
 1

Crosscutting, what is and what is not?:
A Formal definition based on a Crosscutting Pattern

Technical Report TR28/07. University of Extremadura

José María Conejero
Quercus SEG,

University of Extremadura,
Avda. de la Universidad s/n,

10071, Cáceres, Spain
chemacm@unex.es

Juan Hernández
Quercus SEG,

University of Extremadura,
Avda. de la Universidad s/n,

10071, Cáceres, Spain
juanher@unex.es

Elena Jurado
University of Extremadura,

Avda. de la Universidad
s/n,

10071, Cáceres, Spain
elenajur@unex.es

Klaas van den Berg
Software Engineering Group

University of Twente,
P.O. Box 217, 7500 AE

Enschede, the Netherlands
k.g.vandenberg@ewi.utwente.nl

ABSTRACT
Crosscutting is usually described in terms of scattering and tangling. However, the distinction between
these concepts is vague, which could lead to ambiguous statements. Sometimes, precise definitions are
required, e.g. for the formal identification of crosscutting concerns. We propose a conceptual framework
for formalizing these concepts based on a crosscutting pattern that shows the mapping between elements
at two levels, e.g. concerns and representations of concerns. The definitions of the concepts are
formalized in terms of linear algebra, and visualized with matrices and matrix operations. In this way,
crosscutting can be clearly distinguished from scattering and tangling. Using linear algebra, we
demonstrate that our definition generalizes other definitions of crosscutting as described by Masuhara &
Kiczales [21] and Tonella and Ceccato [28]. The framework can be applied across several refinement
levels assuring traceability of crosscutting concerns. Usability of the framework is illustrated by means
of applying it to several areas such as change impact analysis, identification of crosscutting at early
phases of software development and in the area of model driven software development.

Keywords
Aspect-Oriented Software Development, Scattering, Tangling, Crosscutting, Crosscutting Concerns
1. INTRODUCTION
One of the key principles in Aspect-Oriented Software Development (AOSD) is Separation of Concerns
(SOC) [12]. A concern can be defined very generally as an item in an engineering process about which it
cares [9]. Related with this principle is the problem of crosscutting concerns. Crosscutting is usually
described in terms of scattering and tangling, e.g. crosscutting is the scattering and tangling of concerns
arising due to poor support for their modularization. However, the distinction between these concepts is
vague, sometimes leading to ambiguous statements and confusion, as stated in [16]:
 .. the term "crosscutting concerns" is often misused in two ways: To talk about a single concern, and to
talk about concerns rather than representations of concerns. Consider "synchronization is a
crosscutting concern": we don't know that synchronization is crosscutting unless we know what it
crosscuts. And there may be representations of the concerns involved that are not crosscutting.
The goal of this paper is to propose a conceptual framework where consistent and precise definitions of
scattering, tangling and crosscutting are provided. A precise definition of crosscutting is mandatory for
the identification of crosscutting concerns at any phase of the software life cycle. The focus is not on
specific examples although they should fit in this general framework. The description of crosscutting
presented here is similar to other definitions of Masuhara & Kiczales [21] and of Tonella and Ceccato

 2

[28] [8]. A formal comparison of these definitions and ours is shown. We demonstrate that our definition
generalizes the aforementioned ones.
Furthermore we show the applicability of our conceptual framework for the identification and
traceability of crosscutting concerns across software development phases. Usability of the framework is
also shown in other areas such as the definition of an aspect oriented metrics suite. We show how the
framework allows the representation of existing metrics defined in [25] and [10] and how to extend such
metrics with new ones.
The paper is structured as follows. In Section 2, we introduce our formal definition of crosscutting,
tangling and scattering based on the crosscutting pattern and compare it with other definitions. In
Section 3, we describe how to represent and visualize crosscutting by means of dependence graphs and
matrices. We show some matrix operations designed to identify crosscutting and some real examples
where we distinguish between scattering, tangling and crosscutting. In Section 4, we discuss the
cascading of crosscutting patterns which can be used for traceability analysis. In Section 5 we show how
to use the framework to assess the degree of crosscutting in a system. Finally in Sections 6 and 7, we
present related work and conclusions of the paper.
2. DEFINITIONS OF CROSSCUTTING
In this section we focus on our formal definition of crosscutting based on a crosscutting pattern. Other
definitions have been presented in the literature such as [21] and [28] [8]. A formal comparison of
definitions is shown at the end of section.
2.1 Definition based on Crosscutting Pattern
In this section, we first introduce an intuitive notion of crosscutting, which will be generalized in a
crosscutting pattern. Based on this pattern, we provide precise definitions of scattering, tangling and
crosscutting and their relation.
For example, assume we have three concerns shown as elements of a source in Figure 1, and four
requirements (e.g. viewpoints or use cases) shown as elements of a target.
This picture is consistent with the quotation in the Introduction. Intuitively, we could say that s1
crosscuts s3 for the given relation between source and target elements. In this figure, we only show two
abstraction levels. Multiple intermediate levels between source and target may exist. In the following
section, we generalize this intuition by means of a crosscutting pattern. Furthermore, we focus on
definitions of crosscutting, tangling and scattering.

s1 s2

t1 t2

s3

t3 t4

source

target

s1 s2

t1 t2

s3

t3 t4

source

target

Figure 1. Trace relations between source and target elements

2.1.1 Crosscutting pattern
Our proposition is that crosscutting can only be defined in terms of 'one thing' with respect to 'another
thing'. Accordingly and from a mathematical point of view, what this means is that we have two
domains related to each other through a mapping. We use here the general terms source and target (as in
[22]) to denote these two domains and the trace relationship is the mapping relating these domains
(Figure 2).

 3

Figure 2. Crosscutting pattern

We use the term of Crosscutting Pattern to denote the situation where source and target are related to
each other through trace dependencies. We use the term pattern as in design patterns [14], in the sense
of being a general description of frequently encountered situations [21], [28]. In the Crosscutting
Pattern, the mappings between source and target elements are captured in trace dependency
relationships. In Figure 3, we show a model of these relationships. Ramesh and Jarke [23] show a more
detailed model about traceability where these and other more specific relations are explained. The UML
2.0 specification [27] also covers such relationships. In [18] the authors show other taxonomy of
traceability relationships. The model shown in Figure 3 is based on the previous ones covering some
important trace relationships of interest for crosscutting identification.
As shown in Figure 3 we focus just on the following types of trace relationships: refinement,
elaboration, evolution and representation. These relationships may be applied to different domains
where we can find them. For example:
- Refinement. In software development we usually find refinements between different abstraction

levels. For instance, the first abstraction could refer to the concerns a system must deal with and the
second one to the software artifacts which address such concerns (this could be extended to any
phase in software development). As another example, the Model Driven Architecture (MDA) [22]
provides a way to build software based on different refinements or transformations between models
or artifacts belonging to different abstraction levels (e.g. Computational Independent Model (CIM),
Platform Independent Model (PIM) and Platform Specific Model (PSM)).

- Elaboration. We can find relationships between models of the same abstraction level. In such
situations, we elaborate or add some extra information to a model in order to get a new model. For
instance at requirements level we can elaborate a use case based on a previous one.

- Representation. In requirements engineering it is very common to have different representations of
the same user needs. For instance, we can represent the requirements as statements extracted from a
requirements elicitation document and we can also represent such requirements as viewpoints or use
cases. We can link both kinds of representation by means of trace relationships.

- Evolution. With this type of dependencies we can relate gradual changes of software artifacts over
time (as in adaptive maintenance). The <<evolves-to>> relationship exists between modified
(structural and/or behavioral) elements in artifacts.

 4

Figure 3. Traceability relationships model

In Table 1 we show some situations where crosscutting pattern can be applied. As we can see in this
table, in the third column we show the different traceability types which can exist between source and
target. These trace relations types belong to the simple model of traceability shown in Figure 3.

Table 1. Some examples of source and target domains
Examples Source Trace Relationship Target

Ex. 1 Concerns are REFINED to Requirements
Statements

Ex. 2 Concerns are REFINED to Use Cases

Ex. 3 Concerns are REFINED to Design Modules

Ex. 4 Use Cases are REFINED to Architectural
Components

Ex. 5 Use Cases are REFINED to Design Modules

Ex. 6 PIM artifacts are REFINED TO PSM artifacts

Ex. 7
Requirements

Statements
are REPRESENTED

in Viewpoints

Ex. 8 PIM artifacts are ELABORATED in PIM artifacts

2.1.2 Concepts based on Crosscutting Pattern
As we can see in Figure 2 and 3 there is a multivalued function from source elements to target elements.
f’: S ⎯→⎯ T such that if f’(s) = {t} then there exists a trace relation between s and t.
Analogously, we can define another multi-valued function g’ that can be considered as the inverse of f’.
g’: T ⎯→⎯ S such that if g’(t) = {s} then there exists a trace relation between s and t.
If f’ is not a surjection, we can consider that T is the range of f’, then g’ is always a well-defined multi-
valued function.
Obviously, f’’ and g’ can be also represented as single-value functions considering that their codomains
are the set of non-empty subsets of Target and Source respectively.
Let f: Source ⎯→⎯ c (Target) and g: Target ⎯→⎯ c (Source) be these functions defined by:
∀ s є Source, f(s) = {t є Target / there exists a trace relation between s and t}
∀ t є Target, g(t) = {s є Source / there exists a trace relation between s and t}
The concepts of scattering, tangling and crosscutting are defined as specific cases of these functions.
Scattering occurs when, in a mapping between source and target, a source element is related to multiple
target elements.

