The University Library Document Circulation System Specified
in LCM!

Roel Wieringa Remco Feenstra?

Faculty of Mathematics and Computer Science, Vrije Universiteit
De Boelelaan 1081a, 1081 HV, Amsterdam
Email: roelw@cs.vu.nl, rbfeens@cs.vu.nl

December 20, 1993

Abstract

The specification language LCM (Conceptual Modeling Language) is used to specify a part of the
university library document circulation system of the Free University [7]. LCM is version 3 of a
language previously called CMSL (Conceptual Model Specification Language). The method used
to specify the document circulation system is MCM (Conceptual Modeling Method). We draw a
number of conclusions about the types of axioms that are encountered in this case study, as well as
about the kinds of extensions that should be added to LCM to facilitate easier and more expressive
modeling of this case study.

1This research is partially supported by Esprit Basic Research Action IS-CORE (working group 6071).
2Supported by the Foundation for Computer Science in the Netherlands (SION) with financial support from the
Netherlands Organization for Scientific Research (NWO), project 612-317-408.

Contents

Introduction

The Library case

2.1 The mission of the library
2.2 Structure of the libraryo
2.3 Members L e
2.4 Documents e e e e e e e

Informal specification of the DBS boundary

3.1 Library boundary e
3.2 Boundary of the circulation activity
3.3 Boundary of member services Lo
3.4 DBSboundary e

Informal specification of the UoD model

4.1 Theclassmodel. e

4.2 Communication model e
4.2.1 Circulation activities
4.2.2 Member SEerviCes i e e e e e e e e e e e e e e e e e e

4.3 Lifecyclemodel

4.4 Classdictionary o
441 DEPARTMENT e e
442 DOCUMENT e
443 D_RESERVATIONS ittt
444 FINE . . . e e
445 JOURNAL e
446 LOAN . . . o e
447 MEMBER. e
448 MEMBER_CLASS e
449 PART.OF e e
4.4.10 PASS . . L e
4411 PERIODICAL e
4.4.12 SERTAL.WORK e
4413 TITLE o e e
4.4.14 T_RESERVATION e d e e e
4.4.15 VOLUME e

5

6

7

Formal specification of the UoD model: classes and life cycles
51 DOCUMENT e e e e

5.2 MEMBER e
5.3 MEMBER_CLASS e
54 T_RESERVATION e
5.5 D_RESERVATION e e e e e e
5.6 LOAN . . . o . e
5.7 PASS .
5.8 DEPARTMENT e e
5.9 FINE e
5.10 PART.OF e
5.11 PERIODICAL e e e e
5.12 JOURNAL e
5.13 SERTAL.-WORK e
5.14 TITLE o e
5.15 VOLUME e

Formal specification of the DBS boundary and communication model
6.1 Circulation activities L

6.1.1 Borrowing L
6.1.2 Title Reservations L
6.1.3 Document reservations Lo Lo
6.1.4 Lost document handling
6.2 Member services L.
6.2.1 Membership
6.2.2 FineHandling L
6.2.3 PassHandling
Discussion and conclusions
7.1 DISCUSSION o v o o e s e e e e e e e e e e e
7.1.1 Event specification Lo Lo
7.1.2 Precondition specification Lo oo Lo
7.1.3 The interpretation of transaction equations
7.1.4 The form of the axioms
7.1.5 Modularity e e e e e e
7.2 Possible extensions to LCM L L
7.2.1 Derived attributes
7.2.2 Nullvalues
7.2.3 Manipulatingsets L
7.2.4 Realtime e e
7.2.5 Temporallogic
7.2.6 Deonticlogic
7.2.7 Interrupts and premature terminationo
T.2.8 VIEWS o o e e e e e e e
7.3 Functions for a LCM workbench oo Lo o

ii

Chapter 1

Introduction

LCM (Conceptual Modeling Language) is a language to formally specify conceptual models of database
systems. LCM is version 3 of a language previously called CMSL (Conceptual Model Specification
Language). The name change is motivated by the fact that the name “CMSL” is hard to pronounce.
The syntax of LCM is described in a companion report [4]. Axiom systems and declarative semantics
of LCM in terms of a Kripke structure combined with a process algebra is described in a number of
papers [14, 19, 17]. First steps towards an operational semantics are taken by Spruit [12, 11].

The method used to analyze the case study is called MCM (Conceptual Modeling Method), described
in another companion report [16]. This name is chosen to bring out the connection with LCM. MCM
leads to two models, an informal and formal one. The informal model is meant as interface between
the formal model on the one hand and the intuitive understanding of analysts and domain specialists
on the other. The formal model is preferably specified in LCM. The intention is that it also could be
specified in other languages, such as TROLL [9, 6], TROLL-light [2], Oblog [3] or FOOPS [5]. Further
research is needed to see whether this can be realized.

Chapter 2 gives a description of the Library for Beta Sciences at the Free University based on a
report by IJff [7]. Chapter 3 contains a model of the boundary of the library as a whole and of the
library DBS in particular. Chapter 4 describes the informal UoD model resulting from applying MCM
to the library case and chapters 5 and 6 give the corresponding LCM specification. Chapter 5 contains
the formal specifications of all classes of objects and relationships found in the UoD registered by
the circulation desk DBS. Any event occurring in the life of these objects or relationships will be
registered by the DBS. Chapter 6 specifies the interface between the DBS and the UoD. This interface
consists of (atomic) transactions, and each transaction consists of one or more events occuring in the
UoD. If there is more than one event in a transaction, then these events are modeled as occurring
synchronously. This means that chapter 6 not only specifies the boundary between the DBS and the
UoD formally, but that it also specifies the communication structure in the UoD. Chapter 7 contains
a discussion of the results and mentions subjects of current and future research.

Chapter 2

The Library case

The description in this chapter provides m ost of the information on which the formal specification is
based.

2.1 The mission of the library

The mission of the Free University Library is described in the Guide for Library Users [13] as
1. to acquire documents containing information that is of use for scientific research and education,
2. to catalog these documents,
3. make them available,
4. preserve them, and
5. to act as custodian of the documents it acquired.

The collection is made available not only for the Free University but for any scientific research or
education at all. Other universities and colleges have the right to use the library, and as a matter
of fact do so. A prerequisite for getting registered as a library member is is showing a valid proof
of identity. Private individuals can use the Library as well. However, most members are students or
staff of the Free University.

2.2 Structure of the library

The library is divided into departments that more or less reflects the structure of the university in
departments. Thus, there is the Biology library for the faculty of Biology, the Mathematics and
Computer Science library for the Faculty of Mathematics and Computer Science, etc. Department
libraries are located close to the Faculty they serve. Department libraries are grouped together into
Scientific Area libraries. For example, there are o, 8 and 7 areas. There is one administration
that is used by all library departments. Library management has regular consultations with the
university board and with member representatives. Other responsibilities of management include
strategic planning, external reporting and budgeting.

2.3 Members

A member is someone who has a reader’s pass. Any student or employee can acquire a pass, as well
as citizens who are not otherwise related to the university. A group of employees can also acquire a
pass, called a “group pass”. There should be one person accountable for the actions of this group,
but any member of the group can borrow a document using the group pass.

2.4 Documents

The library acquires a wide diversity of items, such as books, journals, series (e.g. the Springer
Lecture Notes in Computer Science), Proceedings, internal reports from the Free University or from
other universities, unpublished reports from research laboratories, Ph.D. theses, maps, microfiches,
videotapes, old manuscripts, newspapers, microfilms, etc. Some of these are acquired for students
(often several copies), most of these are for research purposes. Books themselves can come into a
great variety of forms, such as multivolume works, multi-edition works, loose-leaved works that are
regularly updated with new articles or with replacements of existing articles, manuals, etc. Some
books can be split into two volumes as they go to their next edition, or an edition of a book can
suddenly get a companion, called “Volume 2”. Documents may occasionally go to the binder where
they are repaired. Sets of journal issues go to the binder to be bound into single volumes.

Borrowing a document

Most documents can be lent to members, but some can only be read in special rooms. Similarly, old
volumes of journals, when bound, can be borrowed, but loose issues cannot be borrowed. All items
possessed by the library receive a unique code so that they can be identified, and they receive a unique
location code so that they can be traced to a location.

A member can borrow a document for three weeks. Researchers in addition have the right to
borrow it for three months. At the end of the allowed lending period, a member should return the
document or else renew the borrowing. Renewal can only be done when there is no reservation for the
document. If a member does not return a document or does not renew the lending period, action is
only taken after 1 extra week, by sending him or her (or them) a reminder. So a member is reminded
of his obligation to return the document 4 weeks after it was borrowed. If it is not yet returned or
renewed, a second reminder is sent after 7 weeks. After the second reminder, the member has still one
week to respond. If one week after the second reminder there is no message from the member, he or
she must pay a fine of Dfl 70 and is not allowed to borrow any more documents until the document
is returned and the fine is paid.

Reserving a document

Any member can reserve documents that are currently borrowed by someone else. He or she will
receive a message when the document is available and the library will hold the document for one
week so that this member can borrow the document. If the document is not fetched after one week,
the document is allocated to the next reserver for that document, who receives a message that the
document is available. If there is no next reserver, the document is returned to the shelf. There can
be several reservers for a document, which are queued in a first-in first-out manner. There are two
kinds of reservations, called “title reservation” and “copy reservation” respectively. A title reservation
can be made when all copies of the title are out. When any copy of the title is returned, the reserver
receives a notice and he or she has the first right to borrowing the copy. A copy reservation can
be made when the individual copy desired by the library member is not available. This is done for
particular editions of books, manuscripts, etc.

Losing a document

If a member loses a document, he or she has to report this to the administration, who will issue an
invoice for the price of the document. If a member loses a pass, the pass is registered as lost and
the library will issue a new pass at no cost. If the lost pass is found, then the finder has to return it
to the library. Journal issues can be lost as well. Since issues are not lent to members, this cannot
be attributed to any particular reader. In general, any document can be lost without this being
attributable to any particular library member.

Chapter 3

Informal specification of the DBS
boundary

3.1 Library boundary

Figure 3.1 contains a part of a function decomposition tree of the Library. The nodes of this function
decomposition tree represent activities that can still be decomposed further. In general, a function
decomposition tree may be grown until the leaves represent the transactions of the library. The tree
in figure 3.1 tree was arrived at by observing the library and by using reference models of activities
that can be found in any organization [16, chapter 5]. The tree only represents activities necessary to
realize the library mission; it does not represent the structure of the library. It is true that we do find
some functional departments such as Finance and Member services in the library, but there are also
departments within the library that correspond to scientific areas and that have their own financial
unit (but not a Member services unit). These departments do not correspond with any node in the
function decomposition tree.

Even though the leaves of the tree are activities and not transactions, it is informative to draw
a context diagram for the nodes of this tree. Let us call the intermediate nodes in the tree of
figure 3.1 functional areas. Figures 3.2 and 3.3 show four context diagrams, corresponding to the four
functional areas of the tree. The circle in the diagram is the system we focus upon, i.c. the library.
The rectangles represent types of systems in the environment of the the library. Note that the circle
represents exactly one individual, while the rectangles all represent types. The lines in these context
diagrams represent activities, that will be decomposed later into transactions. If an activity involves
interaction with more than one type of external system, these types are written inside the rectangle
with which the activity is connected. At this level of abstraction, we do not represent the initiative of
an activity. This is because at this level of abstraction, activities usually do not have a unique actor
who initiates them, so that there is no (unique) initiator to indicate.

