic of
the activity network in actual execution. Most importantly, the probability that a set of
activities exceeds a certain threshold due to the fluctuations in duration can be inferred.

The notion of generalized activity networks can easily be transferred to workflows
as a special application domain. In this scenario, services then correspond to activities,
while splits (joins) constitute dummy activities with multiple outgoing (incoming) edges.
Depending on the type of split (AND, XOR, or Loop), the execution probabilities of the
edges and respective correlations will differ. E.g., in the case of AND-splits, each edge
will be assigned a probability of 1, due to the fact that each edge is certainly executed.

Because services have multiple non-functional attributes, we not only adapt, but also
extend Dawson and Dawson’s approach. Namely, we allow for an arbitrary number of
random variables, representing QoS attributes, being associated with each activity (i.e.
service) apart from duration (which, in the context of workflows respectively services,
translates into response time). In our proposed methodology, each QoS attribute for each
service is modeled as an independent random variable adhering to some probability
distribution. This loosely relates to the idea of soft contracts in Web service orchestration,
as proposed by Rosario et al. [15].

The probability distribution may essentially be determined in two ways. The first
option is to infer it, based on historic execution data of a service. This requires the
installation of proper monitoring mechanisms. After a relevant sample has been collected,
a QoS attribute such as response time may, e.g., be represented through a normal
distribution. The second option is that a service provider explicitly specifies a probability
distribution for each QoS attribute.

In order to infer execution probabilities for each path, three options exist. The first is
mining from historical data again. However, this requires that a workflow (or at least a
workflow segment) that is identical to one being simulated has previously been executed
and monitored. The second option is to have an user manually assign the probabilities,
based on his or her knowledge about the underlying business process. The third and final
option is to utilize conservative default values, assuming that either each path (in case of
AND-splits) or the worst path with respect to each individual QoS attribute (XOR-splits)
will be executed.

Figure 2 depicts an example workflow for which a set of services (S1 through S5) has
been selected. It addition, the random variables and respective probability distributions
for each service, as well as execution probabilities for each edge, are illustrated. For
reasons of simplicity, solely the random variables for the QoS attribute response time
are included. For service S1, e.g., the response time is given by X..;, which is normally
distributed (V) with a mean value of 6.3 seconds and a standard deviation of 1.5 seconds.
For the XOR-split, the probability of executing the top and bottom path is 0.3 and 0.7
respectively. Accordingly, for the Loop construct, the probability of looping and thus
repeatedly executing S4 is 0.25.

Fig. 2: Example workflow including simulation outcomes.

Figure 2 further depicts three exemplary simulation runs for the sample workflow.
For every service, the randomly drawn response times are depicted in the boxes next to
the random variables. For the XOR-split, the pursued path is indicated by a bullet; for
the Loop construct, the number of additional executions (repetitions) of S4 is depicted.
As can be seen, each run results in a different outcome for each service with respect
to response time and in varying paths being executed. E.g., in the first iteration in the
example, services S1, S2, S3, and S5 have response times of 5.8, 3.5, 1.7, and 9.7 seconds
respectively. The lower path is not executed, and thus, S4 and the consecutive Loop
construct are omitted. Accordingly, the overall response time for the first iteration is
20.7 seconds (and 20.2 and 16.8 seconds for the second and third iteration respectively).
Once the process is repeated multiple times, a representative distribution for each QoS
attribute can be obtained.

Service selection and workflow simulation serve as a mutual complement: In the first
step, a set of services is selected by solving a linear optimization problem. This provides
an optimal result with respect to the objective of minimizing total cost and allows to
make statements about the workflow characteristics in theory. In the second step, the
resulting workflow is simulated, ideally based on historic execution data, which allows
to anticipate the workflow characteristics in practical execution. If the uncertainty in the
workflow is found to be unacceptable with respect to given constraints, the selected set
of services is discarded. This may, e.g., be the case if a specified response time constraint
is not met with a certain probability. Consecutively, the process of computing an optimal
solution is repeated with further restrictions. A manifest strategy is to explicitly exclude
one or more services with the highest standard deviation in a critical QoS attribute from
the set of candidate services.

To assess the principal benefits and effectiveness of our approach, we have imple-
mented a prototypical workflow simulation tool in Java. The tool allows to specify
complex workflows, consisting of services and their structure, using an XML-based for-
mat'. For each service, an arbitrary number of QoS attributes, along with the respective
probability distributions, may be specified and freely parameterized.

A simulation with one million iterations has been conducted for the example work-
flow in Figure 2 using the aforementioned tool. Additionally, the workflow has been

! A sample listing is available from
http://www.kom.tu-darmstadt.de/ lampeu/icsoft-2010/workflow.xml

49

20000

18000 -

16000 -

14000 -

12000 -

10000 -

8000 -

Absolute frequency

6000 -

4000 -

2000 -

0 — T T T T T —
5s 10s 15s 20s 25s 30s 35s

Overall workflow response time

|—Original workflow —— Modified workflow |

Fig. 3: Distribution of the overall response time for two workflows.

modified for a second simulation. In detail, the mean of the response time probability
distribution for each service was incremented by 0.2 seconds, and the standard deviation
was set to half of its original value. L.e., each initially selected service has been replaced
by a variant that is less optimal on average, but also shows less fluctuation in terms of
response time. In practice, this process would be iteratively conducted for one service at
a time.

The resulting distributions of the workflows’ overall response times are depicted
in Figure 3, where the absolute frequency refers to clusters (or classes) of outcomes
that were identical up to the first decimal place. While the modified workflow responds
slower on average, it can be seen that it is significantly more favorable once a strict
response time constraint of approximately 20 seconds or more has been specified. This
figure is fairly close to the average response time of 18.2 and 18.9 seconds for the
original and modified workflow respectively. In these cases, the original workflow is
much more likely to break the constraint than the modified workflow. E.g., a response
time restriction of 22.5 seconds is violated with a probability of 11.15% by the original
workflow — for the modified workflow, the probability is only 6.25%, i.e. roughly half.
Differently stated, an increase in average response time (and cost) is traded against a
decrease in uncertainty — namely of breaking an overall response time constraint — by
replacing the original services through their alternative counterparts.

4 Conclusions

In the work at hand, we have presented two complimentary approaches to the problem
of QoS-aware service selection for complex workflows. As foundation, we have outlined
how an optimal set of services can be identified under given QoS constraints using

50

linear programming. However, this process is based on deterministic values, which
insufficiently reflect the uncertainty associated with a QoS attribute in actual execution.
E.g., response times may heavily fluctuate due to network and computational load, thus
leading to QoS violations in the actual execution of a workflow.

As a solution, we have adapted an existing methodology for the simulation of
generalized activity networks to the specific field of workflows in SOA. This simulation
process allows to assess the expected characteristics of a workflow, most importantly
the likelihood that a QoS constraint will be violated, in more detail. Depending on
a requester’s preferences, the outcome of the simulation process can be utilized to
repeatedly conduct the service selection procedure, thus minimizing the probability of
QoS violations more effectively. The practical applicability and benefit of our approach
has been proven using a prototypical implementation of a workflow simulation tool.

In our future work, we aim at combining the currently separated steps of service
selection and workflow simulation into an integrated tool. We will further investigate
the issue of mining probability distributions from historic service execution data as a
prerequisite of more realistic simulation. In this context, QoS attributes besides response
time will also be explicitly addressed.

Acknowledgements

This work has partly been sponsored by the E-Finance Lab e. V., Frankfurt am Main,
Germany (http://www.efinancelab.de).

References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best
Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA (2004)

2. Papazoglou, M.P.: Web Services: Principles and Technology. Pearsor Education Limited,
Harlow, England (2008)

3. Anselmi, J., Ardagna, D., Cremonesi, P.: A QoS-based Selection Approach of Autonomic
Grid Services. In: International Conference on Service-oriented Computing. (2007) 1-8

4. Menascé, D.A., Casalicchio, E., Dubey, V.: A Heuristic Approach to optimal Service Selection
in Service-oriented Architectures. In: Workshop on Software and Performance. (2008) 13-24

5. Mabrouk, N.B., Georgantas, N., Issarny, V.: A Semantic end-to-end QoS Model for Dynamic
Service-oriented Environments. In: Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service-oriented Systems. (2009) 34-41

6. Huang, A.FM., Lan, C.W, Yang, S.J.H.: An Optimal QoS-based Web Service Selection
Scheme. Information Sciences 179 (2009) 3309-3322

7. Domschke, W., Drexl, A.: Einfiihrung in Operations Research. Springer Verlag, Heidelberg
(2007)

8. Schuller, D., Eckert, J., Miede, A., Schulte, S., Steinmetz, R.: QoS-Aware Service Composition
for Complex Workflows. In: International Conference on Internet and Web Applications and
Services. (forthcoming 2010)

9. van der Aalst, W.M., van Hee, K.M.: Workflow Management: Models, Methods, and Systems.
MIT Press (2002)

10. Heckmann, O.: A System-oriented Approach to Efficiency and Quality of Service for Internet
Service Providers. PhD thesis, TU Darmstadt, Fachbereich Informatik (2004)

11.

12.

13.

14.

15.

51

Dawson, R.J., Dawson, C.W.: Practical Proposals for Managing Uncertainty and Risk in
Project Planning. International Journal of Project Management 16 (1998) 299-310
Dawson, C.W., Dawson, R.J.: Generalised Activity-on-the-Node Networks for Managing
Uncertainty in Projects. International Journal of Project Management 13 (1995) 353-362
Miller, R.W.: How to Plan and Control with PERT. Harvard Business Review 40 (1962)
93-104

Schonberger, R.: Why Projects are "always” late: a Rationale based on Manual Simulation of
a PERT/CPM Network. Interfaces (1981) 6670

Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and Soft Contracts for
Transaction-Based Web Services Orchestrations. Transactions on Services Computing 1
(2008) 187-200

From i* Models to Service Oriented Architecture
Models

Carlos Becerra?, Xavier Franch and Hernan Astudill®d

! Universitat Politécnica de Catalunya (UPC), C. Jordi G&rol-3 (Campus Nord, C6)
E-08034 Barcelona, Spain
franch@ssi . upc. edu
2 Universidad Técnica Federico Santa Maria, Avda. Esfi#@8, Valparaiso, Chile
{cbecerra, hernan}@nf.utfsm cl
3 Universidad de Valparaiso, Avda. Gran Bretafia 1091, afaliso, Chile
carl os. becerra@v. cl

Abstract. Requirements engineering and architectural design aregiyities
for successful development of software systems. Spedjficathe service-oriented
development systems there is a gap between the requiremhestsption and
architecture design and assessment. This article preaesystematic process
for systematically deriving service-oriented architeetitom goal-oriented mod-
els. This process allows generate candidate architedbasesi on i* models and
helps architects to select a solution using services @tkepatterns for both ser-
vices and components levels. The process is exemplified fyiag it in a syn-
thesis metadata and assembly learning objects system.

1 Introduction

Service-oriented architecture (SOA) is a flexible set ofgleprinciples used during the
phases of systems development and integration [5]. A deglsgrvice or architecture
provides a loosely-integrated suite of services that cauwslked within multiple business
domains. SOA defines how to integrate widely disparate egfidins for a world that is
Web-based and uses multiple implementation platformshd®ahan defining an API,
SOA defines the interface in terms of protocols and functigna

One of the main problems facing architects of service-oe@isystems is the gap
between requirements description and architecture desigrmssessment.

This article presents a systematic process for derivingegaliiating service-oriented
architectures from goal-oriented models. This processigdes candidate architectures
from i* [20] models and helps architects to select a solytiwith the SOA patterns
using. The i* models are used because: facilitates reagaatiout the purpose of a
proposed solution; i* models can be analyzed to demonsiraieh goals realize other
goals and which goals conflict or negatively contribute teeogoals; demonstrates the
contribution of the proposed and designed solution to theshoeed [22].

The article is structured as follows: Section 2 presentsted work; Section 2.2
describes the service oriented approach based on i*; detiescribes the service ori-
ented architecture representation; Section 4 presentseifuming Objects (LOs) case
study; Section 5 describes the service-oriented architegeneration process; and Sec-
tion 6 summarizes and concludes.

53

2 Related Work

2.1 Requirements to Architectural Design

Several authors have proposed systematic approachesiio ahtarchitectural design
from requirements description. Liu and Yu [9] proposed tplexe the combined use of
goal-oriented and scenario-based models during architdatesign; the Goal-oriented
Requirement Language (GRL) supports goal and agent-edanbdeling and reason-
ing, and the architectural design process; and Use Case(M&pb4d) are used to express
the architectural design. The combined use of GRL and UCNdlesadhe description of
both functional and non-functional requirements, bothralos requirements and con-
crete system architectural models, both intentionalegjiatdesign rationales and non-
intentional details of temporal features.

Chung et al. [10] proposed the NFR Framework, which uses Namctional Re-
quirements (NFRs) as goals to systematically guide seleetimong architectural de-
sign alternatives; during the architectural design preogsals are decomposed, design
alternatives are analyzed with respect to their traded#fsign decisions are made ra-
tionalized, and goal achievement is evaluated.

Brandozzi and Perry [11] proposed the use of Preskriptoreaagpiptive architec-
tural specification language, and of its associated protes$reskriptor process. Ar-
chitectural prescriptions consist of the specificatiorhefdystem’s basic topology, con-
straints associated with it, and its components and intierec The Preskriptor process
provides a systematic way to satisfy both the functional mod-functional require-
ments from the problem domain, as well as to integrate archital structures from
well known solution domains.

Van Lamsweerde [12] presented a systematic incrementebapipto deriving soft-
ware architecture from system goals; it is grounded on th®RAgoal-oriented method
for requirements engineering, with the intent of explotimg virtues of goal orientation
for constructive guidance of software architects in thesign task. It mixes qualitative
and formal reasoning towards building software architexstthat meet both functional
and non-functional requirements.

Lucena et al. [13] presented an approach based on modeldnanrations to gen-
erate architectural models from requirements models. dhece and target languages
are respectively the i* modeling language and Acme architatdescription language
[21]. Gross and Yu [14] proposed a systematic treatment dRdNiA descriptions of
patterns and when applying patterns during design. Theoapprorganizes, analyzes
and refines non-functional requirements, and providesaguiel and reasoning support
when applying patterns during the design of a software syste

Grau and Franch [2] explored the suitability of the i* goaileoted approach for
representing software architectures. For doing so, theypeoed i*'s representation
concepts against those representable in common ArchigeBtescription Languages
and defined some criteria to close the gap among these refatsas. They clarified
the use of the i* constructs for modeling components and ectuons: actors and de-
pendencies provide an architecture-oriented semantibglppthe process; added the
notions of role, position and agent models in order to helpdability of the architec-
tural representation; proposed adding of attributes toracnd model dependencies

54

to store information for later analysis; and suggested ge=af structural metrics to
analyze the properties of the final system.

All of these approaches offer systematic processes toaegyuirements from ar-
chitectural designs, but are not appropriate for servitentation, because they do not
provide guidelines to describe basic structures or intedetween services. Several
SOA specific characteristics demand a special approach pratuirements to ar-
chitectural design alternatives, namely: 1)reuse, geaityl modularity, composabil-
ity, componentization and interoperability; 2) standacdspliance (both common and
industry-specific); 3) Services identification and catéggdion, provisioning and de-
livery, and monitoring and tracking. To our knowledge, oRlstrada [1] has done so,
proposing to address the enterprise modeling activityguginEstrada’s [1] approach
is based on using business services as building blocks @apsulating organizational
behaviors, and proposes a specific business modeling mitremtordance with the
concept of business service. The use of services as bulitdiirnggs enables the analyst
to represent new business functionalities by composingatsaaf existing services. He
proposed starting activity elicitation, the actual imptartations of the services offered
and requested by the analyzed enterprise, are used asdpkiy & very relevant role
in the discover process, and for a formal definition of theidasncepts and process
design SOAs. Unfortunately, this proposal only went so fabasiness services, and
said nothing about architectural components and conrgector

2.2 Estrada’s Approach Service-orientation from i*

Estrada [1] aimed to define service-oriented architectinsgsaddress the complexity of
large i* models in real-life cases. The proposed architeatlistinguishes three abstrac-
tions levels (services, process and protocols) and a melbgidal approach to align
the business models produced at these abstraction levels.

The approach includes : a) a conceptual modeling languagegdon i*, which de-
fines the modeling concepts and their corresponding relstips; b) a service-oriented
architecture specific for the i* models that define the seremmponents and the model-
ing diagrams. ¢) a business modeling method to represarntssmat the organizational
level.

The key idea of the approach is to used business servicesldmgwlocks that
encapsulate internal and social behaviors. Complementaels allow to reify the
abstract concept of service to low level descriptions ahifglementation.

The business service architecture is descrited by thre@leonentary models (see
Figure 1) that offer a view of what an enterprises offers soeitvironment and what
enterprise obtains in return:

— Global Model. The organizational modeling process starts with the defmif a
high-level view of the services offered and used by the enisz. The global model
permits the representation of the business services arattbethat plays the role
of requester and provider. In this model are defined basicantgound services.

— Process ModelOnce business services have been elicited, they must bendeco
posed into a set of concrete processes that perform themisTone with a pro-
cess model that represents the functional abstractiorsediusiness process for a

55

specific service; this model provides the mechanisms redué describe the flow
of multiple processes.

— Protocol Model. Finally, the semantics of the protocols and transactionsach
business process is represented in an isolated diagramtasiiit conceptual con-
structs. This model provides a description of a set of stinect and associated
activities that produce a specific result or product for dress service.

i < ==

o E y y g
y \) 4 ——

I\Enlerprise/‘] [Enterprlse/] \ Customer Q ’m‘i\

/ . (Goal
/ Service / / \ - X

I
4

/ Process -
(Goal) K/ ‘ K
==y ‘ [|Process Serwce ;« Goal e Customer] ‘ Task &8

ask/

Task —

>

y N \|_[Process|) // (Goal -
4 \ A y ~Task"

| Customer | . __ N

\

// - e \Enterpnse/)
— -
Global Model(A) Process Model(B) Protocol Model(C)

Fig. 1. A Service Oriented Approach for the i*.

The proposed approach enables the analyst to reuse theidefofi protocols by
isolating the description of the processes in separateatiag In this way, the process
model represents a view of the processes needed to satisfyiaesbut without giv-
ing details of its implementation. Each business procedstigiled through a business
protocol. The detailed description of the protocols is giirethe protocol model.

3 Representing Service-oriented Software Architectures

Mapping requirements to architectural design demandsdiized architecture model
as target, must include the notions of services, comporsmisnterfaces at different
abstractions levels.

The i*-SOA Process is based on previous work by Grau and Rrigj¢hat defined
several intentional component abstraction levels, fohlsetvices and components:

— Service:a set of related software functionality and the policied twntrol their
usage. A service is accessible over standard communiqaiitacols independent
of platforms and programming languages.

— Service Capabilities:the operations set defined for each service [5] independentl
of their implementation. Therefore, this notion is esplciaseful during service
modeling stages when the physical design of a service hasehbeen determined

— Service Componentsrepresents a specific component that can be integrated into
the service, to implement a capability.

Connectors are described according to their abstractia; lthe following types
are proposed:

— Intentional Relationships:involve human or organizational actors and are present
in the requirements models; they represent the intentioeadis of the actors upon
the system:

e Goal Dependencies: functional requirement over the system.

56

e Resource Dependencies: flow of concepts, or a concept relevant to the domain
that does not physically exist.
— Architectural Relationships: occur among service components or services, as fol-

lows:
e Service Interfaces. describe relationships among services. The dependencies

definition encapsulates (hides) the deployment propentieking it vendor-
programming-language and technology-independent. &einviierfaces are de-
scribed with Web Services Description Language (WSDL) [7].

e Service Component | nterfaces: describe components relationship within a ser-
vice. they are described with the notation proposed by Han [8

Since a pattern services concept is required to apply thifiarent abstraction
levels, Erl's [5] set of patterns is used:

— Services Design Patterndunctional service contexts are defined and used to orga-
nize available service logic. Within technology-indepenttontexts, service logic
is further partitioned into individual capabilities.

— Composition Design Patternsprovide the means to assemble and compose to-
gether the service logic that is successfully decomposatitipned, and stream-
lined via the service definition patterns.

Based on these definitions, the i*-SOA Process models thdtecture at two dif-
ferent levels:

— Service Pattern View:In this model we apply service-oriented design patterns to
describe the system architecture. There are two model sty

e Service Design Pattern View:Shows the structure of components and con-
nectors for each service, based on services design pateegnsedundant im-
plementation, service data replication, message scrgegtic).

e Composition Design Pattern View:Shows the structure and the dependencies
of services that form the system under development (e.gicgemessaging,
service agent, asynchronous querying, etc.).

— Services Component ViewStates the different components that exist in the ser-
vice architecture (i.e. specific software component thatlwaintegrated into the
service architecture and fulfill with de capabilities). $imodel represents the de-
pendencies among components within a service.

4 Introducing the Case Study

The approach reusable learning content, by combining liegu@bjects (LOs) [6] has
emerged in educational technology and computer scieneands The approach asso-
ciated with the LOs delivery rigor to the educational matisrdevelopment, making the
content cheaper to obtain and easy to reuse. LO are eduaglatémources designed to
generate and support learning experiences. One of the rowiitias to be developed
in this area is to prepare courses, programs and activiigsdon these LO. According
to this idea LO can be used by different instructors and eastinuictor can be reused in
different learning materials.

57

The i*-SOA Process approach has been tried and evaluateawiearning Object
(LO) management system. The original motivation to the saisgy is the community
need for services to improve existing LO descriptions [B§ and generate LO assem-
blies automatically. Currently, teachers and traineretalarge amount of resources
(digital or not) to prepare educational materials, updagirtcontent and develop ed-
ucational activities. The evolution of content distritmtimodels from a centralized
topology toward a decentralized and distributed one, tthtl@ scheme in which dig-
ital resources are widely and freely available. This weahither than an asset, can be
disadvantageous, since it adds a complexity level for usben discriminating good
quality and relevant resources for specific applications.

Using LO requires collecting related information, enaplérarch, index and reuse.
The main problem is associated with the information that finds about a LO, which
is often imperfect (imprecise, incomplete and unrelialdimce many LO are not clearly
classified for specific domains, search results are too geard with many possible
answers list, which is not practical for users.

Thus, there are two problems to solve and whose solutionsatistegrated:

— Automatically generate LO assemblies (e.g. presentgtameses, classes) from
simple resources, via aggregation or composition and densg imperfect infor-
mation.

— Improving LO Descriptions, gathering and synthesizingadata from different
sources.

This LO management system will be developed based on a seoviented archi-
tecture, making available as web services the algorithatstiive the problems of LOs
generation and assembly.

5 Goal Oriented Models to Service-oriented Architectural Besign
Process

The i*-SOA Process extends the approach by Estrada [1]itheskin Section 2.2. The
main objective is to derive architecture at implementatéwel using additional model
called Deployment Model. The i*-SOA Process original stagee also improved to
give more semantic to dependencies intra- and inter- bssiservices and processes.
The i*-SOA Process generates alternative architectusgsiieet user requirements.

The method has been structured into four main activitiesrtay iterate or inter-
twine as needed (see Figure 2). Section 5.1 explain thenattee SOA architectures
generation process using i*-based models.