 5

Definition 1.[Scattering] We say that an element s є Source is scattered if card(f(s)) > 1.
Tangling occurs when a target element is related to multiple source elements. In this case, we have
focused on function g, i.e. the relation between target and source elements.
Definition 2.[Tangling] We say that an element t є Target is tangled if card(g(t))> 1.
There is a specific combination of scattering and tangling which we call crosscutting. Crosscutting
occurs when a source element is scattered over various target elements and at least one of these target
elements is tangled.
Definition 3.[Crosscutting] Let s1, s2 є Source, s1 ≠ s2, we say that s1 crosscuts s2 (s1 cc s2) if

a) card(f(s1)) > 1
b) ∃ t є f(s1): s2 є g (t)

We do not require that the second source element (s2) is scattered. In that sense, our definition is not
symmetric as definition in [21] (see Section 2.2).
In following paragraphs, we say that the definition 3 is the BCH-definition (Berg, Conejero and
Hernández) of crosscutting.
From the previous definitions, we can follow a result that avoids the use of g. So, we work only with
function f.

Lemma 1. Let s1, s2 є Source, s1 ≠ s2, then

s1 crosscuts s2 if and only if card(f(s1)) > 1 and f(s1)∩ f(s2) ≠∅.
Proof.

∅≠∩∧>⇔
∩∈∃∧>⇔
∈∈∃∧>⇔
∈∈∃∧>⇔

)2()1(1))1((
)2()1(1))1((

)2(:)1(1))1((
)(2:)1(1))1((

21

sfsfsfcard
sfsftsfcard

sftsftsfcard
tgssftsfcard

scrosscutss

�

2.2 Definition by Masuhara and Kiczales
In [21] the authors provide a very interesting model for defining how four different AOP mechanisms
support modular implementation of crosscutting concerns. These mechanisms are based on a common
framework which allows the authors to define what makes a technique aspect-oriented.
In addition, the authors also provide an interesting definition of crosscutting which can be compared
with the concepts presented in previous section. The notion of crosscutting provided in [21] is focused
on programming level, and it is based on two source languages A and B (one of them being aspect-
oriented) and a target one called X (resulting of the weaving process of A and B). The authors take as
input two different programs pA and pB written in A and B respectively. Then they define the term
projection as follows: “for a module mA (from pA), we say that the projections of mA into X is the set of
join points identified by the AID elements within mA”. AID refers to the means in A for identifying the
join points in X (in object-oriented languages methods and field signatures). For more details see [21].
The authors use the canonical figures-display example [17] in the poincut-and-advice mechanisms to
show these concepts in AspectJ (see Figure 4).

 6

Figure 4. The Point class and the display updating advice crosscut each other in result

domain X [23]
Then crosscutting is defined as follows: For a pair of modules mA and mB we say that mA crosscuts mB
with respect to X [the result domain] if and only if their projections onto X intersect, and neither of the
projections is a subset of the other. According to this definition crosscutting is a symmetric property.
We prove in following paragraphs that Masuhara and Kiczales definition of crosscutting (MK-
definition) is a particular case of the definition 3 presented in previous subsection.
Let assume that

 Source = {mA : mA is a module of program pA}∪ {mB : mB is a module of program pB}

 Target = {join points of X}
 f: Source ⎯→⎯ c (Target) defined by f(s) is the projection of s onto X

This definition of f is independent of the fact that s will be a module of pA or a module of pB.

Thus, we can prove that any crosscutting situation detected by Masuhara and Kiczales in the context
defined in [21] can be also detected with our definition.
Theorem 1. If there is a crosscutting situation using the MK-definition then there is also crosscutting
using BCH-definition.
Proof. If there is a crosscutting situation using the MK-definition then there is a pair of modules mA and
mB such that:

1. f(mA)∩ f(mB) ≠∅
2. f(mA) ⊄ f(mB)
3. f(mB) ⊄ f(mA)

Obviously card(f(mA)) > 1.
If card(f(mA) ≤ 1, as f(mA)∩ f(mB) ≠∅ then f(mA) ⊂ f(mB) and it is not true. Thus, card(f(mA) > 1
Analogously, card(f(mB) > 1.
Applying lemma 1, we have that mA crosscut mB according definition 3. �
Theorem 1 shows that MK-definition can be seen as a particular case of BCH-definition, being MK
projections the mapping between Source and Target. Since MK-definition is focused on implementation
level, we can say that definition based on Crosscutting Pattern is a generalization of it. This definition
can be applied to any level or domain so that crosscutting can be identified in it.

 7

Since our approach doesn’t require that () () () ()f mA f mB f mB f mA⊄ ∧ ⊄ , this definition is less restrictive
than other ones 1. BCH definition only requires that the cardinality of the projection of mA onto X is
larger than 1 (scattering), but the cardinality of mB onto X can be larger or equal than 1.The
implications of this statement are important because of the set of crosscutting cases each definition could
cover. That idea implies there would be some cases of crosscutting which definition based on
Crosscutting Pattern identifies whereas other definitions do not. For example, certain tracing cases
cannot be identified as crosscutting with MK-definition but with BCH, as we show below.
In [21], authors use the canonical figures-display example [17] to illustrate the application of their
definition. This example can be also seen as a concrete application of the Observer Pattern defined in
[14]. However, instead of considering the Display concern we may be interested in tracing the execution
of all methods of Point or Line classes (Figure 5).

•

Tracing

execution of l.setP1
• •

execution of p.setX
 execution of p.getX

• •

Line

Point

•
 •

set P1
 getP1

•
 set X •
 get X

X

af ter :
 (execution(* figures..*(..))

 & & ! within (tracing Aspect));

A B

execution of l.getP1

Figure 5. Projections of Line and Display advice according to Masuhara and Kiczales’s definition

In that case, Masuhara and Kiczales’s definition is applied as follows: projection of Line class onto X
includes the execution of all methods of Line. The same is true for Point class. On the other hand,
projections of advice include execution of all methods of Line and Point classes (in AspectJ execution
join points are within the projection of the class that defines the method, as the authors explain in [21]).
We can easily observe that projections of Line or Point are a subset of advice’s one. Then, according to
Masuhara and Kiczales’s definition, subset condition is not accomplished in such an example and Line
and Tracing do not crosscut each other. We could consider other monitoring techniques such as logging
or profiling as similar examples [19]. However, as we do not require the subset condition, our definition
identifies crosscutting in such a case. We just focus on cardinality of mA and intersection of both
projections (mA and mB). This will be illustrated in next section by means of matrix representation of
mappings between source and target.
To summarize the comparison between these definitions, we show the main differences:
- Since the definition based on the Crosscutting Pattern may be applied to any model or domain, it

generalizes the definition presented in [21].
- The definition based on the Crosscutting Pattern is less restrictive than other one since it does not

require the subset condition as in [21].
- The definition based on the Crosscutting Pattern does not consider crosscutting being a symmetric

property whereas the definitions presented in [21] does.
The applicability of the definitions above depends on the goal of the crosscutting analysis.

1 Note that () () () ()f mA f mB f mB f mA⊄ ∧ ⊄ is equivalent to () \ () () \ ()f mA f mB f mB f mA≠ ∅∧ ≠ ∅ .

 8

2.3 Definition by Lieberherr
In [34] Karl Lieberherr gives a definition of crosscutting: “Two concerns crosscut if the methods related
to those concerns intersect.(…) We say a method is related to a concern if the method contributes to the
description, design, or implementation of the concern”. This definition can be considered as a particular
case of MK-definition.
2.4 Definition by Ceccato et al.
In [28] Tonella and Ceccato use a mathematical tool to represent the relation between concerns and
source code units; it is the formal concept analysis that will be introduce in following section.
2.4.1 Formal concept analysis.
Formal concept analysis (FCA) is a branch of lattice theory that can be used to identify meaningful
groupings of elements that have common properties. FCA takes as input a so-called context, which
consists of a set of elements E, a set of properties P on those elements, and a Boolean incidence relation
between E and P.
An example of such a context is given in Table 3, which relates different properties defined on integer
numbers. Consider E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and P = {composite, even, odd, prime, square}.

Table 2. Dependency matrix that represents the relation between E and P.
 1 2 3 4 5 6 7 8 9 10
Composite X X X X X
Even X X X X X
Odd X X X X X
Prime X X X X
Square X X X

Starting from such a context, FCA determines maximal groups of elements and properties, called
concepts, such that each element of the group shares the properties, every property of the group holds
for all of its elements, no other element outside the group has those same properties, nor does any
property outside the group hold for all elements in the group. Graphically, a concept corresponds to a
maximal ‘rectangle’ containing only marks in the table, considering any permutation of the table’s rows
and columns.
A concept lattice can be built from a context. In the concept lattice, every node is a concept that is a
pair containing both a property cluster and its corresponding object cluster.
The concept lattice shown in Figure 6 has been built from the context described in Table 2. Obviously, it
is only a different way to represent the relation between E and P.

