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ABSTRACT 
Crosscutting is usually described in terms of scattering and tangling. However, the distinction between 
these concepts is vague, which could lead to ambiguous statements. Sometimes, precise definitions are 
required, e.g. for the formal identification of crosscutting concerns. We propose a conceptual framework 
for formalizing these concepts based on a crosscutting pattern that shows the mapping between elements 
at two levels, e.g. concerns and representations of concerns. The definitions of the concepts are 
formalized in terms of linear algebra, and visualized with matrices and matrix operations. In this way, 
crosscutting can be clearly distinguished from scattering and tangling. Using linear algebra, we 
demonstrate that our definition generalizes other definitions of crosscutting as described by Masuhara & 
Kiczales [21] and Tonella and Ceccato [28]. The framework can be applied across several refinement 
levels assuring traceability of crosscutting concerns. Usability of the framework is illustrated by means 
of applying it to several areas such as change impact analysis, identification of crosscutting at early 
phases of software development and in the area of model driven software development. 

Keywords 
Aspect-Oriented Software Development, Scattering, Tangling, Crosscutting, Crosscutting Concerns 
1. INTRODUCTION 
One of the key principles in Aspect-Oriented Software Development (AOSD) is Separation of Concerns 
(SOC) [12]. A concern can be defined very generally as an item in an engineering process about which it 
cares [9]. Related with this principle is the problem of crosscutting concerns. Crosscutting is usually 
described in terms of scattering and tangling, e.g. crosscutting is the scattering and tangling of concerns 
arising due to poor support for their modularization. However, the distinction between these concepts is 
vague, sometimes leading to ambiguous statements and confusion, as stated in [16]: 
 .. the term "crosscutting concerns" is often misused in two ways: To talk about a single concern, and to 
talk about concerns rather than representations of concerns. Consider "synchronization is a 
crosscutting concern": we don't know that synchronization is crosscutting unless we know what it 
crosscuts. And there may be representations of the concerns involved that are not crosscutting. 
The goal of this paper is to propose a conceptual framework where consistent and precise definitions of 
scattering, tangling and crosscutting are provided. A precise definition of crosscutting is mandatory for 
the identification of crosscutting concerns at any phase of the software life cycle. The focus is not on 
specific examples although they should fit in this general framework. The description of crosscutting 
presented here is similar to other definitions of Masuhara & Kiczales [21] and of Tonella and Ceccato 
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[28] [8]. A formal comparison of these definitions and ours is shown. We demonstrate that our definition 
generalizes the aforementioned ones.  
Furthermore we show the applicability of our conceptual framework for the identification and 
traceability of crosscutting concerns across software development phases. Usability of the framework is 
also shown in other areas such as the definition of an aspect oriented metrics suite. We show how the 
framework allows the representation of existing metrics defined in [25] and [10] and how to extend such 
metrics with new ones. 
The paper is structured as follows. In Section 2, we introduce our formal definition of crosscutting, 
tangling and scattering based on the crosscutting pattern and compare it with other definitions. In 
Section 3, we describe how to represent and visualize crosscutting by means of dependence graphs and 
matrices. We show some matrix operations designed to identify crosscutting and some real examples 
where we distinguish between scattering, tangling and crosscutting. In Section 4, we discuss the 
cascading of crosscutting patterns which can be used for traceability analysis. In Section 5 we show how 
to use the framework to assess the degree of crosscutting in a system. Finally in Sections 6 and 7, we 
present related work and conclusions of the paper. 
2. DEFINITIONS OF CROSSCUTTING 
In this section we focus on our formal definition of crosscutting based on a crosscutting pattern. Other 
definitions have been presented in the literature such as [21] and [28] [8]. A formal comparison of 
definitions is shown at the end of section. 
2.1 Definition based on Crosscutting Pattern 
In this section, we first introduce an intuitive notion of crosscutting, which will be generalized in a 
crosscutting pattern. Based on this pattern, we provide precise definitions of scattering, tangling and 
crosscutting and their relation.  
For example, assume we have three concerns shown as elements of a source in Figure 1, and four 
requirements (e.g. viewpoints or use cases) shown as elements of a target. 
This picture is consistent with the quotation in the Introduction. Intuitively, we could say that s1 
crosscuts s3 for the given relation between source and target elements. In this figure, we only show two 
abstraction levels. Multiple intermediate levels between source and target may exist. In the following 
section, we generalize this intuition by means of a crosscutting pattern. Furthermore, we focus on 
definitions of crosscutting, tangling and scattering. 

s1 s2

t1 t2

s3

t3 t4

source

target

s1 s2

t1 t2

s3

t3 t4

source

target

 
Figure 1. Trace relations between source and target elements 

2.1.1 Crosscutting pattern 
Our proposition is that crosscutting can only be defined in terms of 'one thing' with respect to 'another 
thing'. Accordingly and from a mathematical point of view, what this means is that we have two 
domains related to each other through a mapping. We use here the general terms source and target (as in 
[22]) to denote these two domains and the trace relationship is the mapping relating these domains 
(Figure 2).  
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Figure 2. Crosscutting pattern 

We use the term of Crosscutting Pattern to denote the situation where source and target are related to 
each other through trace dependencies. We use the term pattern as in design patterns [14], in the sense 
of being a general description of frequently encountered situations [21], [28]. In the Crosscutting 
Pattern, the mappings between source and target elements are captured in trace dependency 
relationships. In Figure 3, we show a model of these relationships. Ramesh and Jarke [23] show a more 
detailed model about traceability where these and other more specific relations are explained. The UML 
2.0 specification [27] also covers such relationships. In [18] the authors show other taxonomy of 
traceability relationships. The model shown in Figure 3 is based on the previous ones covering some 
important trace relationships of interest for crosscutting identification. 
As shown in Figure 3 we focus just on the following types of trace relationships: refinement, 
elaboration, evolution and representation. These relationships may be applied to different domains 
where we can find them. For example: 
- Refinement. In software development we usually find refinements between different abstraction 

levels. For instance, the first abstraction could refer to the concerns a system must deal with and the 
second one to the software artifacts which address such concerns (this could be extended to any 
phase in software development). As another example, the Model Driven Architecture (MDA) [22] 
provides a way to build software based on different refinements or transformations between models 
or artifacts belonging to different abstraction levels (e.g. Computational Independent Model (CIM), 
Platform Independent Model (PIM) and Platform Specific Model (PSM)). 

- Elaboration. We can find relationships between models of the same abstraction level. In such 
situations, we elaborate or add some extra information to a model in order to get a new model. For 
instance at requirements level we can elaborate a use case based on a previous one. 

- Representation. In requirements engineering it is very common to have different representations of 
the same user needs. For instance, we can represent the requirements as statements extracted from a 
requirements elicitation document and we can also represent such requirements as viewpoints or use 
cases. We can link both kinds of representation by means of trace relationships. 

- Evolution. With this type of dependencies we can relate gradual changes of software artifacts over 
time (as in adaptive maintenance). The <<evolves-to>> relationship exists between modified 
(structural and/or behavioral) elements in artifacts. 
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Figure 3. Traceability relationships model 

In Table 1 we show some situations where crosscutting pattern can be applied. As we can see in this 
table, in the third column we show the different traceability types which can exist between source and 
target. These trace relations types belong to the simple model of traceability shown in Figure 3. 

Table 1. Some examples of source and target domains 
Examples Source Trace Relationship Target 