5.1 Defining the Global Model

Two complementary views of the service global model havelgemerated at this first
phase (A).

— Abstract view of the global model: focused on representisgngle view of the
offered business services (see [1]).

58

4. y

y N e f \ y
(Entorprise| - Et | (customer|
|Enterprise | 2 n erpnse | Customer |~
\) I /" (Goal \ 7\) Goal)
/ senice / 4 N / T - \‘\\,
A i Task\f——, i —
A / Process i \—f i T""SK/ \Task
£ = { A
(Goal <Task’ K 5
=l s q Process Serwce »« “Goal »—4—1 Customer\ q 88 s ~ Resource A
1 /\ ask>
4. [[Process] | (Goal ~
y : s
/ \ <Task"~ y N
| Customer |
\ — i
\1\ S A ‘Enterpnse\
Global Model(A) Process Model(B) Protocol Model(C)
/ Customer / / Customer /

Sevice / Sevice /

> >, Y .
/ y
I c2 |4 |SC1 A scz A
[ﬁ \
\
/. ' \ / y Service |
f Service | h feomeneees fom . nterface |
r Enterprise | Interface \‘ ‘ Enterprse ‘ \
\ | \
i\ \ / \ i
\ / / : / /
N /=lc3 DB / N
P (Goal
Y. N
/ Customer / Customer — / { Cuslomer\
Sevice Sevice / \ (Goal)
Service Components View (D.3) Service Composition Design Patterns View (D.2) Service Design Paﬁems View (D.1)

Deployment Model(D)

Fig. 2. The i*~-SOA Process.

— Detailed view of the global model: focused on detailing tlalg that are satisfied
by the offered business services.

The Detailed view introduces the dependency relationsdripsng services; specif-
ically intentional dependencies (goal or resource depaeids) between basic services.

Figure 3 exemplifies the Global Model Detail View for the casgdy LO System,
the main services associated with the LO Management System a

— Learning Objects Management Service: creates new LOsigésos from experts
intentionally categorical metadata; it also allows seangliate and delete of exist-

ing LOs.
— Metadata Retrieval Service: retrieves the LO descriptitatsiset, to generate the

initial database for the expert community.
— Metadata Synthesis Service: synthesizes and improvesQhadtadata using sev-

eral evidence sources.
— Learning Objects Assemblies Generation Service: usingetiraing objectives de-
scription provided by teachers, this service generatedidates LO assemblies that

meet the requested learning objectives.

The dependencies among basic services are representée foOtMetadata Re-
source Dependency and Querying LO Databases Goal Depgndenc

59

_—710s Repositony T
2y |

y = 9

y P =
PN /LO Information’y \\ \\ManagemenF)\\
ya N /. Synthesis / A
y Y A Synthesls_ \ =N
[Admin || - . y | -
\ | A Metadata musty / \ q

\ 4 /
/ Managing the ™, \be syntheswzeg/\ A
__ metadata / Y

il

(Assemblies Querying 7
\ Generation / \ Databases / [Delete L0s

L Management
Metadata =

\ , 9
Synthesis \ 2 / onvice

< \ \
Service / Learning Object l‘(lanager Retrieval J \
\ / i
\ / \ / i

| / al
\ / \\ Querying LOs

Y

(~ LOsmustbe

\
\ / Objectives Databases \
~ /7 Assemblies Validation / | managed _/
/ LOs Assemblies y " \ \ |
lmust be generated, / Coneration \
NS 9 = y Service Assemblies \ \ 4
l Generation i 4 /J\\
| \ Metadata / A
e % Retrieval / Expert
// \ \\\ Service (\ & /]
/ \ > W, ,. . Sy
| Academic) T e \“/ Managing the |
\ / - s)
O Describe e /LOs metadata must, - -~
9 Describe the ™ L be retrieve |
[requirements and /‘ N J
‘select the best solution l
y N
[Expert \]
\\ Community |

/ Metadata must
“_ beimprove /

Fig. 3. Global Model Detail View.

5.2 Defining the Process Model

For each service a process model using the approach projpdd4édThe i*-SOA Pro-
cess adds the notion of dependency among processes, makieggary to specify the
dependency flow and to describe the resources dependemsiesices or information).
For each milestone present among processes (if requiretjusespecify the resource
or information which helps to achieve that relationshigufe 4 shows a LO Manage-
ment Service Process Model (the resources dependenciegamivices processes are
represented for the LO Metadata and New LO Metadata resedeggendencies).

5.3 Defining the Protocol Model

The protocol model is generated based on the same procasezpan [1]. Figure 5
shows a LOs Managemet Service Protocol Model.

5.4 Defining the Deployment Model

The method to define the deployment model has three sub-gihase
D.1: For each service identified in phase A:

— Based on the Process Model, identify the service desigmenpatt(e.g. Figure 6
shows Contract Centralization, Contract Desnormalirat@oncurrent Contract,
Service Faade and Agnostic Capability Patterns applieddérAissemblies Gener-
ation Service) that fit the processes. For each patternifiehin the service, are
specified the service components.

60

LOs
lanagement
LOs LOs LOs LOs
Create Retrieve Update Delete

Input Retrive
information information

0
%] 5|
W

Validate I I Modify I II £ / Os must be
I information information y v
o

J
s

Update

N L]
Accept/ |
Record reject j i
Information Delete

Fig. 4.LOs Management Service Process Model.

Learning
Objetcs
Management
LO Initial
e Metadata

LOs
Management

Managing the
: LOs
Send LO
@ Information
alidate LO ‘alidate LO end LO
Information, Information,

Information
Update LO selection
Information,

LO Selection

LOs LOs
Retrieve Delete

Delete LO query
nformatio

GetLO
nformatior
Retrieve LO — LO Query
Information
S
T Lo Metadata

Fig. 5.LOs Management Service Protocol Model.

Send LO

— For each service component specify the operations (cédjped)iland the service
componentinterfaces, which are obtained from the curnartd3s Model activities

and dependencies. Service interfaces among componendesegbed using the
notation defined in Section 3.

Identifying this pattern yields the Service Design Pattéiew, which contains the
service components, service components interfaces avidegcapabilities description

for each pattern. Figure 6 shows Service Design Pattern Yoewne service in the
running example.

D.2: Services are joined to generate the complete systemitecture:

— From Service Design Pattern Views, apply service commsitesign patterns and
structure the system, at the level of its services, serndostomers and services

61

Os Assemblies
Generation

/ LOs assemblies
ust be generated

ﬁescribe the requirements an
select the best solution

Fig. 6.LOs Assemblies Generation Service Design Pattern View.

interfaces. The interfaces among services and servicésnoass are taken from
the Protocol Model described for each service. The systeviceggeneral structure
and interfaces among services are taken from the Global M8devices interfaces
are described using the notation defined in Section 3.

— This sub-phase yields the Service Composition DesigniPattew. Figure 7 shows
the LOs Service Composition Design Pattern View for the migexample.

ey
a Model Transformation
Pattern

Fig. 7.LOs Service Composition Design Pattern View.

D.3: The services pattern description to specific compantatt implement each
services capability and their interfaces. This yields thesi8es Component View.

62

6 Conclusions and Future Work

In this paper was proposed a systematic process for derandgevaluating service-
oriented architecture from goal-oriented models. Thicpss allows to generate can-
didate architectures based on i* models. The main contobstare: 1) definition of
basic constructs for describing a SOA architecture usin@)*development enables
derivation of service-oriented architectures from regunents description, up to a com-
ponents and connectors level; 3) description of a systematicess that applies SOA
patterns in the SOA design alternatives generation.

Overall, we have proposed a systematic generation methdsidé architectures,
which allows mapping requirements (specified with i*) tokatectural design alterna-
tives.

Future work will extend this proposal up to a technologiacdusons level, asso-
ciated with the architectural design. We are also devetppimethod to select and
evaluate SOA alternatives design, including models andicseib generate and eval-
uate the solutions. We are developing automated suppoftraadopting and possibly
extending existing tools for this proposal, and validat ¢fficiency an effectiveness
of this proposal with an experimental study (after and keeforplement an automatic
support).

Acknowledgements

This work has been partially supported by the Spanish praj@¢2007-64753.

References

1. Estrada, H.: “A service oriented approach for the i* framaek”. Universidad Politcnica de
Valencia Phd. Thesis, 2008. Thesis Director Oscar Pastez.Lp

2. Grau, G. and Franch., X.: “On the Adequacy of i* Models fapResenting and Analyzing
Software Architectures”. Advances in Conceptual Modekugindations and Applications,
2007, pages 296-305.

3. Rud, D., Schmietendorf, A., Dumke, R.: “Product metrios $ervice oriented infrastruc-
tures”. In Proceedings of the 16th International WorkshapSoftware Measurement and
DASMA Metrik Kongress (IWSM/MetriKon 2006), pp. 161-174p&ember 2-3, 2006, Pots-
dam, Germany.

4. Aier, S. and Ahrens, M., and Stutz, M., and Bub, U.: “DeriySOA Evaluation Metrics in an
Enterprise Architecture Context”. Service-Oriented Catimg - ICSOC 2007 Workshops:
ICSOC 2007, International Workshops, Vienna, Austria,tSeper 17, 2007, Revised Se-
lected Papers, 2007.

5. Erl. T.: “SOA Design Patterns”. Prentice Hall/PearsoRP;TUpper Saddle River, NJ, USA,
2009

6. IEEE. draft standard for learning object metadata - psegdostandard. Technical report,
IEEE, Piscataway, 2002.

7. Web Services Description Language (WSDL) Version 2.0 PaPrimer, W3C Working
Draft 3 August 2005, http://mww.w3.org/tr/2005/wd-ws@iprimer-20050803/

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

63

Han, J.: “A Comprehensive Interface Definition Framewtok Software Components”.
APSEC '98: Proceedings of the Fifth Asia Pacific Software iRegring Conference 1998,
IEEE Computer Society.

. Liu, L. and Yu, E: “From Requirements to Architectural @gs- Using Goals and Scenar-

ios”. First International Workshop From Software Requiesits to Architectures (STRAW
01), 2001, Toronto, Canada.

Chung, L., Nixon, B., and Yu E.: “Using Non-FunctionalqR&@ements to Systematically Se-
lect Among Alternatives in Architectural Design”. Proct Irst. Workshop on Architectures
for Software Systems, 1994, pp. 31-43.

Brandozzi, M., Perry, D.E.: “From goal-oriented requients to architectural prescrip-
tions: the preskriptor process”. Second Internationalve Requirements to Architectures
Workshop (STRAW'03)., 2003, pp. 107-113.

Van Lamsweerde, A.: “From system goals to software &chire”. Formal Methods for
Software Architectures, 2003, pages 25-43.

Lucena, M., Castro, J., Silva, C., Alencar, F., Santoand Pimentel, J.: “A Model Transfor-
mation Approach to Derive Architectural Models from Goalédted Requirements Mod-
els”. OTM '09: Confederated International Workshops andtBis on On the Move to Mean-
ingful Internet Systems: ADI, CAMS, EI2N, ISDE, IWSSA, MONEOnToContent, ODIS,
ORM, OTM Academy, SWWS, SEMELS, Beyond SAWSDL, and COMBEK20Vilam-
oura, Portugal, pp. 370-380.

Gross, D., and Yu, E.: “From Non-Functional RequireragntDesign through Patterns”.
Requirements Engineering, Volume 6 (1), 2001, pp. 18-36.

Liu, Y. and Traore, I.: “Complexity Measures for Secusr\&e-Oriented Software Archi-
tectures”. PROMISE '07: Third International Workshop oreéfictor Models in Software
Engineering, 2007.

Qian, K., Liu, J., and Tsui, F.: “Decoupling Metrics foerSices Composition”. ICIS-
COMSAR ’06: 5th IEEE/ACIS International Conference on Cartgp and Information Sci-
ence and 1st IEEE/ACIS International Workshop on CompeBaised Software Engineer-
ing, Software Architecture and Reuse, 2006, pp. 44-47.

Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: “A Mieis Suite for Evaluating Flexibility
and Complexity in Service Oriented Architectures”. ICSQID& Workshops: ICSOC 2008
International Workshops, Sydney, Australia, December28, pp. 41-52.

Chan, L.M.: “Inter-Indexer Consistency in Subject Gagang”. Information Technology and
Libraries, 1989. 8(4): p. 349-358.

Currier, S., Barton, J., O'Beirne, R., and Ryan, B.: “@@udssurance for Digital Learning
Object Repositories”. Issues for the Metadata Creationdas ALT-J, research in Learning
Technology, 2004. 12(1): p. 6-20.

Mylopoulos, J., Chung, L., Yu, E.: "From Object-Oriemti® Goal-Oriented Requirements
Analysis”; Commun. ACM 42(1): 31-37 (1999).

Garlan, D., Monroe, R. and Wile, D.: "Acme: An ArchiteaDescription Interchange Lan-
guage”; Proceedings of CASCON97, 1997, 169-183.

Quartel, D.A.C., Engelsman, W., Jonkers, H., and vadeé3en, M.J. “A goal-oriented re-
quirements modelling language for enterprise architetturhirteenth IEEE International
EDOC Enterprise Computing Conference, EDOC 2009, 1-4 S&9,28uckland, New
Zealand. pp. 3-13. IEEE Computer Society Press.

WEB SERVICES COMPOSITION

An Evaluation of Dynamic Web Service Composition
Approaches*

Ravi Khadka! and Brahmananda Sapkota®

! Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, Enschede, The Netherlands
2 Information System Group, University of Twente, Enschede, The Netherlands
r.khadka@student.utwente.nl, b.sapkotal@utwente.nl

Abstract. Web Services composition has received much interest from both the
academic researchers and industry to support cross-enterprise application inte-
gration. Promising research projects and their prototypes are being developed. At
the same time the web service environment is getting more dynamic as numerous
web services are being published by the service providers in the Internet. To meet
the users requirements regarding on-demand delivery of customized services, dy-
namic web service composition approaches have emerged. But still many com-
positional issues have to be overcome like dynamic discovery of services, com-
positional correctness, transactional supports etc. In this paper we discuss some
of these issues and then investigate some of the representative dynamic web ser-
vice composition approaches. We evaluate those approaches on the basis of the
issues and present how the future research can benefit by addressing those issues
of dynamic web service composition.

1 Introduction

In recent years Web services have received much interest as an emerging technology
for Business-to-Business Integration (B2Bi) of heterogeneous applications over the In-
ternet [1]. Many enterprises are transforming their business model in Internet with web
services because web services technology enables integration of heterogeneous appli-
cations regardless of implementation platforms. The full potential of web services as
a means for B2Bi solutions will only be realized when existing services and business
processes are able to integrate into a value-added composite service. A composite ser-
vice [2] is a service developed by aggregating the existing services to realize a new
value-added functionality. The aggregating process is called (web) service composition.
There are two approaches of web service composition: static and dynamic composition.

In static compositions, the aggregation of the services is done at design time. The
composition of all the necessary components is determined, bound together and then
deployed. This type of composition is more suitable if the business partners involved in
the process are fixed and their offered functionalities or the requirements are unlikely to
change in short term. Static web service composition is not flexible in the sense that it is
not adaptive to the runtime changes when it is in execution and is too restrictive to un-
avoidable changes in the service requirements [3]. Dynamic web service composition

* The work is done in the context of DySCoTec Project.

68

aims at overcoming the problems which are apparent in static web service composi-
tion. A dynamic service composition provides flexibility for modifying, extending and
adapting changes at runtime [4].

The web service environment is highly dynamic in nature. The number of web ser-
vice providers is constantly increasing leading to the availability of new services in daily
basis [5]. In such a dynamic environment, realizing dynamic web service composition
is not so easy because of the following reasons:

— composition process should discover the appropriate components in a composition
that is able to transparently adapt the environmental changes.

— composition process should adapt to the customer requirements with minimal user
intervention.

— composition process should have transactional support.

— composition process should guarantee composition correctness.

— composition process should also consider Quality of Service (QoS) properties.

With some of above stated issues of dynamic web service composition, we aim at
evaluating available approaches of dynamic web service composition with respect to the
issues like transaction support, compositional correctness, and QoS support etc. Based
on the evaluation we believe that understanding those issues and their importance will
pave way for future research directions in dynamic web service composition. A signif-
icant number of evaluation papers have been published in literatures for web service
composition approaches. The survey of [5] extensively evaluates the various available
web service composition approaches based on classifications and compositional issues.
In [1], the paper focuses more on web service composition languages like WS-BPEL
with WSDL, OWL-S with Golog/Planning. In [6], the authors evaluate the web service
composition frameworks based on the level of automation of the service composition
process. [7] discusses Web Service Composition and Execution (WSCE). The frame-
work are categorized as interleaved, Monolithic, Staged, and Template-based service
composition and execution. We beleive there is no evaluation paper specifically on dy-
namic service composition. So, the paper summarizes the currently available dynamic
web service composition approaches, evaluate the approach according to the framework
and then gives an outlook to essential future research works.

This paper is structured as follows: In Section 2, we define a framework used in
the evaluation of the different dynamic service composition approaches. In Section 3,
we present some of the most relevant dynamic service composition approaches on the
basis of a evaluation framework. In Section 4 we evaluate the approaches against the
evaluation framework. Finally, we conclude the paper in Section 5.

2 Evaluation Framework

We propose an evaluation framework for the dynamic service composition approaches
that are discussed in Section 3. The evaluation framework includes some of the key
composition issues and requirements that are identified based on the analysis of [5]
and [8]. We do not guarantee the completeness of all the necessary requirements and
issues in this evaluation framework. However, we have included some of the important
ones in the evaluation framework.

69

2.1 Transaction Support

Traditional transaction is based on Atomicity, Consistency, Isolation, and Durability
(ACID) properties and implicitly assumes closely coupled environment with short-
duration activities. But web services often involve loosely coupled systems with long
run transactional activities. Using ACID-based transactions in such long running trans-
actional activities could result in undesirable effects like locking of resources for longer
time. So, in web service composition it is necessary to provide a flexible transactional
supports for the long-running activities in order to guarantee consistency and reliable
execution of composite web services that can support coordination, recovery and com-
pensation [9, 10]. WS-Transaction standard, WS-TXM standards are examples of trans-
actional feature support in web service environment. In this paper, we identify whether
the transaction support is available in a composition approach being evaluated.

2.2 Compositional Correctness

An important aspect of web service composition is to maintain the correctness of be-
havior of the composite service. We consider two ways of exploiting compositional
correctness of a service composition to preserve the behavioral properties like dead-
lock free, liveliness, safety etc. The first way is to design the composition algorithm
in such a way that it preserves the behavioral properties. The other way is to formal-
ize the composite service and then verify the behavioral properties formally i.e. using
some formalization like pi-calculus, petri-nets e.t.c and verify the properties. We be-
lieve the later mechanism can be more useful in those cases where the business goal is
already achieved but the workflow still might have deadlocks in the path that are yet to
be traversed. Using the later mechanism, we can reason about the preservation of the
behavioral properties in all possible paths of the workflow of the composite logic. So,
formalizing the compositional logic enables us to verify the behavior of the composite
service completely. Recently, a variety of concrete proposals from the formal methods
community have emerged in order to verify the correctness of the web service compo-
sition which is based on state action models or process models [11]. In this paper, we
identify whether the approach supports the verification of compositional correctness. In
case if it supports, we also identify by which mechanism does it support.

2.3 QoS Support

QoS is used for expressing non-functional properties like performance, reusability,
maintainability, security, reliability and availability [12]. In case of loosely coupled
environment of web services, the QoS properties can vary greatly because web ser-
vices can be provided by various third parties and invoked dynamically over the inter-
net [13]. Therefore service compositions must be QoS-aware in terms of understanding
and respecting one another’s policies, performance levels, security requirements [14].
To support QoS in dynamic service composition, a web service description language
that supports QoS description, QoS estimation approach of the composite web service
and QoS monitoring is required [15]. In this paper, we identify whether the QoS support
is available or if there is partial support in a composition approach being evaluated.

70

2.4 Automated Composition

We define automated composition as a process of generating an executable process that
communicates and binds with a set of existing web services for web service composi-
tion and publish itself as a web service with higher level of functionalities. One of the
main aims of web service composition approaches is to achieve automated service com-
position because it enables faster application development and reuse [8]. In absence of
automated web service composition, the end user/agent will have to specify the business
goal and manually select the available services after the discovery of services match-
ing the requirements and then compose them. In this paper, we identify whether the
automated composition feature is available in a composition approach being evaluated.

2.5 Composition Logic Formulation

We define composition logic as the way how the interactions among the participating
services take place in the composition process. Under this requirement we investigate
how the control flow and the data flow of the composition mechanism are represented.
The classification will be either process-driven or rule-driven or hybrid. In process-
driven mechanism, the composition uses process definitions where business logic is
expressed as a process model to specify possible interactions among the participating
web services [16, 17]. In rule-driven approach, business rules are used as composition
logic. A business rule ! is defined as a statement that defines or constrains some aspect
of the business. The main features of rule-driven composition approach are that it is
purely declarative, highly adaptive and integrated in a truly service oriented approach
to business rule management [18]. In the hybrid approach [19], the composition logic
is broken down into core part (business processes) and independently evolving, well
modularized business rules. In this paper we investigate if the composition approach
being evaluated is process-driven, rule-driven or hybrid approach.

3 Dynamic Service Composition Approaches

This section presents a brief overview of some of the prominent dynamic service com-
position approaches namely: eFlow [20,21], METEOR-S [22], WebTransact [23, 24],
DynamiCoS [25,26] and SeGSeC [27]. We choose these approaches on the basis of
high references in literatures for dynamic service composition. These approaches are
then evaluated based on the framework presented in Section 2. Through this evaluation,
we identify which of the features are supported by these approaches.

3.1 eFlow

eFlow [20,21] is a system that supports the specification, enactment, monitoring and
management of composite e-services where the composite e-services are modeled as
business processes. E-services and web services share commonalities [28] so we inter-
changeably use those terms in this paper. eFlow runs on the top of E-services Platforms

! www.businessrulesgroup.org

71

(ESPs), such as HP e-speak or Sun Jini which allow the development, deployment and
secure delivery of e-services to business and customers.The eFlow model and the over-
all system provide a flexible, configurable and an open approach to the service composi-
tion [29]. The adaptive and dynamic eFlow process model allows processes to adapt the
changes in the running environment, perform necessary service execution according to
the need of the customer. E-service composition is modeled by a graph that defines the
order of execution among the nodes in the process. The graph is created manually but it
can be updated dynamically. The graph may include services (represent the invocation
of WS), decisions (specify the alternatives and rules controlling the execution flow) and
event nodes (enable service processes to send and receive several types of events). Arcs
in the graph denote the execution dependency among the nodes.

eFlow includes the notion of transactional region and supports ACID service-level
transaction. A transactional region enforces to maintain service level of atomicity. Ac-
cording to the definition of transaction support in Section 2, only preserving the ACID
property of transaction is not sufficient to maintain transaction support in web services
environment. Hence, transactional feature is not supported in eFLow. eFlow supports
the modification of the process for dynamic service composition, but it can not guar-
antee the correctness of the output. eFlow does not provide QoS modeling capabilities.
Service processes in eFlow are able to transparently adapt to environmental changes and
dynamically configure at runtime. However, the limitation of the eFlow is that it needs
too much manual participation to concretize the generic service nodes (a node in eFlow
that supports dynamic process definition for composite services) at execution phase and
it does not support the automatic generation of composition for the generic nodes [30].
So, there is no support for the automatic composition. In eFlow, the composite ser-
vices are modeled as processes that are enacted by a service process engine [29].So, the
composition logic is process-driven and a composite service is described as a process
schema that composes other basic or composite services.