 9

Figure 6. Concept lattice for the context describe in table 3

Formaly, a concept is defined to be a pair (Ei, Pi) such that

1. Ei ∈ c (E)
2. Pi ∈ c (P)
3. every element in Ei has every attribute in Pi
4. for every element in E that is not in Ei, there is a property in Pi that the element does not have
5. for every property in P that is not in Pi, there is an element in Ei that does not have that property

Ei is called the extent of the concept, and Pi is the intent.

Nodes in the concept lattice can be partially ordered by inclusion: if (Ei, Pi) and (Ej, Pj) are concepts, we
define a partial order by saying that (Ei, Pi) ≤ (Ej, Pj) whenever Ei ⊆ Ej. Equivalently, (Ei, Pi) ≤ (Ej, Pj)
whenever Pj ⊆ Pi. Every pair of concepts in this partial order has an unique greatest lower bound and an
unique least upper bound. The greatest lower bound of (Ei, Pi) and (Ej, Pj) is the concept with elements
Ei ∩ Ej; it has as its properties Pi ∪ Pj. The least upper bound of (Ei, Pi) and (Ej, Pj) is the concept with
properties Pi ∩ Pj; it has as its elements the set Ei ∪ Ej .

 10

2.4.2 Labels in the concept lattice
It is very interesting the idea of selecting elements and properties that label a given concept, they are
those that characterize the concept most specifically.
More precisely, a concept c is labelled with an element e only if c is the most specific (i.e., lowest)
concept having e in the extent. A concept c is labelled with a property p only if c is the most general
(i.e., highest) concept having p in its intent.
We formally introduce this idea with the following functions:
α(c) = {p ∈ P | c is the largest lower bound of the set of concepts that have p in its intent}
β(c) = {e ∈ E | c is the least upper bound of the set of concepts that have e in its extent}

Considering the previous example, the smallest concept including the number 3 is the one with objects
{3, 5, 7}, and attributes {odd, prime}, then 3 is a label for this concept. The largest concept involving
the attribute of being square is the one with objects {1,4,9} and attributes {square}, then square is a label
for this concept. Thus:

α({3,5,7}{odd, prime}) = ∅ β({3,5,7}{odd, prime}) = {3,5,7}
α({1, 4, 9}{square}) = {square} β({1,4,9}{square}) = {1,4,9}

2.4.3 Applying FCA to identify crosscutting situations
Formal concept analysis has been used to identify the computational units (i.e., procedures) that
specifically implement a feature (i.e., requirement) of interest.
Execution traces obtained by running the program under given scenarios provided the input data. The
executed methods are the elements of the concept analysis context, while execution traces associated
with the use-cases are the properties2. In the resulting concept lattice, the use-case specific concepts are
those labelled by at least one trace for some use-case (i.e. α(c) contains at least one element), while the
concepts with zero or more properties as labels (those with an empty α(c)) are regarded as generic
concepts. Thus, use-case specific concepts are a subset of the generic ones.
Both use-case specific concepts and generic concepts carry information potentially useful for aspect
mining, since they group specific methods that are always executed under the same scenarios.
2.4.4 Definition of crosscutting
A concern seed is a single source-code entity, such as a method, or a collection of such entities, that
strongly connotes a crosscutting concern. A candidate seed is a potential concern seed.
Formally, a concept c is considered a candidate seed iff [8]:

 Scattering: ∃ m, m’ ∈ β(c) | pref(m) ≠ pref(m’)
 Tangling: ∃ m ∈ β(c), ∃ m’ ∈ β(c’) | c ≠ c’ ∧ pref(m)= pref(m’)

where pref(p) is the fully scoped name of the class containing the method p.
 The first condition (scattering) requires that more than one class contributes to the functionality
associated with the given concept. The second condition (tangling) requires that the same class
addresses more than one concern.

2 In [8], the authors claim that the executed methods are the properties of the concept analysis context. However, in the formal definition

they define p and p’ ∈ β(c) (set of elements). We think this inconsistence is a typo. In order to clarify this issue, we considered here
executed methods as the elements of the concept analysis context.

 11

We prove in following paragraphs that Ceccato definition of crosscutting (C-definition) is a particular
case of the definition 3 presented in subsection 2.1.2.
Let assume that

 Source is the set of concepts

 Target is the set of classes
 f: Source ⎯→⎯ c (Target) defined by f(c) = {pref(m) / m ∈ β(c) }

f(c) is the set of classes containing methods that labelled the concept c.
Thus, we can prove that any crosscutting situation detected by C-definition in the context defined in [8]
can be also detected with our definition.
Theorem 2. If there is a crosscutting situation, the use of C-definition is equivalent to the use of BCH-
definition.
Proof.

1. We prove that if there is a crosscutting situation using C-definition then there is also crosscutting
using BCH-definition.
The C-definition says that

1. ∃ m, m’ ∈ β(c) / pref(m) ≠ pref(m’)
2. ∃ m ∈ β(c), ∃ m’ ∈ β(c’) / c ≠ c’ ∧ pref(m)= pref(m’)

Obviously, card(f(c)) > 1, because pref(m), pref(m’) ∈ f(c) and, considering item 1 in C-
definition, we have that pref(m) ≠ pref(m’)
Considering item 2, we have that pref(m) ∈ f(c) ∩ f(c’) ⇒ f(c)∩ f(c’) ≠∅.
Applying lemma 1, we have that c crosscut c’ according BCH-definition.

2. We prove that if there is a crosscutting situation using BCH-definition then there is also
crosscutting using C-definition.
Using lemma 1, the BCH-definition says that 1 2s s Source∃ ≠ ∈ such that

a) card(f(s1)) > 1
b) f(s1)∩ f(s2) ≠∅.

Considering item a, we have that f(s1) has at least two different elements.

1 (1) 2 (1)
() : 1 () ' () : 2 (') ' (1 2)

cl f s cl f s
m c cl pref m m c cl pref m m m because cl clβ β
∈ ∧ ∈

⇒ ∃ ∈ = ∧ ∃ ∈ = ∧ ≠ ≠

Considering item b,

() 1 (2) (1) ' (2) :
() (')

cl є f s f s m s m s
cl pref m pref m

β β∃ ∩ ⇒ ∃ ∈ ∧ ∈

= =

Then, s1 crosscut s2 according C-definition �
3. REPRESENTATION OF CROSSCUTTING
In this section, we describe how crosscutting can be represented by means of dependency graphs and an
extension to traceability matrices. In the former we just represent the trace relationships between source

 12

and target elements. In the latter trace relations are captured in a dependency matrix, representing the
mapping between source and target. Since matrix representation allows the tool support by means of
simple matrix operations, we focus on this representation. As an extension, we derive the crosscutting
matrix from the dependency matrix. We describe how the crosscutting matrix can be constructed from
the dependency matrix with some auxiliary matrices. This is illustrated with some examples.
3.1 Dependence graphs
Dependence graphs have been widely used in software engineering tasks such as program
understanding, debugging, testing and maintenance. They have been mainly used at programming level
showing control and data dependencies between code artefacts [11]. Even some approaches have
emerged to adapt these graphs to represent aspect-oriented programs [29].
We may use such graphs to deal with the traceability links introduced in crosscutting pattern. As we
showed in Section 2.1, a very intuitive and simple representation of mappings between source and target
can be made by means of dependence graphs, so that crosscutting may be easily identified and
represented by means of such graphs. We may distinguish several cases of mappings according to their
cardinality between source and target:
− Injection: distinct source elements are related to distinct target elements (i.e. a one-to-one3 function).
− Scattering: a source element is related to multiple target elements (i.e. a one-to-many function).
− Tangling: a target element is related to multiple source elements (i.e. a many-to-one function).
− Crosscutting: a target element is involved both in scattering and tangling (e.g. t3; scattering of s1 to t1,

t3 and t4, and tangling of s1 and s3 in t3).
However, other representations of crosscutting may be possible. For instance, by means of traceability
matrices, we can represent dependencies between source and target elements. In next section we show
such matrices in order to identify and represent crosscutting. Matrix representation allows building
automatic tools to find out crosscutting based on simple matrix operations.
3.2 Matrix representation
In terms of linear algebra, the relation between source elements and target elements can be represented
in a special kind of traceability matrix [9] that we called dependency matrix. A dependency matrix
(source x target) represents the dependency relation between source elements and target elements
(inter-level relationship). In the rows, we have the source elements, and in the columns, we have the
target elements. In this matrix, a cell with 1 denotes that the source element (in the row) is mapped to the
target element (in the column). Reciprocally this means that the target element depends on the source
element. Scattering and tangling can easily be visualized in this matrix (see the examples below).
We define a new auxiliary concept crosscutpoint used in the context of dependency diagrams, to denote
a matrix cell involved in both tangling and scattering. If there are one or more crosscutpoints then we
say we have crosscutting.
Crosscutting between source elements for a given mapping to target elements, as shown in a dependency
matrix, can be represented in a crosscutting matrix. A crosscutting matrix (source x source) represents
the crosscutting relation between source elements, for a given source to target mapping (represented in
a dependency matrix). In the crosscutting matrix, a cell with 1 denotes that the source element in the row
is crosscutting the source element in the column. In section 3.3 we explain how this crosscutting matrix
can be derived from the dependency matrix.