Ex. 1  Concerns are REFINED to Requirements
Statements 

Ex. 2  Concerns are REFINED to Use Cases 

Ex. 3  Concerns are REFINED to Design Modules

Ex. 4  Use Cases are REFINED  to Architectural 
Components 

Ex. 5  Use Cases are REFINED to Design Modules

Ex. 6  PIM artifacts are REFINED TO PSM artifacts 

Ex. 7  
Requirements

Statements 
are REPRESENTED 

in Viewpoints 

Ex. 8  PIM artifacts are ELABORATED in PIM artifacts 

2.1.2 Concepts based on Crosscutting Pattern 
As we can see in Figure 2 and 3 there is a multivalued function from source elements to target elements. 
f’: S ⎯→⎯  T   such that if f’(s) = {t} then there exists a trace relation between s and t. 
Analogously, we can define another multi-valued function g’ that can be considered as the inverse of f’. 
g’: T ⎯→⎯  S   such that if g’(t) = {s} then there exists a trace relation between s and t. 
If f’ is not a surjection, we can consider that T is the range of f’, then g’ is always a well-defined multi-
valued function. 
Obviously, f’’ and g’ can be also represented as single-value functions considering that their codomains 
are the set of non-empty subsets of Target and Source respectively.   
Let  f: Source ⎯→⎯  c   (Target)   and  g: Target ⎯→⎯  c   (Source)  be these functions defined by:  
∀ s є Source, f(s) = {t є Target / there exists a trace relation between s and t} 
∀ t є Target, g(t) = {s є Source / there exists a trace relation between s and t} 
The concepts of scattering, tangling and crosscutting are defined as specific cases of these functions. 
Scattering occurs when, in a mapping between source and target, a source element is related to multiple 
target elements. 
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Definition 1.[Scattering] We say that an element s є Source is scattered if  card(f(s)) > 1.  
Tangling occurs when a target element is related to multiple source elements. In this case, we have 
focused on function g, i.e. the relation between target and source elements.  
Definition 2.[Tangling] We say that an element  t є Target is tangled if  card(g(t))> 1. 
There is a specific combination of scattering and tangling which we call crosscutting. Crosscutting 
occurs when a source element is scattered over various target elements and at least one of these target 
elements is tangled. 
Definition 3.[Crosscutting] Let s1, s2 є Source, s1 ≠ s2, we say that s1 crosscuts s2 (s1 cc s2)  if 

a) card(f(s1)) > 1  
b) ∃ t є f(s1): s2 є g (t) 

We do not require that the second source element (s2) is scattered. In that sense, our definition is not 
symmetric as definition in [21] (see Section 2.2). 
In following paragraphs, we say that the definition 3 is the BCH-definition (Berg, Conejero and 
Hernández) of crosscutting. 
From the previous definitions, we can follow a result that avoids the use of g. So, we work only with 
function f. 
 
Lemma 1. Let s1, s2 є Source, s1 ≠ s2,  then  

s1 crosscuts  s2 if and only if card(f(s1)) > 1 and f(s1)∩ f(s2) ≠∅. 
Proof.  

∅≠∩∧>⇔
∩∈∃∧>⇔
∈∈∃∧>⇔
∈∈∃∧>⇔

)2()1(1))1((
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)(2:)1(1))1((
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2.2 Definition by Masuhara and Kiczales 
In [21] the authors provide a very interesting model for defining how four different AOP mechanisms 
support modular implementation of crosscutting concerns. These mechanisms are based on a common 
framework which allows the authors to define what makes a technique aspect-oriented.  
In addition, the authors also provide an interesting definition of crosscutting which can be compared 
with the concepts presented in previous section. The notion of crosscutting provided in [21] is focused 
on programming level, and it is based on two source languages A and B (one of them being aspect-
oriented) and a target one called X (resulting of the weaving process of A and B). The authors take as 
input two different programs pA and pB written in A and B respectively. Then they define the term 
projection as follows: “for a module mA (from pA), we say that the projections of mA into X is the set of 
join points identified by the AID elements within mA”. AID refers to the means in A for identifying the 
join points in X (in object-oriented languages methods and field signatures). For more details see [21]. 
The authors use the canonical figures-display example [17] in the poincut-and-advice mechanisms to 
show these concepts in AspectJ (see Figure 4). 
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Figure 4. The Point class and the display updating advice crosscut each other in result 

domain X [23] 
Then crosscutting is defined as follows: For a pair of modules mA and mB we say that mA crosscuts mB 
with respect to X [the result domain] if and only if their projections onto X intersect, and neither of the 
projections is a subset of the other. According to this definition crosscutting is a symmetric property.  
We prove in following paragraphs that Masuhara and Kiczales definition of crosscutting (MK-
definition) is a particular case of  the definition 3 presented in previous subsection. 
Let assume that  

 Source = {mA : mA is a module of program pA}∪  {mB : mB is a module of program pB}  

 Target = {join points of X}  
 f: Source ⎯→⎯  c   (Target)   defined  by f(s) is the projection of s onto X 

This definition of f is independent of the fact that s will be a module of pA or a module of pB. 

Thus, we can prove that any crosscutting situation detected by Masuhara and Kiczales in the context 
defined in [21] can be also detected with our definition. 
Theorem 1. If there is a crosscutting situation using the MK-definition then there is also crosscutting 
using BCH-definition. 
Proof. If there is a crosscutting situation using the MK-definition then there is a pair of modules mA and 
mB     such that: 

1. f(mA)∩ f(mB) ≠∅  
2. f(mA) ⊄ f(mB)  
3. f(mB) ⊄ f(mA)  

Obviously card(f(mA)) > 1.  
If card(f(mA) ≤ 1, as f(mA)∩ f(mB) ≠∅  then f(mA) ⊂ f(mB) and it is not true. Thus, card(f(mA) > 1 
Analogously, card(f(mB) > 1. 
Applying lemma 1, we have that mA crosscut mB according definition 3.    � 
Theorem 1 shows that MK-definition can be seen as a particular case of BCH-definition, being MK 
projections the mapping between Source and Target. Since MK-definition is focused on implementation 
level, we can say that definition based on Crosscutting Pattern is a generalization of it. This definition 
can be applied to any level or domain so that crosscutting can be identified in it.  
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Since our approach doesn’t require that ( ) ( ) ( ) ( )f mA f mB f mB f mA⊄ ∧ ⊄ , this definition is less restrictive 
than other ones 1. BCH definition only requires that the cardinality of the projection of mA onto X is 
larger than 1 (scattering), but the cardinality of mB onto X can be larger or equal than 1.The 
implications of this statement are important because of the set of crosscutting cases each definition could 
cover. That idea implies there would be some cases of crosscutting which definition based on 
Crosscutting Pattern identifies whereas other definitions do not. For example, certain tracing cases 
cannot be identified as crosscutting with MK-definition but with BCH, as we show below.  
In [21], authors use the canonical figures-display example [17] to illustrate the application of their 
definition. This example can be also seen as a concrete application of the Observer Pattern defined in 
[14]. However, instead of considering the Display concern we may be interested in tracing the execution 
of all methods of Point or Line classes (Figure 5).  

               

•   
    

    

Tracing       

    
    

execution of l.setP1                        
•          •          

execution of p.setX              
    execution of p.getX            
    

•          •          

Line     
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•       
               •       
               

set      P1       
        getP1      
      

•    
    set   X      •    
    get   X   

    

    

    

X               

af ter : 
  (execution(* figures..*(..)) 

      
  & &  ! within ( tracing  Aspect)); 

  

A   B   

execution of l.getP1

 
Figure 5. Projections of Line and Display advice according to Masuhara and Kiczales’s definition 

In that case, Masuhara and Kiczales’s definition is applied as follows: projection of Line class onto X 
includes the execution of all methods of Line. The same is true for Point class. On the other hand, 
projections of advice include execution of all methods of Line and Point classes (in AspectJ execution 
join points are within the projection of the class that defines the method, as the authors explain in [21]). 
We can easily observe that projections of Line or Point are a subset of advice’s one. Then, according to 
Masuhara and Kiczales’s definition, subset condition is not accomplished in such an example and Line 
and Tracing do not crosscut each other. We could consider other monitoring techniques such as logging 
or profiling as similar examples [19]. However, as we do not require the subset condition, our definition 
identifies crosscutting in such a case. We just focus on cardinality of mA and intersection of both 
projections (mA and mB). This will be illustrated in next section by means of matrix representation of 
mappings between source and target. 
To summarize the comparison between these definitions, we show the main differences: 
- Since the definition based on the Crosscutting Pattern may be applied to any model or domain, it 

generalizes the definition presented in [21].  
- The definition based on the Crosscutting Pattern is less restrictive than other one since it does not   

require the subset condition as in [21]. 
- The definition based on the Crosscutting Pattern does not consider crosscutting being a symmetric 

property whereas the definitions presented in [21]  does.  
The applicability of the definitions above depends on the goal of the crosscutting analysis.  
 
                                                 
1 Note that  ( ) ( ) ( ) ( )f mA f mB f mB f mA⊄ ∧ ⊄  is equivalent to ( ) \ ( ) ( ) \ ( )f mA f mB f mB f mA≠ ∅∧ ≠ ∅ . 
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2.3 Definition by Lieberherr 
In [34] Karl Lieberherr gives a definition of crosscutting: “Two concerns crosscut if the methods related 
to those concerns intersect.(…) We say a method is related to a concern if the method contributes to the 
description, design, or implementation of the concern”. This definition can be considered as a particular 
case of MK-definition. 
2.4 Definition by Ceccato et al. 
In [28] Tonella and Ceccato use a mathematical tool to represent the relation between concerns and 
source code units; it is the formal concept analysis that will be introduce in following section.  
2.4.1 Formal concept analysis. 
Formal concept analysis (FCA) is a branch of lattice theory that can be used to identify meaningful 
groupings of elements that have common properties. FCA takes as input a so-called context, which 
consists of a set of elements E, a set of properties P on those elements, and a Boolean incidence relation 
between E and P.  
An example of such a context is given in Table 3, which relates different properties defined on integer 
numbers. Consider E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and P = {composite, even, odd, prime, square}. 
 