3.2 METEOR-S

METEOR for Semantic web services (METEOR-S) is a dynamic web service compo-
sition framework developed at the University of Georgia which incorporates workflow
management for semantic web services. METEOR-S is the follow-up research of Man-
aging End-To-End OpeRations (METEOR). METEOR-S uses semantics for the com-
plete life-cycle of the semantic web services. Its annotation framework is an approach
to add semantics to current industry standards such as WSDL. METEOR-S uses tech-
niques from the semantic Web, semantic Web services and the METEOR project to
deal with the problems of semantic Web service description, discovery and composi-
tion. The Figure 1 depicts the architecture of METEOR-S which has two parts: front
end and back end. The front end of METEOR-S is related with annotation and pub-
lication of service specifications. The abstract process designer which is related with
dynamic composition is a component present at the back end of the METEOR-S. The
composition process is initiated by creating the flow of process using the control flow
constructs provided by WS-BPEL. The requirements of each service in the process is
represented by specifying the service template, which allow to either specify semantic
description of the web services or a binding to a known web services. Then, the process

72

Front -End

Semantic Annotated Source Semantic
Web Code (Java) ———|

Services

Annotated
WepL11 WSDL'S owL-s

Description

Publishing Interface Advertisement | Enhanced
~—| UDDI

Ranked Response

Service
Template(s)

Abstract
Process
Designer 4

Discovery
Engine 5

Abstract

Service
Template (5)

Constraint
Analyzer 6

Execution
Engine 7

Back -End

Fig. 1. METEOR-S architecture [22].

constraints for optimization is specified. The details of dynamic service composition in
METEOR-S is available on [31].

In METEOR-S architecture, the The constraint analyzer deals with correctness of
the process based on QoS constraints. The support for state machine based verification
of WS-BPEL process also contributes on the existence of compositional correctness.
METEOR-S uses an extensible ontology to represent the generic QoS metrics and do-
main specific QoS metrics. The cost estimation module of constraint analyzer represents
the QoS support. There composition process is not fully automated. The METEOR-S
uses process-driven approach for composition. The coordination of the composite ser-
vice is based on a BPEL-like centralized process engine.

3.3 WebTransact

WebTransact [23] provides necessary infrastructure for building reliable, maintainable,
and scalable web service composition. It is composed of a multilayered architecture,
an XML-based language named Web Service Transactional Language and a Transac-
tion model. The multi-layered architecture containing a Service Composition Layer, a
Service Aggregation Layer, an Integration layer, and a Description Layer are depicted
in Figure 2. Based on [24], we provide a brief explanation of web service composition
in WebTransact. Application programs interact with the composite mediator services
written by composition developers. Such compositions are defined through transaction
interaction patterns of mediator services. Mediator services provide a homogenized in-
terface of semantically equivalent remote services. Mediator services also integrate web
services providing the necessary mapping information to convert messages from the
particular format of the web service to the mediator format.

In WebTransact, an XML-based language named Web Service Transaction Lan-
guage (WSTL), is used for describing the transaction support. The transaction model

73

Application Programs

WEBTRANSACT

[

Composition Laye}

Web Service Provider at site 1 Web Service Provider at site 2

Fig. 2. WebTransact Architecture [24].

of WebTransact provides an adequate level of correctness guarantees when executing
the web services composition built with WSTL. Hence, there is transaction support
in WebTransact. The transactional model of the WebTransact exploits the dissimilar
transaction behavior of web services and guarantees the correct and safe execution of
mediator compositions. The notion of correctness of composition execution is based
on both the user needs (composition specification) and the 2L-guaranteed-termination
criterion (a weaker notion of atomicity that considers the needs of web service environ-
ments). Hence, WebTransact has compositional correctness feature. WebTransact does
not provide QoS modeling. The WebTransact approach does not support the dynamic
discovery and integration of web services. The Web Services are statically integrated
in WebTransact by a developer who plays the role of Web service integrator [24]. So
automatic composition is not supported. In WebTransact, web service composition is
modeled as composite task by WSTL where a composite task is the combination of
atomic task or another composite task. Tasks are identified by its signature, execution
dependencies, links and rules. Here rules specify the conditions under which certain
event will happen and can be associated with dependencies or to data links and finally
evaluating either true or false based on execution [23]. Hence, WebTransact follows the
rule-based logic formulation.

3.4 DynamiCoS

In [26,25], an approach for automated and dynamic service composition named Dy-
namic Composition of Services (DynamicCoS) is proposed primarily to alleviate the
complexity of service composition from the end-users. Upon specifying the service
specifications by the users as per their requirements, automatic discovery, matching and
the composition of set of services that together fulfill the user’s requirement is done by
DynamiCoS. The results are then presented to the user who can selects the best suited
composition. DynamiCoS represents services in language neutral formalism. A service

74

is represented as a seven-tuple S =<ID,I,O,P,E,G,NF>, where ID is the service identi-
fier, I is the set of service inputs, O is the set of service outputs, P is the set of service
preconditions, E is the set of service effects, G is the set of goals the service realises,
NF is the set of service non-functional properties and constraint values. DynamiCoS
approach consists of following modules: service creation, service publication, service
request, service discovery and service composition. Figure 3 depicts the service com-
position framework of DynamiCoS. To perform composition, it first organizes the set
of services discovered in service discovery phase in a Casual Link Matrix (CLM). The
CLM stores all possible semantic connections, or causal links, between the discovered
services input and output concepts. Then the graph-based algorithm approach [26] finds
a composition of services that fulfil the service request.

r-—-—_ - - - - - = Service
develope!

Service creation
Service publication[sate] Lo o
(Java + juppl AP [--1€

- [Service creation

Servic
develop

"o
_gwoon |
Service registry

- Service discovery

loper Servl;;[equest Uava + JUDDI API + [CLM Construction

(XML + Java) OWLAP! + pellet) (Java + OWL-API +Pellet
L
§ Executable Sevice composition|_j [Sraph-based service
| service generation 5 |
|
|

(Java + OWL-API + Pellet

user e ——— —_—
Service deployment

Fig. 3. DynamiCoS Architecture [25].

The main aim of DynamiCoS is to develop dynamic service composition mecha-
nism to support the end-users requirements. Considerable interest is not given in trans-
action support in DynamiCoS. The service composition module of DynamiCoS builds
compositions from service requests and the compositions are correct-by-construction.
The algorithm for composition checks for deadlock and also verify if the composition
is in accordance with the goals. In DynamiCoS some simple QoS characteristics can
be represented and considered in service compositions. Among four ontologies, Non-
Functional.owl in DynamiCoS defines non-functional properties for services and hence
partially supports QoS modeling. DynamiCoS enbles service creation and publication
by service developers at design-time, and automatic service composition by end-users
at runtime.The composition is based on semantic graph based composition algorithm,
so the composition logic formulation is process-driven.

3.5 SeGSeC

In [27,32], the authors present a semantic-based dynamic service composition archi-
tecture named Semantic Graph-Based Service Composition (SeGSeC) in which the
user requests the service in a natural language and the request is then converted into
machine-understandable format, i.e. a semantic graph. Based on this semantic graph,
SeGSeC composes services. In order to achieve semantic-based dynamic service com-
position, modeling of the service components and the service composition mechanism

75

itself must support semantics. To satisfy this requirement, SeGSeC is supported by
Component Service Model with Semantics (CoSMoS) and Component Runtime En-
vironment (CoRE). The semantic support in the component modeling is achieved by
CoSMoS which integrates the semantic and functional information into semantic graph
representation. CoRE functions as middleware and provides functionality to discover
and convert different component implementations into a single semantic graph repre-
sentation. Figure 4 depicts the architecture of SeGSeC.

SeGSeC

IIIIIIH%HI%IIIIII

CoRE

Various other technologies

Fig. 4. SeGSeC Architecture [27].

Upon receiving the service request from a user in a natural language, SeGSeC gen-
erates the execution path or workflow. The execution path represents the order plan
specifying which operations of which component should be accessed in what order.
Additionally, SeGSeC also performs the semantic matching to confirm the semantics of
the execution plan matches the semantic of the user request.

SeGSeC does not provide transactional support and does not guarantee the com-
positional correctness. Given the user requirements in the natural language the overall
approach generates the workflow such that it satisfies the semantics of the requested
services. Starting from the service request from the user to the final composition the
process is automated. SeGSeC does not provide QoS modeling capabilities. Upon re-
ceiving the user request in the form of semantic graph from CoSMoS, the Service-
Composer component of SeGSeC discovers the components and creates the workflow.
In later stage of composition the semantic retrieval rules are applied onto the seman-
tic graph such that the graph models the semantics of the workflow. Hence, SeGSeC
has hybrid compositional logic formulation because the workflow is process-driven and
later the rules are imposed in composition.

4 Summary and Evaluation

This section presents the overall summary of the comparison and evaluation of the
dynamic service composition approaches based on the evaluation framework presented
in Section 2. Table 1 presents the summary of the approaches evaluated according to
the evaluation framework.

4.1 Transaction Support

Due to the inherent autonomy and dissimilar capabilities of web services, maintaining
the transaction support is challenging but still the web service composition requires

76

Table 1. Summary of the dynamic web service composition approaches.

Approaches Transaction Compositional QoS Support Automated Composition
Support correctness composition logic
formulation
eFlow No No No No Process-driven
METEOR-S No yes Yes No Process-driven
WebTransact Yes Yes No No Rule-driven
DynamiCoS No Partial Partial Yes Process-driven
SeGSeC No No No Yes Hybrid

an advanced transactional management solution for reliable, consistent and recover-
able composition. In this aspect WebTransact approach appears to be better than others
since it is supported by a transactional model. The eFlow approach includes the notion
of transactional regions and ACID level transactional support which is insufficient in
the loosely-coupled web service environment. The remaining three approaches do not
ensure the transaction support.

4.2 Compositional Correctness

The compositional correctness ensures the verification of behavior of the composite
services. In order to preserve compositional correctness various formal methods tech-
niques can be integrated with the framework. METEOR-S has a support for state ma-
chine based verification of WS-BPEL process. However, WebTransact provides another
approach to reason about the compositional correctness. It uses compositional specifi-
cation provided by the user and 2L-guranteed-termination criterion to verify the com-
positional correctness [24]. With this feature WebTransact and METEOR-S appear to
be the promising one among the others.

4.3 QoS Support

From the evaluation it shows that most of the approaches do not include the QoS prop-
erties of the web service composition. Only METEOR-S provides the framework for
modeling QoS. There is partial support of QoS modeling in DynamiCoS which is done
by by extending the OWL-S. Even the industry based approach eFlow neglects such
an important aspect of the composition. In [12], the author mentions two ways to in-
clude QoS property namely developing a new language based on semantics like XL and
OWL-S and to extend web service description languages like WSDL to support more
QoS description. The later one seems to be promising to those approaches where QoS
modeling is not included because all of them are based on WSDL.

4.4 Automated Composition

Automated composition enables faster application development without the interven-
tion of the users. From the evaluation and comparison presented earlier, we conclude
that use of semantic descriptions or ontology can help in automating the composition
process as in DynamiCoS, METEOR-S, and SeGSeC. Including the semantic approach
and automating the composition in eFlow can be helpful to the industry.

71

4.5 Compositional Logic Formulation

Process-driven approach is more suitable for those collaborative businesses where there
are few changes in the requirements of business process workflow. It appears to be
more effective in terms of managing the workflow because seldom changes are re-
quired. But in those collaborative businesses where there are constant changes in the
requirements of the business then rule-based systems are advantageous. Hybrid compo-
sition approach has its own benefits as it reduces the complexity and avoids monolithic
composition [19]. Each part of composition logic in hybrid approach is expressed in the
more suitable way either in a business rules or as a process activity providing higher
degree of flexibility.

With this evaluation WebTransact and METEOR-S appear to be the most promis-
ing approaches. The WebTransact framework is a multidisciplinary work that is related
with many other areas such as e-service composition, transactional process coordina-
tion, workflow management system and distributed computing systems [24]. However,
WebTransact lacks semantic descriptions for automation of the composition process and
QoS support. The METEOR-S lacks transactional support and is semi-automated but
supports QoS modeling. eFlow is the industrial product and another promising frame-
work but it significantly lacks the transactional support, semantic descriptions for au-
tomation and QoS support.

5 Conclusions

Because of the growing trend of transforming existing business models to the Internet
with web services and the possibility of creating new web services dynamically, vari-
ous developments are on-going in the dynamic web service composition. The research
and development ranges industry-based products like eFlow to academic researches
like WebTransact, DynamiCoS to name a few. In all these developments, many dif-
ferent standards and mechanisms have been proposed but there is still a lack of an
overall agreement. In this paper, we presented different dynamic service composition
frameworks, ranging from industry based product to the academic research products
and compared them in terms of some important requirements and features.

The evaluation shows that transactional support is still missing in most of the ap-
proaches which, is one of the most important requirements. So, researches leading to
include transactional supports in those approaches and in currently ongoing research
approaches will be an important step. The verification of the compositional correctness
is also missing in most of the approaches. It is an important aspect however, on the
other hand integrating formal techniques in such frameworks is not so easy. In order
to verify the correctness, compositional specifications have to be modeled into mathe-
matical formalisms like pi-calculus, process algebra such that the safety and liveliness
properties can be explored to detect deadlocks and data consistency in the composition
process. The easier way is to include compositional correctness features in the compo-
sition algorithm of the framework. QoS support is also the important requirement of
the web service composition. In most of the approaches QoS support is not available so
research on including QoS modeling is also an open research direction. The researches
on the features like especially automated composition of the web service composition

78

have gained some maturity by using semantics. The use of semantics and ontology in
composition has resulted in the automated composition but is still limited in academic
researches like DyanmiCoS, METEOR-S, and SeGSeC approaches. The use of seman-
tic descriptions in order to automate composition in industry approaches like eFlow is
still an awaiting result in web service composition field.

The dynamic web service composition problem is likely to be around with some

open issues like supporting transactional support, verification of compositional cor-
rectness etc. In future research, addressing such issues will surely be beneficial and
is desirable.

References

12.

13.

14.

15.

16.

17.

. Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-

lems. In: ICAPS 2003 Workshop on Planning for Web Services. (2003) 28-35

Alonso, G.: Web services: concepts, architectures and applications. Springer Verlag (2004)
Shen, L., Li, F,, Ren, S., Mu, Y.: Dynamic composition of web service based on coordination
model. Advances in Web and Network Technologies, and Information Management (2007)
317-327

Tosic, V., Mennie, D., Pagurek, B.: Dynamic Service Composition and Its Applicability to
E-Business Software Systems—The ICARIS Experience. Advances in Business Solutions
(2002) 93-104

Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of
Web and Grid Services 1 (2005) 1-30

Rao, J., Su, X.: A survey of automated web service composition methods. Semantic Web
Services and Web Process Composition (2005) 43-54

Agarwal, V., Chafle, G., Mittal, S., Srivastava, B.: Understanding approaches for web service
composition and execution. In: Proceedings of the 1st Bangalore annual Compute confer-
ence, ACM (2008) 1

Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet
Computing 8 (2004) 51-59

. Papazoglou, M.: Web services: principles and technology. Addison-Wesley (2008)
10.
11.

Papazoglou, M.: Web services and business transactions. World Wide Web 6 (2003) 49-91
ter Beek, M., Bucchiarone, A., Gnesi, S.: A survey on service composition approaches:
From industrial standards to formal methods. Technical report, Technical Report 2006-TR-
15 (2006)

Chen, Y., Li, Z., Jin, Q., Wang, C.: Study on qos driven web services composition. (Frontiers
of WWW Research and Development-APWeb 2006) 702-707

Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exchanges 4 (2003)
10

Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State
of the art and research challenges. Computer-IEEE computer society- 40 (2007) 38

Sun, H., Wang, X., Zhou, B., Zou, P.: Research and implementation of dynamic web services
composition. Advanced Parallel Processing Technologies (2003) 457—466

Benatallah, B., Sheng, Q., Dumas, M.: The self-serv environment for web services compo-
sition. IEEE Internet Computing 7 (2003) 40-48

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.: Quality driven web services
composition. In: Proceedings of the 12th international conference on World Wide Web, ACM
(2003) 421

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

79

Weigand, H., van den Heuvel, W.J., Hiel, M.: Rule-based service composition and service-
oriented business rule management. In Vanthienen, J., Hoppenbrouwers, S., eds.: Proceed-
ings of the International Workshop on Regulations Modeling and Deployment (ReMoD’08),
ACM (2008) 1-12

Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet business
rules. In: Proceedings of the 2nd international conference on Service oriented computing,
ACM (2004) 30-38

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: eFlow: a platform for developing
and managing composite e-services. Technical Report HPL-2000-36, HPL (2000)

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and dynamic service
composition in eFlow. In: Advanced Information Systems Engineering, Springer (2000)
13-31

Aggarwal, R., Verma, K., Miller, J., Milnor, J.: Dynamic Web Service Composition in
METEOR-S. Technical report, LSDIS Lab, Univeristy of Georgia, Athens (2004)

Pires, P, Benevides, M., Mattoso, M.: Building reliable web services compositions. Web,
Web-Services, and Database Systems (2002) 59-72

Pires, PF.: WEBTRANSACT: A Framework for Specifying and coordinating reliable web
services compositions. Technical Report ES-578/02, Federal University of Rio De Janerio
(2002)

Lécué, F., Silva, E., Ferreira Pires, L.: A framework for dynamic web services composition.
Emerging Web Services Technology II (2007) 59-75

Silva, E., Ferreira Pires, L., van Sinderen, M.J.: Supporting Dynamic Service Composition
at Runtime based on End-user Requirements. In: Workshop at the International Conference
on Service Oriented Computing (ICSOC) 2009, Stockhome, Sweden. (2009) 22-27

Fujii, K., Suda, T.: Semantics-based dynamic Web service composition. International Journal
of Cooperative Information Systems 15 (2006) 293-324

Tiwana, A., Ramesh, B.: E-services: Problems, opportunities, and digital platforms. In:
Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 2001.
(2001) 8

Casati, F., Ilnicki, S., Jin, L.J., Krishnamoorthy, V., Shan, M.C.: An Open, Flexible, and Con-
figurable System for E-Service Composition. Technical Report HPL-2000-41, HPL (2000)
Li, G., Hai, H., Hu, Z.: A Flexible Framework for Semi-automatic Web Services Compo-
sition. In: IEEE Asia-Pacific Services Computing Conference, 2008. APSCC’08. (2008)
1258-1262

Sivashanmugam, K., Miller, J., Sheth, A., Verma, K.: Framework for semantic web process
composition. International Journal of Electronic Commerce 9 (2005) 71-106

Fujii, K., Suda, T.: Dynamic service composition using semantic information. In: Proceed-
ings of the 2nd international conference on Service oriented computing, ACM (2004) 3948

Model Checking Verification of Web Services
Composition

Abdallah Missaoui!, Zohra Sbai' and Kamel Barkaoui?

L Ecole Nationale d’Ingénieurs de Tunis, BP. 37 Le Belvédere, 1002 Tunis, Tunisia
{abdallah.missaoui, zohra.sbai}@enit.rnu.tn
2 Conservatoire National des Arts et Métiers, Rue Saint Martin, 75141 Paris, France
barkaoui@cnam. fr

Abstract. Web services composition is becoming very important in today’s ser-
vice oriented business environment. Different services frequently have semantic
inconsistencies which may lead to the failure of the services composition. In order
to verify the correctness of the Web Services composition, we present a method
for analyzing and verifying interactions among web services. We model web ser-
vice composition based on special class of Petri nets: open workflow nets. We
translate this composition to Promela, a source language of SPIN model checker,
designed to describe communicating distributed services. At the requirements
level, model checking is used to validate the specification against a set of formu-
lae specified into LTL which are used to verify constraints satisfaction of web
services composition.

1 Introduction

Founded on standard protocols, Web service is a kind of software interface and plat-
form, which is described, published and invoked through the Internet. Web services
have the capability of implementing distributed applications. Recently, integrating var-
ious services distributed becomes a valuable issue in current research on Web services.

The behaviour of a service composite may become very complex due to the com-
plex of the communication between partners. The tasks that are performed within a
service generally depend strongly on the interaction that has taken place. Thus, it is
very important to decide whether all services interact properly. At present, many indus-
try and academia researchers are paying attention to find some methods to detect these
behaviour problems such deadlock.

Model checking is a verification technique that explores all possible system states
in a brute-force manner. A model checker, the software tool that performs the model
checking, examines all possible system scenarios in a systematic manner. In this way,
it can be shown that a given system model truly satisfies a certain property. There are
many powerful model checkers such as NuSMV [4], BLAST [5] and SPIN [6, 7].

This paper proposes to use the software model checking techniques for the verifica-
tion of web services composition. We adapt Petri nets to describe services interaction
and use SPIN model checker as a verification engine. First, a composed system model
is written in Promela (PROcess MEta LAnguage) that describes the behaviour of the
web services composition. Then, correctness properties that express requirements on

81

the system’s behaviour are specified in Linear Temporal Logic (LTL). By efficient ex-
ploration of the complete set of states generated from the Promela specification, SPIN
verify LTL formulae corresponding to properties of web service composition.

The rest of this paper is organized as follows. Section 2 presents preliminaries.
Section 3 focuses on Petri net model of web service composition as well as our Promela
implementation of this composition. In section 4, We formulate in LTL some soundness
properties to be verified by SPIN. In section 5, we study an example of web service
composition. We discuss in section 6 some related work. Section 7 concludes the paper.

2 Preliminaries

2.1 Workflow Process Modelling

Petri nets are a well founded process modeling technique that have formal semantics.
They are one of the best known techniques for specifying business processes in a formal
and abstract way. The semantics of process instances ensuing from process models
described in Petri nets are well defined and not ambiguous.

We choose to adopt open workflow nets [17] for web service modelling. Open work-
flow nets result from the application of Petri nets to workflow management. In fact,
Petri nets have been used for their formal semantics, graphical nature, expressiveness,
analysis techniques and tools.

In the rest of this section, we present first the basic definitions and notations of Petri
nets [2] used in this work. Then we highlight the notion of open workflow nets.

Petri Nets

A Petri net is a 4-tuple N = (P, T, F, W) where P and T are two finite non-empty sets
of places and transitions respectively, PNT = 0, F C (P x T) U (T x P) is the
flow relation, and W : (P x T') U (T' x P) — N is the weight function of N satisfying
If W(u) = 1VYu € F then N is said to be ordinary net and it is denoted by N =
(P,T,F).

For all x € P UT, the preset of x is *z = {y|(y,z) € F} and the postset of x is
z* ={y|(z,y) € F'}.

A marking of a Petri net N is a function M : P — N. The initial marking of N is
denoted by M.

A transition ¢ € T is enabled in a marking M (denoted by M |t)) if and only if Vp €
*t: M(p) > W(p,t). If transition t is enabled in marking M, it can be fired, leading to
anew marking M’ such that: Vp € P : M'(p) = M(p) — W(p,t) + W (¢, p).