3 This name is best avoided, since some authors understand it to mean a bijective function

 13

A crosscutting matrix should not be confused with a coupling matrix. A coupling matrix shows coupling
relations between elements at the same level or abstraction (intra-level dependencies). In some sense, the
coupling matrix is related to the design structure matrix [2]. On the other hand, a crosscutting matrix
shows crosscutting relations between elements at one level with respect to a mapping onto elements at
some other level (inter-level dependencies).
We now give an example and use the dependency matrix and crosscutting matrix to visualize the
definitions (S denotes a scattered source element - a grey row; NS denotes a non-scattered source
element; T denotes a tangled target element - a grey column; NT denotes a non-tangled target element).
The example is shown in Table 3.

Table 3. Example dependency and crosscutting matrix with tangling, scattering and one
crosscutting

dependency matrix
 target
 t[1] t[2] t[3] t[4]

so
ur

ce
 s[1] 1 0 1 1 S

s[2] 0 1 0 0 NS
s[3] 0 0 1 0 NS

 NT NT T NT
crosscutting matrix

 source
 s[1] s[2] s[3]

so
ur

ce
 s[1] 0 0 1

s[2] 0 0 0
s[3] 0 0 0

In this example, we have one scattered source element s[1] and one tangled target element t[3]. We
apply our definition of crosscutting and arrive to the crosscutting matrix. Source element s[1] is
crosscutting s[3] (because s[1] is scattered over [t[1], t[3], t[4]] and s[3] is in the tangled one of these
elements, namely t[3]). The reverse is not true: the crosscutting relation is not symmetric. The example
is depicted in the diagrams (Table 3).
3.3 Constructing crosscutting matrices
In this section, we describe how to derive the crosscutting matrix from the dependency matrix. We use a
more extended example than the previous ones. We now show an example with more than one
crosscutpoints, in this example 8 points (see Table 4; the dark grey cells).
The crosscutting matrix shows that the crosscutting relation is not symmetric. For example, s[1] is
crosscutting s[3], but s[3] is not crosscutting s[1] because s[3] is not scattered (scattering is a necessary
condition for crosscutting).

Table 4. Example dependency matrix with tangling, scattering and several crosscuttings
dependency matrix

 target
 t[1] t[2] t[3] t[4] t[5] t[6]

so
ur

ce

s[1] 1 0 0 1 0 0 S
s[2] 1 0 1 0 1 1 S
s[3] 1 0 0 0 0 0 NS
s[4] 0 1 1 0 0 0 S
s[5] 0 0 0 1 1 0 S

 T NT T T T NT

 14

 crosscutting matrix
 source
 s[1] s[2] s[3] s[4] s[5]

so
ur

ce

s[1] 0 1 1 0 1
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 0 0
s[5] 1 1 0 0 0

Based on the dependency matrix, we define some auxiliary matrices: the scattering matrix (source x
target), and the tangling matrix (target x source). These two matrices are defined as follows (for our
example in Table 4, these matrices are shown in Table 5):
- In the scattering matrix a row contains only dependency relations from source to target elements if the
source element in this row is scattered (mapped onto multiple target elements); otherwise the row
contains just zero's (no scattering).
- In the tangling matrix a row contains only dependency relations from target to source elements if the
target element in this row is tangled (mapped onto multiple source elements); otherwise the row contains
just zero's (no tangling).

Table 5. Scattering and tangling matrices for dependency matrix in Table 4
scattering matrix

 target
 t[1] t[2] t[3] t[4] t[5] t[6]

so
ur

ce

s[1] 1 0 0 1 0 0
s[2] 1 0 1 0 1 1
s[3] 0 0 0 0 0 0
s[4] 0 1 1 0 0 0
s[5] 0 0 0 1 1 0

 tangling matrix
 source
 s[1] s[2] s[3] s[4] s[5]

ta
rg

et

t[1] 1 1 1 0 0
t[2] 0 0 0 0 0
t[3] 0 1 0 1 0
t[4] 1 0 0 0 1
t[5] 0 1 0 0 1
t[6] 0 0 0 0 0

We now define the crosscutting product matrix, showing the frequency of crosscutting relations. A
crosscutting product matrix (source x source) represents the frequency of crosscutting relations between
source elements, for a given source to target mapping. The crosscutting product matrix is not
necessarily symmetric. The crosscutting product matrix ccpm can be obtained through the matrix
multiplication of the scattering matrix sm and the tangling matrix tm: ccpm = sm . tm where ccpm
[i][k] = sm[i][j] tm[j][k].
In this crosscutting product matrix, the cells denote the frequency of crosscutting. This can be used for
quantification of crosscutting (crosscutting metrics). The frequency of crosscutting in this matrix should
be seen as an upper bound. In actual situations, the frequency can be less than the frequency from this
matrix analysis, because in the matrix we abstract from scattering and tangling specifics. In the
crosscutting matrix, a matrix cell denotes the occurrence of crosscutting; it abstracts from the frequency
of crosscutting.

 15

The crosscutting matrix ccm can be derived from the crosscutting product matrix ccpm using a simple
conversion: ccm[i][k] = if (ccpm[i][k] > 0) /\ (i ≠ j) then 1 else 0.
The crosscutting product matrix and the crosscutting matrix for the example are given in Table 6. In this
example, there are no cells in the crosscutting product matrix larger than 1, except on the diagonal where
it denotes a crosscutting relation with itself, which we disregard here. In the crosscutting matrix, we put
the diagonal cells to 0. Obviously, this is because we interpret a source element can’t crosscut itself.

Table 6. Crosscutting product matrix and crosscutting matrix for dependency matrix in Table 4
crosscutting product matrix

 source
 s[1] s[2] s[3] s[4] s[5]

so
ur

ce

s[1] 2 1 1 0 1
s[2] 1 3 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 1 0
s[5] 1 1 0 0 2

 crosscutting matrix
 source
 s[1] s[2] s[3] s[4] s[5]

so
ur

ce

s[1] 0 1 1 0 1
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 0 0
s[5] 1 1 0 0 0

As we can see in crosscutting matrix in Table 6, there are now 10 crosscutting relations between the
source elements. The crosscutting matrix shows again that the crosscutting relation is not symmetric. For
example, s[1] is crosscutting s[3], but s[3] is not crosscutting s[1] because s[3] is not scattered
(scattering and tangling are necessary but not sufficient condition for crosscutting).
For convenience, these formulas can be calculated automatically by means of simple mathematic tools
(such as Excel). By filling in the cells of the dependency matrix, the other matrices are calculated
automatically.
3.4 Case Analysis of Crosscutting
Once we have defined scattering, tangling and crosscutting, we may discuss now a case analysis of
possible combinations according to our definition. Assuming that the properties tangling, scattering, and
crosscutting may be true or false, there are 8 combinations (see Table 7). Each case addresses a certain
mapping from source to target. However, crosscutting requires tangling and scattering, which eliminates
3 of these combinations (Cases 6, 7 and 8: not feasible). There are five feasible cases listed in the table.
In Case 4, we have scattering and tangling in which no common elements are involved. With our
definition of crosscutting, we disentangle the cases with just tangling, just scattering and on the other
hand crosscutting. Our proposition is that tangling and scattering are necessary but not sufficient
conditions for crosscutting.

 16

Table 7. Feasibility of combinations of tangling, scattering and crosscutting

 tangling scattering crosscutting feasibility
Case 1 No no no feasible
Case 2 Yes no no feasible
Case 3 No yes no feasible
Case 4 Yes yes no feasible
Case 5 Yes yes yes feasible
Case 6 No no yes not feasible
Case 7 No yes yes not feasible
Case 8 Yes no yes not feasible

In order to illustrate the different possibilities, we discuss now how to apply the framework to some
simple examples. The first example is extracted from [28], where the authors use the definition
presented in Section 2.4.4 to identify crosscutting concerns at programming level. The example
application consists of several classes that implement a simple Binary Search Tree. The main
functionalities of the application are the insertion of elements in the data structure and the search of a
particular element. The class diagram is shown in Figure 7.

Figure 7. Binary Search Tree class diagram

In [28], the authors present a table where the two main concerns of the system, insertion and search, are
related to the methods that contribute to such functionalities. Assuming that the search is performed in a
pre-loaded binary tree, these methods are presented in Table 8.

Table 8. Relation between the main concerns and the executed methods for these concerns
 Insertion
m1 BinaryTree.BinaryTree()
m2 BinaryTree.Insert(BinaryTreeNode)
m3 BinaryTreeNode.insert(BinaryTreeNode)
m4 BineryTreeNode.BinaryTreeNode(Comparable)
 Search
m1 BinaryTree.BinaryTree()
m5 BinaryTree.search(Comparable)
m6 BinaryTreeNode.search(Comparable)

 17

Having the concerns and the methods that contribute to them as source and target domains respectively,
we build the dependency matrix shown in Table 9. We have selected methods as the granularity level for
the target elements. As we can see in this matrix, the BinaryTree.BinaryTree() method is executed for
both the insertion and the search concerns. The existence of this method implies that our framework
identifies both concerns as crosscutting (see crosscutting matrix in Table 10).