We now zoom in on two activities, document circulation and member services, which occur in the
Primary Process and in Support, respectively.

3.2 Boundary of the circulation activity
Figure 3.4 shows the decomposition of the circulation activity into transactions, and figure 3.5 shows

three of the four the corresponding context diagrams. The circle and the rectangles in the context
diagrams now all represent individual systems. This is indicated by declaring a variable inside the

Library Mission

Management

Consultation of
Member
Representatives

Budget
Planning

Consultation
with
University
Board

Strategic
Planning

External
Reporting

Primary Process Finance
Document i
. g B B
Acquisition udgeting
Document I~ Payments
Circulation Y
Inter-library — Auditing

Traffic

Support

Member
Services

Document
Preservation

Figure 3.1: Part of a function decomposition tree of the library.

external
)) reporting
MEMBER consultation with Manage- \ BOARD
REPRESENTATIVE member ment .
) consultation
representatives with board
external reporting
FACULTY
(a) Management
)) document
inter-library Primary circulation CLOCK
LIBRARY) Process MEMBER
traffic
ANY
document
acquisition
PUBLISHER
(b) Primary process
auditing budgeting
ACCOUNTANT Finance CENTRAL
BUDGET
payments
PUBLISHER
(c) Finance

Figure 3.2: Context diagrams of Management activities, the Primary Process and Finance activities of
the library function decomposition tree. The activity external reporting has an interface with two types of
external entities, BOARD and FACULTY.

member document

MEMBER services Support preservation

(c) Support

Figure 3.3: Context diagram the Support activities of the library function decomposition tree.

Document Circulation

Borrowing Document Title Lost

reservation reservation documents
—— borrow —— d_reserve —— t_reserve — miss
—— return —— d_cancel —— t_cancel | lose
I L L | find

renew d_res_borrow t_res_borrow
— write_off

—— overdue
— remind

Figure 3.4: Decomposition of the circulation activities.

M: borrow

M: return
D: D men
C: overdue ocument M: renew
C: CLOCK circulation M: MEMBER
D: remind
(a) Borrowing
M: d_reserve
=
D: Document M: d_cancel
. . M: MEMBER
circulation
M: d_res_borrow
(b) Document reservation
A: miss
A ANY A- find D: Document M: lose M: MEMBER
circulation

D: write_off

(c) Lost documents

Figure 3.5: Context diagrams of the circulation activities. The context diagram of Title Reservation is
isomorphic to that of Document Reservation and has been omitted.

Member Services

I I

Membership Fine handling Pass handling
—— become_member — pay —— issue_pass
— exclude — waive — lose_pass
— include — clear — find_pass
— Jeave L destroy_pass
- terminate

Figure 3.6: Decomposition of the membership services.

circle and in each box. It is possible that some variables have only one possible value. For example,
in this case study, there is only one possible value of D, the document circulation system under study,
and there is only one possible value of C, because there is only one clock. However, there are many
possible values of M, because the circulation department under study has many members.

Note that in a different case study, we may very well have many instances of the Document
circulation system, so that D has many different possible values. We could also add more realism by
allowing many different instances of Clock, which may indicate different times. This will not be done
in the present case study.

The lines in the context diagram represent transactions, i.e. atomic interactions between the
library and its environment. If D is connected to system S in its environment by a line labeled S : t
then this means

Transaction t is initiated by system S.

This does not mean that D and S are the only objects involved in the transaction; we will see later
that t may consist of a synchronous occurrence of several local events in the life of different objects.
The contents of the message is then that objects o4,..., 0, engaged in a communication. One of the
objects 01,...,0, may be S, but if S is not part of the formal UoD model, even that is not the case.
What S : t means is that the transaction is a message from S to D, and what D : t means is that t is
a message from D to S.

This means that the context diagrams must not be confused by the communication diagrams that
are part of the UoD model. It is true that the context diagrams are communication diagrams, but
they represent the communication between the library (or a subsystem of the library, like D) and
its environment. By contrast, the communication diagrams used in the UoD model represent the
communications in the UoD as seen by the DBS. Each communication in the UoD is observed by the
DBS, and such an observation is a DBS transaction. We just saw that the initiator of the transaction
need not be modeled as a partner in the observed communication. In addition, we can add that the
DBS itself will never appear as an object in our UoD model. Thus, even though a context diagram
is a communication diagram in which the communications are labeled by transactions, it differs from
the communication diagrams used in the UoD model.

10

M: become_member

S: exclude

S:include M: MEMBER

S: Member

services

w

S: terminate

(a) Exclusion

M: pay

S: waive M: MEMBER

S: Member

services

S: clear

(b) Fine handling

S: issue pass

M: lose pass

A: find pass

S: Member

services

A: ANY

M: MEMBER

S: destroy pass

(c) Pass handling

Figure 3.7: Context diagrams of the member services.

11

Administrate circulation activities and member services

Registration of Registration of Queries
circulation activities member services

Figure 3.8: Top of the decomposition tree of the function of the library DBS. The Circulation and
Membership Services nodes are identified with the root nodes of the corresponding decomposition trees.
The Query node must still be decomposed further into individual queries.

In some cases, there is no unique type of system that initiates the transaction. For example, the
transactions miss and find in figure 3.5 are not necessarily initiated by a member M. They could also
be initiated by an employee of the library, by a student, or by the husband of the person who borrowed
a document, etc. Since we don’t want to distinguish all these cases, this is represented by the external
system type ANY. The alternative would be to draw all these external system types and connect them
with miss and find transactions to L. The choice for ANY has been made because adding all these
external systems would not add any useful insight into the situation.

3.3 Boundary of member services

Figures 3.6 and 3.7 show the decomposition and context diagrams of membership services.

3.4 DBS boundary

The transactions in the circulation activity and member services are to be registered by the DBS. This
means that we can transform the function decomposition trees and context diagrams of the library
into a function decomposition tree and context diagrams for the DBS. The function of the library
DBS for its environment is the following:

To administrate the circulation activities and membership services.

This is a traditional administrative application, which contains registration and query functions.
Figure 3.8 shows the top of the decomposition tree of this function. The Circulation and Membership
Services nodes can be decomposed identically to the way they are decomposed earlier. The difference
with the function decomposition of the library is that in figure 3.8, a DBS function is served, whereas
in figures 3.4 and 3.6, the library mission is served. This difference is visible in the DBS function
decomposition tree at most in the name of the nodes: “register borrow event” instead of “borrow”
etc. This replacement is rather elaborate and we will not do this here. The Query node in the DBS
function decomposition must be decomposed further by listing the relevant queries, such as “show all
document loans that are overdue”, “show all reservations for this title”, etc. In the query model of
the DBS, the desired contents of the answer to each query should be specified. We ignore the query
model in this report (and in MCM).

Part of the context diagram corresponding to figure 3.8 is shown in figure 3.9. The initiative of

12

U:M: borrow

U:M: renew

U:M: return

U:C: overdue

U: USER

U:D: remind ,

U: query ’

DBS: answer query /

Figure 3.9: Context diagram of the library DBS. M is a MEMBER, D is the Document circulation system.

all transactions except query answering lies with the DBS (end) user U. U : M : borrow means that
U registers the fact that action M : borrow occurs. The registration is initiated by U, the registered
event is initiated by M.

More functionality could have been added to the DBS by improving the temporal transactions.
For example, the system clock of the DBS could be used to let the DBS itself initiate the transaction
overdue. Note that the type CLOCK would then have at least two existing instances, the system clock
and at least one external clock. This introduces the problem of synchronizing these clocks. In this
enhanced functionality, overdue would be a temporal transaction.

The functionality could be enhanced further by adding more temporal transactions, such as “at
midnight of Sunday through Thursday print a report containing all overdue loans”. Since LCM does
not yet contain constructs for temporal transactions, these functions are not modeled.

Added functionality to the DBS, such as the ability to answer queries or the initation of temporal
transactions, does not lead to a change in the interactions between the library and its environment.
This does however lead to changes in the function decomposition trees and context diagrams of the
DBS; only the implementation of these transactions changes.

13

Chapter 4

Informal specification of the UoD
model

4.1 The class model

Figure 4.1 shows a class diagram of a part of the library UoD. Due to lack of space in this figure, no
attributes or events are shown. Figures 4.2 to 4.4 give the same class diagram of the library, this time
with attributes and events.

4.2 Communication model

The transaction decomposition is given in figures 4.5 to 4.14. All class names in these tables should
occur in the class diagram. The set of transactions in the tables should be equal to the set of leaves
of the DBS function decomposition. We show a local event in the table only in the row corresponding
to its most general class. Inheritance of the local event by more specific classes is not shown but is
implied by the tables. This is analogous to the declaration of events in LCM, which is only done for the
most general class to all of whose instances the event is applicable. The set of local events allocated
to a class C in these tables should be equal to the set of events declared in the specification of C' in
the formal LCM specification of the UoD model.

If a transaction ¢ consists of a communication of two instances of C' with each other, then the
two local events by which this is done are both shown in the corresponding entry of the table (at the
intersection of C and t).

It is interesting to observe that the transaction decomposition tables are visually more pleasing
and are easier to understand than the communication diagrams. The transaction decomposition tables
are actually the heart of the model. Assuming that we have given intuitively clear names to the local
events and to the transactions, they almost explain the meaning of the transaction to the domain
specialist. Together with the class diagram and the life cycles, they give a very good insight into the
structure of the conceptual model.

4.2.1 Circulation activities

14

TITLE

-

VOLUME volume | PART_OF

s periodicg PERIODICAL
1\ is_a

volume
DOCUMENT JOURNAL SERIAL_WORK
A available_at

document

DEPARTMENT
FINE loan
member
department
document D_RESERVATION
member
volume T_RESERVATION M 0,
m_class pass member
MEMBER_CLASS PASS

Figure 4.1: Class diagram of the UoD of the circulation activities and member services, without any
attributes or events indicated.

DOCUMENT avail- | DEPARTMENT MEMBER
| . .
!barcode: NAT able_at | pame : STRING depart- address: STRING
location_code: STRING ment alternative_id: STRING
max_borrowing_ owner city: STRING
. message: STRING
period: NAT
name: STRING
penalty: MONEY nr_documents
ice: MONEY N .
price: MO borrowed: NAT
technology: STRING LOAN telephone: STRING
bind_in date_ zip: ZIP
bind_out borrowed: DATE Excluded
borrow return borrow
. - d_res_borrow
create docu- before: DATE
d_res_borrow exclude
megé *create memléer get_pass
+destroy exclude inclrj de
find o tlose leave
lose overdue lose
miss remind renew
t_res_borrow renew
return
renew +retur
t_res_borrow
return - =
loan
+write_off A A
A FINE
volume amount: MONEY
outstanding: MONEY
paid: MONEY
VOLUME
pay_before: DATE member
authors: LIST[STRING] waived: MONEY
+clear
A *exclude
*lose
pay D_RESERVATION
volume document waive date_reserved: DATE
+cancel
*create
T_RESERVATION +d_res_borrow
date_reserved: DATE
+cancel
* member
create

+res_borrow

Figure 4.2: Class diagram of the UoD of the circulation activities and member services — part 1.