The firing is denoted by M [t) M’. The set of all markings reachable from a marking M
is denoted by [M).

For a place p of P, we denote by M), the marking given by M,(p) = 1 and M,(p") =0
vp' # p.

Petri nets are represented as follows: places are represented by circles, transitions by
boxes, the flow relation is represented by drawing an arc between x and y whenever
(z,y) is in the relation, and the weight function labels the arcs whenever their weights

82

are greater than 1. A marking M of a Petri net is represented by drawing M (p) black
tokens into the circle representing the place p.

Open Workflow Nets (0WF-nets)

In this paper, we choose to adopt a special class of Petri-nets which is open workflow-
nets (oWF-net), for web service modeling. It generalized the classical workflow nets
[1] by introducing an interface for asynchronous messages with partners. A petri net
N = (P, T, F) is called an oWF-net, if:

i. P is composed from disjoint sets: internal places Py, input places P; and output
places Pp;
ii. Forall transitiont € T': p € Py (resp.p € Po) implies (t,p) & F (resp. (p,t) &
F),
iii. F' does not contain cycles.
In all examples in this paper, an oWF-net are initially one token in start place (no
tokens in other places including the interface places).
Open workflow nets allow diverse analysis methods of business process. Moreover,
the explicit modeling of interface allows the verification and behaviour analysis of web
service composition.

2.2 Model Checking Techniques

Model checking is a verification technique that explores all possible system states in a
brute-force manner. Similar to a computer chess program that checks possible moves,
a model checker, the software tool that performs the model checking, examines all
possible system scenarios in a systematic manner. In this way, it can be shown that a
given system model truly satisfies a certain property. It is a real challenge to examine
the largest possible state spaces that can be treated with current means, i.e., processors
and memories.

There are many powerful model checkers such as NuSMV, BLAST and SPIN.

The SPIN model checker is a system that can verify models of computerized sys-
tems. The name SPIN was originally chosen as an acronym for Simple Promela INter-
preter. It can be used in two basic modes: as a simulator and as a verifier. In simulation
mode, SPIN can be used to get a quick impression of the types of behavior that are cap-
tured by a system model, as it is being built. Some optimization techniques, e.g., partial
order reduction and graph encoding, are available to help reduce the usage of CPU time
or memory space.

2.3 Linear Temporal Logic

SPIN checks properties formulated with Liner Temporal Logic. An LTL formula f
may contain any lowercase propositional symbol p, combined with unary or binary,
Boolean and/or temporal operators. Propositional and temporal operators are presented
in figure 1.

The semantics of a formula is given in terms of computations and the states of a
computation. The atomic propositions of temporal logic can be evaluated in a single
state independently of a computation.

83

Propositional Operators

&& conjunction || disjunction
— > implication ! Negation
Temporal Operators

] always © eventually || until

Fig. 1. Propositional and Temporal Operators.

3 Web Services Composition

In this section, we begin with a specification of services in terms of open Workflow net
and Promela language. Then, we model the composition of web services and we give a
verification method by means of model checking techniques.

The formalism of open Workflow net is meant to model complex, distributed com-
puting systems with well defined semantics. Web services composition can be checked
against requirements such as the mentioned above. The properties that are to be checked
need to be formulated based on temporal logic, relate to the Promela specification of
workflow representation of web service composition. SPIN Model checker will evaluate
these LTL formulae.

3.1 Modeling Web Service Composition

Using oWF-nets, we can model business process. We can furthermore compose two or
many oWF-nets and describe the web services interaction with partners.

The communication between two oWF-nets is based on interface places (unidirec-
tional). Given two oWF-nets N1 and N2, their composition is the result of merging one
or many input places of one oWF-net with suitable output net of the other place and
vice versa. Each oWF-net shares only interface places with other oWF-nets.

Fig 2.a shows the composition of two oWF-nets: Producer and Consumer. Each
of which has one input place and one output place. Shared places which model the
interfaces are represented by dashed lines. The consumer of the left side sends an order
message to the producer in order to execute its task. In the right side, the producer
executes the task and then sends a response to consumer.

3.2 Promela Implementation

Like structured programming languages, in Promela we can use variables and subrou-
tines such as proctype. The proctype construct is used for the declaration. It can be
used to declare process behavior is to be executed completely deterministically. Each
process behavior must be declared before process instantiation. This instantiation can
be done either with the run operator, or with the prefix active that can be used at
the time of declaration. The types of variables are sets of integer in order to guarantee
that the program has finite state space. This section presents a method to use the SPIN
model checker for the representation of the web services composition and analysis. The
basic idea is just to translate a composition of oWF-nets into Promela source program.
web services models communicate through interface places modeled by variables. We

84

adopt an approach of oWF-net introduced by [17] to model web services composition.
Workflow module defines its internal behaviour without interface places that are used
to represent message flow between partners.

Based on the definition of workflow module, we present a web service specification
in Promela language. This specification is described in terms of the marking of places
and the firing count of transitions. Hence, we use the following conventions:

— Places are represented by an array PL of integers with length equal to the number
of places. This array contains initially zero in each element.

— Transitions are modelled by an array 7'R of integers (initialized to zero) with length
equal to the number of transitions.

The behaviour of a web service can be described in terms of system states and their
changes. A marking is initialized to M; and it is changed according to the following
transition rule: A transition ¢ is enabled if each input place p of ¢ is marked. Moreover,
an enabled transition ¢ may or may not fire, and a firing of ¢ removes one token from
all p € *¢ and adds one token to each output place of ¢. These concepts are translated
in the corresponding Promela description of a workflow module as follows: The firing
of a transition consists on decreasing by 1 the integer corresponding to each place p €
¢ in the array PL and increasing by 1 the elements of PL corresponding to the output
places (p € t*®). Although, we increase by 1 the element of T'R corresponding to the
transition ¢ to mark that ¢ is fired once.

These modifications are made by the macro addl, add?2, ..,addS, removel, remove2,
.., and removeK where S is the maximum number of possible input places and K is
the maximum number of possible output places.

To fire a transition ¢ which has I input places and J output places, we call these
macros with the appropriate arguments in order to achieve the following actions:

1. removel (p1,p2, .., pr) destructs one token from each input place. It tests if these
input places are marked (PL[indez of p;] > 0,1 < j < I) and if this condition is
satisfied, it removes one token from each of its parameters.

2. We increase the element corresponding to ¢ in T'R.

3. And finally addJ(p1, p2, .., ps) creates one token in each output place.

Complex inter-organizational business processes are structured as a set of commu-
nicating elementary services. A service represents a self contained software unit that
offers an encapsulated functionality over a well defined interface.

Several languages, such as BPEL [3], are used to describe the composition of services.
The behaviour of a service composite may become very complex due to the nature of
the communication between partners. The tasks that are performed within a service
generally depend strongly on the interaction that has taken place. Thus, analyzing the
behaviour of a service on the one hand and the verification of its interaction with part-
ners on the other hand are very important to perform and improve inter-organizational
business processes.

Web services composition is modeled based on oWF-nets. Interface places are repre-
sented, in our specification, by an array I of integers with length equal to the number
of places in web services composite. Each element of this array, that initialized to zero,

85

perform the communication between services partners, and for each place, when one
service increment element of I (add token in interface place), another partner consume
a token and decrement this element by 1. Figure 2.a shows an example of web service

Consumer Provider | #define PLACEC 3 proctype Producer ()
#define TRANSITIONC 2 {MI[0]=1;
#define PLACEP 3 do
#define TRANSITIONP 2 :ratomic{remove2 (MI[0],I[0)—>XI1[0]++;
#define INTERFACE 2 addl (MI[1]) }
#define removel (x1)(x1>0—>x1—
#define remove2(xl,x2) cratomic{removel (MI[1])—>XI1[1]++;
(x1>0 && x2>0—>x1——; x2— add2(M1[2],1[1]) }
#define addl(xl) xl++ od
#define add2(x1,x2) x1++; x2++ }
int M2[PLACEC]: int X2[TRANSITIONC];
int MI[PLACEP]: int XI[TRANSITIONP]; init
int I[INTERFACE] {
proctype Consumer () atomic{
{M2[0]=1: run Consumer ();
do run Producer ();
;- atomic{removel (M20])— >X2[0]++; }

add2 (M2[1],1[0])
sz atomic{remove2 (M2[1], I[1))— > X2[1]++;

add1 (M2[2]) }

execute
task

od

}

®)

Fig. 2. The process with two services.

composition based on two oWF-nets. The consumer communicates with producer by
means of two interface places. The figure 2.b represents the Promela description of this
composed system.

4 Verification

SPIN allows Promela systems to be simulated, either step-by-step or randomly. Addi-
tionally, it is possible to execute an exhaustive simulation by generating the complete
state-space of the system. This allows us to verify if the system requirements are satis-
fied.

In web service architecture, by composing various services, complex activities (e.
g., inter-organizational business processes) can be realized. Hence, the correct interplay
of distributed services is crucial to accomplish a common goal. The flow should have
safety properties such as deadlock freedom. At the same time, the flow should satisfy
some properties since it is executed in an environment.

In this section, we discuss how to verify a given composed oWF-net specification
using the SPIN model checher. The input language of SPIN is Promela, which is a lan-
guage for modeling web services composition. SPIN verify LTL properties of Promela
specification. We implement the verification process in three steps : (1)we model the
composed web services based on oWF-net; (2)we translate this composed system to
Promela processes with communication based on an interface array; (3)we define prop-
erties in LTL and we check if the system satisfies or not these properties.

The requierement needs to be formulated as LTL formulas. All logical variables
used in the formula must be defined by define macro. Using logical variables inte-
grated in TLT formulae, all properties are verified on the fly. It is not necessary to
generate the whole state space to detect errors. However, to verify that properties are
satisfied, the whole state space may be generated.

86

4.1 Termination

Several Technologies [9-11] have been proposed in order to automatically compose
Web services to perform some desired task. Regardless of how the compositions orig-
inated, we are interested here in describing and verifying properties of these services
by simulating their executions under different input conditions. Deadlock is a condition
which states that the composed system is deadlocked, i.e. it is neither terminated nor
more activities could be executed.

The language source used by SPIN (Promela) describe the behaviour of a web ser-
vices composition based on interactions between the service and its partners. SPIN can
simulate and validate a model in Promela language and it can accept constraints de-
scribed in LTL formulae.

Never—claim :
never { /% W(<>p) =/
accept._init:
TO_init:
if
(! ((p))) —> goto TO-init
fi;

}

Fig. 3. Never-claim corresponding to F'.

The formula F' : p (p is declared in Promela source as (M1[index of f1] > 1
&& M2[index of f2] > 1)) allows us to check if the process, given in figure 2,
completes successfully. First, SPIN translates a negative form of formula into a never-
claim statement. Second, SPIN validates the model S with this statement. The never-
claim (generated by SPIN) corresponding to formula F' is given in figure 3.

Never claim is the Promela model of the Biichi automaton(figure 4) corresponding
to the LTL formula F'. It is used to represent a property that should never be satisfied
during the execution of a model. Then, if S contains an acceptance cycle then a counter-
example to F’ exists and this proves that the model does not satisfy the property.

4.2 Soundness

Composing web services and guarantying the correctness of the design is an important
and challenging problem in web services.

An oWF-net is a more suitable model for analysis and verification of web services
composition. Several Correctness criteria, like liveness and termination, should be valid
for single process and for the combined model. In this section, we give a method to
verify some properties of web services composition. For each of them, we define the
property of the composed oWF-nets. We also give an LTL formula that allows to verify
it based on corresponding Promela specification of web services composition.

A workflow process is sound if, for any case, termination is guaranteed, there are
no dangling references, and deadlocks and livelocks are absent. This dynamic property
is decidable and it can be checked in polynomial time. Soundness property is proved
in [18] equivalent to liveness and boundedness, thus it can be verified by standard Petri
net methods.

87

—
w
©

e

1[0]=1 ;EConsumﬂr
/M0 M1[1]>na&|[1];d . - ,"ﬁm2|01>u&&|[01>0\.5‘n2[1]>u ™ ‘ un Producer
M0 = M1[0]-1lM‘![1] =MI[1}1 .'~_M2[0] = M2[0]-1 M2[1] = M2[1}-1 end-
0] = 1[0 +1 @ MI[Z] = M1[ZH+1 M2[1) = M2[1}+1 @J @ M= (o
Ny
//X1[0] = X1[0}# [1] = I[1}-1 Moj =101 Xe[t] = X2[1]+1
¥ ¥
ONNO ©
\ | \
Vo =mipe = X[/ \\ /%2[0] = X2[0}+1 ‘M2z = m2[21+1/

Fig. 4. A biichi automata.

The extension of this soundness definition in the context of web service composi-
tion via oWF-nets is given in the following definition 1. The overall net describing the
composition can be seen as a classical petri net with a specific initial marking and its
soundness is given in terms of states evolution and transitions firing. Thus the verifica-
tion of this property is decidable.

Definition 1. (Soundness)

Let N1 = (Pl,Tl,Fl), Ny = (PQ,TQ,FQ),..., and N, = (Px,Tm,Fm) be x oWF-net.
The composed oWF-nets WC = (P,T,F) from N1, N2 and Nz, is called sound if
and only if the following three requirements are satisfied:

i Termination: For each reachable marking (reachable from My = [i1,1i2,..,0z],)
the final marking My = [f1, fa, .., f] is reachable;
ii Proper completion: For each reachable marking, if M > M holds then M = My;
iti No dead transition: It makes certain that starting from the initial state (just one
token in every initial place), it is always possible to reach the state with one token
in every final place.

We can define LTL formulae based soundness of web service composition by study-
ing the three sub-properties: Completion, Proper Completion and Deadlock-freedom:

i O(Ck Mlindex of £] > 1)

i O(éf@ Mlindex of fi] > 1) = (M = [f1, fa, .., f2])

i=1

iii =(O(|| X[index of t] == 0))
teT

To verify soundness of web service composition, we have to check the three preceding
formulae.

88

Weak soundness properties are introduced by Martens [8] in the context of web
service composition. We can allow service that exhibits a proper behaviour but not
all tasks. The overall Composed system is weak sound, because the final state can be
reached from each state reachable from the initial state, and when the final state M is
reached, no other token remains in the net.

Using Petri nets notation, we give the following definition of weak soundness.

Definition 2. (weak soundness)
a composed system N = (P, T, F) is called weak sound if and only if:

i. For each reachable marking (reachable from M) the final marking f is reachable.
ii. For each reachable marking, if M > My holds then M = M.

Based on LTL formulae, corresponding to Termination and Proper Completion, de-
fined in this section, we can verify weak soundness properties of the web service com-
position.

5 Case Study

Figure 5 presents an example of web service composition. The overall flow of this ex-
ample is as follows: A traveler will plan her trip. When the traveler is finished with
specifying the details of the trip plan, she sends this information together with the pre-
pared details (example of details concern the list of participants) to the travel agent.
Next, the traveler will await the submission of the electronic tickets as well as the final
itinerary for the trip. When the agent receives the traveler’s trip order, he will determine
the legs for each of the stages, which includes an initial seat reservation for each of the
participants as well as the rate chosen. To actually make the corresponding ticket orders
the agent submits these legs together with the information about the credit card to be
charged to the airline company.

Then, the agent will wait for the confirmation of the flights, which especially in-
cludes the actual seats reserved for each of the participants. This information is com-
pleted into an itinerary, which is then sent to the traveler.

When the airline receives the ticket order submitted by the agent, the requested
seats will be checked. After that, the credit card will be charged, and the updated leg
information is sent back to the agent as confirmation of the flights. After that, the airline
sends the electronic tickets (by e-mail) to the traveler. Information about the recipient
of the tickets is passed to the agent as well as to the airline.

In this example, we propose to draw its Promela model as follows: we begin with
specifying each process as a single process defined by proctype construct. The pro-
cesses describing the work of the traveler, the agent and the airline are given respec-
tively in the following source code.

89

Traveler Agent Airline

Gt trip order

Submit to travel
agent

receive Receive

k P Order ticket
ticket fenerary S

Get confirmation

Generate itenerary

1 Corfirmation flights

Issue ltenary

Issue tickets

Fig. 5. Travel Plan Example.

proctype Traveler ()

{PL1[0]=1;

do

cratomic{inpl (PL1[0]) —> TRI[0]++;0utl (PLI[1]) }
cratomic{inpl (PLI[1]) = TRI[1]++:0ut3(PLI1[2],PLI[3],1[0])}
::atomic{inp2 (PL1[2],1[4]) —=> TRI[2]++;o0utl (PL1[4]) }
:ratomic{inp2 (PL1[3],1[1]) = TRI[3]++;o0utl (PL1[5]) 3
:ratomic{inp2 (PL1[4],PLI[5]) —> TRI[4]++;0utl (PLI1[6]) }
od }

proctype Agent()

{PL2[0]=1;

do

cratomic{inp2 (PL2[0],1[0]) —> TR2[0]++;o0utl (PL2[1])
cratomic{inpl (PL2[1]) —> TR2[1]++;o0utl (PL2[2]) }
cratomic{inpl (PL2[2]) —> TR2[2]++:0ut2(PL2[3],1[2])
:ratomic{inp2 (PL2[3],1[3]) —=> TR2[3]++;0utl (PL2[4])
::atomic{inpl (PL2[4]) —=> TR2[4]++;outl (PL2[5]) }
s:atomic{inpl (PL2[5]) —> TR2[5]++;0ut2 (PL2[6],1[1])
od }

proctype Airline ()

{PL3[0]=1;

do

cratomic{inp2 (PL3[0],1[2]) —> TR3[0]++;o0utl (PL3[1]) 3
cratomic{inpl (PL3[1]) —> TR3[1]++;o0utl (PL3[2]) }
cratomic{inpl (PL3[2]) —> TR3[2]++;o0utl (PL3[3]) }
cratomic{inpl (PL3[3]) —> TR3[3]++:0ut2(PL3[4],1[3])
::atomic{inpl (PL3[4]) —> TR3[4]++;0ut2(PL3[5],1[4])
od }

BT

e

Note that in each process, the firing of a transition leads to add tokens not only in
its own places but also in interface ones. The interface places are modelled by an ar-
ray called I of ni elements with ni is the number of these places. The initial process,
declared by init, initializes global variables, and instantiates processes via the run
statement. This statement is used as a unary operator that takes the name of a process
type. An executing process disappears again when it terminates (i.e., reaches the end
of the body of its process type declaration), but not before all processes that it started
have terminated. The sequence of composed processes has to be executed as one indi-
visible unit, non-interleaved with any other processes. Hence, we prefix the sequence
of processes instantiations by atomic.

90

init

atomic {
run Traveler ();
run Agent();
run Airline ()

}

To verify soundness of web services composition, three requirements need to be for-
mulated as LTL formula. We introduce logical variables that take part from the LTL
formula in the source code. Using the Promela source and the logical variable defini-
tions, SPIN evaluates the LTL formula. The web service composition presented in fig
5 is sound because it satisfies the three formulae (termination, proper completion and
deadlock-freedom).

For example, the evaluation of a formula F' (<> p) of termination (p: PL1[6] >
0&& PL2[6] > 0&& PL3[5] > 0) have resulted in positive answers given that the
number of errors returned by SPIN is 0. This positive result guarantees that the Promela
model meets this requirement. All states have been explored by SPIN and the result
generated shows that the number of states explored is 24.

6 Related Works

Many works such as [8, 16, 15] introduce formal method based on Petri nets for describ-
ing and verifying web service composition. In [15], semantics of Petri nets is defined by
mapping BPEL process to a Petri net. A formal model of BPEL can be generated and
allows the verification techniques developed for Petri nets to be exploited in the context
of BPEL processes. Lohmann [16] focuses on the problem of analyzing the interaction
between WS-BPEL processes. A BPEL process is seen as an open workflow net by an
interface specifying the interactional behaviour of this process with its partners. The
framework developed in this context allows the generation of compact Petri net models
and gives a formal analysis of processes behaviour and a verification of controllability.

Some research efforts have already been proposed to use model-checking tech-
niques for web service verification. Nakajima [12] describes a method based on model
checking to verify web service flow description. The language adopted to describe web
service composition is Web Services Flow Language (WSFL). The model checker used
in their verification engine is SPIN. This paper presents means to translate WSFL prim-
itives into PROMELA. In [13], Nakajima proposed to extract behaviour specification
from BPEL processes to a variant of Extended Finite-state Automaton. Then, Automa-
ton model is translated to PROMELA and is analyzed by SPIN model checker. Never-
theless, not all BPEL processes can be analyzed i.e. it does not deal with the semantics
of handlers such as exception or compensation.

Bao [14] provides a model checking method to Verify BPEL4People processes that
can detect deadlocks and validate constraints based on LTL. A tool is developed to
translate BPEL4People process to promela automatically but it didn’t support all feature
activities.

91

7 Conclusions

In this paper, we have presented a specification and verification method of web services
composition based on model checking. The interactions among the partners participat-
ing to a web services composition are modeled by Open WorkFlow nets (OWF-nets),
where the communication is ensured by interface places. Hence, we begun with convert-
ing OWF-nets to Promela: the model specification language used to define the relevant
aspects of the system needed to verify it.

The formal model presented in this paper captures and checks the control flow and
the dynamic behaviour based on Promela specification that describes the behaviour
of the web services composition. After this step, we have specified in Linear Temporal
Logic (LTL) correctness properties that express requirements on the system’s behaviour.
Especially, we have defined the soundness properties of the web service composition in
terms of LTL formulae.

Once the formal model and the correctness properties are defined, SPIN model
checker verifies LTL formulae corresponding to properties of web service composition,
by efficient exploration of the set of states generated from the Promela specification.

We propose to extend this work by defining additional verification criteria which
are suitable for the composition of web services such as controllability.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, vol. 8, (1998) 21-66

2. Barkaoui, K., Ben Ayed, R., Sbai, Z.: Workflow Soundness Verification based on Structure
Theory of Petri Nets. International Journal of Computing and Information Sciences (IJCIS),
Vol. 5(1), (2007) 51-61

3. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WSBPEL pro-
cesses using flexible model generation. DKE 64(1), (2008) 3854

4. Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R. and Tacchella, A.: NuSMYV 2: An OpenSource Tool for Symbolic Model Checking.
In Proceeding of International Conference on Computer-Aided Verification, (2002)

5. Henzinger, T. A., Jhala, R., Majumdar, R. and Sutre, G.: Software Verification with Blast.
In Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN), Lecture
Notes in Computer Science 2648, Springer-Verlag, (2003) 235-239

6. Holzmann, G. J.: The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley,
(2003)

7. Holzmann, G. J.: The Model Checker SPIN. IEEE Transactions on software engineering,
vol.23, no.5, (1997)

8. Martens, A.: Analyzing web service based business processes. In Proceeding of International
Conference on Fundamental Approaches to Software Engineering, Part of the European Joint
Conferences on Theory and Practice of Software, Lecture Notes in Computer Science vol.
3442, Springer-Verlag, (2005)

9. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM Corporation, May 2001.

10. Business Process Execution Language for Web Services (BPEL), Version 1.1, http://www-
128.ibm.com/developerworks/library/ specification/ws-bpel. (2002)

11. Thatte, S.: XLANG: Web Services For Business Process Design, Microsoft Corporation,
(2001), (http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm)

92

12.