Table 9. Dependency matrix for the BST application

methods

m1 m2 m3 m4 m5 m6

concerns
insertion 1 1 1 1 0 0
search 1 0 0 0 1 1

Table 10. Crosscutting matrix for the BST application

concerns

insertion search

concerns
insertion 0 1
search 1 0

The example explained above belongs to the fifth category of the eight possible combinations presented
in Table 7 (i.e. scattering, tangling and crosscutting). However, we may find different situations with
just scattering or just tangling and not crosscutting. For instance, since in [28] the authors consider the
search concern having a pre-loaded tree, we do not consider that the constructor of BinaryTree class
contributes to such a functionality. In that case, we remove the mapping from search concern to method
m1. The new dependency and crosscutting matrices are shown in Table 11 and Table 12 respectively.

Table 11. New dependency matrix for the BST

methods

m1 m2 m3 m4 m5 m6

concerns
insertion 1 1 1 1 0 0

search 0 0 0 0 1 1

Table 12. New crosscutting matrix for the BST

concerns

insertion search

concerns
insertion 0 0
search 0 0

As we can see in the dependency matrix of Table 11, we may have source elements scattered over
different target elements without having crosscutting. Although usually we encounter scattering and
tangling together, the utilization of a formal definition allows the differentiation of these concepts
identifying such exceptional situations (with only one of the needed conditions to have crosscutting).
This last situation belongs to the third case or category of Table 7.
Even if we consider that the constructor of the BinaryTree class contributes to the searching
functionality, we could find a case where a source element is scattered over different target elements and
there is not crosscutting. For instance, consider the same BST system explained above without the
searching functionality. In that case, the insertion concern would be scattered over some methods and
classes, we do not consider such a concern as being crosscutting. Obviously, if there is just one concern,

 18

it could not crosscut to any other concern. However, note that our formal definition of crosscutting
works properly in that case (that is what we are proofing).
In order to show a different case with tangling and not crosscutting, we show now a new simple
example, a calculator with remote access. We apply the framework at concern level with respect to the
design level (represented in a UML class diagram). The case study consists of a distributed Java
application which allows a user to calculate the sum of integer numbers. The distribution is
accomplished by means of sockets. The MVC pattern [6] is applied in order to perform a separation of
representation and control concerns from the functional concerns of an application. In order to study the
crosscutting in this case, we consider three main concerns in the system: Client side distribution, Server
side distribution and Calculation. We take these concerns as source elements in our dependency matrix
and the UML design classes are considered to be the target elements.

Figure 8. UML class diagram of Remote Calculator

In Figure 8 we show a UML class diagram representing the design. We have developed the main
functionality regarding the socket concerns in a class called SocketConnection. This class just performs
the remote connection and sends and receives integer values. We may say that this class has a low
cohesion. Depending on the operation (sending or receiving), this class will invoke methods of the other
classes. The Model, View and Control classes perform the actions to sum the integer, read user’s
selections and shows the results on screen respectively. Therefore, the application has a good separation
between model (a class with a vector of numbers and which performs the sum), view (a class which
shows the result on the screen) and control (a class which reads the user’s inputs). Although such classes
are coupled by means of method calls, their level of cohesion is high because each class is only
addressing its main functionality (concern).
So, taking such a decomposition (in classes) and applying the framework, we obtain the dependency
matrix shown in Table 13. As we can see in the matrix, concerns Client side distribution and Server side
distribution are tangled in the same class SocketConnection, whereas Calculation concern is scattered
over the other classes. However, as can be seen in the table, the matrix has no crosscutpoints. By means
of the operations described in Section 3.3 we obtain the crosscutting matrix shown in Table 13: there are
no crosscutting concerns in the system.
In many situations, we have tangling, scattering and at the same time crosscutting. With our definitions,
we clearly distinguished scattering and tangling from crosscutting and, as we stated in Section 2.1,
scattering and tangling are necessary but not sufficient conditions for crosscutting. The analysis depends
on the chosen decomposition of source and target, other decompositions being feasible.

 19

Table 13. Dependency and crosscutting matrix for the Remote Calculator
dependency matrix

 classes

concerns SocketConnection Model View Control

Distribution-to-Client 1 0 0 0 NS

Distribution-to-Server 1 0 0 0 NS

Calculation 0 1 1 1 S

 T NT NT NT

crosscutting matrix WRT4 classes

 Concerns

concerns Distribution-to-
Client

Distribution-
to-Server

Calculation

Distribution-to-Client 0 0 0

Distribution-to-Server 0 0 0

Calculation 0 0 0

4. CROSSCUTTING AND TRANSITIVITY OF DEPENDENCIES
In this section we consider the transitivity of dependencies between levels and within the same level
respectively. Such dependencies are based on different transitive relations that can be observed between
source and target elements.
4.1 Transitivity of inter-level dependencies
Usually we encounter a number of consecutive levels or phases in software development. In MDA [21],
we have transformations from Platform Independent Models, Platform Specific Models to
Implementation Models. From the perspective of software life cycle phases, we could distinguish
Domain Analysis, Concern Modelling, Requirement Analysis, Architectural Design, Detailed Design,
and Implementation.
We consider here the cascading of two crosscutting patterns: the target of the first pattern serves as
source for the second one. For convenience, we call the first target our intermediate level, and our
second target just target (see Figure 9).

Figure 9. Two Cascaded Crosscutting Patterns

Each of these refinements can be described with a dependency matrix. We describe how to combine two
consecutive dependency matrices, in an operation we call cascading. Cascading is an operation on two
dependency matrices resulting in a new dependency matrix, which represents the dependency relation
between source elements of the first matrix and target elements of the second matrix.
For cascading, it is essential to define the transitivity of dependency relations. Transitivity is defined as
follows. Assume we have a source, an intermediate level, and a target. There is a dependency relation

4 WRT are the abbreviation of “with respect to”

 20

between an element in the source and an element in the target if there is some element at the
intermediate level that has a dependence relation with this source element and a dependency relation
with this target element. In other words, the transitivity dependency relation R for source s, intermediate
level u and target t, and card(u) is the number of elements in u:

∃ k ∊ (1..card(u)) : (s[i] R u[k]) ∧ (u[k] R t[m]) ⇒ (s[i] R t[m])
We can also formalize this relation in terms of the dependency matrices. Assume we have three
dependency matrices m1 :: s x u and m2 :: u x t and m3 :: s x t, where s is the source, u is some
intermediate level, card(u) is the cardinality of u, and t is the target. The cascaded dependency matrix
m3 = m1 cascade m2
Then, transitivity of the dependency relation is defined as follows:

∃ j ∊ (1..card(u)): m1[i,j] ∧ m2[j,k] ⇒ m3[i,k]
In terms of linear algebra, the dependency matrix is a relationship between two given domains, source
and target (see section 2.1.1). Accordingly, the cascading operation can be generalized as a composition
of relationships as follows. Let DomK, k = 1..n, be n domains, and let fi be the relationship between
domains Domi and Domi+1, 1≤i<n, denoted as 1+⎯→⎯ i

if
i DomDom . Let Source and Target be the domains

Dom1 and Domn, respectively. Consequently, we have the following relationship between the domains:
argetTDomDomDom ourceS nf

n
fff ⎯⎯ →⎯⎯⎯→⎯⎯⎯→⎯⎯→⎯ −

−
1

1
3

3
2

2
1 K

As a result, the dependency relationship between the Source and the Target is defined as
121 fffDM nn oKoo −−≡ . In this way, the dependence matrix between a source and target is obtained through

matrix multiplication of the dependency matrices that represents each fi, 1≤i<n .
Table 14. Two dependency matrices that will be cascaded

dependency matrix 1
 requirement

concern r[1] r[2] r[3] r[4]
c[1] 1 0 0 1
c[2] 0 1 0 0
c[3] 0 0 1 1

dependency matrix 2
 module

requirement m[1] m[2] m[3] m[4] m[5]
r[1] 1 0 0 0 1
r[2] 0 1 0 0 0
r[3] 0 1 1 0 0
r[4] 0 0 0 1 1

As an example, we explain the cascading two dependency matrices: one for concerns x requirements and
one for requirements x modules. The two dependency matrices are shown in Table 14. The first
dependency matrix relates concerns with requirements. The second dependency matrix relates
requirements with modules. The resulting dependency matrix relates concerns with modules (see Table
15). This matrix can be used to derive the crosscutting matrix for concern x concern with respect to
modules. The crosscutting matrix in Table 15 is not symmetric. Based on this matrix we conclude, for
the given dependency relations between concerns and modules, that: concern c[1] is crosscutting
concern c[3]; concern c[2] does not crosscut any other concern; concern c[3] is crosscutting concerns
c[1] and c[2].