Table 2. Dependency matrix that represents the relation between E and P. 
 1 2 3 4 5 6 7 8 9 10 
Composite    X  X  X X X 
Even  X  X  X  X  X 
Odd X  X  X  X  X  
Prime  X X  X  X    
Square X   X     X  

 
Starting from such a context, FCA determines maximal groups of elements and properties, called 
concepts, such that each element of the group shares the properties, every property of the group holds 
for all of its elements, no other element outside the group has those same properties, nor does any 
property outside the group hold for all elements in the group. Graphically, a concept corresponds to a 
maximal ‘rectangle’ containing only marks in the table, considering any permutation of the table’s rows 
and columns. 
A concept lattice can be built from a context. In the concept lattice, every node is a concept that is a 
pair containing both a property cluster and its corresponding object cluster.  
The concept lattice shown in Figure 6 has been built from the context described in Table 2. Obviously, it 
is only a different way to represent the relation between E and P. 
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Figure 6. Concept lattice for the context describe in table 3 

Formaly, a concept is defined to be a pair (Ei, Pi) such that 

1. Ei ∈ c   (E)  
2. Pi ∈ c  (P)  
3. every element in Ei has every attribute in Pi  
4. for every element in E that is not in Ei, there is a property in Pi that the element does not have  
5. for every property in P that is not in Pi, there is an element in Ei that does not have that property  

Ei is called the extent of the concept, and Pi is the intent. 

Nodes in the concept lattice can be partially ordered by inclusion: if (Ei, Pi) and (Ej, Pj) are concepts, we 
define a partial order by saying that (Ei, Pi) ≤ (Ej, Pj) whenever Ei ⊆ Ej. Equivalently, (Ei, Pi) ≤ (Ej, Pj) 
whenever Pj ⊆ Pi. Every pair of concepts in this partial order has an unique greatest lower bound and an 
unique least upper bound. The greatest lower bound of (Ei, Pi) and (Ej, Pj) is the concept with elements 
Ei ∩ Ej; it has as its properties Pi ∪ Pj. The least upper bound of (Ei, Pi) and (Ej, Pj) is the concept with 
properties Pi ∩ Pj; it has as its elements the set  Ei ∪ Ej . 
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2.4.2 Labels in the concept lattice 
It is very interesting the idea of selecting elements and properties that label a given concept, they are 
those that characterize the concept most specifically. 
More precisely, a concept c is labelled with an element e only if c is the most specific (i.e., lowest) 
concept having e in the extent. A concept c is labelled with a property p only if c is the most general 
(i.e., highest) concept having p in its intent. 
We formally introduce this idea with the following functions: 
α(c) = {p ∈  P | c is the largest lower bound of the set of concepts that have p in its intent}  
β(c) = {e ∈  E | c is the least upper bound of the set of concepts that have e in its extent} 

Considering the previous example, the smallest concept including the number 3 is the one with objects 
{3, 5, 7}, and attributes {odd, prime}, then 3 is a label for this concept. The largest concept involving 
the attribute of being square is the one with objects {1,4,9} and attributes {square}, then square is a label 
for this concept. Thus: 

α({3,5,7}{odd, prime}) =  ∅  β({3,5,7}{odd, prime}) =  {3,5,7} 
α({1, 4, 9}{square}) =  {square} β({1,4,9}{square}) =  {1,4,9} 

2.4.3 Applying FCA to identify crosscutting situations 
Formal concept analysis has been used to identify the computational units (i.e., procedures) that 
specifically implement a feature (i.e., requirement) of interest.  
Execution traces obtained by running the program under given scenarios provided the input data. The 
executed methods are the elements of the concept analysis context, while execution traces associated 
with the use-cases are the properties2. In the resulting concept lattice, the use-case specific concepts are 
those labelled by at least one trace for some use-case (i.e. α(c) contains at least one element), while the 
concepts with zero or more properties as labels (those with an empty α(c)) are regarded as generic 
concepts. Thus, use-case specific concepts are a subset of the generic ones. 
Both use-case specific concepts and generic concepts carry information potentially useful for aspect 
mining, since they group specific methods that are always executed under the same scenarios.  
2.4.4 Definition  of crosscutting 
A concern seed is a single source-code entity, such as a method, or a collection of such entities, that 
strongly connotes a crosscutting concern. A candidate seed is a potential concern seed. 
Formally, a concept c is considered a candidate seed iff [8]: 

 Scattering: ∃ m, m’ ∈ β(c) | pref(m) ≠ pref(m’) 
 Tangling: ∃ m ∈ β(c), ∃ m’ ∈ β(c’)   | c ≠ c’ ∧  pref(m)= pref(m’) 

where pref(p) is the fully scoped name of the class containing the method p. 
 The first condition (scattering) requires that more than one class contributes to the functionality 
associated with the given concept. The second condition (tangling) requires that the same class 
addresses more than one concern. 

                                                 
2 In [8], the authors claim that the executed methods are the properties of the concept analysis context. However, in the formal definition 

they define p and p’ ∈ β(c) (set of elements). We think this inconsistence is a typo. In order to clarify this issue, we considered here 
executed methods as the elements of the concept analysis context. 
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We prove in following paragraphs that Ceccato definition of crosscutting (C-definition) is a particular 
case of the definition 3 presented in subsection 2.1.2.  
Let assume that  

 Source is the set of concepts  

 Target is the set of classes 
 f: Source ⎯→⎯  c   (Target)   defined  by  f(c) = {pref(m) / m ∈ β(c) } 

f(c) is the set of classes containing methods that labelled the concept c. 
Thus, we can prove that any crosscutting situation detected by C-definition in the context defined in [8] 
can be also detected with our definition. 
Theorem 2. If there is a crosscutting situation, the use of C-definition is equivalent to the use of BCH-
definition. 
Proof.  

1. We prove that if there is a crosscutting situation using C-definition then there is also crosscutting 
using BCH-definition. 
The C-definition says that 

1. ∃ m, m’ ∈ β(c) / pref(m) ≠ pref(m’) 
2. ∃ m ∈ β(c), ∃ m’ ∈ β(c’)   / c ≠ c’ ∧  pref(m)= pref(m’)  

Obviously, card(f(c)) > 1, because pref(m), pref(m’) ∈ f(c) and, considering item 1 in C-
definition, we have that   pref(m) ≠ pref(m’) 
Considering item 2, we have that pref(m) ∈ f(c) ∩ f(c’) ⇒ f(c)∩ f(c’) ≠∅. 
Applying lemma 1, we have that c crosscut c’ according BCH-definition. 

2. We prove that if there is a crosscutting situation using BCH-definition then there is also 
crosscutting using C-definition. 
Using lemma 1, the BCH-definition says that 1 2s s Source∃ ≠ ∈ such that 

a) card(f(s1)) > 1  
b) f(s1)∩ f(s2) ≠∅. 

 
Considering item a, we have that f(s1) has at least two different elements. 

1 ( 1) 2 ( 1)
( ) : 1 ( ) ' ( ) : 2 ( ') ' ( 1 2)

cl f s cl f s
m c cl pref m m c cl pref m m m because cl clβ β
∈ ∧ ∈

⇒ ∃ ∈ = ∧ ∃ ∈ = ∧ ≠ ≠
 

Considering item b, 

( )   1 ( 2) ( 1) ' ( 2) :
( ) ( ')