13.

14.

15.

16.

17.

18.

Nakajima, S.: Verification of Web service flows with model-checking techniques, presented
at First International Symposium on Cyber Worlds, (2002)

Nakajima, S.: Model-Checking Behavioral Specification of BPEL Applications. Electronic
Notes in Theoretical Computer Science 151 (2006) 89105

Bao, F.,, Zhang, L.: A Model Checking Method to Verify BPEL4People Processes. on The
IEEE Symposium Advanced Management of Information for Globalized Enterprises. (2008)
Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. Business Process Man-
agement, LNCS, vol. 3649, (2005) 220235.

Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D.: Analyzing interacting WS-BPEL
processes using flexible model generation, Data and Knowledge Engineering 64 (2008) 3854
Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the SOA, Annals
of Mathematics, Computing and Teleinformatics 1 (3) (2005) 3543

van der Aalst, VM.P.: Structural characterization of sound workflow nets, Computing Sci-
ence Report 96/23, Eindhoven University of Technology, (1996)

Semi-automatic Dependency Model Creation based on
Process Descriptionsand SLAS

Matthias Winklet, Thomas Springéy Edmundo David Trigo'sand Alexander Schill

! SAP Research CEC Dresden, SAP AG, Chemnitzer Str. 48, 016&5tBn, Germany
{mat t hi as. wi nkl er, ednundo. davi d. tri gos}@ap.com
2 TU Dresden, Faculty of Computer Science, Institute for 8yst Architecture
Computer Networks Group, Nthnitzer Str. 46, 01187 Dres@Gsrmany
{thomas. springer, al exander.schill }@ u-dresden. de

Abstract. In complex service-oriented business processes the cauper-

vices depend on other services to contribute to the commah gbese depen-
dencies have to be considered when service compositiongdshe changed.
Information about dependencies is only implicitly avaitafrom service level

agreements and process descriptions. In this paper wenpresemi-automatic
approach to analyze service dependencies and capturenatfon about them
explicitly in a dependency model. Furthermore, we descailsystem architec-
ture which covers the whole process of dependency anatiegigndency model
creation and provisioning. It has been implemented based logalthcare sce-
nario.

1 Introduction

According to the Internet of Services vision services tchdie open marketplaces are
composed to business processes. Services are providgdditdmatically (credit card
check) or involve manual steps (healthcare services). dhgposed services have to
collaborate to achieve a common goal. Thus, the compositeamtes different types of
dependencies between involved services, e.g. with respgrbduced and consumed
resources, timing, quality of service (QoS), and pricingpBndencies occur between
atomic services (horizontal dependency) or between atseridces and the composi-
tion (vertical dependency).

Explicit knowledge about dependencies is needed for theagement of service
level agreements (SLA) in service compositions. SLAs agotiated between the ser-
vice provider and consumer to regulate service provisgniburing the negotiation
process it is necessary to ensure that all SLAs of the coripoginable the proper col-
laboration between the different services and the fulfiitrad all SLAs. Furthermore,
dependency information is also needed for the handling & @iblations or explicit
SLA renegotiation requests by the different stakehold&r#\ violations as well as the
renegotiation of SLAs may affect other services and lealléostolation of other SLAs.
Thus, information about service dependencies is needefl fdBrmanagement by com-
posite service providers. Required information aboutiserdependencies is usually
not explicitly available but is implicitly contained in SlsAand process descriptions.
From these sources it has to be extracted to be availablatane!

94

In previous work we presented an approach to managing deperes in service
compositions [1], where dependencies are analyzed atrdésig, dependency infor-
mation is captured in a dependency model [2], and dependefmynation is used at
runtime to evaluate effects of SLO violations and SLA reriegion requests on other
services. This paper extends our work by two major contidimst Firstly, we detail
our work on dependency model creation by a process desgrif@econdly, we present
an architecture for managing dependencies. The remairideisgaper is structured
as follows: In Chapter 2 we describe the dependency modaticreprocess followed
by the presentation of the architecture of the approach imp€@n 3. We evaluate our
work in Chapter 4 and discuss it with respect to related workhapter 5. Finally, we
conclude this paper with a discussion and outlook on futwekn Chapter 6.

2 Dependency Model Creation

In order to manage the dependencies between services bwouthe lifecycle of a
composite service, we developed an approach which captapesidencies in a depen-
dency model at design time and which uses this informati@vatuate effects of SLO
violations as well as SLA renegotiation requests at runtiviie developed a lifecycle
for managing and using dependency information. This liééegonsists of four phases:
creation and recalculation, validation, usage, and meg. In this chapter we will de-
tail the first lifecycle phase focusing on the model creatiad its integration into the
development process of the composite service. In Fig. 1e¢peridency model creation
process is depicted. This semi-automatic process istmitiny the composite service
modeler. As pre-requisite for executing the process tweetsphave to be fulfilled:

1. The composite service workflow has been modeled (e.g. BRkbidess). It pro-
vides information on temporal relationships between sesui

2. SLA offers for all services are available specifying mfation regarding execu-
tion time and location, handled resources, supported Qubservice price. This
information is needed for dependency model creation.

As a result a dependency model is created, which still neethe tvalidated with re-
spect to the negotiated SLAs. This is necessary in orderdm @onflicts between the
proposed SLAs (e.g. with respect to time and QoS attributes)

The creation process of a dependency model was realizedeasiaaatomatic ap-
proach consisting of automatic dependency discovery améstplicit modeling of de-
pendencies. The discovery of dependencies automatesfphie dependency model
creation process. It also helps to reduce the chance ofsesumh as false or missing
dependencies introduced by manual modeling. The manuahgixin and modification
of the generated dependency model enables the expressiep@afidencies which can-
not be discovered automatically. However, it also intratuihe chance of errors being
added to the dependency model. In the following sectiongi#eendency discovery
and dependency modeling are explained in more detail.

95

START

Dependency’
odel exists?

Yes

Create

No—p»| dependency
model

Load composite
service workflow

A

Create Create
workflow paths calculation
formulas

Create
service pairs

v

Analyze input
and output
parameters

A 4 A 4 \ 2 v A 4

Create horizontal Create vertical Create horizontal Create vertical Create QoS/
time time resource resource price
dependencies dependencies dependencies dependencies dependencies

Refine
dependency
model manually

END

Fig. 1. Dependency model creation process.

2.1 Dependency Model Creation Process

As a first step in the process of creating a dependency mod®harnodel instance is
created if it does not already exist. After that two paratheks are started for the dis-
covery of dependencies. This includes the creation of tinterasource dependencies
on the one hand and the creation of aggregation formulas & &tributes and price
information on the other hand. For the creation of time astduece dependencies the
first step is the creation of linear paths reaching from thg abde to the end node of the
composite service workflow. For each path pairs of servicesieated. The selection
of the relevant services for pair creation is dependent erythe of dependency which
is analyzed (see section 2.2). Based on the created paies#igsis of dependencies
is done. The creation of time dependencies is directly basetie different pairs. No
further analysis is necessary, since time dependencyi@ndatbased on the process
structure only, i.e. if a servicg2 follows serviceS1 in the process, this implies that

is executed befor&2. For the creation of resource dependencies the input apdibut
parameters of two services are compared. If a match is faunelsource dependency
is created. The different dependencies are then added wefhendency model. The
analysis for QoS and price dependencies is based on [Frtsstith a reduction of the
service workflow based on workflow patterns. Formulas focwating composite QoS
and price values for the respective workflow patterns arectsdl and an aggregation

96

formula is created. Finally, a dependency is created fon eamposite QoS and price
value. Following the discovery of dependencies the credégdndency model can be
refined in a manual modeling step.

2.2 Dependency Discovery

The goal of our work is to provide composite service provédeith information about
service dependencies in a composition. This informati@ukhfacilitate the manage-
ment of SLAs. A SLA contains a list of parameters such as tipniege, location, and
quality of service provisioning. Dependencies occur wigard to these parameters:
e.g. the composite service price depends on the atomiacsapvices; provisioning of
the first atomic services in the composition can be startesbas as the provisioning
of the composite service is initiated; provisioning of tworaic services needs to be
started or finished at the same time. These brief examples ttad different types of
dependencies exists and that fine grained dependency iafiomis required.

The discovery of dependencies is specific for each depepdgpe. We will now
describe the discovery of time and resource dependenciesiia detail including the
selection of services for service pair creation as well astype of dependency being
created. Time dependencies are expressed based on tirtienekas used in project
management [4] or as defined by Allen [5]. For resource depecids the different re-
sources are listed. An overview of the mappings for createygendencies is presented
in Table 1. The creation of aggregation formulas for comigdQi0S and price values is
achieved as described by [3]. Due to space limitations wddhdee to point the reader
to the respective work for further information.

Horizontal Time Dependencies are created between each pair of services, where one
service is directly connected to another service in a pathebch pair dinish-to-start
time dependency is created between the earlier and thesktéce.

Vertical Time Dependencies are created between the composite service and the first
and last atomic service within a path. Between the compsasitdce and the first atomic
service sstart-to-starttime dependency is created. Between the last atomic seamite
the composite servicefaish-to-finisttime dependency is created.

Horizontal Resource Dependencies are created between atomic services, which are
directly or indirectly connected within a path. To check Wier two services have a de-
pendency the output of the preceding service is comparérebtmput of the succeeding
service. If a match is found a resource dependency is crdafedmation on input and
output of services is available from their SLAs.

Vertical Resource Dependencies are created between the composite service and an
atomic service. For each path the composite service inglibatput is compared to the
atomic services input and output. A resource dependencgatad with all atomic ser-
vices along a path, which have a matching input with the caitpservice input and
which do not have a horizontal dependency regarding thehimgieesources. A fur-
ther resource dependency is created with the last atomitceewhich has a matching
output with the composite service.

97

Table 1. Comparison of dependency model approaches.

Composite service Description Dependency model
construct construct
Two atomic services directly connected Miane dependency:
AST AS2 control flow finish-to-start
:’"'"E:% """" ' |Composite service and first atomic servicglime dependency:
| [ast i |apath start-to-start
:’"""c's _____ ‘: Last atomic service and composite servicdime dependency:
:_/_xfl_ _____ /fz__; a path finish-to-finish
<A SiA Resource depen-
PainUJ_) Pafii“J Output of preceding atomic service matcliency: AS2.paramin
i ? input of succeeding service resourceDependent
As1 AS2 AS1.paramOut
PSaI;./;\nJ_) PSaLr-/?nJ Resource depen-
= L~ Input of composite service matches inputdefincy: ~ AS1.paramin
:’"g”"'c's"" """ v |atomic service resourceDependent
At AS2 ,: CS.paramlin
SLA J_) SLA J Resource depen-
Parou) 122wl loutput of composite service matches outg@ncy: CS.paramOut
“TTTTTGST T T |of atomic service resourceDependent

AS2.paramOut

2.3 Dependency Modeling

The dependency discovery algorithm produces a valid depwydmodel. However,

there are several types of dependencies which cannot bevdigal. This includes de-
pendencies regarding the location for executing a servi€@os dependencies where
no aggregation formula can be created automatically. Eurtbre, time dependencies

may exist between services which are not connected by theepsdlow. A concrete
use case may have time constraints, which have to be modgbtiditty, i.e. the cre-
ated dependency model is extended manually.

3 Architecture and Integration

In this chapter the architecture of the dependency managstoemponents as well as
their integration into a service engineering toolchain @escribed. The components
provide functionality for the creation, validation, an@rstge of dependency models

(Dependency Model Managemgtthe analysis and modeling of dependendsyen-
dency Analysis and the evaluation of the dependency model with respetifferent

events at runtimeRuntime Dependency Evaluatjon overview of the components

is presented in Fig. 2. Details about their functionality described below.

98

Tradable Service

Runtime Runtime Dependency Dependency Model Management
Evaluation
Cockpit Dependency
Model Store
Service O
Monitoring [N
\O\ Dependency __o__ Dependency _o_ De;ﬁgﬁ:rcy
Evaluation S Model Manager S Validation
Message- X o~ L
() oriented ¢A g
Middleware R
T
I
A SMeng N Dependency Dependency
R : Discovery Modeler
SLA Manager < epository
\Ov,v\ A¢
R
o ISE SLA Analysis Ro> Process
Management b4 Manager Analysis
Service
Management Dependency Analysis
Platform ISE Development Environment

Fig. 2. Architecture Dependency Handling.

3.1 Dependency Model Management

The approach for managing service dependencies has atéttheodependency model,
which is used to capture information about services and épedencies that occur
between them. The components, which are part of the dependsrdel management,
are responsible for the creation, validation, and stordgkependency models and for
making these models available to other components.

The Dependency Model Managés the central component. It creates new depen-
dency model instances for each new SLA negotiated for a csitgpservice. It is also
responsible for adding information to dependency modets raaking model infor-
mation available to other components suclDapendency Modeleand Dependency
Evaluation TheDependency Model Validatiartomponent is responsible for validating
the dependency model with respect to the defined constiaidtshe respective SLAs.
An example is the validation of negotiated times which acavered based on the
workflow structure or modeled manually. Furthermore, \atiioh regarding more gen-
eral aspects is realized (e.g. each consumed resourcetnderigrovided by an entity).
The final dependency model instances are stored iDépendency Model Stare

3.2 Service Dependency Analysis

The analysis of dependencies is executed after creatingethice composition and
during the process of negotiating SLAs for the different/gess. It requires a process
description and SLAs in the offer state (i.e. containingegtl SLO values) as input.
Our implementation is based on BPMN (Business Process Muagsbtation) process
descriptions. BPMN represents a suitable means for magleliiness processes from a
business perspective at an abstract level. An alterngpipeoach would be the usage of
a BPEL (Business Process Execution Language) processomtBPEL is, however,
targeted at processes that are executed automatically hioth are realized by web

99

services. Processes involving mainly human or machine tasktypically not modeled

using BPEL. The dependency analysis functionality is itisted between components
supporting the automatic dependency discovery as well psrilency modeling. The

analysis process and the involved components are presearfeg 3.

The Analysis Managehandles the process of dependency discovery. It is initiate
by the composite service creator during the negotiation.@{sSwith the consumer of
the composite service as well as the atomic service prasidtenetrieves the workflow
description and SLA documents for the analysis and ingi#tte different steps of the
discovery. TheProcess Analysisomponent is responsible for decomposing the process
into linear paths leading from the start node all the way ®éhd node. These paths
are used for the discovery of dependencies. DBpendency Discovegomponent re-
alizes the different dependency discovery mechanismg iflstude all horizontal and
vertical dependency evaluation tasks as described irose2t2. The implementation is
based on the generated paths and SLA information. Whencibwiss a dependency it
requests th®ependency Model Managér add the respective information to the de-
pendency model. Once the information has been added to tHelnitois stored in the
Dependency Model StarErom there it can be accessed for further handling.

% Analvsi Process Dependency Service Dependency Dependen
"’ cnalss - - Model Model
Composite Manager Analysis Discovery R - Model Store
Service epositor: Manager
Creator I I

IanalyzeDepegc‘ancies(process) I

getPaths(prg:el;s)

I
I
I I
I I
pathList I I
I I

analyzeDepentIencies(path List)

I getSLAInformatjol
I | {«— — _ slainfo
storeDependencylhfo(dep)

I I | i
result €= ====— J.____rﬁuk [T<====—— 'I"-'ES'UH'T

T T I I I I

Fig. 3. Process and components for analysis of dependencies.

I
I
I
I
I
I
I
I
l
I
I

TheDependency Modelgrovides dependency modeling functionality for the com-
posite service creator. It enables the creation of new dsawéhe adaptation of existing
dependency models. It was realized as a graphical modere@iiie modeling process
is initiated by the composite service creator. As a first stegDependency Modeler
requests a dependency model from Bependency Model Managednce the model
is available, the composite service creator uses the gditinctionality to add, remove,
or modify dependency and service information in the depeagenodel.

100

3.3 Runtime Dependency Evaluation

The Runtime Dependency Evaluaticomponent is responsible for the evaluation of
dependency information at runtime. The occurrence of Sldlation information re-
quires the determination of effects of this violation onestkervices (atomic or com-
posite service). Requests for renegotiating an SLA neee &vhluated with regard to
effects on other services before accepting them.

The runtime evaluation of dependencies is initiated byl8E SLA Management
component calling th®ependency Evaluatioomponent which executes the evalu-
ation process. It requests the relevant dependency mameltireDependency Model
Managerand evaluates it. Since the runtime dependency evaluatioatiin the focus
of this paper we do not present more details about this.

3.4 Integration with Service Engineering Toolchain

The different dependency management components areatgeignto the ISE devel-
opment environment, a tool created for the modeling of ses:iThis enables proper
handling of dependencies for composite service providdréewnodeling their ser-
vices. Within the ISE development environment the depecylanalysis components
also have access to the necessary information for exedheéranalysis (i.e. the BPMN
process description and SLA information). Thependency Modeleool is also in-
tegrated into the ISE development environment. Ruatime Dependency Evaluation
component is integrated with thH6E SLA Managemerbmponents, which handle the
integration with theService Monitoringon the Tradable Service Runtim@SR) and
the SLA Manageion theService Management Platfor(8MP) respectively. The TSR
provides the service runtime infrastructure while the SMfiére service marketplace
functionality.

4 Evaluation

In the first part of the evaluation we discuss the performaridbe algorithms used
for the automatic discovery of dependencies. In the secamdvge present a set of
test cases to better illustrate the different steps of tipeddency analysis process. The
results of both parts are discussed in a third section.

The performance measurements and test case handling weretea using the
workflow of a composite healthcare service (see Fig. 4). Tdemario is based on a
healthcare workflow presented in [6]. In this scenario agmatundergoes several ex-
aminations at a healthcare center. The different exanoinatre executed by different
medical service providers. Further services include ttadyais of blood samples, cre-
ation of documentation, and transport of the patient.

4.1 Performance Considerations

As a first step we measured the times taken for the differshstaf the dependency
discovery approach for the healthcare service: path oe&b ms), horizontal (7 ms)

101

Determine Procurement Give
icati of b

Medical
Record
Creation

atient
Examination

IIL>

Create
Report

Check Follow-up
Patient Expert Patient %
}—»‘ }—» }—» Examination Treatment
[Transpon Examination [Transpon aminas Bureatmenty % O
Discharge
Patient

Examine
Blood

Patient
Admission

Patient Data
Collection

Fig. 4. Workflow of composite service - Stationary Patient Check-up

and vertical (2 ms) time dependencies, horizontal (3 ms)antical (25 ms) resource
dependencies. The results show that all tasks are execitteéd a/few milliseconds.
Furthermore, a number of measurements were made to testdlabidity of the
approach. We modeled 5 business process workflows (P1.fRHjeyent complexity
(number of nodes, number of splits and joins). We countedntireber of artifacts
created during dependency analysis and measured the timereéting relevant service
pairs. The results presented in Table 2 show that with irsingavorkflow complexity
the number of paths as well as duplicate time and resourcs jpaireases strongly.
Thus it is necessary to ensure that the further analysis io$ only executed for
pairs which have not been handled before. The results atse 8fat the discovery of
dependencies in relatively complex services is executégssmthan a second.

Table 2. Measurement results.

PL[P2 | P3| P4 | P5

Nodes 12| 31 | 36 | 55 | 87
Split/join 1/5 13/14 28/9 |17/32| 94/44
Created paths 21| 60 | 952 | 1933| 908

Duplicate time pairs 76| 102 | 7387 14554 5535
Non-duplicate time pairs |14| 32 | 45 | 74 | 91
Duplicate resource pairs |222| 139 3368(16556%20951

Non-duplicate resource pains57 | 103 | 422 | 679 | 916
Time to get time pairs (ms)|1.7| 2.0 | 78.7 | 289.7|293.8
Time to get resource pairs (M§)9| 2.1 |188.7|554.0/153.5

4.2 Test Casebased Evaluation

A number of test cases serve as the base for validating tferefit steps of the de-
pendency analysis process. Each test case is illustratadawirief example. For the
analysis of dependencies the service workflow (see Fig. d)SArA descriptions are
needed. Due to space limitations only excerpts of SLAs ofises relevant for the
presented examples are listed in Table 3.

TC1 - Path Creation: The composite service workflow is decomposed into linear
paths.Results:List of 10 paths reaching from the start to the end of the ssc&ne

102

example path is the followingPatient Admission - Patient Data Collection - Exam-
ine Blood - Check Examination Results - Follow-up Treatn@termination - Create
Report

Table 3. Sample SLA information.

Service I nput resour ces Output resour ces
Patient Admission - patient ID
Examine Blood patient ID, blood sampléaboratory test result
Create Report medical record examination report
Stationary Patient Check-up - examination report

TC2-Horizontal Time Dependencies. Pairs of directly connected services are created
along the paths. Duplicate pairs (e.g. gatlow-up Treatment Determination - Create
Reportoccurs in 5 paths) are removed. Time dependencies offtgjsh-to-startare
created for each paiResultsList of horizontal time dependencies. One horizontal time
dependency betwedtatient Data CollectiormandExamine Bloods shown in Table 4.

TC3 - Horizontal Resource Dependencies: All pairs of different services along the
paths are created. Duplicate pairs are removed. All pagsanealyzed with regard to
matching input and output resources. Information aboutiirgmd output resources
is taken from the negotiated SLAs (see Table 3). Resourcendigmcies are created
when matching resources are fouResultsList of horizontal resource dependencies.
One resource dependency between the seRatient AdmissioandExamine Bloods
shown in Table 4.

TC4 - Vertical Time Dependencies: Creation of vertical time dependencies between
the composite service and the firstdrt-to-star) and last {inish-to-finish atomic ser-
vices in the pathResultslist of vertical time dependencies. One vertical time depen
dency betweerstationary Patient Check-ugnd Patient Admissiofis shown in Table

4.

TC5 - Vertical Resource Dependencies. All atomic services along the paths are ana-
lyzed with regard to matching input and output resourceh e composite service.
Dependencies are created for matching resources if nodmakzdependency exists
regarding the matching resourc&esults:List of vertical resource dependencies. One
vertical resource dependency betwé&arate ReporaindStationary Patient Check-up
is shown in Table 4.

TC6 - Dependency Model Extension: Manual creation of a location dependency be-
tween thePatient Transporservice and th&xpert Examinatiorservice.Results:One
location dependency betwe®atient TransporandExpert Examinatiotisee Table 4).

4.3 Discussion

In this chapter we demonstrated the general feasibilithefipproach to create depen-
dency models. We first presented an overview about perfacenareasurements. One
result of the measurements was that with increasing coritplekthe workflows not

103

Table 4. Dependencies of healthcare process.

Antecedent - Dependant Dependency |Description

Patient Data Collection - Examirténe endTimefinish-to-startstartTime
Blood

Patient Admission - Examine Blogresource patient ID

Stationary Patient Check-up - Rame startTimestart-to-startstartTime
tient Admission

Create Report - Stationary Patigesource examination report

Check-up

Patient Transport - Expert Examirrhncation endLocatiorequalsstartLocation
tion

only the number of paths and relevant service pairs inctkdss that a proportionally

large amount of time would be necessary for handling dutdisarvices. Thus, they
need to be removed. However, we also showed that the timeesdagedanalyze rela-

tively complex processes is still less than a second, wHiotvato use the approach at
design time.