 21

Table 15. The resulting dependency matrix and crosscutting matrix based on cascading of the
matrices in Table 14

resulting dependency matrix
 module

concern m[1] m[2] m[3] m[4] m[5]
c[1] 1 0 0 1 2
c[2] 0 1 0 0 0
c[3] 0 1 1 1 1

crosscutting matrix
 concern

concern c[1] c[2] c[3]
c[1] 0 0 1
c[2] 0 0 0
c[3] 1 1 0

From this description, it is clear that cascading can be used for traceability analysis across multiple
levels, e.g. from concerns to implementation elements, via requirements, architecture and design (c.f.
[26]).
4.2 Transitivity of intra-level dependencies
Elements at a certain level usually have some relationship with other elements at the same level (intra-
level relationships): they are coupled. There are many coupling types: generalisation/specialisation,
aggregation, data coupling, control coupling, message coupling, and so on. In case of a dependency
relation of a source element and a target element, which itself is coupled to a second target element, one
could conceive also a dependency relation between the source element and the second target element.
Intra-level trace dependencies combined with inter-level trace dependencies may cause dependencies,
which we call an indirect trace dependency based on a pseudo-transitivity. Assume source element s[i]
has a coupling relation R' with source element s[j]. Moreover source element s[j] has a dependency
relation R with target element t[k]. Then the indirect dependency relation is (s[i] R' s[j]) ∧ (s[j] R t[k])
⇒ (s[i] R'oR t[k]). In a similar way, assume source element s[i] has a dependency relation R with
target element t[j] and target element t[j] is coupled with target element t[k] by means of R'. In that case
the indirect dependency relation is (s[i] R t[j]) ∧ (t[j] R' t[k]) ⇒ (s[i] R oR' t[k]).
One should clearly distinguish the direct (inter-level) dependency relation from this indirect dependency
relation. Our framework is focused on direct trace relationships.
5. Aspect-oriented metrics
We describe in this section a new topic where the framework provides important benefits: aspect-
oriented metrics. There are several works that have explained the need for adapting the traditional object
oriented metrics to the new aspect oriented paradigm. For instance, we need metrics to measure the
degree of crosscutting in a system. In [25] the authors propose a framework where they define several
metrics in terms of, on one hand, separation of concerns and, on the other hand, cohesion, coupling and
size. In [10] some similar metrics suite is defined in order to measure the degree of scattering and
tangling in some components. In this last work, the authors take as base for the metrics the definition of
crosscutting presented in our previous work [4]. In following sections, we explain in more detail these
metrics and show how they may be represented, visualized and extended by means of our framework.
5.1 Metrics by García et al.
In [25], the authors presented an aspect oriented metrics suite. This suite is based on the previous work
of the authors presented in [15]. While the latter is focused on the assessment modularity at
programming level, the former is focused on the architecture level. In the work presented in [25], the

 22

metrics suite is based on the concept of architectural concern. The authors claim that the framework
presented relies on evaluating the modularization of architectural concerns quantifying separation of
concerns and their interactions. As an example, they establish a metric to assess the diffusion of a
concern over the architectural artifacts. In Table 16 we show the whole metrics suite that they set. This
table is extracted from [25].

Table 16. Metrics suite defined in [25]
Attribute Metric Definition

Concern
Diffusion

Concern Diffusion over Architectural
Components (CDAC)

It counts the number of architectural components which
contributes to the realization of a certain concern.

Concern Diffusion over Architectural
Interfaces (CDAI)

 It counts the number of interfaces which contributes to the
realization of a certain concern.

Concern Diffusion over Architectural
Interfaces (CDAI)

It counts the number of operations which contributes to the
realization of a certain concern.

Coupling
Between

Architectural
Concerns

Component-level Interlacing Between
Concerns (CIBC)

It counts the number of other concerns with which the assessed
concerns share at least a component.

Interface-level Interlacing Between
Concerns (IIBC)

It counts the number of other concerns with which the assessed
concerns share at least an interface.

Interface-level Interlacing Between
Concerns (IIBC)

It counts the number of other concerns with which the assessed
concerns share at least an operation.

Coupling
Between

Components

Afferent Coupling Between
Components (AC)

It counts the number of components which require service from
the assessed Coupling component

Efferent Coupling Between
Components (EC)

It counts the number of components from which the assessed
component requires service.

Component
Cohesion

Lack of Concern-based Cohesion
(LCC)

It counts the number of concerns addressed by the assessed
component.

Interface
Complexity

Number of Interfaces It counts the number of interfaces of each component.

Number of Operations It counts the number of operations in the interfaces of each
component.

As we can see in the previous table the metrics are classified into five different categories. The first
category, Concern Diffusion is focused on the relation between concerns and the architectural elements.
In terms of our framework, we can say that this metric is related to the trace relation between source and
target. In particular it assesses the cardinality of the relation from source to target elements. The second
and third categories are focused on the relation between elements of the same domain. Thus, they are
based on intra-level relations. While the Coupling Between Architectural Concerns metric is based on
the relations between elements of the source domain (concerns), the Coupling Between Components is
based on relations between elements of the target domain (architectural artifacts). The fourth category,
Component Cohesion is similar to the first one. It is focused on the relation between source and target
elements. However, in this case, the metrics assesses the cardinality of the relation from target to source
elements. Finally, the purpose of the Interface Complexity category is to measure the number of
interfaces and operations of the architectural components. Therefore this metric is just a way to measure
the size of the decomposition selected on the target domain.
5.2 Metrics by Aho et al.
In [10], the authors establish a concern model to define crosscutting and set a suite of aspect oriented
metrics to complement the traditional metrics (coupling and cohesion). The concern model defined in
[10] is based on our previous work [4]. In particular they used the relations between source and target

 23

domains explained in Section 2.1.1 to define crosscutting. Unlike our definition, they don’t consider
tangling as a necessary condition to have crosscutting. They define crosscutting as follows: a
crosscutting concern is a scattered concern, i.e., a concern related to multiple target elements. The
authors define two main metrics: Degree of Scattering (DOS) and Degree of Focus (DOF). Other
auxiliary metrics are used to obtain the DOS and DOF ones.
Firstly, the authors define Concentration (CON) as a measure of the number of statements related to a
concern within a specific component. Thus, CON focuses on a particular source (s) and target element
(t) and assesses how such a target element contributes to the realization of the source element:

(,) SLOCs in component t related to concern sCONC s t
SLOCs related to concern s

=

The authors of this metric claim that CON does not give a sense for how scattered a concern is and
different concerns may not be compared. Then, they introduce a new metric called Degree of Scattering
(DOS). DOS is a measure of the variance of the concentration of a concern over all components of the
system. A value of DOS close to 1 indicates that this concern (s) has a high degree of scattering while a
value close to 0 indicates that this concern is not scattered and is well encapsulated into an entity:

2
1(,)

() 1
1

T

t
T CONC s t

T
DOS s

T

⎛ ⎞
−⎜ ⎟

⎝ ⎠= −
−

∑

where |T| is the number of components. The authors in [10] also use the average of the DOS (ADOS)
metric (averaging DOS over all the concerns) to measure modularity of the system.
The metrics mentioned above are focused on the relation from source to target elements. The authors
also provide some metrics focused on the relation from target to source elements. In particular they
define the Dedication metric which assesses the number of statements of a component (t) related to a
particular concern (s):

(,) SLOCs in component t related to concern sDEDI t s
SLOCs related to component t

=

Again the authors provide a different metric to measure how well the concerns are separated in a
component. This metric is called the Degree of Focus (DOF) and is a variance of the dedication of a
component to every concern with respect to the worse case:

2
1(,)

()
1

S

s
S DEDI t s

S
DOF t

S

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

∑

where |S| is the number of components. In this case, a value of DOF close to 0 indicates that the
component’s attention is uniformly divided among every concern while a value close to 1 indicates that
the component is focused just on one concern. The authors also use the average of DOF (ADOF) to
provide an overall indication of the separation of concerns in the program.
5.3 Relation between crosscutting pattern and metrics
As we have shown in the previous sections, the metrics defined in [25] and [10] are closely related to the
relation between source and target domains represented in the crosscutting pattern. In some cases the
metrics are focused on the relation from source to target while in other cases they are related to the

 24

inverse relation. As we said early on, the metrics defined in those works may be visualized and
integrated into the framework presented in this report. In particular, we represent some of the metrics
presented by García et al. and by Aho et al. in our matrices. We use the scattering and tangling matrices
to represent the metrics that are directly related to scattering and tangling properties respectively.
5.3.1 Metrics for Scattering
Firstly we use the scattering matrix to represent the Concern Diffusion and the Degree of Scattering
metrics presented in [25] and [10] respectively. The Concern Diffusion metric is divided into three
different metrics depending on the granularity of the architectural artefacts selected: components,
interfaces or operations level. The rows in the scattering matrix presented in Section 3.3 provide similar
information about the diffusion of a concern over the target elements. For instance, in Table 17 we show
a part of the scattering matrix for a concurrent file versioning system (CFVS) [5]. We have applied our
framework in such a system in order to identify crosscutting concerns. For instance, we can see how the
Synchronization or the Concurrency concerns (among others) are scattered over different use cases.
Again, depending on the granularity of the target elements selected we may use a different metric of the
Concern Diffusion category.