cl є f s f s m s m s
cl pref m pref m

β β∃ ∩ ⇒ ∃ ∈ ∧ ∈

= =
 

Then, s1 crosscut s2 according C-definition       � 
3. REPRESENTATION OF CROSSCUTTING 
In this section, we describe how crosscutting can be represented by means of dependency graphs and an 
extension to traceability matrices. In the former we just represent the trace relationships between source 
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and target elements. In the latter trace relations are captured in a dependency matrix, representing the 
mapping between source and target. Since matrix representation allows the tool support by means of 
simple matrix operations, we focus on this representation. As an extension, we derive the crosscutting 
matrix from the dependency matrix. We describe how the crosscutting matrix can be constructed from 
the dependency matrix with some auxiliary matrices. This is illustrated with some examples. 
3.1 Dependence graphs 
Dependence graphs have been widely used in software engineering tasks such as program 
understanding, debugging, testing and maintenance. They have been mainly used at programming level 
showing control and data dependencies between code artefacts [11]. Even some approaches have 
emerged to adapt these graphs to represent aspect-oriented programs [29].  
We may use such graphs to deal with the traceability links introduced in crosscutting pattern. As we 
showed in Section 2.1, a very intuitive and simple representation of mappings between source and target 
can be made by means of dependence graphs, so that crosscutting may be easily identified and 
represented by means of such graphs. We may distinguish several cases of mappings according to their 
cardinality between source and target: 
− Injection: distinct source elements are related to distinct target elements (i.e. a one-to-one3 function). 
− Scattering: a source element is related to multiple target elements (i.e. a one-to-many function). 
− Tangling: a target element is related to multiple source elements (i.e. a many-to-one function). 
− Crosscutting: a target element is involved both in scattering and tangling (e.g. t3; scattering of s1 to t1, 

t3 and t4, and tangling of s1 and s3 in t3). 
However, other representations of crosscutting may be possible. For instance, by means of traceability 
matrices, we can represent dependencies between source and target elements. In next section we show 
such matrices in order to identify and represent crosscutting. Matrix representation allows building 
automatic tools to find out crosscutting based on simple matrix operations.  
3.2 Matrix representation   
In terms of linear algebra, the relation between source elements and target elements can be represented 
in a special kind of traceability matrix [9] that we called dependency matrix. A dependency matrix 
(source x target) represents the dependency relation between source elements and target elements 
(inter-level relationship). In the rows, we have the source elements, and in the columns, we have the 
target elements. In this matrix, a cell with 1 denotes that the source element (in the row) is mapped to the 
target element (in the column). Reciprocally this means that the target element depends on the source 
element. Scattering and tangling can easily be visualized in this matrix (see the examples below). 
We define a new auxiliary concept crosscutpoint used in the context of dependency diagrams, to denote 
a matrix cell involved in both tangling and scattering. If there are one or more crosscutpoints then we 
say we have crosscutting. 
Crosscutting between source elements for a given mapping to target elements, as shown in a dependency 
matrix, can be represented in a crosscutting matrix. A crosscutting matrix (source x source) represents 
the crosscutting relation between source elements, for a given source to target mapping (represented in 
a dependency matrix). In the crosscutting matrix, a cell with 1 denotes that the source element in the row 
is crosscutting the source element in the column. In section 3.3 we explain how this crosscutting matrix 
can be derived from the dependency matrix.  

                                                 
3 This name is best avoided, since some authors understand it to mean a bijective function 
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A crosscutting matrix should not be confused with a coupling matrix. A coupling matrix shows coupling 
relations between elements at the same level or abstraction (intra-level dependencies). In some sense, the 
coupling matrix is related to the design structure matrix [2]. On the other hand, a crosscutting matrix 
shows crosscutting relations between elements at one level with respect to a mapping onto elements at 
some other level (inter-level dependencies).  
We now give an example and use the dependency matrix and crosscutting matrix to visualize the 
definitions (S denotes a scattered source element - a grey row; NS denotes a non-scattered source 
element; T denotes a tangled target element - a grey column; NT denotes a non-tangled target element). 
The example is shown in Table 3. 

Table 3. Example dependency and crosscutting matrix with tangling, scattering and one 
crosscutting 

dependency matrix  
  target  
  t[1] t[2] t[3] t[4]  

so
ur

ce
 s[1] 1 0 1 1 S 

s[2] 0 1 0 0 NS 
s[3] 0 0 1 0 NS 

  NT NT T NT  
crosscutting matrix 

  source 
  s[1] s[2] s[3] 

so
ur

ce
 s[1] 0 0 1 

s[2] 0 0 0 
s[3] 0 0 0 

In this example, we have one scattered source element s[1] and one tangled target element t[3]. We 
apply our definition of crosscutting and arrive to the crosscutting matrix. Source element s[1] is 
crosscutting s[3] (because s[1] is scattered over [t[1], t[3], t[4]] and s[3] is in the tangled one of these 
elements, namely t[3]). The reverse is not true: the crosscutting relation is not symmetric. The example 
is depicted in the diagrams (Table 3). 
3.3 Constructing crosscutting matrices 
In this section, we describe how to derive the crosscutting matrix from the dependency matrix. We use a 
more extended example than the previous ones. We now show an example with more than one 
crosscutpoints, in this example 8 points (see Table 4; the dark grey cells).  
The crosscutting matrix shows that the crosscutting relation is not symmetric. For example, s[1] is 
crosscutting s[3], but s[3] is not crosscutting s[1] because s[3] is not scattered (scattering is a necessary 
condition for crosscutting). 
 

Table 4. Example dependency matrix with tangling, scattering and several crosscuttings 
dependency matrix  

  target  
  t[1] t[2] t[3] t[4] t[5] t[6]  

so
ur

ce
 

s[1] 1 0 0 1 0 0 S 
s[2] 1 0 1 0 1 1 S 
s[3] 1 0 0 0 0 0 NS 
s[4] 0 1 1 0 0 0 S 
s[5] 0 0 0 1 1 0 S 

  T NT T T T NT  
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 crosscutting matrix 
  source 
  s[1] s[2] s[3] s[4] s[5] 

so
ur

ce
 

s[1] 0 1 1 0 1 
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0 
s[4] 0 1 0 0 0
s[5] 1 1 0 0 0 

Based on the dependency matrix, we define some auxiliary matrices: the scattering matrix (source x 
target), and the tangling matrix (target x source). These two matrices are defined as follows (for our 
example in Table 4, these matrices are shown in Table 5): 
- In the scattering matrix a row contains only dependency relations from source to target elements if the 
source element in this row is scattered (mapped onto multiple target elements); otherwise the row 
contains just zero's (no scattering).  
- In the tangling matrix a row contains only dependency relations from target to source elements if the 
target element in this row is tangled (mapped onto multiple source elements); otherwise the row contains 
just zero's (no tangling).  

Table 5. Scattering and tangling matrices for dependency matrix in Table 4 
scattering matrix 

  target 
  t[1] t[2] t[3] t[4] t[5] t[6] 

so
ur

ce
 

s[1] 1 0 0 1 0 0 
s[2] 1 0 1 0 1 1 
s[3] 0 0 0 0 0 0 
s[4] 0 1 1 0 0 0 
s[5] 0 0 0 1 1 0 

 tangling matrix 
 source  
 s[1] s[2] s[3] s[4] s[5]  

ta
rg

et
 

t[1] 1 1 1 0 0  
t[2] 0 0 0 0 0  
t[3] 0 1 0 1 0  
t[4] 1 0 0 0 1  
t[5] 0 1 0 0 1  
t[6] 0 0 0 0 0  

We now define the crosscutting product matrix, showing the frequency of crosscutting relations. A 
crosscutting product matrix (source x source) represents the frequency of crosscutting relations between 
source elements, for a given source to target mapping. The crosscutting product matrix is not 
necessarily symmetric. The crosscutting product matrix ccpm can be obtained through the matrix 
multiplication of the scattering matrix sm and the tangling matrix tm:  ccpm = sm . tm  where ccpm 
[i][k] =  sm[i][j] tm[j][k]. 
In this crosscutting product matrix, the cells denote the frequency of crosscutting. This can be used for 
quantification of crosscutting (crosscutting metrics). The frequency of crosscutting in this matrix should 
be seen as an upper bound. In actual situations, the frequency can be less than the frequency from this 
matrix analysis, because in the matrix we abstract from scattering and tangling specifics. In the 
crosscutting matrix, a matrix cell denotes the occurrence of crosscutting; it abstracts from the frequency 
of crosscutting.  
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The crosscutting matrix ccm can be derived from the crosscutting product matrix ccpm using a simple 
conversion: ccm[i][k] = if (ccpm[i][k] > 0) /\ ( i ≠ j)  then 1 else 0. 
The crosscutting product matrix and the crosscutting matrix for the example are given in Table 6. In this 
example, there are no cells in the crosscutting product matrix larger than 1, except on the diagonal where 
it denotes a crosscutting relation with itself, which we disregard here. In the crosscutting matrix, we put 
the diagonal cells to 0. Obviously, this is because we interpret a source element can’t crosscut itself. 