16

MEMBER
address: STRING
alternative_id: STRING

city: STRING
message: STRING

name: STRING
nr_documents_borrowed: STRING
telephone: STRING

zip: ZIP

Excluded

borrow
d_res_borrow

exclude
get_pass
include

leave

lose

renew

return
t_res_borrow

0,1
m_class member
pass
MEMBER_CLASS PASS
borrowing_allowance: NAT Ibarcode: NAT
borrowing_periods: SET[NAT] Lost
name: MEMBER_CLASS_NAME *create
+destroy
find
lose

Figure 4.3: Class diagram of the UoD of the circulation activities and member services — part 2.

17

TITLE

annotation: STRING
code: STRING

title: STRING
title_key: STRING

T

VOLUME volume periodical PERIODICAL
authors: LIST[STRING] PART_OF editors: LIST[STRING]
01
is_a
JOURNAL SERIAL_WORK

nr_of_issues: NAT

Figure 4.4: Class diagram of the UoD of the circulation activities and member services — part 3.

Borrowing
borrow return renew overdue remind
LOAN create return renew overdue remind
DOCUMENT borrow return renew
MEMBER borrow return renew

Figure 4.5: Transaction decomposition table for the Borrowing service.

18

LostDocumentHandling

miss lose find write_off
LOAN lose
DOCUMENT lose lose find write_off
FINE lose
MEMBER lose_copy

Figure 4.6: Transaction decomposition table for the Lost Documents service.

TitleReservation DocumentReservation
{ reserve t_cancel tres_ d_reserve | d_cancel d_res_
borrow borrow
LOAN create create
DOCUMENT tres_ d_res_
borrow borrow
MEMBER t_res_ d_res_
borrow borrow
res_
D_RESERVATION create cancel
borrow
res_
T_RESERVATION create cancel
- borrow

Figure 4.7: Transaction decomposition table for the DocumentReservation and TitleReservation
services.

19

DOCUMENT LOAN
borrow
| borrow & l create |
renew |
| renew ® 1 renew |
return
| return 4 l return |

overdue

remind

MEMBER

4| borrow |

, renew |

{ return |

Figure 4.8: Communication diagram of the Borrowing service.

20

DOCUMENT

miss

lose

LOoAN

lose

L]
=]

e |

FINE MEMBER

gse_document

lose j 1

Figure 4.9: Communication diagram of the Lost Document Handling service.

21

MEMBER

D_RESERVATION

d_res_borrow

| create |

| cancel | LOAN
| res_borrow d_res_ create

borrow

d_res_borrow

DOCUMENT

Figure 4.10: Communication diagram of the CopyReservation service.

22

MEMBER

T_RESERVATION

t_res_borrow

| create |

| cancel | LOAN
| res_borrow tres_ create

borrow

t_res_borrow

DOCUMENT

Figure 4.11: Communication diagram of the TitleReservation service.

23

Membership

become_member exclude include leave terminate
LOAN exclude
FINE exclude
MEMBER create exclude include leave terminate
PASS create destroy

Figure 4.12: Transaction decomposition table for the Membership service.

FineHandling
pay waive clear
FINE pay waive clear

Figure 4.13: Transaction decomposition table for the FineHandling service.

4.2.2 Member services

Passhandling

issue_pass lose_pass find_pass destroy_pass
MEMBER

get_pass
PASS create lose find destroy

Figure 4.14: Transaction decomposition table for the PassHandling service.

24

FINE

MEMBER

exclude

J [

N

exclude

L]

LOAN

exclude

exclude
L

include

leave
create

terminate

B

become_member

PASS

terminate

create

destroy

N

Figure 4.15: Communication diagram of the Membership service.

FINE

pay

waive

clear

Figure 4.16: Communication diagram of the Fine Handling service.

25

PASS MEMBER

create
-

lose

]

get_pass

Figure 4.17: Communication diagram of the Pass Handling service.

26

4.3 Life cycle model

Figures 4.18 to 4.23 show the life cycles of objects in the UoD. Life cycles not shown have no significant
structure, i.e. after creation any non-creation event can happen at any moment. Each life cycle is
defined for a class of objects and is followed by all existing instances of the class. Different instances
will in general be at different stages of their life cycles. The set of events in the life cycle for instances
of C must be equal to the set of events declared for C in the class diagram; this is the set of events
written in the box for C' in the class diagram, plus all the events declared for superclasses of C. The
life cycle must be the solution of the life cycle specification for instances of C' in the LCM specification.

27

LOAN

renew
retur
overdue
remi
lose o)
return
G= =0
return lose
exclude
G= O O
return lose

Figure 4.18: Life cycle of LOAN instances.

28

DOCUMENT

O

destr

bind_in

bind_out

t_res_

d_res_ borrow

borrow

renew

create
ACQUISITION
CATALOGING
lose write_off
O O
find
write_off
O O

Figure 4.19: Life cycle of DOCUM ENT instances. The ACQUISITION and CATALOGING processes
are not specified here. The destroy event is part of the acquisition function and not specified in this

report.

29

FINE

lose exclude

waive
pay

clear

(@)

Figure 4.20: Life cycle of FINFE instances.

PASS
v
@
create
destroy
= 0
lose
0
find
0
destroy
O

Figure 4.21: Life cycle of PASS instances.

30

MEMBER

pate t_res_borrow

d_res_borrow
exclude

return

) return
include

get_pass

return

terminate

O

Figure 4.22: Life cycle of M EM BER instances.

T_RESERVATION

I

o

create

cancel res_borrow

Figure 4.23: Life cycle of T RESERV ATION instances.

31

D_RESERVATION

create

cancel res_borrow

Figure 4.24: Life cycle of D_.RESERV ATION instances.

32

4.4 Class dictionary

The dictionary entries are listed in alphabetical order.

4.4.1 DEPARTMENT

| Class name: DEPARTMENT

Class definition: |

An organizational unit of the university in which scientific research is done and which is the smallest
unit of budgetary allocation for the university board.

Identity: |

e The identity criterion for departments is determined by the university board.

Attributes:

name Name of the department.

33

4.4.2 DOCUMENT

Class name: DOCUMENT

Class definition:

A DOCUMENT is a carrier of information that is of use to library members. The library exists to
make DOCUM ENT instances available to library members. Each DOCUMENT is a document
of a VOLUM E, which itself is a kind of TITLE. See these two classes for further descriptions.

Identity:

A DOCUMENT instance is identified by a barcode.

Attributes:

avatlable_at

The department where the document can be borrowed.

barcode

Unique identification of the document issued by the library. Natural number
consisting of 14 digits, built up as follows:

e First digit: 3 (indicating that a document is identified)

o Digits 2-5: identification of the department that owns the document

e Digits 6-13: unique identification of the document within this depart-
ment

e Digit 14: checksum

location _code

The location in the store room where the document is stored when it is not
borrowed or out to the binder.

owner

The department out of whose budget the document was paid for by the
library.

maz_borrowing_

The maximal number of days that the document can be borrowed. This may

period be

e 0 (the document can only be read in the reading room)

e 1 (the document must be returned the day it is borrowed)

o 3 weeks

e unrestricted
penalty The price to be paid by a member who loses this document.
price The price paid by the library to acquire this document.
volume The volume of which this document is an instance.

The reading, storage or writing technology of the document. This may be

technology printed paper, hand-written manuscript, microfilm, microfiche, movie, video,

photo, fine print, or globe.

34

Predicates:

Available The document is available for borrowing.
Events:
bind_in A document returns from the binder.
bind_out A document goes to the binder.
borrow A document is borrowed by a library member.
create A document is ordered or is received as a gift.
A document that is not lent, missing or lost is destroyed. This deletes the
destroy

document instance.

d_res_borrow

A document is borrowed by a library member who reserved it.

find A missing or lost document is found.

lose It is discovered that the actual whereabouts of a document is unknown.
renew The borrowing period of a borrowed document is extended.

return A document is returned by a library member.

t_res_borrow

A document is borrowed by a library member who reserved the document
title.

write_of f

A lost or missing document is written off. This deletes the document instance.

Business rules:

e A document that has an allowable borrowing period of 0 days is not borrowable (axioms 8,

9, 10).

e A document can only engage in a borrow event only if there are no title- or document
reservations applicable to the document (axioms 11, 12).

e A document can only engage in a t_res_borrow event only if there are no document reserva-
tions applicable to the document (axiom 13).

e A document can only be borrowed by a t_res_borrow event if it is an instance of a volume
for which a reservation is outstanding (axiom 14). The member borrowing the document is
then the member who placed the reservation (see the decomposition of ¢_res_borrow in the
Reservation service).

e A borrowing period for a document can only be renewed when there are no title- or document
reservations applicable to the document (axiom 15, 16).

35

4.4.3 D_RESERVATIONS

Class name: D_ RESERVATION

Class definition: |

A D_RESERV ATION represents a document reservation. It is a relationship between a member
and the particular document that is reserved.

Identity: |

e The identity of a D RESERV ATION relationship consists of the identity of the reserved

document and of the member who reserved the title.

Components:

document The reserved document.

member The member who reserved the document.

Attributes:

date_reserved The date at which the reservation is created.

Events:

cancel
The reservation is terminated either because the member cancels it or because
the deadline before which the reserver could collect the document has passed.
Destroys the D_.RESERV ATION relationship.

create Reserve a document.
The re-

d_res_borrow server borrows the reserved document. Destroys the D_RESERV ATION
relationship.

Business rules: |

e A member can reserve any number of copies and a document can have any number of re-
servers. The reservers are served in order of reservation date.

e A reserved document that is returned can only be borrowed by a member who has a reser-
vation not younger than any other reservation for that document (axiom 1).

e A document can only be reserved if it is not available (axiom 2).

e A member cannot place two or more title reservations for a document simultaneously (axiom
3).

36

4.4.4 FINE

Class name: FINFE

Class definition: |

A FINE is an obligation on a library member to pay for undesirable behavior caused to the library.
Fines may be created by losing a document owned by the library or by failing to return a document
after two reminders for returning it are sent to the member by the library.

Identity: |

e Each instance of an undesirable event creates a different fine. Different instances of exclude
create different fines and different instance of lose create different fines.

Attributes:
amount The total amount to be paid.
outstanding The amount still to be paid.
The LOAN instance that contains the reason for the fine (not responding to
borrow _process . .
reminders or losing a document).
paid The amount already paid.
ay_be fore The deadline before which payment for the total amount must be received
pay- by the library.
waived The amount waived by the library.
Events:
clear The FINFE is deleted.
A FINE is created because the member does not respond to two reminders
exclude .
in sequence for the same LOAN process.
lose A FINE is created because a member loses a document borrowed by him or
her.
pay A member pays (part) of the amount fined.
waive The library waives the obligation on the member to pay (part of) the amount
fined.