Table 17. Part of the scattering matrix for the CFVS
 Use cases

In
se

rt
Fi

le

R
et

rie
ve

 F
ile

C
ha

ng
e

Fi
le

C
om

m
it

Fi
le

U
pd

at
e

Fi
le

C
on

fli
ct

M

an
ag

em
en

t

S
ho

w
 M

es
sa

ge

S
ho

w

D
iff

er
en

ce
s

R
em

ov
e

Fi
le

U
nd

o
Fi

le

Ta
g

Fi
le

B
ra

nc
h

Fi
le

M
er

ge
 F

ile
s

A
ss

ig
n

P
er

m
is

si
on

s
Lo

g
A

ct
iv

iti
es

C

he
ck

 A
cc

es
s

R
ig

ht
s

S
to

re
 M

es
sa

ge

C
on

ce
rn

s

Insert File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Branch a Set of Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Merge Set of Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Persistence 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Data Representation 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
Synchronization 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Logging 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Security 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1
Concurrency 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

In order to assess how much scattered a particular source element is, we have also defined a metric
based on the scattering matrix. We called this metric just Scattering (SCAT). This metric is calculated as
follows:

where si is the source element of row i in the scattering matrix, |T| is the number of target elements in the
system, and scatij represents the value of the cell ij of the scattering matrix. SCAT may have values
between zero and one. When a source element (i.e. a concern) presents a value of zero in this metric this
element is well encapsulated and is not scattered over the system while a value close to one indicates
that the source element is highly scattered over the target ones. In order to have a global metric for how
much scattering the system has we define the concept of Global Scattering (GSCAT) which is obtained
just calculating the average of the SCAT values for each source elements:

 25

 where |S| is the number of source elements in the system.
Secondly, the Degree of Scattering metric (defined in [10]) may be also calculated taking as input the
values represented in the scattering matrix. As we explained in Section 5.2 the Degree of Scattering
metric is based on an auxiliary metric called Concentration. Concentration is defined as the relation
between lines of code of a component contributing to a particular concern and the total number of lines
of code of the component. This metric may be easily represented in our scattering matrix just adapting
the matrix to the metric. Since both scattering and tangling are binary matrices, we represent cells with
just 1 or 0. However we may change these cells to represent the relation defined by Concentration. For
instance, a cell in the scattering matrix with 0.5 represents that the component of this column is
performing the half of lines of code belonging to the concern of the corresponding row. In Table 18 we
show an example of several rows containing different values of the Concentration metric for some
particular concerns. Obviously, having these values, the calculation of Degree of Scattering is very
simple.

Table 18. Scattering matrix with Concentration values
 Use cases

In
se

rt
Fi

le

R
et

rie
ve

 F
ile

C
ha

ng
e

Fi
le

C
om

m
it

Fi
le

U
pd

at
e

Fi
le

C
on

fli
ct

M

an
ag

em
en

t

S
ho

w
 M

es
sa

ge

Sh
ow

D

iff
er

en
ce

s
R

em
ov

e
Fi

le

U
nd

o
Fi

le

Ta
g

Fi
le

B
ra

nc
h

Fi
le

M
er

ge
 F

ile
s

A
ss

ig
n

P
er

m
is

si
on

s

Lo
g

A
ct

iv
iti

es

C
he

ck
 A

cc
es

s
R

ig
ht

s

S
to

re
 M

es
sa

ge

 Security 0,05 0,05 0 0,05 0,05 0 0,05 0,05 0,050,05 0,05 0,05 0,05 0,2 0 0,2 0.05
Concurrency 0 0 0 0,15 0,15 0,7 0 0 0 0 0 0 0 0 0 0 0

5.3.2 Metrics for Tangling
Similarly to the scattering metrics mentioned above, the metrics related to tangling defined in [25] and
[10] may be also represented by means of the tangling matrix presented in Section 3.3. On one hand, the
Component Cohesion metric presented in [25] is represented by a column of the tangling matrix. In a
column of the matrix mentioned we may see the different concerns that a particular component is
addressing. In Table 19 we show part of the tangling matrix for the CFVS.
As we did for the scattering in the system, we have defined a metric for assessing the tangling in the
system. This metric is based on the values of the tangling matrix. We called this metric Tangling
(TANG). This metric allows a developer to assess the number of source elements being addressed by a
particular target element. It is defined as:

where tj is the target element of column j in the tangling matrix, |S| is the number of source elements in
the system, and tandij represents the value of the cell ij of the tangling matrix. Again, TANG may have
values between zero and one where zero indicates lack of tangling and a value close to 1 indicates a high
degree of tangling. Similarly to the Global Scattering metric defined above, we also defined the Global
Tangling (GTANG) metric obtained by calculating the average of TANG:

 26

 where |S| is the number of source elements in the system.

Table 19. Part of the tangling matrix for a CFVS
 Use cases

U
nd

o
Fi

le

Ta
g

Fi
le

B
ra

nc
h

Fi
le

M
er

ge
 F

ile
s

A
ss

ig
n

P
er

m
is

si
on

s
Lo

g
A

ct
iv

iti
es

C
he

ck
 A

cc
es

s
R

ig
ht

s

S
to

re

M
es

sa
ge

C
on

ce
rn

s

Insert File 0 0 0 0 0 0 0 0
Retrieve File 0 1 1 0 0 0 0 0
Commit File 0 0 0 0 0 0 0 0
Update Working Files 0 0 0 1 0 0 0 0
Remove Files 0 0 0 1 0 0 0 0
Restore File 0 0 0 0 0 0 0 0
Store Message 0 0 0 0 0 0 0 1
Retrieve Message 0 0 0 0 0 0 0 1
Difference 0 0 0 0 0 0 0 0
Tag a Set of Files 0 1 1 0 0 0 0 0
Branch a Set of Files 0 0 1 0 0 0 0 0
Merge Set of Files 0 0 0 1 0 0 0 0
Persistence 0 0 0 0 0 0 0 1
Data Representation 0 0 0 0 0 0 0 1
Synchronization 0 0 0 0 0 0 0 0
Logging 0 0 0 0 0 0 0 0
Security 0 1 1 1 0 0 0 1
Concurrency 0 0 0 0 0 0 0 0

 On the other hand, the Degree of Focus metric presented in [10] is based on the Dedication metric.
Dedication metric is defined as the relation between the number of lines of code of a component
addressing a particular concern and the total number of lines of code of the component. Like we did with
the Concentration metric, we may represent the Dedication one just changing the values of the tangling
matrix. In this case, a column in the tangling matrix shows the Dedication metric for a component with
respect to each concern of the system. Then, having the values of the Dedication metric as input, the
calculation of the Degree of Focus is very simple.
5.3.3 Metrics for crosscutting
In addition to the metrics presented above, the crosscutting product matrix defined in our framework
provides very useful information for assessing the degree of crosscutting. This matrix may be used to
avoid the problem of having false positives (concerns considered as candidate aspects but they are not
really crosscutting concerns). The information shown in a row of the crosscutting product matrix may be
interpreted as follows:

- The cell of the diagonal represents the total number of target elements where the source element
is crosscutting to other source elements.

 27

- The rest of cells indicate the number of points where the concern of this row is crosscutting to
the concern of the corresponding column.

We can see in Table 20 a fragment of the crosscutting product matrix for the Concurrent File Version
System mentioned above where this information may be analyzed. The cells corresponding to the
diagonal are marked with dark grey background. As an example, we can see that the Retrieve File
concern is crosscutting to other concerns in three target elements and is crosscutting to the Tag a Set
of Files, Branch a Set of Files and Security concerns in two, one and three points
respectively. We can also observe in the same table that the Security concern crosscuts to other
concerns in eleven target elements. Then we may assure that the Security concern has a higher degree
of crosscutting than the Retrieve File one. By means of establishing a threshold value in the
diagonal, we can decide whether a concern can be considered as a candidate crosscutting concern or not.
Of course, the developer may assist the process deciding the final crosscutting concerns to be taken into
account.

Table 20. Part of the crosscutting product matrix for the CFVS
 Concerns

In
se

rt
Fi

le

R
et

rie
ve

 F
ile

C
om

m
it

Fi
le

U
pd

at
e

W
or

ki
ng

Fi

le
s

R
em

ov
e

Fi
le

R
es

to
re

 F
ile

S
to

re
 M

es
sa

ge

R
et

rie
ve

M

es
sa

ge

D
iff

er
en

ce

Ta
g

a
S

et
 o

f
Fi

le
s

Br
an

ch
 a

 S
et

 o
f

Fi
le

s
M

er
ge

 S
et

 o
f

Fi
le

s
P

er
si

st
en

ce

D
at

a
R

ep
re

se
nt

at
io

n
S

yn
ch

ro
ni

za
tio

n

Lo
gg

in
g

S
ec

ur
ity

C
on

cu
rre

nc
y

Retrieve File 0 3 0 0 0 0 0 0 0 2 1 0 0 0 0 0 3 0

Security 1 3 1 2 3 0 2 2 1 2 1 1 3 3 2 0 11 2

Finally we show in Table 21 a summary of the metrics used in this section. Each row in this matrix
represents a different metric category while the columns show the concept defined in the metric
frameworks compared above corresponding to such a category.

Table 21. Summary of the different metrics
 García et al. [25] Aho et al. [10] Crosscutting pattern based framework.