Table 6. Crosscutting product matrix and crosscutting matrix for dependency matrix in Table 4 
crosscutting product matrix 

  source 
  s[1] s[2] s[3] s[4] s[5] 

so
ur

ce
 

s[1] 2 1 1 0 1 
s[2] 1 3 1 1 1 
s[3] 0 0 0 0 0 
s[4] 0 1 0 1 0 
s[5] 1 1 0 0 2 

 crosscutting matrix 
  source 
  s[1] s[2] s[3] s[4] s[5] 

so
ur

ce
 

s[1] 0 1 1 0 1 
s[2] 1 0 1 1 1 
s[3] 0 0 0 0 0 
s[4] 0 1 0 0 0 
s[5] 1 1 0 0 0 

As we can see in crosscutting matrix in Table 6, there are now 10 crosscutting relations between the 
source elements. The crosscutting matrix shows again that the crosscutting relation is not symmetric. For 
example, s[1] is crosscutting s[3], but s[3] is not crosscutting s[1] because s[3] is not scattered 
(scattering and tangling are necessary but not sufficient condition for crosscutting). 
For convenience, these formulas can be calculated automatically by means of simple mathematic tools 
(such as Excel). By filling in the cells of the dependency matrix, the other matrices are calculated 
automatically. 
3.4 Case Analysis of Crosscutting 
Once we have defined scattering, tangling and crosscutting, we may discuss now a case analysis of 
possible combinations according to our definition. Assuming that the properties tangling, scattering, and 
crosscutting may be true or false, there are 8 combinations (see Table 7). Each case addresses a certain 
mapping from source to target. However, crosscutting requires tangling and scattering, which eliminates 
3 of these combinations (Cases 6, 7 and 8: not feasible). There are five feasible cases listed in the table. 
In Case 4, we have scattering and tangling in which no common elements are involved. With our 
definition of crosscutting, we disentangle the cases with just tangling, just scattering and on the other 
hand crosscutting. Our proposition is that tangling and scattering are necessary but not sufficient 
conditions for crosscutting. 



  16

 
Table 7. Feasibility of combinations of tangling, scattering and crosscutting 

 tangling scattering crosscutting feasibility 
Case 1  No no no feasible
Case 2  Yes no no feasible
Case 3  No yes no feasible
Case 4  Yes yes no feasible
Case 5  Yes yes yes feasible
Case 6  No no yes not feasible 
Case 7  No yes yes not feasible 
Case 8  Yes no yes not feasible 

In order to illustrate the different possibilities, we discuss now how to apply the framework to some 
simple examples. The first example is extracted from [28], where the authors use the definition 
presented in Section 2.4.4 to identify crosscutting concerns at programming level. The example 
application consists of several classes that implement a simple Binary Search Tree. The main 
functionalities of the application are the insertion of elements in the data structure and the search of a 
particular element. The class diagram is shown in Figure 7.  

 
Figure 7. Binary Search Tree class diagram 

In [28], the authors present a table where the two main concerns of the system, insertion and search, are 
related to the methods that contribute to such functionalities. Assuming that the search is performed in a 
pre-loaded binary tree, these methods are presented in Table 8. 

Table 8. Relation between the main concerns and the executed methods for these concerns 
 Insertion 
m1 BinaryTree.BinaryTree() 
m2 BinaryTree.Insert(BinaryTreeNode) 
m3 BinaryTreeNode.insert(BinaryTreeNode) 
m4 BineryTreeNode.BinaryTreeNode(Comparable) 
 Search 
m1 BinaryTree.BinaryTree() 
m5 BinaryTree.search(Comparable) 
m6 BinaryTreeNode.search(Comparable) 
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Having the concerns and the methods that contribute to them as source and target domains respectively, 
we build the dependency matrix shown in Table 9. We have selected methods as the granularity level for 
the target elements. As we can see in this matrix, the BinaryTree.BinaryTree() method is executed for 
both the insertion and the search concerns. The existence of this method implies that our framework 
identifies both concerns as crosscutting (see crosscutting matrix in Table 10).  

Table 9. Dependency matrix for the BST application 

 
methods 

m1 m2 m3 m4 m5 m6 

concerns 
insertion 1 1 1 1 0 0 
search 1 0 0 0 1 1 

Table 10. Crosscutting matrix for the BST application 

 
concerns 

insertion search 

concerns 
insertion 0 1 
search 1 0 

The example explained above belongs to the fifth category of the eight possible combinations presented 
in Table 7 (i.e. scattering, tangling and crosscutting). However, we may find different situations with 
just scattering or just tangling and not crosscutting. For instance, since in [28] the authors consider the 
search concern having a pre-loaded tree, we do not consider that the constructor of BinaryTree class 
contributes to such a functionality. In that case, we remove the mapping from search concern to method 
m1. The new dependency and crosscutting matrices are shown in Table 11 and Table 12 respectively.  

Table 11. New dependency matrix for the BST 

 
methods 

m1 m2 m3 m4 m5 m6 

concerns 
insertion 1 1 1 1 0 0 

search 0 0 0 0 1 1 

Table 12. New crosscutting matrix for the BST  

 
concerns 

insertion search 

concerns 
insertion 0 0 
search 0 0 

As we can see in the dependency matrix of Table 11, we may have source elements scattered over 
different target elements without having crosscutting. Although usually we encounter scattering and 
tangling together, the utilization of a formal definition allows the differentiation of these concepts 
identifying such exceptional situations (with only one of the needed conditions to have crosscutting). 
This last situation belongs to the third case or category of Table 7.  
Even if we consider that the constructor of the BinaryTree class contributes to the searching 
functionality, we could find a case where a source element is scattered over different target elements and 
there is not crosscutting. For instance, consider the same BST system explained above without the 
searching functionality. In that case, the insertion concern would be scattered over some methods and 
classes, we do not consider such a concern as being crosscutting. Obviously, if there is just one concern, 
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it could not crosscut to any other concern. However, note that our formal definition of crosscutting 
works properly in that case (that is what we are proofing).  
In order to show a different case with tangling and not crosscutting, we show now a new simple 
example, a calculator with remote access. We apply the framework at concern level with respect to the 
design level (represented in a UML class diagram). The case study consists of a distributed Java 
application which allows a user to calculate the sum of integer numbers. The distribution is 
accomplished by means of sockets. The MVC pattern [6] is applied in order to perform a separation of 
representation and control concerns from the functional concerns of an application. In order to study the 
crosscutting in this case, we consider three main concerns in the system: Client side distribution, Server 
side distribution and Calculation. We take these concerns as source elements in our dependency matrix 
and the UML design classes are considered to be the target elements.  

 
Figure 8. UML class diagram of Remote Calculator 

In Figure 8 we show a UML class diagram representing the design. We have developed the main 
functionality regarding the socket concerns in a class called SocketConnection. This class just performs 
the remote connection and sends and receives integer values. We may say that this class has a low 
cohesion. Depending on the operation (sending or receiving), this class will invoke methods of the other 
classes. The Model, View and Control classes perform the actions to sum the integer, read user’s 
selections and shows the results on screen respectively. Therefore, the application has a good separation 
between model (a class with a vector of numbers and which performs the sum), view (a class which 
shows the result on the screen) and control (a class which reads the user’s inputs). Although such classes 
are coupled by means of method calls, their level of cohesion is high because each class is only 
addressing its main functionality (concern).  
So, taking such a decomposition (in classes) and applying the framework, we obtain the dependency 
matrix shown in Table 13. As we can see in the matrix, concerns Client side distribution and Server side 
distribution are tangled in the same class SocketConnection, whereas Calculation concern is scattered 
over the other classes. However, as can be seen in the table, the matrix has no crosscutpoints. By means 
of the operations described in Section 3.3 we obtain the crosscutting matrix shown in Table 13: there are 
no crosscutting concerns in the system. 
In many situations, we have tangling, scattering and at the same time crosscutting. With our definitions, 
we clearly distinguished scattering and tangling from crosscutting and, as we stated in Section 2.1, 
scattering and tangling are necessary but not sufficient conditions for crosscutting. The analysis depends 
on the chosen decomposition of source and target, other decompositions being feasible. 
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Table 13. Dependency and crosscutting matrix for the Remote Calculator  
dependency matrix  

 classes  

concerns SocketConnection Model View Control  

Distribution-to-Client 1 0 0 0 NS 

Distribution-to-Server 1 0 0 0 NS 

Calculation 0 1 1 1 S 

 T NT NT NT  

 
crosscutting matrix WRT4 classes   

 Concerns   

concerns Distribution-to-
Client 

Distribution-
to-Server 

Calculation   

Distribution-to-Client 0 0 0   

Distribution-to-Server 0 0 0   

Calculation 0 0 0   

 

4. CROSSCUTTING AND TRANSITIVITY OF DEPENDENCIES 
In this section we consider the transitivity of dependencies between levels and within the same level 
respectively. Such dependencies are based on different transitive relations that can be observed between 
source and target elements. 
4.1 Transitivity of inter-level dependencies 
Usually we encounter a number of consecutive levels or phases in software development. In MDA [21], 
we have transformations from Platform Independent Models, Platform Specific Models to 
Implementation Models. From the perspective of software life cycle phases, we could distinguish 
Domain Analysis, Concern Modelling, Requirement Analysis, Architectural Design, Detailed Design, 
and Implementation.  
We consider here the cascading of two crosscutting patterns: the target of the first pattern serves as 
source for the second one. For convenience, we call the first target our intermediate level, and our 
second target just target (see Figure 9). 