Business rules: |

e The fine for not responding to two consecutive reminders in the same borrowing process is
70 (axiom 1).

e The fine for losing a borrowed document is the penalty associated with the document (axiom
3).

e A fine cannot be deleted unless there is no amount outstanding (axiom 6). A fine can be
created with an amount of 0, though, if the penalty associated with a document is 0.

37

4.4.5 JOURNAL

| Class name: JOURNAL

Class definition: |

A title published as volumes, which consist of single issues published at regular intervals.

Identity: |

e Same as identity criterion for PERIODICAL.

Attributes:

nr_of tssues Number of issues per volume.

38

4.4.6 LOAN

Class name: LOAN

Class definition: |

A LOAN instance is a relationship between a DOCUMENT and a M EM BER that represents
the fact that the member has borrowed the document.

Identity: |

LOAN instances are relationships, so the identifier of a LOAN instance consists of a tuple of two
identifiers, that of a DOCUMENT and a MEMBER. This means that one LOAN instance
can occur several times. Each time member m borrows document ¢, the same LOAN instance is
created. Thus, a LOAN instance is really an event; one and the same borrow event can occur
many different times. If we would have a historical database, the different occurrences of one
LOAN instance would be distinguished by their borrowing date.

Components:

document The document being borrowed.

member The member who borrows the document.
Attributes:

date_borrowed The date at which the borrow event takes place.

return._before a temporal event.

The document must have been returned when this date passes. This defines

Events:
create A LOAN instance is created.
The member member(b) is excluded from further use of the library and a
exclude fine is created for member(b). The member can only be included when all
documents are returned and all fines paid.
lose The member loses the borrowed document. The LOAN instance ceases to
exist and a fine is created.
The member is overdue with returning the document or renewing the LOAN
overdue .
period.
remind The member of the loan is sent a reminder.
renew The LOAN period is extended.
return The borrowed document is returned. The LOAN instance ceases to exist.

Business rules: |

o A document can only be borrowed for a period that is allowed to the member. The
permissible borrowing periods are represented by the attribute borrowing_periods of

MEMBERCLASS (axioms 2 and 3).

39

4.4.7 MEMBER

Class name: MEMBER

Class definition:

A member is a person, a group of persons, or an institution who or which has permission to use
the library. If the member is a person, it is either a staff member, a student, or external.

Identity:

bers.

e Members are identified by their current pass.

e A person who leaves the library and thereafter becomes member again is two different mem-

e A person who is a member but is also a member of a group that is a member, is still one
member; he or she is a member as a person and identified as such.

Attributes:

address

The street name and number where the member may be reached.

alternative_id

Passport or drivers license number.

city

City of the address where the member can be reached.

Class of the member. Used to get the allowed borrowing periods for members

class
of this class.
department Department where the member is registered. null when not applicable.
messade Message to be given to the member when he or she next comes at the circu-
g lation desk. For example “You forgot your umbrella.”
name Name of the member.

nr_documents_

Number of documents currently borrowed by the member.

borrowed

pass Current pass of the member.

telephone Telephone number where the member can be reached.
2ip Zip code of the address of the member.

40

Events:

borrow

A member borrows a document.

d_res_borrow

A member borrows a document that he or she reserved.

A member is excluded from further use of the library until he or she returns

czclude all documents and pays all fines.

get_pass A member gets a pass.

include An excluded member is again allowed to use the library.
leave A member leaves the library, but may still return documents.

lose_document

A member loses a document borrowed by him or her.

A member extends the borrowing period of a document borrowed by him or

renew
her.

return A member returns a document borrowed by him or her.

terminate A member terminates his or here membership.

t_res_borrow

A member borrows a document whose title he or she reserved.

Business rules:

e Members have a set of allowed borrowing periods that is determined by their class. (Modeled
by the class attribute.)

e An excluded member cannot borrow a document or extend a borrowing period (life cycle

definition).

e A member can only be included if he or she has no copies borrowed and all his or her fines
are paid (axiom 3).

e A member cannot borrow more than the allowance granted to his or her member class (axioms

4-9).

A member has one and only one active pass (axiom 10).

41

4.4.8 MEMBER _CLASS

| Class name: MEMBER CLASS

Class definition: |

Each library member is classified as one of the member classes.

Identity: |

e There are exactly four different member classes, External, Group, Staff and Student.

Attributes:

. The maximum number of books that a member of this class can borrow
borrowing_allowance .
simultaneously.

The borrowing periods (number of working days) allowed to members of this

borrowing_periods
class.

name The name of the member class.

Business rules: |

e Staff is allowed to borrow up to 20 copies simultaneously (axiom 2).
e Non-staff is allowed to borrow up to 10 copies simultaneously (axiom 3).
e Staff is allowed a borrowing period of 15 working days or 360 working days (axiom 4).

e Non-staff is allowed a borrowing period of 15 working days (axiom 5).

4.4.9 PART_OF

| Class name: PART _OF

Class definition: |

Relationship between a volume and the periodical of which it is a part. A volume need not be part
of a periodical but if it is, it is related through a PART _OF relationship.

Identity: |

o The identity of a PART _OF relationship consists of the identities of the participating volume
and periodical.

Components:
volume The volume part of a periodical
pertodical The periodical containing the volumes.

42

4.4.10 PASS

Class name: PASS

Class definition: |

A pass is a small card carrying the name and identification number of the member.

Identity: |

e A pass is identified by its barcode.

Attributes:
barcode
Unique identification of the pass, issued by the library. Number of 14 dig-
its starting with a 2 and built up in the same way as the barcode of a
DOCUMENT.
member The member to whom the pass is assigned.
Predicates:
Lost true when the pass is lost, false otherwise.
Events:
A new barcode is generated and a pass created with this barcode. The gen-
create
erated barcode has never been generated before.
destroy The pass is destroyed.
find The pass is found.
lose The pass is lost.

Business rules: |

e A pass is issued to new members or to an existing member who has lost his or her pass.
e A barcode, once generated, is never reused.

o A member can have several passes, but then all but one of these passes in the Lost state.
This pass is the current identification of the member.

4.4.11 PERIODICAL

Class name: PERIODICAL

Class definition: |

A title of which different instances are published at regular intervals. Periodicals are either journals
or serial works like Spinger Lecture Notes in Computer Science.

Identity: |

o The identity of a periodical is ascertained by the founders of the periodical, who usually are
the first editors. These may declare the periodical a reincarnation of a previously published
periodical which went out of print.

Attributes:

editors The editors of the periodical.

43

4.4.12 SERIAL WORK
| Class name: SERIAL WORK ‘

Class definition: |

A title consisting of books (volumes), published at regular intervals.

Identity: |
e Same as those for PERIODICAL.

4.4.13 TITLE

| Class name: TITLE

Class definition: |

A TITLE is a unique set of bibliographical data, such as appears in a bibliography at the end
of a paper or book. A TITLFE may have more than one DOCUM ENT and it may also be a
multi-volume work, a PERIODICAL or a journal. Each volume in a multi-volume work is itself
also a TITLE.

Identity: |

o Different editions of a book count as different titles.

e Hard- and paperback printings of one title count as one TITLE, even if they have different
ISBN numbers.

e A multi-volume TITLE consisting of n VOLUM Es counts as n + 1 TITLFEs: n volumes

plus the whole series itself.

o A JOURN AL counts as one title, even if it disappears and returns later with the suffix “n.s.”
(new series).

e Etcetera, as determined by the librarian.

Attributes:

annotation Any comment.

code Systematic code.

title The name of the TITLE.
Examples: “ACM Transactions on Database Systems”, “The Specification of
Computer Programs”, “An Introduction to Database Systems, Volume 1,

Fourth Edition”, “Deductive and Object-Oriented Databases. Second Inter-
national Conference, DOOD’91”.

The first three letters of the name of the first author, followed by the first
title_key letter of each of the first four words of the title, followed by two digits, followed
by a number that identifies the volume in a series.

44

4.4.14 T _ RESERVATION

Class name: T_RESERVATION

Class definition: |

AT_RESERV ATION represents a title reservation. It is a relationship between a member and a
title which is reserved.

Identity: |

e The identity of a T RESERV ATION relationship consists of the identity of the reserved

title and the member who reserved the title.

Components:

volume The reserved title.

member The member who reserved the title.

Attributes:

date_reserved The date at which the reservation is created.

Events:
The reservation is terminated either because the member cancels it or because

cancel the deadline before which the reserver could collect a document of the reserved
title has passed. Destroys the T_RESERV ATION relationship.

create Reserve a title.

b The reserver borrows a document of the reserved title. Destroys the
res-borrow T_RESERVATION relationship.

Business rules: |

e A member can reserve any number of titles and a title can have any number of reservers.
The reservers are served in order of reservation date.

e Only titles that are volumes can be reserved.

e A document of a reserved volume that is returned can only be borrowed by a member who
has a reservation not younger than any other reservation for that volume (axiom 1).

e A volume can only be reserved is none of its copies is available (axiom 2).

e A member cannot place two or more title reservations for a volume simultaneously (axiom
3).

4.4.15 VOLUME

| Class name: VOLUME

Class definition: |

A title that is published in a non-serial way, as single volumes.

Identity: |

e Same as those for TITLE.

Attributes:

authors Author(s) of the volume.

45

Chapter 5

Formal specification of the UoD
model: classes and life cycles

The specification in this chapter and the following is checked by a parser generated (using LLgen)
from the context-free grammar of the LCM 3.0 syntax report [4].