As a second part of the evaluation we applied different tases which demon-
strated the functioning of our approach. We showed a sangile greated during the
execution of the dependency discovery as well as a numbéffefeht dependencies.
In total this scenario produces 40 time and resource deperes which are discovered
automatically. Two more location dependencies can be neddél manual handling of
all these dependencies would be very time consuming andg@oe. In more complex
processes the number of dependencies will be much highé&hwénders a manual
handling of dependencies even more difficult. Our semi+aat process facilitates
this.

5 Reated Work

The handling of dependencies between services has beeasaddrfor a variety of
purposes including the automatic composition of servi@gsthe optimization of se-
guencing constraints of composite services ([8, 9]), raose and impact analysis ([10,
11]), and SLA management ([3, 12]).

Wu et al. [8] present an approach for modeling and optimiziveysynchroniza-
tion dependencies of activities in business processesnghsgnization model, which
contains dependency information, is used to support &tsdheduling in business
processes. In contrast to our approach automatic disca¥elgpendencies is not sup-
ported. In [9] the authors discuss control and data depearelein business processes
and argue that they form the base for sequencing constriairigsiness processes.
They present an approach for deriving control dependefimeas semantically anno-
tated business activities by evaluating their pre-coadgiand effects. Input and output
parameters of business activities form the base for datardkgmcies. This approach
differs from our approach in several ways: While our reseutependencies are similar
to the data dependencies of their work, we also support digpeiies regarding time,
location, QoS, and pricing information. Furthermore, tlagiproach is limited to depen-

104

dencies between atomic services while our work also supp@pendencies between
atomic and composite services.

Ensel and Keller [10] introduce an approach to handle depecids between man-
aged resources (e.g. web application server, databageatiogesystem) in a distributed
system. The goal is to support root cause as well as impabtsiséor service failure
situations. Dependencies are represented in a distribieigehdency model which cap-
tures the dependencies and attributes of these managedaeso-However, no work is
presented with regard to the discovery of service depene&rnthe MoDe4SLA [11]
approach supports the handling of response time and prjgendencies of composite
services on its atomic services. The goal of the system iggpat root-cause analysis
for problems caused by atomic services. The dependenaynatn is captured by a
modeling approach. The discovery of dependencies is n@isted.

The COSMA approach [3] supports the providers of compositgises to man-
age their SLAs. Dependencies between composite QoS vaheestamic ones are
expressed using aggregation formulas. The aggregationutas for the different QoS
values are automatically derived from the process deganipfurther constraints need
to be added manually or from configuration files. In contrasbur work, COSMA
focuses only on the relationship between composite sexaod atomic services, but
dependencies between atomic services are not handled n®&pey types such as re-
source, location, and time are not covered. However, ourcagh to QoS and price
dependency discovery is based on COSMA. Karnke et al. desari agent-based ap-
proach to managing SLAs in value chains [12]. The focus is bA Based resource
management in hierarchies of service level agreementsaA®pthe agent-driven ne-
gotiation process, dependencies between services arelemt However, no work
has been presented regarding the discovery of dependencies

6 Conclusions

The approach presented in this paper enables managemenvicEsdependencies. We
have shown that different types of dependencies can ocquatrallel within complex
service compositions representing business procesdss heen demonstrated that a
significant subset of these dependency types can be autathatxtracted from in-
formation provided by the process description and the SLégotiated between the
involved service providers and consumers. Based on therdift characteristics of ser-
vice dependencies specific algorithms have been identifiedutomatic dependency
discovery. These algorithms are embedded into the prodedspendency manage-
ment implemented by the presented architecture for depeydwndling, particularly
in the dependency analysis component. In the process theadea of service depen-
dencies at runtime is foreseen. The automatically diseadependencies are stored
in a dependency model and are made available for runtimendepey evaluation. The
presented performance measurements prove the appligabibur algorithms for de-
pendency discovery at runtime, since the processing tinie tise range of few sec-
onds even for complex processes of up to 100 services. Theass based evaluation
demonstrated the feasibility of our approach, illustrgine complexity of the depen-
dency discovery and showing created artifacts.

105

In the future we will consider additional types of dependesuvith respect to char-

acteristics, detection algorithms and modeling. Furttserease studies will be carried
out to prove the applicability and practical relevance af approach. Finally, the run-
time dependency evaluation will be implemented.

Acknowledgements

The project was funded by means of the German Federal MinistEconomy and
Technology under the promotional reference “01MQO07012ie Ruthors take the re-
sponsibility for the contents.

References

10.

11.

12.

. Winkler, M., Schill, A.: Towards dependency managemeaenservice compositions. In

Filipe, J., Marca, D.A., Shishkov, B., van Sinderen, M.,.etiSE-B 2009 - Proceedings of
the International Conference on e-Business, Milan, {&§09)

. Sell, C., Winkler, M., Springer, T., Schill, A.: Two depsncy modeling approaches for

business process adaptation. In Karagiannis, D., Jingd&.; Knowledge Science, Engineer-
ing and Management, Springer (11 2009)

. Ludwig, A., Franczyk, B.: Cosma—an approach for managiag in composite services. In

Bouguettaya, A., Krueger, |., Margaria, T., eds.: ICSOC&F2008)

. PMI: A Guide to the Project Management Body of Knowledg®lBOK Guide). 4 edn.

Project Management Institute (2008)

. Allen, J.F.: Maintaining knowledge about temporal imgds. Commun. ACM 26(11) (1983)

832-843

. Reichert, M., Bauer, T., Fries, T., Dadam, P.: Realisigriiexibler, unternehmensweiter

workflow-anwendungen mit adept. In Horster, P., ed.: PraektEonische Geschftsprozesse—
Grundlagen, Sicherheitsaspekte, Realisierungen, Anwegeh. (2001) 217-228

. Zhou, J., Pakkala, D., Perala, J., Niemela, E.: Deperndaware service oriented architec-

ture and service composition. In: IEEE International Cosfiee on Web Services. (2007)
1146-1149

. Wu, Q., Pu, C,, Sahai, A., Barga, R.: Categorization artanigation of synchronization

dependencies in business processes. In: Proceedings Bf2&# International Conference
on Data Engineering (ICDE’07). (2007) 306—315

. Zhou, Z., Bhiri, S., Hauswirth, M.: Control and Data De@encies in Business Processes

Based on Semantic Business Activities. In: Proceedingd\é$$2008, ACM (2008)

Ensel, C., Keller, A.: An approach for managing serviepahdencies with xml and the

resource description framework. Journal of Network andeys Management 10 (2002)
147-170

Bodenstaff, L., Wombacher, A., Reichert, M., JaegeC M.Monitoring Dependencies for

SLAs: The MoDe4SLA Approach. In: IEEE SCC (1). (2008) 21-29

Karaenke, P., Micsik, A., Kirn, S.: Adaptive sla manageinalong value chains for ser-
vice individualization. In: Proceedings First Internaiéd Symposium on Services Science
(ISSS’2009). (2009)

SOA APPLICATIONS - HOMECARE
AND EMERGENCY SUPPORT

Service Tailoring: Towards Personalized Homecare
Services

Mohammad Zarifi Eslami, Alireza Zarghami, Brahmananda Sapkota
and Marten van Sinderen

Information Systems Group, University of Twente, Enschede, The Netherlands
{m.zarifi, a.zarghami, b.sapkota,
m.j.vansinderen}@ewi.utwente.nl

Abstract. Health monitoring and healthcare provisioning for the elderly at
home have received increasingly attention. Since each elderly person is unique,
with a unique lifestyle, living environment and health condition, personalization
is an essential feature of homecare software services. Service tailoring, which is
creating a new service to meet individual requirements may be achieved in a
cost-effective and time-efficient manner if new services can be configured and
composed from already existing services. In this paper, we propose an effective
service tailoring process and architecture to personalize homecare services
according to the individual care-receiver’s needs. In addition, we present a
scenario to highlight the need for service tailoring and to demonstrate the
feasibility of the proposed approach.

1 Introduction

As computer networks are becoming widespread, the number of distributed services
available over networks grows rapidly [1]. However, these services are usually
designed for a general purpose, user or situation. In reality, different people have
different requirements, therefore they prefer personalized services. The requirements
for personalization reflect what the user wants, needs, and likes, all of which may
depend on the context at hand (for example, location, physical characteristics of the
environment, available resources, people nearby). Personalization also has an
evolutional aspect as requirements —demands, needs and preferences— of users change
over time. Services have to operate in a constantly evolving environment of people,
content, electronic devices, and legacy systems [2].

Thus, application functionality provided to users as services should (1) be aligned
with the uniqueness of each user's requirements, (2) evolve with changes in these
requirements, and (3) take the dynamic context of the user into account. Ideally this
would call for tailor-made services; however developing such services from scratch
would be economically and technically infeasible. A better approach would be to
reuse existing services, configure and compose them to satisfy the unique
requirements of each individual user. Service tailoring is a way of creating a new
service to satisfy the specific requirements of an individual user. Although service
tailoring is an essential feature in any application domain, we focus on homecare
application services. Tailorability has been studied extensively in the context of

110

specific technologies and applications [3-7], but those approaches are not suitable for
homecare domain as homecare services have their own specifications such as high
dynamicity of user’s requirements and low level of user's technical skills [8].

To support well-being, health monitoring and independent living, there is an
increasing tendency to provide homecare services for the elderly, especially in
developed countries [9-11]. Several technological challenges concerning homecare
applications have been previously studied, but our focus is to address the uniqueness
of each elderly person by applying the service tailoring approach. Current homecare
systems are generally stand-alone for treating specific diseases, assuming a ‘standard’
patient and in a static situation [8]. However, in reality each user is unique in the way
he or she experiences or is affected by a disease or disability. This is not only because
of each individual’s mental and physical condition, but also because of the social and
physical environment. Current automated homecare systems are often technology-
driven. They can be difficult to use by non-technical users and difficult to change or
adapt when new requirements arise. The key question therefore is: how can services
be tailored to the requirements of the users in this domain, namely, care-receivers and
caregivers?

In this paper, we propose a service tailoring approach for the homecare domain.
The proposed service tailoring approach allows creating a new homecare service
through composing and configuring existing services, based on the user’s specific
requirements. Also, earlier tailoring results can be incrementally changed through
subsequent applications of tailoring to match evolving user’s requirements.

In Section 2, we define a scenario to motivate service tailoring for homecare. We
then define a generic service tailoring process in Section 3. This process is 'generic' in
the sense that it is independent of the knowledge and skills of the person who does the
tailoring. A tailoring architecture for implementing the tailoring process is proposed
in Section 4. This architecture identifies the components of a possible service tailoring
platform. In Section 5, by using a tailoring example applicable to our scenario, we
show how the proposed service tailoring process and architecture aid in creating a
personalized homecare service. Finally, we conclude our paper and discuss possible
future work in Section 6.

2 Example Scenario

To highlight the need for tailored homecare services, we use the following scenario:

“Jan and Linda are 74 and 67 years old respectively. Despite their age and having
various medical conditions, they prefer to remain living in their own home. They need
to take certain medicines at certain times. However, they suffer from Alzheimer’s
disease and may not remember when to take which medicines and how much. In this
situation, a reminder service may help them remember the prescribed time and a
dispenser service may help to take the correct dosage of the right medicines. There
may be situations in which the reminder and dispenser services may not be sufficient
to ensure that Jan and Linda actually take their medicines. Jan, for example,
sometimes ignores the reminder and does not take his medicine because he is too
disoriented. In such situations, assistance or help from other (voluntary or
professional) people is necessary. An alarm service may help detect such situations

111

and trigger a request for external help. Moreover, Jan has a hearing problem and
uses a hearing aid, and Linda cannot see well and so she must use glasses.

During the morning, they have their breakfast and Jan reads the newspaper on the
screen while Linda listens to the radio through the multimedia system. (There are two
multimedia interactive systems, one in the kitchen and one in the living room. These
systems include TV, radio, reminder texts and news, which users select via a
touchscreen). Then, they visit a park close to their home and meet their friends. They
usually have their lunch in a nearby restaurant. They spend most of their evenings at
home; Jan watching TV and Linda reading books. During the weekend, their children
usually come to visit them and Jan and Linda have other things to do and so they have
a different schedule than weekdays one.

As this example scenario shows, Jan and Linda have individual requirements and
preferences, and even the same person has different requirements and preferences
depending on the current situation and time. For example, for the medicine reminder
service, during the morning they prefer to have the reminder on the screen in the
kitchen or from the radio. After breakfast, if they go out as usual, they prefer to
receive the reminder on their mobile phone, and in the evening, Jan prefers to receive
his reminder on TV while Linda wants to receive it through her wheelchair vibrator.
Therefore, the desired services have to deliver their functionalities in various ways in
response to changing requirements, preferences and circumstances.

3 Tailoring Process

For doing tailoring, we assume three distinct types of users depending on the
individual knowledge and skill sets they possess: care-receiver (elderly people),
caregiver (family doctor, nurse or relative), and service developer (someone proficient
with the service-tailoring facility and the underlying technologies). A care-receiver
has contextual knowledge about his or her own needs and physical environment, but
probably possesses little domain or technical knowledge. A caregiver has domain
knowledge about healthcare practices and procedures, but probably possesses little
contextual and technical knowledge. Finally, a service developer has technical
knowledge about service modeling and technology, but probably possesses little
contextual and domain knowledge. Therefore, although the proposed tailoring process
is common among the different types of users, they may need different interfaces (for
tailoring) and may have various authoritative roles (levels of tailoring). However,
actors may have distinct roles when they are interacting with the system: Jan, for
example, is a care-receiver, but because of his knowledge in IT may also take on the
role of service developer.

The tailoring process consists of six different steps. These steps are illustrated using
BPMN notation in Figure 1, with each step having a corresponding activity. We do
not show a data flow in the figure because we present the process focusing on
tailoring platform view, regardless of its interaction with the user.

Of these steps, Steps 2, 3 and 4 are further refined into multiple activities. These six
steps and their constituent sub-activities are explained below. To show the feasibility
of the process and to make it easier to follow, each step is exemplified in Section 5.

112

N

11
Select ’
O_’ Target Selgct Compose Conflgure F"resent the Rpproved?>—vess] Store‘the ﬂ
Services Services Services Final Service Service
User

Fig. 1. Service tailoring process in BPMN notation.

Step 1: Selecting the Target User

Our service tailoring process starts with specifying for who the service is being
created. The user data, such as age, their specific functional requirements and health
status, is stored in a user profile. When a target user is selected in this step, the data
stored in the corresponding user profile is used for tailoring the service in the other
steps to suggest the candidate services, with proper configuration, to the user. For
example, if Jan is chosen as a target user (care-receiver), the system knows that he has
a hearing problem and will not offer him any services that use sound.

Step 2: Selecting the Services

Originally, the web was designed for human-human communication, but later it also
become a machine understandable information space [12]. This is also true for web
services. The goal of designing web services was not only to interact with humans,
but also with other applications [13]. This means that data exchanged among services
carry semantics. So the semantics has been used to provide machine-understandable
information and enable services or frameworks to exploit machine-understandable
information to facilitate interoperability. The semantics help systems to automate
various aspects such as discovery, invocation and composition. Moreover, utilizing
semantic similarities among components and services improves adaptability in
selection. For adding semantics to our tailoring process, we exploit ontology. The
ontology aids the tailoring framework to understand user requirements and thereby
discover and suggest services which suit the best to these requirements.

Creating a new integrated service by a nontechnical user is a difficult task: the user
needs to know which existing individual services do what. To make the job easier for
the user, a goal-based method [14, 15] can be used. Goal-based methods have been
used in different areas of computer science to identify stakeholder’s objectives,
discover requirements for software systems and guide the system’s behavior. In
service-oriented computing goals can be used to express users’ requirements.

The second step includes five activities as shown in Figure 2:

Anales Analvzelloey Present Selection of Select Additional
O—> 4 —> Y —»] Candidate —»] Services (by || Services (by —>O
User Goals Preferences 4
Services User) System)

Fig. 2. Step 2: Selection of services.

113

In this step, first user specifies care-receiver’s goals (requirements and preferences).
The tailoring platform utilizes the goal ontology for homecare domain to analyze user
goals and preferences. The aim of using a goal ontology is to minimize possible
terminological heterogeneities due to autonomously created goals (user requirements)
and tasks (existing services). Besides a goal ontology, a task ontology is needed to
associate existing services with their support functions (tasks). Once a user asks for a
service (determine his or her requirements), the tailoring platform matches the user
goal (requirement) with the proper task existed in the task ontology. Then it tries to
find and select the services associated with that task and suggests it to the user.
Therefore, a goal based method can be used to help users in service requests. In this
manner the users have a way of expressing what they want at a higher abstraction
level.

As shown in Figure 3, the user goals are more objective and nonfunctional, which is
easier to be understood by a non-technical user. Whereas tasks are functional but not
concrete, and existing services are more concrete.

For Example:

Goals Take the medicine on time

Send the reminder to take the medicine
Task Enable medicine dispenser
Send alarm, medicine not taken

1..*
. Reminder.SendMedicineReminder
Existing Di Enabl
Serics ispenser.Enable N
Alarm.SendAlarmMedicineNotTaken

Fig. 3. How user goals wind up to the system services.

After identifying the user goals and preferences, for presenting the candidate
services, the service tailoring platform finds and suggests several suitable services. To
do so, the service tailoring platform utilizes a repository of services and a task
ontology which depicts functionalities provided by these services. Each goal in the
goal ontology is associated with a set of tasks in the task ontology. Therefore, after
identifying the goal, the tailoring platform finds the most suitable tasks and then
suggests relevant services to the user.

The tailoring platform also uses the recommendations besides the goal based method
to suggest certain services to the user. The recommendations, using other care-
receivers’ information to suggest certain existing services which are used by them, in
a similar context [16]. As an example, assume that Ben is another elderly person who
lives at his own home with similar requirements as Jan. They both use medicine
dispenser service. If Ben uses an alarm service with the medicine dispenser, the
tailoring platform of Ben recommends the use of alarm service to Jan’s tailoring

114

platform through the network of homecare applications. Then the alarm service will
be recommended in the service selection step. However, services in homecare must be
selected carefully; any recommendation must be confirmed by an authorized user as
will be explained in Step 5.

Later, for selecting services, the caregiver selects his desired services from the set of
services suggested in the previous step by the tailoring platform. In this way, the user
selects explicitly desired services. However, the tailoring platform may also select
additional services because of service dependencies. Some services may need or
recommend other services’ functionalities to work, as a precondition. This means that
—based on user-selected services— the system adds or removes certain other relevant
services. For the second part, we use the service bundling techniques [17, 18]. In a
service bundle, dependencies between services are utilized to help a user to select and
discover services automatically and without the user intervention.

Step 3: Composing the Services

The third step includes five activities as shown in Figure 4:

Analyze Analyze User Present Selection of a Modifying the :

O—> —>] —»] Candidate —»] Composition |—» Composition
User Goals Preferences r
Composition (by User) (by User)

Fig. 4. Step 3: Composing of services.

In this step, the tailoring platform composes the chosen services to satisfy the user
requested requirements. This composition is done based on the given user goals and
stored preferences in the user profile. Then this composite service(s) will be presented
to the user through our tailoring platform. Predefined service compositions, stored in
the Composition repository by the service developer. To suggest the proper
composition, we can exploit the Event-Condition-Action (ECA) rules. An ECA rule
has the general syntax on event, if condition, do actions. The event part specifies
when the rule should be triggered, which, in our case, can be the user goals. The
condition part specifies the conditions of this event, which, in our case, can be again
the user goals or preferences (configuration of services). The action part states the
actions to be performed automatically if the condition holds. In our case, this action
can be the suggested composition to the user. Therefore, ECA rules can be expressed
as conditions for decision making and can be used for configuration of services or
composition [1, 19].

After presenting the suggested compositions, the user should select one of them. The
user can also edit the desired composition, for example, changing the candidate
services in the composition or their order in the suggested composition. To allow user
to edit the composition, we use a mashup-like technique [20, 21]. Unlike developer-
centric composition techniques, mashup provides a user-friendly graphical approach
to compose services and applications.

Step 4: Configuring the Services
In general, to configure the services two different methods can be used: rule based

115

and learning user behavior. The rule based method is necessary because it may not be
possible to derive rules for new users or applications from user behavior. On the other
hand, learning user behavior by learning user preferences (in different contexts) from
history information is also necessary. It might be difficult to define a generic rule that
is applicable to every user. Therefore, learning the user behavior can be used to
update the predefined rules. We use both methods in our process.

The fourth step includes four activities as shown in Figure 5:
Analyze Analyze User Present Default Configuring Services _0
O_' User Goals Preferences Configuration (by User)

Fig. 5. Step 4: Configuring the services.

Us:er Tailoring platform
|

—__User specify for whom the service is.

|

i

i

. i Step 1
Ask for User Requlremenls_//*‘ ; P

i i

I I

User Ask a Service by Entering the Requirements; !

I I

I

Choosing Some Services Regarding User Requirements and Preferences
| i

Required Services
/

|
Suggested Services i 1
1 Step 2
|
I
|
|

I
— !
User Selected Services |
I
|
I

|
I
I
|
I
P
I
i
i
I
I
|
I
I
|
I
I
|
I
I
|
I
!
I
I
i
| Select Additional Services based on User Selected Services
If not |
Approved,

Do These

Steps Again

I
|
|
} Requested and Required Services_ !
]

|
I
|
|
I
i
1 Composition Suggestion
| |

I
| |
Selection of a Composite Service and Composite Refinement

Step 3

)
..
)

|
Services with Default Configuration Based on User Preferences and Goals
|

|
I
Configuration Refinement !
I
|

Present the Final Service_———

Step 5

|

/ |
I
I
l
I

| | Store Tailored Service Description

I I

| M Step 6

I

|

Fig. 6. Sequence diagram of the service tailoring process.

The services selected in the previous step are presented to the user based on the
default configuration derived from user preferences as indicated in the service profile
and user goals. However, the user is also allowed to (re)configure the basic services

116

to specify his or her current preferences and needs. To configure the services, user can
use a configuration interface.

Step 5: Presenting the Final Service

In this step, the final newly created service will be presented to the user. After this
step, the user confirms whether the service meets his or her requirements. If the user
does not approve any of the suggested compositions, the process returns to Step 2.

Step 6: Storing the Service

Finally, once the user has approved the suggested service, the description of this
newly created service will be stored for later use. Also, user preferences in the user
profile may change because of configuration of the services by the user.

The sequence diagram shown in Figure 6 summarizes our discussion about the service
tailoring process. It shows the interaction between the ‘user’ and the ‘tailoring
platform’. Although the ‘Service repository’ is a part of tailoring platform, because of
its importance we presented it separately from the tailoring platform in Figure 6.

4 Tailoring Architecture

To support the tailoring process described in Section 3, we identify the required
components and propose a tailoring architecture for homecare services. The tailoring
architecture, as presented in Figure 7, has three categories of components:
TailoringManager, Repositories and Modifiers. These components and their
relationships are described separately in the remainder of this section.

‘ Service Repository User Service
| (description) Profiles || Profiles
[
\

Composition Goal Task ‘ Configuration || Composition || Recommendation !
repository Ontology || Ontology ‘ Editor Editor Engine }
| Repositories | Weehis J

TailoringManager

4

A4
’ Service Bus ‘

ﬁ Tailoring API/User Interface "

User

Fig. 7. Service tailoring architecture.