 
Figure 9. Two Cascaded Crosscutting Patterns 

Each of these refinements can be described with a dependency matrix. We describe how to combine two 
consecutive dependency matrices, in an operation we call cascading. Cascading is an operation on two 
dependency matrices resulting in a new dependency matrix, which represents the dependency relation 
between source elements of the first matrix and target elements of the second matrix. 
For cascading, it is essential to define the transitivity of dependency relations. Transitivity is defined as 
follows. Assume we have a source, an intermediate level, and a target. There is a dependency relation 
                                                 
4 WRT are the abbreviation of “with respect to” 
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between an element in the source and an element in the target if there is some element at the 
intermediate level that has a dependence relation with this source element and a dependency relation 
with this target element. In other words, the transitivity dependency relation R for source s, intermediate 
level u and target t, and card(u) is the number of elements in u: 

∃ k ∊ (1..card(u)) : (s[i] R u[k]) ∧ (u[k] R t[m]) ⇒ ( s[i] R t[m] ) 
We can also formalize this relation in terms of the dependency matrices. Assume we have three 
dependency matrices m1 :: s x u and m2 :: u x t  and m3 :: s x t, where s is the source, u is some 
intermediate level, card(u) is the cardinality of u, and t is the target. The cascaded dependency matrix 
m3 = m1 cascade m2 
Then, transitivity of the dependency relation is defined as follows:  

∃ j ∊ (1..card(u)): m1[i,j] ∧ m2[j,k] ⇒ m3[i,k] 
In terms of linear algebra, the dependency matrix is a relationship between two given domains, source 
and target (see section 2.1.1). Accordingly, the cascading operation can be generalized as a composition 
of relationships as follows. Let DomK, k = 1..n, be n domains, and let fi be the relationship between 
domains Domi and Domi+1, 1≤i<n, denoted as 1+⎯→⎯ i

if
i DomDom . Let Source and Target be the domains 

Dom1 and Domn, respectively. Consequently, we have the following relationship between the domains: 
argetTDomDomDom ourceS nf

n
fff ⎯⎯ →⎯⎯⎯→⎯⎯⎯→⎯⎯→⎯ −

−
1

1
3

3
2

2
1 K  

As a result, the dependency relationship between the Source and the Target is defined as 
121 fffDM nn oKoo −−≡ . In this way, the dependence matrix between a source and target is obtained through 

matrix multiplication of the dependency matrices that represents each fi, 1≤i<n . 
Table 14. Two dependency matrices that will be cascaded  

dependency matrix 1 
 requirement 

concern r[1] r[2] r[3] r[4]  
c[1] 1 0 0 1  
c[2] 0 1 0 0  
c[3] 0 0 1 1  

dependency matrix 2 
 module 

requirement m[1] m[2] m[3] m[4] m[5] 
r[1] 1 0 0 0 1 
r[2] 0 1 0 0 0 
r[3] 0 1 1 0 0 
r[4] 0 0 0 1 1 

As an example, we explain the cascading two dependency matrices: one for concerns x requirements and 
one for requirements x modules. The two dependency matrices are shown in Table 14. The first 
dependency matrix relates concerns with requirements. The second dependency matrix relates 
requirements with modules. The resulting dependency matrix relates concerns with modules (see Table 
15). This matrix can be used to derive the crosscutting matrix for concern x concern with respect to 
modules. The crosscutting matrix in Table 15 is not symmetric. Based on this matrix we conclude, for 
the given dependency relations between concerns and modules, that: concern c[1] is crosscutting 
concern c[3]; concern c[2] does not crosscut any other concern; concern c[3] is crosscutting concerns 
c[1] and c[2].  
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Table 15. The resulting dependency matrix and crosscutting matrix based on cascading of the 
matrices in Table 14 

resulting dependency matrix  
 module 

concern m[1] m[2] m[3] m[4] m[5] 
c[1] 1 0 0 1 2 
c[2] 0 1 0 0 0 
c[3] 0 1 1 1 1 

crosscutting matrix  
 concern  

concern c[1] c[2] c[3]   
c[1] 0 0 1   
c[2] 0 0 0   
c[3] 1 1 0   

From this description, it is clear that cascading can be used for traceability analysis across multiple 
levels, e.g. from concerns to implementation elements, via requirements, architecture and design (c.f. 
[26]). 
4.2 Transitivity of intra-level dependencies 
Elements at a certain level usually have some relationship with other elements at the same level (intra-
level relationships): they are coupled. There are many coupling types: generalisation/specialisation, 
aggregation, data coupling, control coupling, message coupling, and so on. In case of a dependency 
relation of a source element and a target element, which itself is coupled to a second target element, one 
could conceive also a dependency relation between the source element and the second target element.  
Intra-level trace dependencies combined with inter-level trace dependencies may cause dependencies, 
which we call an indirect trace dependency based on a pseudo-transitivity. Assume source element s[i] 
has a coupling relation R' with source element s[j]. Moreover source element s[j] has a dependency 
relation R with target element t[k]. Then the indirect dependency relation is ( s[i] R' s[j] ) ∧ ( s[j] R t[k] ) 
⇒ ( s[i] R'oR t[k] ). In a similar way, assume source element s[i] has a dependency relation R with 
target element t[j] and target element t[j] is coupled with target element t[k] by means of R'. In that case 
the indirect dependency relation is ( s[i] R t[j] ) ∧ ( t[j] R' t[k] ) ⇒ ( s[i] R oR' t[k] ). 
One should clearly distinguish the direct (inter-level) dependency relation from this indirect dependency 
relation. Our framework is focused on direct trace relationships. 
5. Aspect-oriented metrics 
We describe in this section a new topic where the framework provides important benefits: aspect-
oriented metrics. There are several works that have explained the need for adapting the traditional object 
oriented metrics to the new aspect oriented paradigm. For instance, we need metrics to measure the 
degree of crosscutting in a system. In [25] the authors propose a framework where they define several 
metrics in terms of, on one hand, separation of concerns and, on the other hand, cohesion, coupling and 
size. In [10] some similar metrics suite is defined in order to measure the degree of scattering and 
tangling in some components. In this last work, the authors take as base for the metrics the definition of 
crosscutting presented in our previous work [4]. In following sections, we explain in more detail these 
metrics and show how they may be represented, visualized and extended by means of our framework. 
5.1 Metrics by García et al. 
In [25], the authors presented an aspect oriented metrics suite. This suite is based on the previous work 
of the authors presented in [15]. While the latter is focused on the assessment modularity at 
programming level, the former is focused on the architecture level. In the work presented in [25], the 
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metrics suite is based on the concept of architectural concern. The authors claim that the framework 
presented relies on evaluating the modularization of architectural concerns quantifying separation of 
concerns and their interactions. As an example, they establish a metric to assess the diffusion of a 
concern over the architectural artifacts. In Table 16 we show the whole metrics suite that they set. This 
table is extracted from [25]. 

Table 16. Metrics suite defined in [25] 
Attribute Metric Definition 

Concern 
Diffusion 

Concern Diffusion over Architectural 
Components (CDAC) 

It counts the number of architectural components which 
contributes to the realization of a certain concern. 

Concern Diffusion over Architectural 
Interfaces (CDAI) 

 It counts the number of interfaces which contributes to the 
realization of a certain concern. 

Concern Diffusion over Architectural 
Interfaces (CDAI) 

It counts the number of operations which contributes to the 
realization of a certain concern. 

Coupling 
Between 

Architectural 
Concerns 

Component-level Interlacing Between 
Concerns (CIBC) 

It counts the number of other concerns with which the assessed 
concerns share at least a component. 

Interface-level Interlacing Between 
Concerns (IIBC) 

It counts the number of other concerns with which the assessed 
concerns share at least an interface. 

Interface-level Interlacing Between 
Concerns (IIBC) 

It counts the number of other concerns with which the assessed 
concerns share at least an operation. 