5.1 DOCUMENT

begin object class DOCUMENT

attributes
available_at: DEPARTMENT;
barcode: NATURAL fixed;
location_code: STRING fixed;

owner: DEPARTMENT;
max_borrowing_period: NATURAL;
penalty: MONEY;
price: MONEY;
volume: VOLUME;
technology: STRING;
keys
location_code;
identifiers
barcode;
predicates
Available initially True;
events
bind_in (DOCUMENT) ;
bind_out (DOCUMENT) ;
borrow (DOCUMENT) ;
destroy (DOCUMENT) deletion;
d_res_borrow (DOCUMENT) ;
find (DOCUMENT) ;
lose (DOCUMENT) ;
renew (DOCUMENT) ;
return (DOCUMENT) ;

46

t_res_borrow(DOCUMENT, VOLUME);
write_off (DOCUMENT) deletion;
life cycle
—-— ACQUIRE and CATALOGING are two subprocesses not defined here.
forall d : DOCUMENT, dep : DEPARTMENT, bar : NATURAL, loc : STRING,
max : NATURAL, own : DEPARTMENT, pen : MONEY, pri : MONEY,
tec : STRING, vol : VOLUME ::

DOCUMENT(d, dep, bar, loc, max, own, pen, pri, tec, vol) =
create(d;dep,bar,loc,max,own,pen,pri,tec,vol) . ACQUISITION(d)
CATALOGING(d) . AVAILABLE(d);

forall 4 : DOCUMENT, v : VOLUME ::

AVAILABLE(d,v) =
bind_out(d) . bind_in(d) . AVAILABLE(d,v) +
lose(d) .(find(d). AVAILABLE(d) + write_off(d)) +
(borrow(d) + t_res_borrow(d,v) + d_res_borrow(d)) . LOANED(d) +
destroy(d) ;

forall 4 : DOCUMENT ::

LOANED(d) = return(d) . AVAILABLE(d) +
renew(d) . LOANED(d) +
lose(d) .(find(d) . LOANED(d) + write_off(d));

axioms
-- 1, 2, 3, 4. A document is not available after being borrowed or lost,
-- missed, or after going to the binder.
-- Effect axioms.
forall d: DOCUMENT:: [borrow(d)] not Available(d);
forall d: DOCUMENT, v: VOLUME:: [t_res_borrow(d; v)] not Available(d);
forall d: DOCUMENT:: [d_res_borrow(d)] not Available(d);
forall d: DOCUMENT:: [lose(d)] not Available(d);
forall d: DOCUMENT:: [bind_out(d)] not Available(d);

-- 5, 6, 7. A document is available after being returned, found, or
-- brought back from the binder.
-— Effect axioms.

forall d: DOCUMENT:: [return(d)] Available(d);

forall d: DOCUMENT:: [find(d)] Available(d);

forall d: DOCUMENT:: [bind_in(d)] Available(d);

-- 8, 9, 10. A document can only be borrowed if it is borrowable.
-- Local precondition necessary for success.
forall d: DOCUMENT ::
<borrow(d)> True -> max_borrowing_period(d) > 0;
forall d: DOCUMENT, v: VOLUME::
<t_res_borrow(d, v)> True -> max_borrowing_period(d) > 0;
forall d: DOCUMENT ::
<d_res_borrow(d)> True -> max_borrowing_period(d) > 0;

-- 11, 12. A normal borrow event is only possible if there are no
—-— title reservations for the volume of which an instance is borrowed and

47

-- if there are no document reservations for the document.
—-- Global precondition necessary for success.
forall d: DOCUMENT, r: T_RESERVATIONS::
<borrow(d)> True -> not volume(r) = volume(d);
forall d: DOCUMENT, r: D_RESERVATIONS::
<borrow(d)> True —-> not document(r) = d;

-- 13. t_res_borrow only occurs when there is no document reservation
-- for the borrowed document. This gives precedence to document
-- reservations.
forall d: DOCUMENT, v : VOLUME, r: D_RESERVATIONS::
<t_res_borrow(d; v)> True -> not document(r) = d;

-- 14. A document is only borrowed by t_res_borrow if it is an instance
-- of the reserved volume. (Ensuring that the borrower has the right
-- identity is taken care of by the transaction.)
-- Local precondition necessary for success.
forall d: DOCUMENT, r: T_RESERVATIONS::
<t_res_borrow(d; v)> True -> volume(d) = v;

-- 15, 16. Renewal is only possible if there are no title reservations for
-— the volume of which a document borrowed and if there are no document
-- reservations for the document.
—-- Global precondition necessary for success.
forall d: DOCUMENT, t: DATE, r: T_RESERVATIONS::
<renew(d; t)> True -> not volume(r) = volume(d);
forall d: DOCUMENT, t: DATE, r: D_RESERVATIONS::
<renew(d; t)> True -> not document(r) = d;
end object class DOCUMENT;

Remarks:

e lose occurs in two transactions, called miss and lose (see subsection 6.1.4). As part of the miss
transaction, it has no communication partners. As part of the lose transaction, DOCUMENT. lose
communicates with FINE.lose, LOAN.lose and MEMBER.lose document. This means that it is
synchronized with the creation of a fine for the member who lost the document, that the loan
during which this loss occurred is terminated, and tat the number of documents borrowed by the
member is decreased by one. Thus, the lose transaction is an asymmetric communication:
DOCUMENT . lose can occur on its own, but the other transaction components cannot.

e Looking at the life cycle for DOCUMENT instances, we see that the lose event starts an interrupt
that may lead to a termination (via write_off or may lead to a return to the state in which the
interrupt occurred. LCM has currently no facility for defining interrupts.

e ACQUISITION and CATALOGING are subprocesses of DOCUMENT that are not specified here. ACQUISITION
includes reception of the document, paying for it, sending it back if it is damaged,dealing with
copies ordered but received too late, etc. CATALOGING deals with classification, updating the
user catalog, making the updated catalog available and putting the document in a location in
the store room. ACQUISITION and CATALOGING are the views that the finance and acquisition
departments have of a DOCUMENT. LCM does not currently have the ability to specify views. When
adding the ability to define views of classes to CMSL, we should also incorporate the ability to
define views on processes.

48

5.2 MEMBER

begin object class MEMBER
attributes
address: STRING;
alternative_id: STRING;
city: STRING;
class_of_member: MEMBER_CLASS;
department: DEPARTMENT;
message: STRING initially "";
name: STRING;
nr_documents_borrowed: NATURAL initially O;
pass: PASS;
telephone: STRING;
zip: ZIP;
predicates
Excluded initially False;
events
borrow (MEMBER) ;
d_res_borrow(MEMBER) ;
exclude (MEMBER) ;
get_pass (MEMBER, PASS);
include (MEMBER) ;
leave (MEMBER) ;
lose_document (MEMBER) ;
renew (MEMBER) ;
return (MEMBER) ;
terminate (MEMBER) deletion;
t_res_borrow (MEMBER) ;
life cycle
forall m : MEMBER, add : STRING, alt : STRING, cit : STRING,
cla : MEMBER_CLASS, dep : DEPARTMENT, nam : STRING, pas : PASS,
tel : STRING, zip : ZIP, p : PASS ::
MEMBER(m,add, alt, cit, cla, dep, nam, pas, tel, zip, p) =
create(m;add, alt, cit, cla, dep, nam, pas, tel, zip). LIFE(m,p);
forall m : MEMBER, p : PASS ::
LIFE(m,p) = ACTIVE(m,p) . leave(m) . RETURN(m) . terminate(m) +
exclude(m) . RETURN(m) . include(m) . LIFE(m,p);
forall m : MEMBER ::
ACTIVE(m,p) = (borrow(m) + t_res_borrow(m) + d_res_borrow(m) + renew(m) +
return(m) + get_pass(m,p)) . ACTIVE(m,p);
forall m : MEMBER ::
RETURN(m) = return(m) . RETURN(m);
axioms
-- 1, 2. Excluded remembers whether a member suffered an exclude without a
-- subsequent include.
-- Effect axioms.
forall m: MEMBER:: [exclude(m)] Excluded(m);
forall m: MEMBER:: [include(m)] not Excluded(m);

49

-- 3. A member can only be included when all his or her fines are paid and
-- no documents are borrowed by the member.
—-- Global precondition necessary for success.
forall m: MEMBER , f: FINE, 1: LOAN::
<include(m)> True -> member(f) '= m and member(l) !'= m;

-- 4. Members cannot exceed their borrowing allowance.
-- Global static integrity constraint.
forall m: MEMBER::
nr_documents_borrowed(m) < borrowing_allowance(class_of_member(m)) ;

-- 5, 6, 7, 8, 9. The number of documents currently borrowed is affected
-- only by borrow, return and lose_document.
-- Effect axioms.
forall m: MEMBER, n: NATURAL::
nr_documents_borrowed(m) = n ->
[borrow(m)] nr_documents_borrowed(m) = n+1;
forall m: MEMBER, n: NATURAL::
nr_documents_borrowed(m) = n ->

[t_res_borrow(m)] nr_documents_borrowed(m) = n+1;
forall m: MEMBER, n: NATURAL::

nr_documents_borrowed(m) = n ->

[d_res_borrow(m)] nr_documents_borrowed(m) = n+1;

forall m: MEMBER, n: NATURAL::
nr_documents_borrowed(m) = n >
[return(m)] nr_documents_borrowed(m) = n-1;

forall m: MEMBER, n: NATURAL::
nr_documents_borrowed(m) = n ->
[lose_document(m)] nr_documents_borrowed(m) = n-1;

-- 10. Each pass belongs to at most one member.
-- Static global integrity constraint.
forall ml, m2 : MEMBER:: pass(ml) = pass(m2) -> ml = m2;

-- 11. A pass knows of which member it is a pass.
-- Static global integrity constraint.
forall m: MEMBER :: member(pass(m)) = m;

-- 12. Assign a new pass to the member. This is synchronized with
-- PASS.create(p, n, m) so that axiom 13 is respected.
-- Effect axiom.
forall m: MEMBER, p: PASS:: [get_pass(m; p)] pass(m) = p;
end object class MEMBER;

Remarks:

e The message attribute may be viewed as a typical database system attribute; members don’t
walk around in the UoD with a message attribute attached to them. So one may wonder why
message appears in a model of the UoD and not of the DBS. However, what is here represented
is the fact that the library has a commitment to hand a message to the member, such as “you
forgot your umbrella” etc. This commitment is a fact that exists in the UoD. To be more precise,

50

it is a relationship between the member and the library (created by the library). Because we
don’t represent the library, we attach it to MEMBER.

e nr documents borrowed is a derived attribute. Its derivation is a query on LOAN, which
may be specified by

nr_documents_borrowed(m) = card({ d | exists <document: d, member: m> in
LOAN }).

Like relational algebra, we must be manipulate class existence sets as sets. This facility should
be added to LCM.

e Axiom 13 says that the PASS.member attribute is the left inverse of the MEMBER . pass attribute.
A proof that the DBS transactions preserve this constraint would be one of the tasks of a
workbench for LCM.

e The constraint that a member cannot borrow more than indicated by the allowance associated
with his or her class is deontic. We regiment it (turn it into a totalitarian constraint) by not
representing any exceptions to this. Regimentation is a term introduced by Jones and Sergot [8].
We called this the totalitarian reading of deontic constraints elsewhere [18].

e Axiom 5 makes crucial use of the fact that nor all variables are bound at the left-hand side of
the implication arrow. It is equivalent to

forall m : MEMBER::

<include(m) > True -> forall f : FINE :: (not member(f) = m)
and

forall b : LOAN:: (not member(b) = m)

This means that include may be viewed as a multicast, for its precondition asks if there is still
any FINE or LOAN instance for this member.