117

- TailoringManager. This component is responsible for receiving and resolving
the user requests by utilizing goal and task ontology, suggesting existing services
to the user by utilizing service repository, making initial configuration of services
by utilizing user profile and service profiles, suggesting composition by utilizing
composition repository, and storing the final services in the service repository.

- Repositories:

Service Repository. The service repository is a repository of existing
services which stores detailed information (for example, in the form of
WSDL) about several patient-neutral homecare services.

User Profile. This component stores user information. It has two parts: static
part which keeps the static information of user such as name and gender, and
dynamic part which keeps the evolving information of the user such as user
specific requirements.

Service Profile. This component stores the default configuration of the
services.

Composition Repository. This is the repository of processes which keeps
different composition of services.

Goal Ontology. The Goal ontology is used for helping users to specify their
desired goals.

Task Ontology. The tasks are supported functionalities of existing services
which are defined in the Task ontology. In the Task ontology, each
functionality offered by of a service is associated to one or more tasks (e.g.,
reminding, alarming, etc.). The service developer defines these goals and
tasks ontology.

- Modifiers:

Configuration Editor. This component supports the user (caregiver or
service developer) in defining and alerting the service configurations. These
configurations can be stored in the service profiles repository.

Composition Editor. This component support user (caregiver or service
developer) to define processes. These processes are stored in the composition
repository.

Recommendation Engine. This component recommends services to the
users (caregiver or service developer) in service selection and composition
steps. To do so, we assume all the instances of our homecare systems are
registered in a central server and they can make inquiry about the services
which are used by each of these instances anonymously. Assuming the
central server, enables all of these recommendation engines to maintain a list
of similar anonymous users and their utilized services, by exploiting the
information preserved in the user and service profiles.

5 Run through Example

In this section, we show the support provided by the proposed tailoring process and
architecture for meeting the requirements derived from the example scenario

118

presented in Section 2.

“Assume that Jan is prescribed to take certain medicines at certain times. Nancy, his
caregiver, wants to create a service to assist Jan in taking his medicine at right
times.”

We follow the service tailoring process step by step to see how Nancy creates the
desired service for Jan:

Step 1: Nancy, by choosing Jan’s profile, specifies through the tailoring interface that
a new service to be created is for Jan. By receiving this information, the tailoring
platform looks at Jan’s profile and finds his specific requirements and preferences, for
example, Jan has a hearing problem and will not be able to use any services or devices
which utilize sound as a means to convey messages to him.

Step 2: As shown in Figure 8, Nancy sends a request to the tailoring platform for a
service which can help Jan to take his medicine at right times. For this purpose, she
chooses a goal among the ones listed by the system and presented in the screen. Next,
she chooses sub-goals to refine or finally define her goal. For example, from the goals
list, she chooses reminder, and then from the new sub-goals’ list she chooses
reminder for medicine. The tailoring platform, after receiving and analyzing this
request and considering the fact that Jan can not use sound related services, suggests a
list of services to Nancy. She chooses a reminder service which will send a reminder
to Jan such that he will not forget the prescribed time to take a medicine. Further, she
selects a dispenser service which will release right medicines such that Jan can take
the right amount of the right medicines. After selecting the reminder and dispenser
services by Nancy, the tailoring platform adds alarm service as an additional service
to the user selected services. As reminder and dispenser services are bundled with the
alarm service, which helps to detect hazard situations (in this case ignoring the
reminder and not taking the medicines) and to trigger a request for help.

Analyze User Analyze User Presenting Candidate Selection of Select Additional
Goals Preferences Services Services (by User) Services (by System)
Remind Take No.Semvies List of Services Reminder & Alarm Service is
O—> the Medicine [—»} Use Sound Suggested as Dispenser Services |—»] Added to Services 40
on Time Candidates Selected by Nancy by System

Fig. 8. Step2: Selection of services for the example.

Step 3: As shown in Figure 9, the tailoring platform returns a set of possible
compositions, based on user goals and preferences. For example, because Jan prefers
to have reminder three times, the composition will change in such a way that the
reminder service sends the reminder three times. The tailoring platform proposes
different compositions such as P1 and P2, because all these compositions can satisfy
user’s requirements and preferences. This means that the composite service P1 first
sends a reminder message to Jan and then enables the dispenser to let him take the
medicine, whereas the composite service P2 first enables the dispenser and then sends
the reminder message to Jan. Then, Nancy chooses P2 as a one of the possible
compositions. After choosing P2, she may want to modify it, for example, because the
medicine is pain Killer and ignoring of taking it by Jan is not a hazard situation, so

119

Nancy removes the alarm service from the P2.

Analyze User Analyze User Presenting Candidate Selection of a Modifying the

Goals Preferences Composition Composition (by User) Composition (by User)
Remind Remind 3 Times, P1
Take the Each Time Wait 30 .
O_’ Medicine on [”|Seconds, No Audio| | i 1 2] 22 _’O
Time Device

Fig. 9. Step 3: Composing the services for the example.

Step 4: As shown in Figure 10, the tailoring platform returns three selected services
with default configuration to Nancy. These default configurations are done based on
the user goals and preferences. For example, Jan prefers a reminder to him be
repeated three times, allow 5 minutes for him to react, deliver this reminder as text
and deliver it on the TV. So the default configuration for the reminder will be to send
the output to the URI of TV and repeat each 5 minutes if the user does not respond.
Then Nancy adds other configurations, such as reminding Jan to take the medicines
from 10™ May to 30" June 2010, everyday at 10 AM & 8 PM. She can also edit the
default configuration. She changes, for example, the repeating time of the reminder
from 5 to 10 minutes.

Analyze User Analyze User Presenting Default Configuring Services
Goals Preferences Configuration (by User)
Remind Remind 3 Times, Reminder: Reminder:
O_’ Take the N Each Time Wait |, OonTV N At 10 AM & 8 PM Everyday, 10" _o
Medicine 30 Seconds, No - 5 minutes Repetition May till 30" June 2010
on Time Audio Device Time out - 10 minutes Repetition Time out

Fig. 10. Step 4: Configuration of services for the example.

Step 5 and 6: The tailoring platform presents the final tailored service to Nancy, and
if she approves it the description of the service will be stored. The default
configuration of the reminder service also will be changed, from 5 to 10 minutes
repetition time out. If Nancy does not approve the final service from any of suggested
compositions, the process returns to the Step 2 till Nancy approves the tailored
service.

6 Conclusions and Outlook

Since every care-receiver is unique, personalization is one of the main concerns of
homecare services. To achieve this, a service tailoring approach for homecare, with a
corresponding process and supporting architecture, is proposed. Our service tailoring
approach assumes the availability of basic care-related services which can be used as
building blocks in the tailoring process.

The service tailoring process defines the flow of actions involving the user of the
service tailoring platform to define a personalized homecare service for a
care- receiver. Although we show the feasibility of the proposed service tailoring
process, it is not claimed to be the only or most ideal solution for achieving service
tailoring. In this paper, we describe a process and architecture for achieving
personalized homecare services but further investigation is required to:

120

AcC

Thi

e Developing a ‘generic’ Service Tailoring Process. The service tailoring
process is 'generic' in the sense that it is independent of the knowledge and
skills of the user of the service tailoring platform. We foresee that the service
tailoring platform should offer different interfaces to optimally support
different types of users. Moreover, the service tailoring process should be
tested to identify whether the service tailoring process has the right
‘genericity’, and can be extended and specialized for different user types.

e Decreasing Privacy Risks of Recommendations. Our service tailoring
process may use recommendations from care-receivers. However, one of the
main drawbacks of recommendations is privacy risks. To protect the privacy
of care-receivers, distributed recommendation methods such as exploiting
peer-to-peer networks would be interesting as our future work [22].

knowledgements

s work is part of the IOP GenCom U-Care project (http://ucare.ewi.utwente.nl)

which is sponsored by the Dutch Ministry of Economic Affairs under contract
IGC0816.

Re

10.

ferences

Fujii, K. and T. Suda, Semantics-based context-aware dynamic service composition. ACM
Trans. Autonom. Adapt. Syst., 2009. 4(2): 1-31.

Di Nitto, E., et al., A journey to highly dynamic, self-adaptive service-based applications.
Automated Software Engineering, 2008. 15(3-4): 313-341.

Gehlert, A., et al., Towards Goal-Driven Self Optimisation of Service Based Applications,
in 1st European Conf. on Towards a Service-Based Internet. 2008, Springer-Verlag. pp. 13-
24.

Hielscher, J., et al., A Framework for Proactive Self-adaptation of Service-Based
Applications Based on Online Testing, in 1st European Conf. on Towards a Service-Based
Internet. 2008, Springer-Verlag. pp. 122-133.

Choi, O. and S. Han, Personalization of Rule-based Web Services. Sensors, 2008. 8(4):
2424-2435.

Kumanayaka, O. and N. Ranasinghe, Ontology based Web Service Personalization, in Intl.
Conf. on Information and Automation, ICIA. . 2006. pp. 69-74.

Kazhamiakin, R., et al., Having Services "YourWay!": Towards User-Centric Composition
of Mobile Services, in First Future Internet Symp., FIS. 2009, Springer-Verlag. pp. 94-106.
Zarifi Eslami, M. and M. Van Sinderen. Flexible home care automation: adapting to the
personal and evolving needs and situations of the patient. in 3rd Intl. Conf. on Pervasive
Computing Technologies for Healthcare, PervasiveHealth. . 2009. London, UK. pp. 1-2.
Korhonen, 1., J. Parkka, and M. Van Gils, Health monitoring in the home of the future.
Engineering in Medicine and Biology Magazine, IEEE, 2003. 22(3): 66-73.

White, C.C.,, et al. Improving Healthcare Quality through Distributed Diagnosis and Home
Healthcare. in 1st Transdisciplinary Conf. on Distributed Diagnosis and Home Healthcare,
D2H2. . 2006. pp. 168-172.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

121

Kim, Y.-J., et al., Hallym Jikimi 3rd system: web-based monitoring for u-health care
service, in 4th Intl. Conf. on Persuasive Technology. 2009, ACM. pp. 1-5.

Berners-Lee, T., Semantic Web Roadmap. 1998. Available at:
http://www.w3.org/Designlssues/Semantic.html.

Papazoglou, M.P. and D. Georgakopoulos, Introduction. Communications of the ACM,
Special section: Service-oriented computing 2003. 46(10): 24-28.

Kangkang, Z., L. Qingzhong, and S. Qi. A Goal-driven Approach of Service Composition
for Pervasive Computing. in 1st Intl. Symp. on Pervasive Computing and Applications.
2006. pp. 593-598.

da Silva Santos, L.O.B., et al. Towards a Goal-Based Service Framework for Dynamic
Service Discovery and Composition. in Information Technology: Sixth Intl. Conf. on New
Generations ITNG '09. 2009. pp. 302-307.

Manikrao, U.S. and T.V. Prabhakar, Dynamic Selection of Web Services with
Recommendation System, in Intl. Conf. on Next Generation Web Services Practices. 2005,
IEEE Computer Society. 5 pp.

Gordijn, J., S. de Kinderen, and R. Wieringa. Value-driven Service Matching. in 16th IEEE
Intl.Conf. on Requirements Engineering, RE '08.. 2008. pp. 67-70.

Jun, H., et al., Personalized Active Service Spaces for End-User Service Composition, in
IEEE Intl. Conf. on Services Computing, SCC '06. 2006. pp. 198-205.

Wang, F. and K.J. Turner, Towards personalised home care systems, in 1st intl. conf. on
Pervasive Technologies Related to Assistive Environments. 2008, ACM. pp. 1-7.

Xuanzhe, L., et al., Towards Service Composition Based on Mashup, in IEEE Congress on
Services. 2007. pp. 332-339.

Nan, Z. and M.B. Rosson, What's in a mashup? And why? Studying the perceptions of
web-active end users, in IEEE Symp. on Visual Languages and Human-Centric Computing,
VL/HCC 2008. pp. 31-38.

Schafer, J.B., et al., Collaborative filtering recommender systems, in The adaptive web:
methods and strategies of web personalization. 2007, Springer-Verlag. pp. 291-324.

Enabling Publish / Subscribe with Cots Web Services
across Heterogeneous Networks

Espen Skjervold, Trude Hafsge, Frank T. Johnsen and Ketil Lund

Norwegian Defence Research Establishment, Instituttveien 20, 2007 Kjeller, Norway
{Espen.Skjervold, Trude.Hafsoe, Frank-Trethan.Johnsen,
Ketil.Lund}@Ffi.no

Abstract. In scenarios such as search-and-rescue operations, it may be required
to transmit information across multiple, heterogeneous networks, often expe-
riencing unreliable connections and limited bandwidths. Typically, there will
be traffic within and across radio networks, as well as back to a central infra-
structure (e.g., a police command post) when a reach-back link is available.
This implies that using Publish/Subscribe is advantageous in order to reduce
network traffic, and that store-and-forward capabilities are required to handle
the instability of radio networks. At the same time, it is desirable to use com-
mercial software based on standards as far as possible, in order to reduce cost
and development time, and to ease interconnection of systems from different
organizations. We therefore propose using SOA based on Web services in such
scenarios. Indeed, Web services are targeted at stable, high-speed networks, but
our work shows that such usage is feasible. In this paper, we add Pub-
lish/Subscribe functionality to standard, unmodified Web services through the
use of our prototype middleware solution called the Delay and Disruption Tole-
rant SOAP Proxy (DSProxy). In addition to the ability to make Web services
delay and disruption tolerant, the DSProxy enables SOAs in scenarios as de-
scribed above. The DSProxy has been tested in field trials, with promising re-
sults.

1 Introduction

Commercial off-the-shelf (COTS) Web services are generally based on Re-
quest/Response (client-server) mechanisms [5]. However, many systems, environ-
ments, and situations could benefit from using the Publish/Subscribe paradigm in-
stead, which is characterized by scalability, decoupled communication peers and
asynchronous communication. In particular, Publish/Subscribe is essential to support
mobile ad-hoc networks (MANETS), i.e., dynamic collections of nodes with rapidly
changing multi-hop topologies that are composed of wireless links [7].

In search-and-rescue operations, it may be required to transmit information be-
tween many or all participants, and this can require traversing multiple heterogeneous
networks. In order to enable different organizations running systems developed by
different vendors to interoperate, it is crucial to base such communications on open
and widely accepted standards. Considering the ubiquity of standard Web services
and the usefulness of Publish/Subscribe, bringing the two together would provide

123

important benefits, as organizations and enterprises can leverage the power
of Publish/ Subscribe mechanisms with their existing Web services and clients.

Web services technology is mostly associated with the traditional client-server
paradigm. As pointed out by (Vinoski, 2004), this scheme is generally much less
efficient than push-based communication such as Publish/subscribe, and with OASIS’
WS-Notification and W3C’s WS-Eventing, the Publish/Subscribe paradigm has
entered the Web service arena.

WS-Natification is a standard organized in a group of specifications that enable
Publish/Subscribe-based communication between Web services. It comprises WS-
BaseNotification, ~WS-BrokeredNotification and WS-Topics. While WS-
BaseNotification defines which interfaces consumers (clients) and producers (servers)
should expose, WS-BrokeredNotification introduces the concept of a message broker,
an intermediary node which decouples consumers and publishers, and relieves
producers from several tasks associated with Publish/Subscribe. WS-Eventing
basically defines functionality similar to WS-BaseNotification, but with the addition
of the Subscription Manager role, which enables subscription-related tasks to be
handled by other nodes than the producer.

While WS-Notification and WS-Eventing offers standards-based
Publish/Subscribe using Web services, they require the introduction of supporting
frameworks, and new Web services and Web service clients that adhere to the
standards must be developed. Standard Web service clients normally create outbound
connections to Web services using HTTP and TCP, and since they typically do not
run inside application servers, they have no way of listening for incoming
connections. Similarly, ordinary Web services typically do not initiate outbound
connections, and must be replaced by Publish/Subscribe-capable Web services.
Furthermore, while we expect industry support for WS-Notification and WS-
Eventing to mature in the future, it currently seems not to be a large selection of
supported commercialized implementations available. Finally, it should also be noted
that when services based on WS-Notification or WS-Eventing send notifications to
subscribers, they do so by setting up an individual point-to-point connection to each
subscriber. This means that these mechanisms have an untapped potential for
efficiency improvement with respect to network traffic.

We have addressed these challenges using a middleware approach. Our primary
goals have been 1) to enable Publish/Subscribe for existing standard Web services
and clients without having to rewrite any software; and 2) to enable such
Publish/Subscribe Web services to traverse multiple heterogeneous networks.

The result is a lightweight, prototype middleware system, called the Delay and
Disruption Tolerant SOAP Proxy (DSProxy), which is able to meet the challenges
described above. The DSProxys form an overlay network, which hides network
heterogeneity and instability from the Web services and the clients. Between the
DSProxys, optimizations such as data compression are used to reduce overhead, and
several different transport-protocols are available, for handling different types of
networks.

Externally, the DSProxy middleware solution is compatible with standard Web
services by employing communication based on SOAP over HTTP/TCP. This means
that existing Web services can be used together with the DSProxy overlay network

124

entirely without modification, while clients only need to replace the URL that
addresses the services.

This solution also means that the DSProxy overlay network can be deployed only

where needed; it is not an all-or-nothing solution that must be deployed
everywhere. Typically, a DSProxy overlay network will be deployed within a
MANET and between the MANET and a fixed network, while it is not needed
internally in the fixed network. Clients in the fixed network will still be able to
invoke services in the MANET and vice versa.

The remainder of this paper is structured as follows: In Section 2 we present
related work, before describing the design and principles of the DSProxy in Section
3. We then present the configuration and results from a large field trial where the
DSProxy was tested in Section 4, before concluding in Section 5.

2 Related Work

Publish/Subscribe systems have been around for a long time, and one of the earliest
publicly described Publish/Subscribe systems was reportedly the “news” system of
the Isis Toolkit, described at the 1987 ACM Symposium on Operating Systems Prin-
ciples conference [2]. There exist many systems that support Publish/Subscribe-based
information dissemination, ranging from open-source projects to commercial Enter-
prise Service Buses (ESBs). Some of the most well known middleware systems are
Apache ActiveMQ, OMG Corba Event Service and Notification Service, I1BM
WebSphere MQ, and Real-Time Innovations (RTI). In ActiveMQ, the Pub-
lish/Subscribe functionality is built on top of Java Messaging Queues (JMSs). RTI is
based on DDS, which is an open middleware specification for enabling Pub-
lish/Subscribe communications in real-time and embedded systems. While JMS-based
solutions are message-centric, DDS and RTI differ by being data-centric, and in addi-
tion to topics offer keys which uniquely identifies objects. While offering Pub-
lish/Subscribe, these solutions all require developers to create custom applications
utilizing the provided APIs.

The work by [1] points out that a scalable and efficient approach for achieving
event dissemination in Publish/Subscribe systems is to employ an overlay network of
brokers. In their work, they attempt to reorganize the overlay to reduce overhead
associated with event dissemination. They point out that an alternative way to achieve
efficient event dissemination is to use smart dissemination algorithms that avoid
flooding events on the overlay, but they do not implement this. Also, their solution,
named SIENA, is based on a proprietary, experimental Publish/Subscribe system. In
our work, we do not want frequent overlay reconfiguration if we can avoid it, due to
the overhead associated with management traffic. Thus, we use the complementary
approach of smart dissemination algorithms. Further, we base our implementation on
open Web services standards rather than a proprietary API, making our solution usa-
ble for a broader range of client applications and services. Another distinction from
the work of [1] is that while SIENA is a content based Publish/Subscribe system,
Web service Publish/Subscribe specifications adhere to a topic based scheme.

125

[4] have created a distributed event notification system (DENS) for MANETS.
They developed a fuzzy logic based subscription language allowing expressive sub-
scriptions and sophisticated event filtering. DENS is delay tolerant, an important
feature in dynamic environments such as MANETS, and it builds an overlay, which
performs store-and-forward of event messages. This solution is implemented and
evaluated in a network emulator. The solution is shown to function well, proving that
building a store-and-forward overlay for event notification in a MANET is both feas-
ible and efficient. In our work we leverage this knowledge, by making the DSProxy
system create an overlay network for event notification in MANETSs. However, we
also introduce the capability of configuring static routes for some nodes in our over-
lay, thus allowing dynamic MANETS to connect to WANS through reach-back links.
Again, it is important to notice that while DENS is a proprietary research protocol, we
leverage the open Web services standards, maintaining compatibility with existing
clients and services.

[7] argue that the Publish/Subscribe paradigm can be used effectively to facilitate
coordination of mobile users, for example, in a disaster recovery application: Rescu-
ers equipped with networked devices (e.g., PDAS) can publish information, and other
members can selectively subscribe to the information they need to perform their tasks.
The authors argue that scalability is an essential condition of the Publish/Subscribe
system, and propose a Publish/Subscribe system suitable for large MANETS. They
combine document flooding and content-based routing techniques in a hierarchical
manner, and evaluate their solution in a simulator. Our work is similar to this, in that
we address and solve the same problem of creating a scalable Publish/Subscribe solu-
tion for MANETS. However, in order to stay interoperable with existing software we
have based our solution on topic-based routing and open Web service standards.

[5] argue that Web services and Publish/Subscribe-based schemes up until now
mostly have been considered separately, and that it is not clear that a possible unifica-
tion will adhere to any overarching, pre-planned approach. To address this situation
they developed a theoretical and conceptual framework extending current Web ser-
vice programming models and describing the necessary underlying middleware.
While the implementation of such middleware was beyond the scope of their paper,
an infrastructure based on collaborating brokers was outlined. In this respect, our
work is similar to this, in that we employ an overlay network where DSProxy in-
stances take on broker responsibilities. [5] emphasizes the importance of exerting as
small an impact as possible on the existing Web services programming models. How-
ever, as our middleware solution aims to leverage the power of Publish/Subscribe
schemes with existing Web services and clients, it requires no extensions to existing
Web service programming models.

PUSMAN [3] is a middleware system for topic-based Publish/Subscribe in MA-
NETSs. It uses a collection of brokers to forward advertisements and subscription
information. By detecting mobility through monitoring, PUSMAN will reconfigure
its overlay to ensure a high delivery success ratio. The work done here is orthogonal
to our own; we aim to ensure delivery through the use of a store-and-forward me-
chanism, which could potentially be improved by combining it with the reconfigura-
tion approach used in PUSMAN.

126

3 The DSProxy

The DSProxy system [6] is our prototype middleware solution developed in Java. It is
a novel, lightweight and cross-platform system with pluggable components. The core
DSProxy features include providing store-and-forward capability to SOAP messages,
utilizing compression of SOAP and XML and facilitating the traversal of multiple
heterogeneous networks. At the same time, it remains compliant with unmodified
COTS Web services and clients. By placing one or more DSProxys between a Web
service and a Web service consumer, store-and-forward functionality is introduced
into the network, which provides increased robustness in dynamic, heterogeneous
networks and MANETSs. The DSProxy instances self-organize into an overlay net-
work using an internal service discovery mechanism based on UDP multicast (or it
can be statically configured where UDP multicast is unavailable). For more details on
how the overlay network is built and organized, we refer to [6].