Coupling 
Between 

Components 

Afferent Coupling Between 
Components (AC) 

It counts the number of components which require service from 
the assessed Coupling component 

Efferent Coupling Between 
Components (EC) 

It counts the number of components from which the assessed 
component requires service. 

Component 
Cohesion 

Lack of Concern-based Cohesion 
(LCC) 

It counts the number of concerns addressed by the assessed 
component. 

Interface 
Complexity 

Number of Interfaces It counts the number of interfaces of each component. 

Number of Operations It counts the number of operations in the interfaces of each 
component. 

As we can see in the previous table the metrics are classified into five different categories. The first 
category, Concern Diffusion is focused on the relation between concerns and the architectural elements. 
In terms of our framework, we can say that this metric is related to the trace relation between source and 
target. In particular it assesses the cardinality of the relation from source to target elements. The second 
and third categories are focused on the relation between elements of the same domain. Thus, they are 
based on intra-level relations. While the Coupling Between Architectural Concerns metric is based on 
the relations between elements of the source domain (concerns), the Coupling Between Components is 
based on relations between elements of the target domain (architectural artifacts). The fourth category, 
Component Cohesion is similar to the first one. It is focused on the relation between source and target 
elements. However, in this case, the metrics assesses the cardinality of the relation from target to source 
elements. Finally, the purpose of the Interface Complexity category is to measure the number of 
interfaces and operations of the architectural components. Therefore this metric is just a way to measure 
the size of the decomposition selected on the target domain. 
5.2 Metrics by Aho et al. 
In [10], the authors establish a concern model to define crosscutting and set a suite of aspect oriented 
metrics to complement the traditional metrics (coupling and cohesion). The concern model defined in 
[10] is based on our previous work [4]. In particular they used the relations between source and target 
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domains explained in Section 2.1.1 to define crosscutting. Unlike our definition, they don’t consider 
tangling as a necessary condition to have crosscutting. They define crosscutting as follows: a 
crosscutting concern is a scattered concern, i.e., a concern related to multiple target elements. The 
authors define two main metrics: Degree of Scattering (DOS) and Degree of Focus (DOF). Other 
auxiliary metrics are used to obtain the DOS and DOF ones.  
Firstly, the authors define Concentration (CON) as a measure of the number of statements related to a 
concern within a specific component. Thus, CON focuses on a particular source (s) and target element 
(t) and assesses how such a target element contributes to the realization of the source element: 

( , ) SLOCs in component t related to concern sCONC s t
SLOCs related to concern s

=  

The authors of this metric claim that CON does not give a sense for how scattered a concern is and 
different concerns may not be compared. Then, they introduce a new metric called Degree of Scattering 
(DOS). DOS is a measure of the variance of the concentration of a concern over all components of the 
system. A value of DOS close to 1 indicates that this concern (s) has a high degree of scattering while a 
value close to 0 indicates that this concern is not scattered and is well encapsulated into an entity:  
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where |T| is the number of components. The authors in [10] also use the average of the DOS (ADOS) 
metric (averaging DOS over all the concerns) to measure modularity of the system. 
The metrics mentioned above are focused on the relation from source to target elements. The authors 
also provide some metrics focused on the relation from target to source elements. In particular they 
define the Dedication metric which assesses the number of statements of a component (t) related to a 
particular concern (s):  

( , ) SLOCs in component t related to concern sDEDI t s
SLOCs related to component t

=  

Again the authors provide a different metric to measure how well the concerns are separated in a 
component.  This metric is called the Degree of Focus (DOF) and is a variance of the dedication of a 
component to every concern with respect to the worse case: 
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where |S| is the number of components. In this case, a value of DOF close to 0 indicates that the 
component’s attention is uniformly divided among every concern while a value close to 1 indicates that 
the component is focused just on one concern. The authors also use the average of DOF (ADOF) to 
provide an overall indication of the separation of concerns in the program.  
5.3 Relation between crosscutting pattern and metrics 
As we have shown in the previous sections, the metrics defined in [25] and [10] are closely related to the 
relation between source and target domains represented in the crosscutting pattern. In some cases the 
metrics are focused on the relation from source to target while in other cases they are related to the 
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inverse relation. As we said early on, the metrics defined in those works may be visualized and 
integrated into the framework presented in this report. In particular, we represent some of the metrics 
presented by García et al. and by Aho et al. in our matrices. We use the scattering and tangling matrices 
to represent the metrics that are directly related to scattering and tangling properties respectively.  
5.3.1 Metrics for Scattering 
Firstly we use the scattering matrix to represent the Concern Diffusion and the Degree of Scattering 
metrics presented in [25] and [10] respectively. The Concern Diffusion metric is divided into three 
different metrics depending on the granularity of the architectural artefacts selected: components, 
interfaces or operations level. The rows in the scattering matrix presented in Section 3.3 provide similar 
information about the diffusion of a concern over the target elements. For instance, in Table 17 we show 
a part of the scattering matrix for a concurrent file versioning system (CFVS) [5]. We have applied our 
framework in such a system in order to identify crosscutting concerns. For instance, we can see how the 
Synchronization or the Concurrency concerns (among others) are scattered over different use cases. 
Again, depending on the granularity of the target elements selected we may use a different metric of the 
Concern Diffusion category.  

Table 17. Part of the scattering matrix for the CFVS 
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Insert File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Branch a Set of Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Merge Set of Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Persistence 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
Data Representation  0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 
Synchronization  0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
Logging 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Security 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 
Concurrency 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

In order to assess how much scattered a particular source element is, we have also defined a metric 
based on the scattering matrix. We called this metric just Scattering (SCAT). This metric is calculated as 
follows: 

 
where si is the source element of row i in the scattering matrix, |T| is the number of target elements in the 
system, and scatij represents the value of the cell ij of the scattering matrix. SCAT may have values 
between zero and one. When a source element (i.e. a concern) presents a value of zero in this metric this 
element is well encapsulated and is not scattered over the system while a value close to one indicates 
that the source element is highly scattered over the target ones. In order to have a global metric for how 
much scattering the system has we define the concept of Global Scattering (GSCAT) which is obtained 
just calculating the average of the SCAT values for each source elements: 
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 where |S| is the number of source elements in the system. 
Secondly, the Degree of Scattering metric (defined in [10]) may be also calculated taking as input the 
values represented in the scattering matrix. As we explained in Section 5.2 the Degree of Scattering 
metric is based on an auxiliary metric called Concentration. Concentration is defined as the relation 
between lines of code of a component contributing to a particular concern and the total number of lines 
of code of the component. This metric may be easily represented in our scattering matrix just adapting 
the matrix to the metric. Since both scattering and tangling are binary matrices, we represent cells with 
just 1 or 0. However we may change these cells to represent the relation defined by Concentration. For 
instance, a cell in the scattering matrix with 0.5 represents that the component of this column is 
performing the half of lines of code belonging to the concern of the corresponding row. In Table 18 we 
show an example of several rows containing different values of the Concentration metric for some 
particular concerns. Obviously, having these values, the calculation of Degree of Scattering is very 
simple.  

Table 18. Scattering matrix with Concentration values 
 Use cases 

In
se

rt 
Fi

le
 

R
et

rie
ve

 F
ile

 

C
ha

ng
e 

Fi
le

 

C
om

m
it 

Fi
le

 

U
pd

at
e 

Fi
le

 

C
on

fli
ct

 
M

an
ag

em
en

t 

S
ho

w
 M

es
sa

ge
 

Sh
ow

 
D

iff
er

en
ce

s 
R

em
ov

e 
Fi

le
 

U
nd

o 
Fi

le
 

Ta
g 

Fi
le

 

B
ra

nc
h 

Fi
le

 

M
er

ge
 F

ile
s 

A
ss

ig
n 

P
er

m
is

si
on

s 

Lo
g 

A
ct

iv
iti

es
 

C
he

ck
 A

cc
es

s 
R

ig
ht

s 

S
to

re
 M

es
sa

ge
 

 Security 0,05 0,05 0 0,05 0,05 0 0,05 0,05 0,050,05 0,05 0,05 0,05 0,2 0 0,2 0.05
Concurrency 0 0 0 0,15 0,15 0,7 0 0 0 0 0 0 0 0 0 0 0 

5.3.2 Metrics for Tangling 
Similarly to the scattering metrics mentioned above, the metrics related to tangling defined in [25] and 
[10] may be also represented by means of the tangling matrix presented in Section 3.3. On one hand, the 
Component Cohesion metric presented in [25] is represented by a column of the tangling matrix. In a 
column of the matrix mentioned we may see the different concerns that a particular component is 
addressing. In Table 19 we show part of the tangling matrix for the CFVS. 
As we did for the scattering in the system, we have defined a metric for assessing the tangling in the 
system. This metric is based on the values of the tangling matrix. We called this metric Tangling 
(TANG). This metric allows a developer to assess the number of source elements being addressed by a 
particular target element. It is defined as: 

 
where tj is the target element of column j in the tangling matrix, |S| is the number of source elements in 
the system, and tandij represents the value of the cell ij of the tangling matrix. Again, TANG may have 
values between zero and one where zero indicates lack of tangling and a value close to 1 indicates a high 
degree of tangling. Similarly to the Global Scattering metric defined above, we also defined the Global 
Tangling (GTANG) metric obtained by calculating the average of TANG: 
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 where |S| is the number of source elements in the system. 