5.3 MEMBER_CLASS

begin object class MEMBER_CLASS
attributes
borrowing_allowance: NATURAL;
borrowing_periods: SET[NATURAL];

name: MEMBER_CLASS_NAME fixed;
identifiers

name;
axioms

-— 1. In combination with the fact that name is an identifier this axiom
-- says that there are at most four existing MEMBER_CLASS instances.
forall m: MEMBER_CLASS:: Exists(m) -> name(m) = external
or name(m) = group
or name (m) staff
or name(m) student;

o1

-- 2, 3. Business rules for borrowing allowances.
forall m: MEMBER_CLASS::
name(m) = staff -> borrowing_allowance(m) = 20;
forall m: MEMBER_CLASS::
not name(m) = staff -> borrowing_allowance(m) = 10;

-- 4, 5. Business rules for borrowing periods.
forall m: MEMBER_CLASS, v: SET[NATURAL]::
name(m) = staff and v = insert(insert(empty,15),360) -> borrowing_periods(m) = v;
forall m: MEMBER_CLASS, v: SET[NATURAL]::
not name(m) = staff and v = insert(empty,15) -> borrowing_periods(m) = v;
end object class MEMBER_CLASS;

Remarks:

e MEMBER is partioned into four subclasses, EXTERNAL, GROUP, STAFF and STUDENT. The information
stored about an instance of any of these subclasses is the same as stored about MEMBER, so
according to the principle of informativeness of taxonomies [10, 15], these subclasses should not
be added to the model. However some information is stored about these subclasses themselves
(as opposed to information about instances of these classes), viz. the borrowing period and
borrowing allowance granted to instances of these classes. We therefore add the MEMBER CLASS
metaclass. Since we do not represent the classes of which this is a metaclass (we just decided
not to represent EXTERNAL, GROUP, STAFF and STUDENT), this metaclass is not related to another
class through an instantiation relationship. In general, LCM does not formalize the instantiation
relationship. The fact that TITLE is a metaclass with respect to DOCUMENT is not represented in
the logic of the language.

e The specification uses the following value type:

value type
MEMBER_CLASS_NAME = {external, group, staff, student}

Note that there are models of this specification in which no member class exists.

5.4 T_RESERVATION

begin relationship class T_RESERVATION
components
member: MEMBER;
volume: VOLUME;

attributes
date_reserved: DATE;
events
cancel (T_RESERVATION) deletion;
res_borrow(T_RESERVATION) deletion;
life cycle

forall t : T_RESERVATION, dat : DATE ::

52

T_RESERVATION(t) = create(t;dat) . (cancel(t) + res_borrow(t));

axioms
-- 1. The res_borrow transaction only succeeds if there is no
-- reservation older than the current one. This leaves the choice between
-- reservations of the same age nondeterministic, to be resolved on a
-— first-come first-serve basis.
—-- Global precondition necessary for success.

forall r1, r2: T_RESERVATION::

<res_borrow(r1l)> True —>
date_reserved(rl) <= date_reserved(r2) or volume(rl) '= volume(r2);

-- 2. A volume can only be reserved if none of its copies are available
--(i.e. borrowed.)
—-- Global precondition necessary for success.
forall r: T_RESERVATION, d: DOCUMENT::
<create(r)> True -> volume(r) '!'= volume(d) or not Available(d);

-- 3. A volume can only be reserved by a member who did not already reserve
-— that same volume.
—-- Global precondition necessary for success.
forall rl, r2: T_RESERVATION::
<create(r1)> True —->
volume(rl) !'= volume(r2) or member(rl) != member(r2);
end relationship class T_RESERVATION;

Remarks:

e cancel and res_borrow can be replaced by a single delete event, that would then participate in
the t_res_borrow and t_cancel transactions.

e Axiom 1 is quite complex; a theorem-prover would probably have some difficulties in handling
this.

5.5 D _RESERVATION

begin relationship class D_RESERVATION
components
document: DOCUMENT;
member : MEMBER;

attributes
date_reserved: DATE;
events
cancel (D_RESERVATION) deletion;
d_res_borrow (D_RESERVATION) deletion;
life cycle

forall 4 : D_RESERVATION, dat : DATE ::
D_RESERVATION(d,dat) = create(d;dat) . (cancel(d) + d_res_borrow(d));
axioms
-- 1. The d_res_borrow transaction can only succeed if there is no document

53

-- reservation older than the current one. This leaves the choice between
-- document reservations of the same age nondeterministic, to be resolved on a
-- first-come first-serve basis.
—-- Global precondition necessary for success.
forall r1l, r2 : D_RESERVATION ::
<d_res_borrow(rl)> True ->
document(rl) '= document(r2) or date_reserved(rl) <= date_reserved(r2);

-- 2. A document can only be reserved if it is not available
-- Global precondition necessary for success.
forall r: D_RESERVATION ::
<create(r)> True -> not Available(document(r));

-- 3. A document can only be reserved by a member who did not already reserve
-- that same document.
—-- Global precondition necessary for success.
forall rl1, r2: D_RESERVATION::
<create(rl)> True ->
document(rl) '= document(r2) or member(rl) != member(r2);
end relationship class D_RESERVATION;

5.6 LOAN

begin relationship class LOAN
components
document : DOCUMENT;
member : MEMBER;
attributes
date_borrowed : DATE;
return_before : DATE;
events
exclude (LOAN) ;
lose(LDAN) deletion ;
overdue (LOAN) ;
remind (LOAN) ;
renew (LOAN,DATE,DATE) ; -- 2nd arg today, 3rd arg return_before
return (LOAN) deletion;
life cycle
forall 1 : LOAN, d1,d2,dla,d2a,dat,ret : DATE ::
LOAN(1,dat,ret,d1,d2,d1a,d2a) = create(l;dat,ret) . RENEW(1,d1,d2,dla,d2a);
forall 1 : LOAN, di1,d2,dla,d2a : DATE ::
RENEW(1,d1,d2,dla,d2a) =
return(l) + lose(l) + renew(l) . RENEW(1,d1,d2,dla,d2a) +
overdue(l) . remind(1l) . OVERDUE1(1,d1,d2,d1a,d2a);
forall 1 : LOAN, d1, d2, dla, d2a : DATE ::
OVERDUE1(1,d1,d2,d1a,d2a) =
return(l) + lose(l) + renew(1l,d1,d2) . RENEW(1l,d1,d2,dla,d2a) +

54

overdue(l) . remind(1l) . OVERDUE2(1,dla,d2a);
forall 1 : LOAN, d1, d2, dla, d2a : DATE ::
OVERDUE2 = return(l) + lose(l) + renew(1l,d1,d2)
exclude(1l) . EXCLUDE(1);
forall 1 : LOAN ::
EXCLUDE(1) = return(l) + lose(l);
axioms
-- 1. renew(l; d) changes the return date of b into d.
-- Effect axiom.
forall 1 : LOAN, d1, d2 : DATE:: -- d1 : due, d2 :
[renew(1;d1, d2)] return_before(l) = d42;

. RENEW(1,d1,d2,dla,d2a) +

return_before

-- 2. A member can only borrow a document for one of the allowed borrowing

-- periods for his or her member class.
—-- Global precondition necessary for success.
forall 1: LOAN, 4 : DOCUMENT, m: MEMBER,
date_borrowed, return_before : DATE::

<create(l; d, m, date_borrowed, return_before)> True ->

date_borrowed <= return_before and
difference(date_borrowed, return_before)
In borrowing_periods(class_of_member(m)) ;

-- 3. A member can only extend a borrowing period into one of the allowed

-- borrowing periods for his or her member class.
—-- Global precondition necessary for success.
forall 1: LOAN, today, return_before : DATE::
<renew(l; today , return_before) > True ->
today <= return_before and
difference(today, return_before)
In borrowing_periods(class_of_member(m));
end relationship class LOAN;

Remarks:

e This specification includes two temporal events, overdue and exclude; they occur when a
certain period of time has elapsed since a reminder. Nothing in the specification indicates that
these are temporal events. As it is, what happens is that the DBS user types in the overdue
transaction and then is in the position to type in the remind transaction.
overdue transaction is useless; its proper use is to signal the fact that a significant moment in
time has occurred. It is useful to the user if the DBS does the signaling, it is not useful to the

DBS nor to the user if the user does the signaling.

e The exclude event is typed in the DBS to store in the DBS that a user is excluded; this is a

useful transaction.

The ability to specify temporal events should be added to the DBS.

5.7 PASS

begin object class PASS
attributes

55

This use of the

barcode: NATURAL fixed;
member: MEMBER;
identifiers
barcode;
predicates
Lost initially False;
events
create (PASS; NATURAL ,MEMBER) creation;
destroy (PASS) deletion;
find (PASS;DATE) ;
lose (PASS;DATE);
life cycle
forall p : PASS, n : NATURAL, m : MEMBER, dl1, df : DATE ::
PASS(p,nm,d1l,df) = create(p;n,m)
(destroy(p) + lose(p;dl) . find(p;df) . destroy(p));
axioms
-- 1. A pass can only be created when the member for which it is created
-- exists and when the pass does not exist.
-- Global precondition sufficient for failure.
forall p :PASS, n: NUMBER, m: MEMBER, d: DATE::
<create(p; n, m, d)> True -> Exists(p) and not Exists(m);

-- 2. Effect axiom.
forall p :PASS, n: NATURAL, m: MEMBER::
[create(p; n, m)] Exists(p)
and barcode(p) = n
and member(p) = m
and not Lost(p);

-— 3. The Lost predicate remembers if a pass was ever lost. It remains
-- True even when the pass is found.
-— Effect axiom.

forall p: PASS, d: DATE:: [lose(p, d)] Lost(p);

-- 4. It is possible that there are two passes for the same member.

-- However, in that case all passes that are not pointed at by the

-- pass attribute of the member are Lost.

-- Global static constraint. Generates global preconditions.
forall p: PASS :: not pass(member(p)) = p -> Lost(p);

-- 5. As long as it is assigned to a member, a pass cannot be destroyed.
-- Global precondition sufficient for failure

forall p: PASS:: pass(member(p)) = p -> [destroy(p)] False;
end object class PASS;

Remarks:

e Note that if a member is excluded, he or she can lose a pass (pass loss is not part of the member
life cycle, so as far as the member life cycle is concerned, there are no restrictions on the moment
that this event happens). The excluded member must however wait till he or she is included

56

before he or she can get a new pass. Thus, in this model, exclusion blocks the member, not the
pass.

5.8 DEPARTMENT

begin object class DEPARTMENT
attributes
name : STRING;
end object class DEPARTMENT;

5.9 FINE
begin object class FINE
attributes
amount: MONEY;
loan: LOAN;
outstanding: MONEY;
paid: MONEY initially O;
pay_before: DATE initially null_DATE;
waived: MONEY initially O;
events
clear (FINE) deletion;
exclude (FINE,LOAN,DATE) creation;
lose(FINE, LOAN, DATE) creation;

pay (FINE, MONEY);
waive (FINE, MONEY);
life cycle
forall £ : FINE, 11, le : LOAN, d1, de : DATE, mp, mw : MONEY ::
FINE(f,11,le) =(lose(f;11,d1) + exclude(f;le,de)) . BODY(f,mp,mw);
forall £ : FINE, mp, mw : MONEY ::
BODY(f ,mp,mw) =(pay(f,mp) + waive(f,mw)) . BODY(f,mp,mw) + clear(f);
axioms
-- 1. A FINE instance may be created in an exclude transaction. The
-- member is charged 70 (in whatever currency unit this is agreed to
-- represent) .
-- Effect axiom.
forall £ : FINE, 1 : LOAN, d : DATE::
[exclude(f;1,d)] Exists(f) and loan(f) =1
and amount(f) = 70
and pay_before(d) = d
and outstanding(f) = 70
and paid(f) = 0
and waived(f) = 0;

-- 2. Exclude is a creation event of FINE.
-- Global precondition sufficient for success.
forall £ : FINE, loan: LOAN, pay_before : DATE::
not Exists(f) and Exists(b) —>

57

<exclude(f;loan,pay_before)> True;

-- 3. A FINE instance may be created in a lose transaction. In this case, the
-- member who loses the document is charged with the penalty of the document.
forall f : FINE , 1: LOAN::
[lose(f; 1, d)] Exists(f)
and loan(f) =1
and pay_before(f) = d
and amount(f) = penalty(document(b))
and outstanding(f) = amount (f)
and paid(f) = 0
and waived(f) = 0;

-— 4. Global precondition sufficient for success.
forall f : FINE , 1: LOAN::
not Exists(f) and Exists(l) -> <lose(f; 1)> True;

--— 5. The total amount equals the amount outstanding plus the amount
-- paid plus the amount waived.
-- Static integrity constraint.

forall f: FINE:: amount(f) = outstanding(f) + paid(f) + waived(f);

-- 6. A fine cannot be deleted when there is still an amount outstanding.
-- Local precondition necessary and sufficient for success.

forall £ : FINE:: outstanding(f) = 0 -> < clear(f) > True;

forall £ : FINE:: < clear(f) > True -> outstanding(f) = 0;
end object class FINE;

Remarks:

e A fine can be created in two ways, by losing a document or by returning a document too late.
If a document is lost after being overdue, then a fine is paid for both overdue and lost.

e outstanding is another example of a derived attribute. This time, derivation can be done by a
simple computation rule like

outstanding(f) = amount(f) - paid(f) - waived(f).
Axiom 5 is thus really a derivation rule.

e paid and waived are derivable attributes, because they just summarize the past pay and waive
events in a FINE.