Once organized into an overlay network, DSProxys exchange information about
advertised services and the number of hops required to get there. The overlay network
allows for smart routing of Web service requests at the application level, but utilizes
the underlying routing protocol for IP routing.

3.1 DSProxy Core Features

Figure 1 displays a simple network layout comprising two separate networks and
three physical nodes; the client machine, a gateway machine, and the server. The
gateway node is equipped with two network adapters providing a physical data link to
each network. A standard Web service client and a Web service run on the client
machine and the server respectively, and a DSProxy instance is running on the
gateway machine, effectively bridging the two different networks together. This
enables communication between these two networks even if no IP-level routing is
available. Additionally, DSProxy instances run on both the client machine and on the
server. When the client wishes to invoke the Web service residing in the other
network, instead of initiating an end-to-end connection directly to the server, it sends
the SOAP invocation request to its local DSProxy instance, which relays the request
to the gateway DSProxy, and so on.

l'1-! d
—

COTS Client
wDSProxy

i

Web service
w/DSProx

Mabile ad hoc network Fhobie ad ot meloork
Figure 1: A simple network layout showing two discrete networks bridged with a DSProxy,
adding store-and-forward capability to a standard Web service.

The only difference between a direct invocation of a Web service method and an
invocation of the same Web service method through the DSProxy overlay network is

127

the URL used to address the service. The original URL is replaced with a URL in the
following form:

http://127.0.0.1:7000/?uniqueServiceName=weatherService

The 127.0.0.1-address indicates that the Web service client is relaying the
invocation request through a DSProxy instance running on the same physical
machine, and the uniqueServiceName-parameter instructs the DSProxy overlay
network to route the invocation request to the DSProxy instance responsible for
invoking the Web service (typically the DSProxy running on the server hosting the
service). The TCP-connection between the Web service client and the first DSProxy
is kept open until the DSProxys return the response data.

All three DSProxys are part of the same overlay network, and by monitoring their
environments, all DSProxys know their neighboring DSProxys, and where to route a
request in order to invoke a particular service. Upon receiving a service invocation
request, the gateway DSProxy then relays it to the server DSProxy. Finally, the server
DSProxy, knowing it is within reach of the actual Web service, invokes the service,
and returns the response data using source routing (back-tracking the invocation
route).

While based on ordinary Request/Response-principles, this deployment offers two
important benefits: First, store-and-forward capabilities are introduced into the
network. This means that if any of the data links become unavailable, the DSProxy
closest to the broken link will store the invocation message and retry the transmission
at regular intervals. It can also choose another route to the destination if available. If,
for instance, the link from the client (e.g., a search-and-rescue agent, part of a
MANET) into the network breaks down, the DSProxy instance running locally on the
client machine will cache the request, and thereby provide store-and-forward
capability from the very first hop and on into the network. Note that running a
DSProxy local to the client is not required, but it is usually advantageous, as
described above.

Second, the DSProxys eliminate the requirement of initiating an end-to-end
connection between the client and the server. In order to stay interoperable and
standards-compliant with COTS Web services, HTTP and TCP are utilized between
the client and the first DSProxy and between the last DSProxy and the Web service,
while any transport protocol may be used between DSProxy instances. The latter can
be of great importance when operating in highly dynamic MANETS, where changing
topologies and unreliable data links may require other protocols than connection-
oriented TCP.

As long as DSProxy instances are running locally on both the client machine and
the server, TCP-connections can always be used for the first and last hop (intra-
machine), no matter what kind of networks and data links that connect them.

3.2 DSProxy and Publish/Subscribe

The first development iteration of the DSProxy focused on enabling heterogeneous
network traversal and bringing robustness to Web services through store-and-forward
capabilities. In the second iteration we focus on bringing together standard Web ser-
vices and the Publish/Subscribe paradigm.

128

Figure 2 illustrates how, by utilizing two DSProxys, one can enable
Publish/Subscribe operation with COTS Web service clients and services. By
deploying a DSProxy instance on the same physical machine as the Web service, the
DSProxy can perform frequent, continuous polling of the Web service, without
adding any traffic load to the network. This intra-machine polling enables the
DSProxy

Continual polling

Client Node Server Node

COTSWS
Client DSProxy =i = —— DSProxy COTSWS
Service
L]
~ /
7

e ~
= ' ==

Event-driven notifications

Figure 2: Two DSProxy instances enabling a COTS Web service and client to perform in a
Publish/Subscribe fashion.

to discover updated information almost instantly, and the DSProxy may then notify
anyone interested in the information, in this case, the DSProxy instance running on
the client machine. The server DSProxy will create a hash over the Web service
response data, and compare it to the previous response data hash, to determine
whether the response is identical (and thereby already been pushed to subscribers) or
not.

On the client machine, the same approach is used; the Web service client is
instructed to poll the DSProxy instance (sending normal Web service requests)
running on the same physical machine continuously. This circumvents the inability of
Web service clients to accept incoming connections, and enables the client to receive
information almost instantly by polling the DSProxy frequently. By utilizing this
polling mechanism on both the client machine and on the server, only the machines’
internal buses are burdened, and no additional traffic enters the network. Only when
the server DSProxy discovers new, updated information is the network utilized, and
the information is pushed from the server DSProxy to the client DSProxy, with the
former initiating a connection to the latter. These mechanisms enable regular Web
services and clients developed with COTS Web service software to communicate in a
Publish/Subscribe-based fashion, and will be referred to as the DSProxy native
Publish/Subscribe scheme. The practical minimum Publish/Subscribe-enabling setup
requires only two instances, preferably deployed on the client and server machines to
achieve intra-machine polling. However, it will often be beneficial to deploy multiple
DSProxy instances into a network, as this will increase robustness through multiple
store-and-forward points and alternative routes between client and service. As with
all inter-DSProxy communication, any transport protocol may be used for sending the
notifications, depending on the underlying network class and characteristics.

The server DSProxy can be configured to poll different Web services at different
intervals, depending on the nature of the service, the latency requirements, and the
resource constraints. For an instant messaging service, one would typically require

129

low latencies and frequent polling, and the DSProxy might poll the Web service
every second, in order to facilitate fast message exchange. For a weather forecasting
service on the other hand, the latency requirements may be substantially lower, and a
polling frequency of 5 minutes might suffice.

3.3 DSProxy and Subscriptions

In order to subscribe to a Request/Response-based Web service, the client needs to
inform the overlay network about this. If we compare the subscription request to a
regular invocation of the same Web service, the subscription is set up simply by
doing a small modification of the URL used for the regular service invocation.

Using the example from Section 3.1, assume that the Web service client wants to
subscribe to the weather service, i.e., receive new forecasts as they become available,
instead of having to poll the service at regular intervals using Request/Response.
Although the service itself is unaware of the Publish/Subscribe concept, the DSProx-
ys allow the client to set up a subscription by just slightly modifying the URL de-
scribed in Section 3.1:
http://127.0.0.1:7000/?uniqueServiceName=weatherService&pubSub=true
Here, the extra parameter pubSub=true instructs the DSProxy overlay network to
handle this as a DSProxy native Publish/Subscribe subscription. The first DSProxy
will then determine whether the requesting client is already subscribing to the Web
service method. If not, it will create a subscription and store it locally. Next, it will
forward the request to the next DSProxy instance in the network (one hop closer to
the service), and this DSProxy will perform the same check. If this DSProxy is the
one responsible for invoking the actual service, it will do so, and start the server
DSProxy polling cycle explained earlier. This polling will continue as long as one or
more subscribers are active, meaning they have subscribed to, and not yet unsub-
scribed from, the service.

When a Web service client wishes to unsubscribe from the service, it simply rep-
laces the pubSub=true-parameter with the pubSub=unsubscribe-parameter, which
causes all involved DSProxys to delete the subscription. On the server DSProxy, if
the unsubscribe-request results in no subscribers any longer being active, the polling
cycle for the specified Web service method ends.

The DSProxy native Publish/Subscribe mechanism enables Publish/Subscribe to
be used with standard, COTS Web services and clients. However, as implementations
of WS-Notification and WS-Eventing continue to mature, and become more plentiful
and widespread, we anticipate benefits of being able to interoperate with such clients
and services as well. Therefore, when using a WS-Eventing client together with the
DSProxy overlay network, it becomes part of the Publish/Subscribe-tree by sending a
WS-Eventing compliant subscription message using a URL on the following form:
http://127.0.0.1/?uniqueServiceName=weatherService&pubSub=wseSubscribe
By giving the pubSub-parameter the value wseSubscribe, the DSProxy overlay net-
work is instructed to interpret the subscription message accordingly. This will create
one subscription that covers all requests for the same combination of service, filter
dialect and filter expression (i.e., a new request for the same combination will not be
forwarded, since the subscription is already established). Before forwarding the re-

130

quest to the next DSProxy in the network, the sending proxy will modify the WS-
Eventing subscription message. Specifically, it alters fields such as NotifyTo, to en-
sure the actual WS-Eventing service sends its notification through the DSProxy over-
lay network (addressing the last DSProxy instance in the chain).

While Figure 2 presents a simple, conceptual Publish/Subscribe network layout, larg-
er, more complex Publish/Subscribe-trees can be created. Figure 3 shows such a tree,
presenting a hierarchical Publish/Subscribe structure. As shown, subscribers to a
DSProxy can be both Web service clients and other DSProxys. Such a tree optimizes
the flow of information, and can reduce bandwidth requirements in situations where
many clients are interested in the same information. When DSProxy C retrieves up-
dated information from the Web service (by polling), it will actively notify DSProxy
A and B, and make the same information available for Client 4, allowing it to retrieve
the information during its next polling cycle. Subsequently, DSProxys A and B will
make the information available for their clients, ensuring that all subscribing clients
eventually retrieve the new information. DSProxy C will not delete its subscription to
the Web service and end the polling cycle until DSProxy A, DSProxy B and Client 4
have all unsubscribed to the service.

-

Client 1

= DSProxy A
-
a J/
L
— Web s sem(e
Client 2 7{;!2
J
"

DSProxy B

Chent 4
Client 2

Figure 3: A Publish/Subscribe-tree comprising three DSProxys in a dynamic hierarchical
structure.

In highly dynamic MANETs with frequently changing topologies, such a
Publish/Subscribe-tree is susceptible to failures, as nodes re-arrange, become
unavailable, and disappear without warning. However, the DSProxy
Publish/Subscribe-mechanisms are built on top of the overlay network, which is self-
organizing, and able to adjust to changing environments. When a DSProxy notices
that it has not received any notifications within a configurable period of time, it will
resend the original subscription-request to the DSProxy now reporting to be the one
closest to the Web service. This may or may not be the same DSProxy that it
originally subscribed to. If it is not, the aforementioned chain of events will start
again, ending in an active subscription and an initiated polling cycle at the DSProxy
now closest to the actual Web service. If it is still the same DSProxy, it may simply
be the case that no new notifications have been produced, and it will merely ensure
that the subscription is still active.

131

4 Results and Discussion

In order to verify the DSProxy functionality and capabilities, the solution was tested
in a series of field trials, with promising results. The DSProxy middleware solution
was used for providing store-and-forward capability within a MANET, as well as for
bridging it with a separate, static network. As shown in Figure 4, the MANET
comprised 3 mobile nodes (deployed in vehicles) and a stationary gateway node, all
running IP-based radios. The gateway ran two radios of different types back-to-back,
offering physical data links to each network (one radio link effectively functioning as
a reach-back link to the static network). Running DSProxys, the static network
operators were able to subscribe to services offered by the mobile nodes located in
the MANET, such as imaging services and position services. The static network
operators would continuously have updated GPS-positions pushed to them from the
vehicles, allowing them to track and visualize the positions of the vehicles on a map
as they moved.

o
Client
node

| =7

= h
Static gateway JGateway
node

Static network Moblle ad hoc network

Figure 4: The field trial setup, showing a gateway node running a DSProxy, bridging the
MANET and the static network.

When the vehicle operators spotted interesting events, they would take pictures of
the events and publish these onto the network. The operators on the static network
would then be notified and receive the pictures almost instantly. Given this
configuration, with the information having to traverse two bridged, heterogeneous
networks and 4 nodes, we experienced typical latencies of 3-5 seconds, from the time
that the information was published to it was displayed on the client side. Due to
frequent disruption of the radio links, the store-and-forward capability of the
DSProxys was demonstrated: As DSProxys running in the MANET attempted to push
images to the DSProxy running in the static network, a disruption of a radio link
would cause the DSProxys to cache the notifications locally. When the link became
available again, the notifications would be re-sent, successfully delivering the pictures
to the static network and hiding the erroneous events from the clients and the end
users.

This Publish/Subscribe-based interoperation was made possible by utilizing the
DSProxy system, and enabled the static network nodes to have information pushed
from our regular, non-Publish/Subscribe Web services. It should be noted that such
interoperation using the DSProxy native Publish/Subscribe mechanisms does require
small modifications to be made to the otherwise regular Web service clients. As with
all communication going through the DSProxy overlay network, the URL to the end
Web service must be modified, as described in Section 3.1 and 3.3. This information
is usually embedded in human readable configuration files (e.g., in locally cached
WSDL-files), and do not require recompiling the client application.

132

In addition, if DSProxy native Publish/Subscribe is to be used, the client must be
modified to engage in the polling cycle described earlier. This typically involves
wrapping the request-statement within the code in a loop structure. Finally, clients
must handle null-responses, which occur when the client-side DSProxy being polled
do not offer any new notifications. The two latter modifications are usually quick and
easy to implement and do not include touching the actual business logic, but they do
require the client to be recompiled.

The Web services on the other hand, require no modifications. Still,
considerations should be made when selecting which Web services to
Publish/Subscribe-enable through the DSProxy overlay network. As a DSProxy
determines whether or not the information is updated based on the hash produced,
constantly changing information will produce ever changing hashes, thus, also a
constant flow of notifications. For instance, responses that contain fine-grained time-
stamps would always produce new notifications, even though the information may
otherwise be unchanged.

Although the intra-machine polling mechanism utilized by DSProxys to retrieve
updated information from COTS Web services does not generate any network traffic,
it does require server resources such as CPU and memory. While a typical Web
service invocation only requires a small amount of resources, it may ultimately limit
the number of Web service methods and the polling frequency that can be used. In
order to establish this limit, an experiment was conducted using a setup similar to the
one presented in Figure 1, with one client machine and one server machine, both
running one DSProxy instance. Simple “Hello world”-like services were developed
using C# and ASP.NET 3.5, which returned strings consisting of 100 random
characters for each invocation. This made the services produce new responses for
every invocation, which in turn lead to notifications being produced for every poll, in
order to produce a “worst-case” scenario.

The services were deployed inside a Microsoft Internet Information Services (11S)
5.1 Web Server instance running on the server. The server machine was equipped
with an Intel Pentium 4 dual core 2.6 GHz CPU, 1 GB RAM running MS Windows
XP Pro SP3. A standard Web service client application capable of invoking the
services in the normal Request/Response-fashion were developed using .NET 3.5.

The client application ran on the client machine, and by modifying the Web
service invocation URL, the invocation requests were relayed through the two
DSProxy instances and delivered to the Web service. The URL was also modified to
instruct the DSProxy overlay network to initiate Publish/Subscribe, and the server
DSProxy would start one polling-cycle for each service subscribed to (running as
parallel threads). Because the client application ran on a separate machine, all CPU
load on the server was associated with the server DSProxy repeatedly polling the
services and notifying the client DSProxy (in addition to some load associated with
the actual Web services and the I1S).

The server DSProxy was configured to poll each service once every second, and
the number of services subscribed to could be controlled from the client application.

The CPU utilizations were measured using MS PerfMon, and averages were
monitored for 60 seconds during each run. Figure 5 shows the varying average CPU
loads when subscribing to 5, 10, 15 and 20 Web services. As seen from the graph, the
performance scaled close to linearly, ranging from 0.755 % to 4.469 % CPU

133

utilization. Even when 20 different services were subscribed to and polled every
second, creating and sending 20 new notifications every second, less than 5% of the
available CPU-cycles were utilized on average.

An extrapolation of this data indicates that the current setup could theoretically
handle subscribing to nearly 450 services, polling each of them and producing

Polling cycle performance

50%
4.5%
40%
= 35%
B 0% //
; 25% /
= 20%
O 15% ——CPU load (%)
1,0%
0,5%
00%
5 10 15 20
Services

Figure 5: The graph shows CPU utilization for a given number of services being polled every
second.

notifications once every second. However, the Web Server Software places
limitations on the number of possible concurrent Web service invocations. Also, more
complex services requiring CPU-intensive calculations or 10-operations would
reduce the performance, dividing the available CPU cycles between tasks associated
with Publish/Subscribe and the actual work being performed by the services. On the
other hand, most production servers would greatly surpass our test-server
performance-wise. In addition, for many services, a considerably lower polling
frequency will suffice.

It is important to note that, because the server DSProxy does the actual invocation
of the service, the polling frequency is constant, regardless of the number of
subscribers per service. This means that in a scenario with many subscribers to a
service, the polling frequency may be considerably lower than if each individual
client were to poll the service using Request/Response. In fully distributed
environments, participants may function as both clients and servers by exposing their
own services. The hardware hosting such services may be limited devices such as
PDAs, and this should be taken into account when configuring polling cycle
frequencies.

While standards-based interoperation with COTS Web services using DSProxy
native Publish/Subscribe requires minimal modifications to the Web service clients,
using WS-Eventing-based Publish/Subscribe in the DSProxy requires no
modifications to any software. By placing DSProxy instances between WS-Eventing-
based clients and services in dynamic MANETSs, added robustness is achieved
through store-and-forward capabilities. Additionally, network performance gains are
achieved when multiple WS-Eventing clients are interested in the same information,
in other words subscribing to the same services using the same filter dialects and
expressions. Instead of the WS-Eventing service and the DSProxys having to send the
same information to each of the clients directly, as is the case for regular WS-
Eventing and WS-Notification, the information is sent to one or a few subscribing
DSProxys. Since the overlay network effectively constitutes a multicast tree, less
traffic is relayed through central parts of the network. Client-specific data, such as the

134

ReferenceProperties-field, are stored and added to the notifications at the DSProxy
instances closest to each client.

5 Conclusions and Future Work

Through a series of field trials, the functionality and capabilities of the DSProxy were
tested, demonstrating its usefulness in heterogeneous and error-prone networks and
showing potential for typical search-and-rescue scenarios. By utilizing the lightweight
DSProxy system in both MANETSs and static networks, regular Web services can
leverage the power offered by the Publish/Subscribe paradigm, requiring only minor
modifications to be made to the Web service clients. The practical minimum setup for
achieving this would only require two DSProxy instances to be deployed into the
network, preferably as close to the client and the service as possible.

Experiments have shown that the DSProxy polling cycles consume relatively low
amounts of resources, and together with the fact that the invocation frequency is
independent of the number of clients, this means that a server can potentially handle a
large number of services and clients. As we expect implementations of WS-
Notification and WS-Eventing to mature and become more plentiful and widespread
in the future, the DSProxy system supports WS-Eventing, with support for WS-
Notification currently under development. The DSProxy WS-Eventing-based
Publish/Subscribe mechanisms allow bandwidth-optimized routing of information,
requiring no modifications to clients or services. Both modes benefit from the store-
and-forward capabilities provided by the DSProxys, facilitating Web service based
Publish/Subscribe in MANETs and other unreliable networks. Additionally, both
modes of Publish/Subscribe can be used with Web services across multiple
heterogeneous networks.

Future work includes compliancy with the WS-Notification standard and
additional schemes for optimizing maintenance of Publish/Subscribe-trees. Also, a
UDP multicast-based notification capability is under development, which is expected
to further reduce traffic loads in radio networks where multiple clients and DSProxys
subscribe to the same information.

References

1. Baldoni, R., Beraldi, R., Querzoni, L., and Virgillito, A., 2007, Efficient Publish/Subscribe
through a Self-Organizing Broker Overlay and its Application to SIENA, The Computer
Journal, volume 50, num. 4, Oxford University Press, pp 444—4509.

2. Birman, K., and Joseph, T., 1987, Exploiting virtual synchrony in distributed systems,
SIGOPS Oper. Syst. Rev. 21, 5, pp 123-138.

3. Denko, M. K., 2006. Pusman: Publish-subscribe middleware for ad hoc networks, IEEE
CCECE/CCGEI, Ottawa.

4. Lekova, A., Skjelsvik, K.S., Plagemann, T., and Goebel, V., 2007, Fuzzy Logic-Based
Approximate Event Notification in Sparse MANETS, Proceedings of the 21st International
Conference on Advanced Information Networking and Applications Workshops - Volume
02, pp 296-301.

135

Silva-Lepe, I, Ward, M. J.,, and Curbera, F., 2006, Integrating Web services and
Messaging, IEEE International Conference on Web services, Chicago, USA, pp 111-118.
Skjervold, E., Hafsge, T., Johnsen, F.T., and Lund, K., 2009. Delay and Disruption
Tolerant Web services for Heterogeneous networks. IEEE MILCOM, Boston, MA, USA.
Vinoski, S., 2004, Web services Notifications. IEEE Internet Computing, vol. 8, no. 2,
pp 86-90.

Yooa, S., Sonb, J.H., and Kima, M.H., 2009, A scalable Publish/Subscribe system for large
mobile ad hoc networks, Journal of Systems and Software, Volume 82, Issue 7, pp 1152-1162.

Author Index

Astudillo, H. 52
Barkaoui, K. 80
Becerra, C. 52
Eckert, J. 42
Eslami, M. 109
Franch, X. 52
Hafsge, T. 122
Hofman, W. 3
Johnsen, F. 122
Khadka, R. 67
Lampe, U. 42
Li, Y. ... 16
Lund, K. 122
Missaoui, A. 80
Riccobene, E. 29
Sapkota, B. 67, 109
Shal, Z. 80
Scandurra, P. 29
Schill, A. 93
Schuller, D. 42
Shiu, Y. 16
Sinderen, M. 109
Skjervold, E. 122
Springer, T. 93
Steinmetz, R. 42
Trigos, E. 93
Winkler, M. 93

Zarghami, A. 109

137

Proceedings of ACT4SOC 2010

4" International Workshop on

Architectures, Concepts and Technologies for Service Oriented Computing
ISBN: 978-989-8425-20-1

http://www.icsoft.org

	ACT4SOC 2010

	Front Cover
	Introduction
	Copyright
	Foreword
	Workshop Chairs
	Program Committee
	Additional Reviewers

	Table of Contents
	SOA Applications - Logistics and Online Advertising
	Enterprise Interoperability Ontology for SOC applied to Logistics
	A Diffusion Mechanism for Online Advertising Service Over Social Media

	Design and Analysis of Service-oriented Systems
	Specifying Formal executable Behavioral Models for Structural Models of Service-oriented Components
	Optimizing Service Selection for Probabilistic QoS Attributes
	From i* Models to Service Oriented Architecture Models

	Web Services Composition
	An Evaluation of Dynamic Web Service Composition Approaches
	Model Checking Verification of Web Services Composition
	Semi-automatic Dependency Model Creation based on Process Descriptions and SLAs

	SOA Applications - Homecare and Emergency Support
	Service Tailoring: Towards Personalized Homecare Services
	Enabling Publish / Subscribe with Cots Web Services across Heterogeneous Networks

	Author Index

	Back Cover