Table 19. Part of the tangling matrix for a CFVS 
 Use cases 
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Insert File 0 0 0 0 0 0 0 0 
Retrieve File 0 1 1 0 0 0 0 0 
Commit File 0 0 0 0 0 0 0 0 
Update Working Files 0 0 0 1 0 0 0 0 
Remove Files 0 0 0 1 0 0 0 0 
Restore File 0 0 0 0 0 0 0 0 
Store Message 0 0 0 0 0 0 0 1 
Retrieve Message 0 0 0 0 0 0 0 1 
Difference 0 0 0 0 0 0 0 0 
Tag a Set of Files 0 1 1 0 0 0 0 0 
Branch a Set of Files 0 0 1 0 0 0 0 0 
Merge Set of Files 0 0 0 1 0 0 0 0 
Persistence 0 0 0 0 0 0 0 1 
Data Representation 0 0 0 0 0 0 0 1 
Synchronization  0 0 0 0 0 0 0 0 
Logging 0 0 0 0 0 0 0 0 
Security 0 1 1 1 0 0 0 1 
Concurrency 0 0 0 0 0 0 0 0 

 On the other hand, the Degree of Focus metric presented in [10] is based on the Dedication metric. 
Dedication metric is defined as the relation between the number of lines of code of a component 
addressing a particular concern and the total number of lines of code of the component. Like we did with 
the Concentration metric, we may represent the Dedication one just changing the values of the tangling 
matrix. In this case, a column in the tangling matrix shows the Dedication metric for a component with 
respect to each concern of the system. Then, having the values of the Dedication metric as input, the 
calculation of the Degree of Focus is very simple.  
5.3.3 Metrics for crosscutting 
In addition to the metrics presented above, the crosscutting product matrix defined in our framework 
provides very useful information for assessing the degree of crosscutting. This matrix may be used to 
avoid the problem of having false positives (concerns considered as candidate aspects but they are not 
really crosscutting concerns). The information shown in a row of the crosscutting product matrix may be 
interpreted as follows: 

- The cell of the diagonal represents the total number of target elements where the source element 
is crosscutting to other source elements. 
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- The rest of cells indicate the number of points where the concern of this row is crosscutting to 
the concern of the corresponding column. 

We can see in Table 20 a fragment of the crosscutting product matrix for the Concurrent File Version 
System mentioned above where this information may be analyzed. The cells corresponding to the 
diagonal are marked with dark grey background. As an example, we can see that the Retrieve File 
concern is crosscutting to other concerns in three target elements and is crosscutting to the Tag a Set 
of Files, Branch a Set of Files and Security concerns in two, one and three points 
respectively. We can also observe in the same table that the Security concern crosscuts to other 
concerns in eleven target elements. Then we may assure that the Security concern has a higher degree 
of crosscutting than the Retrieve File one. By means of establishing a threshold value in the 
diagonal, we can decide whether a concern can be considered as a candidate crosscutting concern or not. 
Of course, the developer may assist the process deciding the final crosscutting concerns to be taken into 
account. 

Table 20. Part of the crosscutting product matrix for the CFVS 
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Retrieve File 0 3 0 0 0 0 0 0 0 2 1 0 0 0 0 0 3 0

Security 1 3 1 2 3 0 2 2 1 2 1 1 3 3 2 0 11 2

Finally we show in Table 21 a summary of the metrics used in this section. Each row in this matrix 
represents a different metric category while the columns show the concept defined in the metric 
frameworks compared above corresponding to such a category. 

Table 21. Summary of the different metrics 
 García et al. [25] Aho et al. [10] Crosscutting pattern based framework. 

Metrics for 
scattering Concern Diffusion Degree of Scattering (based on CON) Rows of the scattering matrix 

Metrics for 
tangling Component Cohesion Degree of Focus (based on DEDI) Columns of the tangling matrix 

Metrics for 
crosscutting - - 

Diagonal of the crosscutting product 
matrix 
Rows of the crosscutting product matrix 

6. RELATED WORK 
Some other publications have addressed the formalization of crosscutting, one of the core concepts in 
AOSD. As stated in Section 2, our definition of crosscutting is similar to definitions of Masuhara & 
Kiczales [21], and Tonella and Ceccato [28]. A detailed comparison has been shown in Section 2. 
There are also other authors that provided some works on aspect-oriented metrics. On one hand, some of 
these metrics are focused on assess the degree of scattering of a traditional object-oriented system in 
order to decide whether an aspect-oriented refactorization is needed [25] [10]. In other works such as 
[30], the authors try to assess modularity in aspect-oriented systems so that metrics like coupling or 
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cohesion may be assessed also for aspects. Since we are providing a formal definition of crosscutting, 
we are interested in metrics for assess modularity in traditional object-oriented systems. Then, in Section 
5 we showed how to adapt our framework to the metrics presented in [25] [10] and how to extend them 
with new ones. 
Several authors use matrices (design structure matrices, DSM) to analyze modularity in software design 
[2].  Lopes and Bajracharya [20] describe a method with clustering and partitioning of the design 
structure matrix for improving modularity of object-oriented designs. However, the design structure 
matrices represent intra-level dependencies (as coupling matrices) and not the inter-level dependencies 
as in the dependency matrices used for our analysis of crosscutting. In [24], a relationship matrix 
(concern x requirement) is described very similar to our dependency matrix, and used to identify 
crosscutting concerns. However, there is no explicit definition of crosscutting.  
The papers described above lack an application of their definition of crosscutting to consecutive levels. 
We used our formalization to trace crosscutting concerns through different levels of a software 
development process, as shown by the cascading operation. 
7. CONCLUSION 
In this paper, we proposed a conceptual framework for describing crosscutting. We introduced a 
crosscutting pattern with a mapping between source elements onto target elements. With source and 
target, we abstract from specific levels or phases in software development. We defined crosscutting, 
tangling and scattering as separated cases based on specific mappings between source and target. We 
introduced the dependency matrix and crosscutting matrix to visualize the definitions. We showed that it 
is possible to formalize these definitions. It is essential to define explicitly the dependency relations used 
in the mapping between source elements and target elements, as represented in the dependency matrix.  
The proposed definitions are similar to definitions of crosscutting in some other publications, e.g. [21], 
although our definition is not symmetric and less restrictive. We showed a formal comparison of some 
of these definitions.  
An interesting application is the cascading of crosscutting patterns, which can be used to model 
crosscutting relations across several levels, for example from concern modelling, to requirements, 
architectural design to detailed design and implementation. As such, it provides an approach for 
traceability analysis. Another interesting area is the definition of new metrics to assess the degree of 
crosscutting in a system. As we showed in the paper, the framework allows the representation of some 
existing metrics and the definition of new ones.  
The framework can be applied in concrete cases in order to establish the suitability of the chosen 
concepts and definitions. The following topics have been investigated in terms of the crosscutting 
pattern: identification of crosscutting concerns, change impact analysis or integration into a Model 
Driven Development process. We found important benefits of the application of the framework in those 
areas. In [4], we performed a detailed analysis on the application of the framework for mining aspects at 
early phases. The utilization of dependency matrices for this purpose allows the developer to improve 
traceability of concerns through several refinement levels. In particular, in [4], we performed an analysis 
of crosscutting across requirements and architecture design phases. In [3], we also performed an analysis 
of the change impact based on the crosscutting pattern so that we can analyze the change impact in case 
of crosscutting. Change impact in the traceability pattern is operationalized by means of the elements 
involved in the change of a source element. Finally, the Model Driven Architecture (MDA) initiative 
aims at providing stable models amenable to changes [22]. These models can be built at different levels 
of abstraction (CIM, PIM and PSM) allowing transformations among them. Then an analysis of 
crosscutting can be made in MDA developments just observing transformation rules performed between 



  29

models. In [5] we analyzed in more detail the use of the framework in MDA transformations, e.g. in a 
case study with the Concurrent File Versioning System. 
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