5.10 PART OF

begin relationship class PART_OF

components
periodical: PERIODICAL surjection;
volume: VOLUME;

axioms

-- A volume cannot be part of more than one periodical.

58

-- Global static constraint(cardinality axiom).
forall pl, p2: PART_OF::volume(pl) = volume(p2) -> pl = p2;
end relationship class PART_OF;

5.11 PERIODICAL

begin object class PERIODICAL
specialization of TITLE;
partitioned by
JOURNAL, SERIAL_WORK;
attributes
editors: LIST[STRING] ;
end object class PERIODICAL;

5.12 JOURNAL

begin object class JOURNAL
specialization of PERIODICAL;
attributes
nr_of_issues: NATURAL;

end object class JOURNAL;

5.13 SERIAL WORK

begin object class SERIAL_WORK
specialization of PERIODICAL;
end object class SERIAL_WORK;

5.14 TITLE

begin object class TITLE
partitioned by
VOLUME, PERIODICAL;
attributes
annotation: STRING initially "";
code: STRING;
title: STRING;
title_key: STRING;
keys
title_key;
end object class TITLE;

5.15 VOLUME

begin object class VOLUME
specialization of TITLE;
attributes

59

authors: LIST[STRING];
end object class VOLUME;

60

Chapter 6

Formal specification of the DBS
boundary and communication
model

6.1 Circulation activities

6.1.1 Borrowing

begin service Borrowing

transactions
borrow(LOAN, —-- loan
MEMBER, —-- borrower
DOCUMENT, -- borrowed_document
DATE, -- today
DATE) ; -- return_before
overdue (LOAN) ;
return (LDAN) ;
remind (LOAN) ;
renew (LOAN,
DATE, -- today
DATE); -- return_before
decompositions

-— LOAN.create creates a LOAN instance b and initializes it so
-- that its components are c and m, and the return date is set to
-- d2. The DOCUMENT.borrow(d, d1) event sets the Available flag
-- of ¢ to False. MEMBER.borrow increases the number of documents
-- currently borrowed by the member by one and also checks whether the
-— member is not excluded.
forall 1loan: LOAN, borrowed_document: DOCUMENT, borrower: MEMBER, today,
return_before : DATE::
borrow(loan, borrower, borrowed_document,
today, return_before) =
LOAN.create(1l; borrowed_document, borrower,
today, return_before) &

61

DOCUMENT.borrow(borrowed_document) &
MEMBER.borrow(borrower) ;

—-—- LOAN.return kills the LOAN instance, DOCUMENT.return sets
-- the Available flag of the returned document to True and
-— MEMBER.return decreases the number of documents currently borrowed
-- by m by one.
forall d: DOCUMENT, m: MEMBER::

return(LOAN_id(d, m))=

LOAN.return(LOAN_id(d, m)) &

DOCUMENT.return(d) &

MEMBER.return(m) ;

—- LOAN.renew sets the return date for 1 = <m, d> to d2 and if the
-- difference between today and d2 is in the allowed borrowing
-- periods for the member.
-- DOCUMENT.renew merely adds the renewal event to the history of the
-- borrowed document, where it is then available for future queries.
—-— MEMBER.renew checks whether the member is not excluded.
forall d: DOCUMENT, m: MEMBER, d1, d2:DATE::
renew(d, m, d1, d2)=
LOAN.renew(LOAN_id(d, m),
d1, d2) &
DOCUMENT.renew(d) &
MEMBER.renew(m) ;

forall m : MEMBER, d : DOCUMENT::
overdue (LOAN_id(d, m)) = MEMBER.overdue(m) ;

forall m : MEMBER, d : DOCUMENT::
remind (LOAN_id(d, m)) = MEMBER.remind(m) ;
end service Borrowing;

6.1.2 Title Reservations

begin service TitleReservations
transactions
t_reserve(VOLUME,
T_RESERVATION,
MEMBER,

DATE); -- today
t_cancel (T_RESERVATION) ;
t_res_borrow (VOLUME,

LOAN,
T_RESERVATION,
MEMBER,,
DOCUMENT,
DATE, -- today

DATE); -- return_before

decompositions

62

-- Create reservation relation r between volume v and member m.
-- After creation, volume(r) = v and member(r) = m.
forall v: VOLUME, r: T_RESERVATION, m: MEMBER, d: DATE::
t_reserve(v, r, m, d) =
T_RESERVATION.create(r; v, m, d);

-- Destroy a reservation.
forall r: T_RESERVATION::
t_cancel(r) = T_RESERVATION.cancel(r);

-- Create a LDAN relationship 1 between document c and member m,
-- destroy reservation r between m and the volume of c and add the
-- t_res_borrow event to the history of c. This event also flags c
-- as being not available. The LOAN.create event ensures that

-- 1 = <document: d, member: m >

forall v: VOLUME, 1: LOAN, m: MEMBER, d: DOCUMENT, d1, d2: DATE::

t_res_borrow(v, 1, m, c, dl, d2) =
LOAN.create(l; c, m, d1, d2) &
T_RESERVATION.res_borrow(T_RESERVATION_id(v, m)) &
DOCUMENT.t_res_borrow(d; v) &
MEMBER.t_res_borrow(m) ;

end service TitleReservations;

6.1.3 Document reservations

begin service DocumentReservations
transactions
d_reserve(VOLUME,
D_RESERVATION,
MEMBER,
DATE); -- today
d_cancel (D_RESERVATION) ;
d_res_borrow (VOLUME,
LOAN,
D_RESERVATION,
MEMBER,
DOCUMENT,
DATE, -- today
DATE) ; -- return before
decompositions
-- Create reservation relation r between document c and member m.
-- After creation, document(r) = ¢ and member(r) = m.
forall d: DOCUMENT, r: D_RESERVATION, m: MEMBER, t: DATE::
d_reserve(d, r, m, t) =
D_RESERVATION.create(r; d, m, t);

-- Destroy a reservation.

forall r: D_RESERVATION::
d_cancel(r) = D_RESERVATION.cancel(r);

63

-— Create a LOAN relationship 1 between document c and member m,
-- destroy reservation r between m and c¢ and add the
-- d_res_borrow event to the history of c. This event also flags c
-- as being not available. The LOAN.create event ensures that
-- 1 = < document: c, member: m >. dl1 is today, d2 is the return before date.
forall 1: LOAN, m: MEMBER, d: DOCUMENT, di, d2: DATE::
d_res_borrow(l, m, d, d1, d2) =
LOAN.create(1l; ¢, m, dl, d2) &
D_RESERVATION.res_borrow(D_RESERVATION_id(d, m)) &
DOCUMENT.d_res_borrow(d, v) &
MEMBER.d_res_borrow(m) ;
end service DocumentReservations;

6.1.4 Lost document handling

begin service LostDocumentHandling
transactions

miss (DOCUMENT) ;

lose(LOAN, FINE, DATE);

find (DOCUMENT) ;

write_off (DOCUMENT) ;
decompositions
—-— DOCUMENT.miss suspends the normal life process of a DOCUMENT instance.
-— After miss, the only two possible events in the life of a DOCUMENT
-- instance are find and write_off.

forall d: DOCUMENT :: miss(d)= DOCUMENT.lose(d) ;

—-— DOCUMENT.lose suspends the normal life cycle of a DOCUMENT instance. The
-- only two next possible events in the life of a DOCUMENT are
—-— DOCUMENT.find and DOCUMENT.write_off.
-- FINE.lose creates a FINE instance and initializes it with the
-- penalty for the lost document. LOAN.lose destroys the LOAN
-- instance during the life of which the document is lost. Thus, the document is
-- not borrowed anymore(it does not occur in any existing LOAN
-- instance) but the Available flag of the document is still set to
-- False. When it is found, then this flag is set to True(see the
-- DOCUMENT specification). MEMBER.lose decreases the number of
-- documents borrowed by the member with 1.
forall 1: LOAN, f: FINE, t : DATE::
lose(l, f, t) =

DOCUMENT.lose(document (1)) &

FINE.lose(f, 1, t) &

LOAN.lose(1l) &

MEMBER . lose_document (member (1)) ;

forall d: DOCUMENT:: find(c) = DOCUMENT.find(d) ;

forall d: DOCUMENT :: write_off(d) = DOCUMENT.write_off(d) ;
end service LostDocumentHandling;

64

6.2 Member services

6.2.1 Membership

begin service Exclusions

transactions
become_member (MEMBER,
STRING, -- address
STRING, -- alternative_id
NATURAL, —-- barcode
STRING, -- city
MEMBER_CLASS,
DEPARTMENT,
STRING, -- name
PASS,
STRING, -—- telephone
ZIP) ;
exclude (LOAN, FINE, DATE); -- DATE argument is pay_before date.
include (MEMBER) ;
leave (MEMBER) ;
terminate (MEMBER) ;
decompositions

forall m : MEMBER, a: STRING, b : NATURAL, id: STRING, c: STRING, mc: MEMBER_CLASS, d:
DEPARTMENT, ms: MEMBER, n: STRING, p: PASS, t: STRING, z: ZIP::
become_member (m, a, id, b, ¢, mc, d, ms, n, p, t, z) =
MEMBER.create(m; a, id, ¢, mc, d, ms, n, p, t, z) &
PASS.create(p; b, m);