Metrics for
scattering Concern Diffusion Degree of Scattering (based on CON) Rows of the scattering matrix

Metrics for
tangling Component Cohesion Degree of Focus (based on DEDI) Columns of the tangling matrix

Metrics for
crosscutting - -

Diagonal of the crosscutting product
matrix
Rows of the crosscutting product matrix

6. RELATED WORK
Some other publications have addressed the formalization of crosscutting, one of the core concepts in
AOSD. As stated in Section 2, our definition of crosscutting is similar to definitions of Masuhara &
Kiczales [21], and Tonella and Ceccato [28]. A detailed comparison has been shown in Section 2.
There are also other authors that provided some works on aspect-oriented metrics. On one hand, some of
these metrics are focused on assess the degree of scattering of a traditional object-oriented system in
order to decide whether an aspect-oriented refactorization is needed [25] [10]. In other works such as
[30], the authors try to assess modularity in aspect-oriented systems so that metrics like coupling or

 28

cohesion may be assessed also for aspects. Since we are providing a formal definition of crosscutting,
we are interested in metrics for assess modularity in traditional object-oriented systems. Then, in Section
5 we showed how to adapt our framework to the metrics presented in [25] [10] and how to extend them
with new ones.
Several authors use matrices (design structure matrices, DSM) to analyze modularity in software design
[2]. Lopes and Bajracharya [20] describe a method with clustering and partitioning of the design
structure matrix for improving modularity of object-oriented designs. However, the design structure
matrices represent intra-level dependencies (as coupling matrices) and not the inter-level dependencies
as in the dependency matrices used for our analysis of crosscutting. In [24], a relationship matrix
(concern x requirement) is described very similar to our dependency matrix, and used to identify
crosscutting concerns. However, there is no explicit definition of crosscutting.
The papers described above lack an application of their definition of crosscutting to consecutive levels.
We used our formalization to trace crosscutting concerns through different levels of a software
development process, as shown by the cascading operation.
7. CONCLUSION
In this paper, we proposed a conceptual framework for describing crosscutting. We introduced a
crosscutting pattern with a mapping between source elements onto target elements. With source and
target, we abstract from specific levels or phases in software development. We defined crosscutting,
tangling and scattering as separated cases based on specific mappings between source and target. We
introduced the dependency matrix and crosscutting matrix to visualize the definitions. We showed that it
is possible to formalize these definitions. It is essential to define explicitly the dependency relations used
in the mapping between source elements and target elements, as represented in the dependency matrix.
The proposed definitions are similar to definitions of crosscutting in some other publications, e.g. [21],
although our definition is not symmetric and less restrictive. We showed a formal comparison of some
of these definitions.
An interesting application is the cascading of crosscutting patterns, which can be used to model
crosscutting relations across several levels, for example from concern modelling, to requirements,
architectural design to detailed design and implementation. As such, it provides an approach for
traceability analysis. Another interesting area is the definition of new metrics to assess the degree of
crosscutting in a system. As we showed in the paper, the framework allows the representation of some
existing metrics and the definition of new ones.
The framework can be applied in concrete cases in order to establish the suitability of the chosen
concepts and definitions. The following topics have been investigated in terms of the crosscutting
pattern: identification of crosscutting concerns, change impact analysis or integration into a Model
Driven Development process. We found important benefits of the application of the framework in those
areas. In [4], we performed a detailed analysis on the application of the framework for mining aspects at
early phases. The utilization of dependency matrices for this purpose allows the developer to improve
traceability of concerns through several refinement levels. In particular, in [4], we performed an analysis
of crosscutting across requirements and architecture design phases. In [3], we also performed an analysis
of the change impact based on the crosscutting pattern so that we can analyze the change impact in case
of crosscutting. Change impact in the traceability pattern is operationalized by means of the elements
involved in the change of a source element. Finally, the Model Driven Architecture (MDA) initiative
aims at providing stable models amenable to changes [22]. These models can be built at different levels
of abstraction (CIM, PIM and PSM) allowing transformations among them. Then an analysis of
crosscutting can be made in MDA developments just observing transformation rules performed between

 29

models. In [5] we analyzed in more detail the use of the framework in MDA transformations, e.g. in a
case study with the Concurrent File Versioning System.
ACKNOWLEDGEMENT
This work has been carried out in conjunction with the AOSD-Europe Project IST-2-004349-NoE (see
[1]) and also partially supported by MEC under contract TIN2005-09405-C02-02. We would like to
thank Ana Moreira and Gregor Kiczales for their comments and suggestions and also to Bedir
Tekinerdogan for allowing us to use the Concurrent File Version System as an example.
REFERENCES
[1] AOSD-Europe (2005). AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation. Retrieved May,

2005, from http://www.aosd-europe.net/documents/d9Ont.pdf.
[2] Baldwin, C.Y. & Clark, K.B. (2000). Design Rules vol I, The Power of Modularity. MIT Press.
[3] Berg, K. van den (2006). Change Impact Analysis of Crosscutting in Software Architectural Design.

In Workshop on Architecture-Centric Evolution at 20th ECOOP, Nantes
[4] Berg, K. van den, Conejero, J. M. & Hernández, J. (2006a). Analysis of Crosscutting Across

Software Development Phases Based on Traceability. In Early Aspects Workshop at 28th ICSE,
Shanghai.

[5] Berg, K. van den, Tekinerdogan, B. & Nguyen H. (2006c). Analysis of Crosscutting in Model
Transformations. In J. Aagedal, T. Neple, J. Oldevik (Eds). ECMDA-TW Traceability Workshop
Proceedings 2006. SINTEF Report A219, pp 51-64

[6] Bushmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, West Sussex, England, 1996.

[7] Cachero. C., Gómez, J., Párraga, A. & Pastor, O. (2001). Conference Review System: A Case of
Study. In [13].

[8] Ceccato M., Marin M., Mens K., Moonen L., Tonella P. and Tourwé T., (2006). Appliying and
Combining Three Different Aspect Mining Techniques. Delf University of Technology. Report
TUD-SERG-2006-002

[9] Davis, A. (1993). Software Requirements: Objects, Functions and States. Prentice–Hall, Second
Edition.

[10] Eaddy M., Aho A. (2007). Towards Assessing the Impact of Crosscutting Concerns on Modularity,
AOSD Workshop on Assessment of Aspect Techniques (ASAT 2007), Vancouver, BC, Canada, March
12, 2007

[11] Ferrante, J., Ottenstein, K.J. and Warren J.D. (1987). The Program Dependence Graph and its Use in
Optimization. ACM Transactions on Programming Language and System, Vol. 9, No. 3

[12] Filman, R., et al. (2004). Aspect-Oriented Software Development. Addison-Wesley
[13] First International Workshop on Web-Oriented Software Technology. (2001).

http://www.dsic.upv.es/~west/iwwost01/. Valencia, Spain
[14] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns. Elements of reusable

object-oriented software. Addison-Wesley.
[15] Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C. and Staa, A. (2005) Modularizing

Design Patterns with Aspects: A Quantitative Study. LNCS Transactions on Aspect-Oriented
Software Development, Springer, 2005.

 30

[16] Kiczales, G. (2005) Crosscutting. AOSD.NET Glossary 2005. At
http://aosd.net/wiki/index.php?title=Crosscutting.

[17] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G. (2001). An
overview of AspectJ. In European Conference on Object-Oriented Programming, LNCS 2072,
Springer, pp.327-353.

[18] Knethen, A. von & Paech, B (2002). A Survey on Tracing Approaches in Practice and Research.
IESE-Report No. 095.01/E. v1.0. Fraunhofer Institut Experimentelles Software Engineering.

[19] Laddad, R. (2002). AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publicacions Co.

[20] Lopes, C.V. & Bajracharya, S.K. (2005). An analysis of modularity in aspect oriented design. In 4th
International Conference on Aspect-Oriented Software Development. Chicago, Illinois

[21] Masuhara, H. & Kiczales, G. (2003). Modeling Crosscutting in Aspect-Oriented Mechanisms. In
17th European Conference on Object Oriented Programming. Darmstadt

[22] MDA (2003). MDA Guide Version 1.0.1, document number omg/2003-06-01
[23] Ramesh, B. & Jarke, M. (2001). Toward reference models for requirements traceability. IEEE

Transactions on Software Engineering, 27(4):58–93.
[24] Rashid, A., Moreira, A. & Araujo, J. (2003). Modularisation and Composition of Aspectual

Requirements. In Second Aspect Oriented Software Conference. Boston, USA.
[25] Sant'Anna, C., Figueiredo, E., Garcia, A., Lucena, C. (2007). On the Modularity Assessment of

Software Architectures: Do my architectural concerns count? In First European Conference on
Software Architecture. Madrid, Spain.

[26] Sutton, S. & Rouvellou, I. (2002). Modeling of Software Concerns in Cosmos. In First Aspect
Oriented Software Development Conference. Enschede, The Netherlands

[27] Tekinerdogan, B. (2004). ASAAM: Aspectual Software Architecture Analysis Method. In 4th
Working IEEE/IFIP Conference on Software Architecture.

[28] Tonella, P. and Ceccato, M. (2004). Aspect Mining through the Formal Concept Analysis of
Execution Traces. In 11th Working Conference on Reverse Engineering. Delft, the Netherlands.

[29] Zhao, J. and Rinard, M. (2003). System dependence graph construction for aspect-oriented
programs. Technical Report MITLCS-TR-891, Laboratory for Computer Science, MIT.

[30] Zhao, J. (2004). Measuring Coupling in Aspect-Oriented Systems. Technical report, Information
Processing Society of Japan (IPSJ).