—-— MEMBER.exclude sets the Excluded flag of m to True so that
-- m cannot borrow or renew any documents. LOAN.exclude puts the
—-— LOAN process into a state where it can only suffer a lose or
-- return event, both of which terminate the LOAN process.
-- FINE.exclude creates a fine of 70(in whichever currency is
-- agreed), together with a deadline for payment.
forall m: MEMBER, c: DOCUMENT, f: FINE, d: DATE::

exclude(LOAN_id(c, m), f, d)=

MEMBER.exclude(m) &

LOAN.exclude(LOAN_id(c, m)) &

FINE.exclude(f, 4, LOAN_id(c,m));

—-— MEMBER.include can only occur if the member paid all fines and is
-- not involved in any borrowings.
forall m: MEMBER:: include(m) = MEMBER.include(m);

forall m: MEMBER:: leave(m) = MEMBER.leave(m) ;

forall m: MEMBER:: terminate(m) = MEMBER.terminate(m);
end service Exclusions;

65

6.2.2 FineHandling

begin service FineHandling
transactions
pay(FINE, MONEY);
waive (FINE, MONEY);
clear(FINE);
decompositions
-- Decrease the amount to be paid with a.
forall f: FINE, a: MONEY:: pay(f, a) = FINE.pay(f, a);

-- Decrease the amount to be paid with a.
forall f: FINE, a: MONEY:: waive(f, a) = FINE.waive(f, a);

-- Destroy the FINE instance. This event can only happen when the
-- amount to be paid is O.

forall f: FINE:: clear(f) = FINE.clear(f);
end service FineHandling;

6.2.3 PassHandling

begin service PassHandling

transactions
issue_pass(PASS, NATURAL, MEMBER, DATE);
lose_pass(PASS, DATE);
find_pass(PASS, DATE);
destroy_pass (PASS) ;

decompositions

-- PASS.create creates a pass and initializes it so that member(p)

-- points to m. MEMBER.get_pass sets pass(m) to p.
forall p: PASS, n: NATURAL, m: MEMBER::

issue_pass(p, n, m) = PASS.create(p, n, m) &
MEMBER.get_pass(m, p);

forall p: PASS, d: DATE::
lose_pass(p, d) = PASS.lose(p, d);

forall p: PASS, d: DATE:: find_pass(p, d) = PASS.find(p, d);

forall p: PASS:: destroy_pass(p, d) = PASS.destroy(p);
end service PassHandling;

66

Chapter 7

Discussion and conclusions

7.1 Discussion

7.1.1 Event specification

Many events have no axioms specified for them. For example, leave and terminate etc. in the
MEMBER specification have no preconditions nor effect axioms. However, each action occurrence has at
least two effects which are not specified in axioms:

1. The event occurrence may bring the life cycle in a new state. This state change is not specified
in dynamic logic axioms.

2. The event occurrence occurs. This may seem trivial, but much of the data in a DBS consists
just of the memory that certain events occurred. This points at the need to define a model for
LCM specifications in which for each objects, we remember the trace of events that occurred in
its past. We return to this when discussing possible temporal logic extensions of LCM below.

7.1.2 Precondition specification

In LCM, each precondition must be attached to a local event by means of a precondition axiom; trans-
actions have no explicit preconditions. Note that there is a precondition hidden in the decomposition
of the transactions in the service specifications: These decompositions may be used to enforce equal-
ity of the communicating event parameters. For example, in the decomposition of the t_res_borrow
transaction, the variable m appears in the LOAN. create event as the member who does the borrowing
and in the T_RESERVATION.res_borrow event as the member who placed the reservation. This is part
of the formalization of one of the business rules, as indicated in the dictionary entry for DOCUMENT.

Another precondition hidden in transaction specifications is that all subjects of different events in
the transactions must be different. This does not exclude local communication (within one object).
An event in a transaction may be a local communication.

The precondition of an event itself may be local or global. It seems natural to attach global
preconditions to transactions, which are global events, in the same way that local preconditions are
attached to local events. There are two reasons for not putting global precondition axioms in the
service specifications:

1. First, we have not been able to find examples of such intrinsically global preconditions.

67

2. Second, in the service specifications, we can only define communications between partners that
are known at specification time. A precondition that depends upon an arbitrary number other
objects cannot be specified this way.

If the author of a specification wants to avoid global preconditions, then in cases where the objects
whose state must be tested are known at specification time, the global precondition can be replaced
by a number of local preconditions. To see this, suppose an event e with subject o has a precondition
¢ that involves the state of an object o' different from o. Then ¢ is a global precondition because it
reads the state of an object other than o. This can be made into a local precondition by the following
trick: Define an event €' for o' that has the relevant part of the state of o' as parameters and make e
part of a transaction that consists of e and e¢’. Then €' shows the relevant part of the state of o' to e
through a communication. The global precondition can be dropped and can be replaced by at most
two local preconditions, one for e (if necessary) and one for e’

However, this way of communicating the state of an object to another object increases complexity
of the specification. In addition, global preconditions that depend upon the state of a set of objects
that cannot be enumerated at specification time cannot be specified this way; as pointed out above,
we need a multicast to evaluate these preconditions. Thus, we prefer to allow global preconditions of
local events.

7.1.3 The interpretation of transaction equations

The transaction equations in the service specifications are interpreted in the process algebra, which
contains the abstract data type as reduct. Because of this semantic structure, it is permitted to use
function symbols in the transaction decompositions. This is because function values are defined in
the underlying abstract data type and are therefore accessible from the process algebra.

The attributes and predicates of objects, on the other hand, are interpreted in possible worlds.
All possible worlds have the abstract data type as domain, but they may differ in the interpretation
of attribute names and predicate names. Attribute values can therefore not be used in transaction
decompositions. Note that component functions of relationships are functions, and can therefore be
used in transaction equations. This permissible because the relationships are passed as tuples with
labeled components to the transactions.

7.1.4 The form of the axioms

All axioms are closed formulas in prenex normal form and only use universal quantifiers. Their
meaning sometimes crucially depends upon the fact that a quantifier can moved inwards into the
formula, because it does not bind any variables in the condition; axiom 5 in MEMBER is an illustration
of this:

forall m: MEMBER , f: FINE, 1: LOAN::
<include(m)> true -> (not member(f) = m) and (not member(l) = m);

is equivalent to

forall m : MEMBER::

<include(m) > true -> forall f : FINE :: (not member(f) = m)
and

forall b : LOAN:: (not member(b) = m)

68

The following forms of axioms have been encountered. (All axiom forms below are implicitly univer-
sally quantified.)
Static integrity constraints:

e a(z) = a(y) — z = y for attribute a and object variables z and y.
e P(z) - a(z) =t V---Va(z) =1, for object variable z.

e a(z) =1t — b(z) =t for object variable z.

e a(b(z)) = z for object variable .

The conditions in these axioms can occur in negated form.
Effect axioms:

e ¢ — [e(z,...)]Y where z is an object variable, all variables at the right-hand side of the impli-
cation sign occur at the left-hand side, and ¢ and ¥ are conjunctions of the following kinds of
atomic formulas:

a(z) =t for a an attribute name, z the same object variable as in e, and ¢t an ADT term;
— a(z) = b(z) for a and b attributes, and z the same object variable as in e;

— P(z) for P a predicate and z the same object variable as in e;

—P(z) for P a predicate and z the same object variable as in e.
Preconditions:

o (e(x,y1,...,Yn))true — t; =ty where at least one of ¢; and 5 is an attribute term. These terms
may contain variables not occurring among x,yi, - .-, y,- The equation may be negated.

o (e(x,y1,...,yn))true — L(t1,...,t,) where at least one of ¢; for ¢ = 1,...,m is an attribute
term. These terms may contain variables not occurring among x, ¥1, - - ., Y- L is a literal, i.e. a
predicate or the negation of a predicate.

o (e(z))true — (a(z) = a(y) — L(b(x),b(y))) for object variables x and y. L is a literal whole
predicate may be the equality sign.

The condition in a conditional effect axiom is not a precondition for success or failure. It merely serves
to bind the variables and cannot evaluate to false. We could avoid the conditions in the effect axioms
by allowing direct reference of the value of a variable before an event occurs. For example, using the
VDM-style prev_ variables, we could replace

forall m: MEMBER, n: NAT::
nr_documents_borrowed(m) = n ->
[borrow(m)] nr_documents_borrowed(m) = n+1

by
forall m: MEMBER, n: NAT::

[borrow(m)] nr_documents_borrowed(m) = prev_nr_documents_borrowed(m)+1.

69

7.1.5 Modularity

Modularity occurs in several ways in LCM specifications. First each class specification is modular. This
modularity is violated in two ways:

e Global preconditions depend for their evaluation on the state of other objects.

e Each event can only be performed in the context of a transaction; i.e. it must usually commu-
nicate with other local events.

It turns out that each class specification is easy to understand in isolation but that especially the
communication structure is hard to understand; this is where the intelligence of the model resides.
This has been called the Ravioli problem!: the communication graph of the full model usually looks
like a bowl of ravioli.

A second important modularity principle in LCM is that each transaction is modular. Each transac-
tion involves a limited number of local events and nothing else. Note that this modularity is orthogonal
to that of classes. (This orthogonality is visually represented by the transaction decomposition tables.)
An attempt has been made to add some modularity at a higher level than that of transactions, by
grouping them into services. It is possible to add a higher-level grouping concept like subject areas or
domains; it is not yet clear whether these higher-level grouping concepts can be clearly defined and
whether this would enhance understanding of the model.

The ravioli problem can be reduced by not specifying derived attributes, predicates or updates.
Specifying these explicitly creates interdependencies between different parts of the model and hence
adds complexity and decreases modularity. For example, addition of the derived attribute nr do-
cuments_borrowed considerable complicates the MEMBER specification. Maintaining this attribute
requires axioms 7-11 in MEMBER as well as participation of MEMBER in the borrow, t_res_borrow,
d_res_borrow, return, and lose transactions. The specification would be simpler and easier to
understand without this attribute.

Note that we do not have a module concept with an import relation. The current version of LCM is
an experiment to see if we can do without this; or if we can reduce the need for a module mechanism
by making intelligent use of a workbench with a dynamic viewing mechanism of the specification.

7.2 Possible extensions to LCM

7.2.1 Derived attributes

The need for derivation mechanisms is apparent from this case study. A simple example of a derived
attribute is outstanding in FINE. This can be derived with a simple computation rule that can be
specified in the abstract data type specification of MONEY.

The derivation of the attribute nr_documents_borrowed in MEMBER requires a more complex deriva-
tion mechanism, viz. a query facility in which sets of instances in the database can be manipulated. We
return to the need for manipulating sets below. Another way to derive the nr_documents_borrowed of
a MEMBER is to add past time temporal logic with the ability to count the number of past occurrences
of creation events of LOAN in which the member participated minus the number of destruction events
of LOAN in which that member participated.

The paid and waived are derivable attributes in FINE that can be dropped if we would have a
past temporal logic in which we could look at the occurrences of pay and waive in the past of a FINE.
We return to this below.

1We have not been able to trace the originater of this term.

70

7.2.2 Null values

There is no theory of null values embedded in LCM. There are at least three different null values, with
the meaning

e unknown,
e does not exist,
e not applicable.

The third one can be eliminated by using taxonomic structures, but this sometimes leads to compli-
cated diagrams and we may have to allow this null value explicitly. The first two kinds cannot be
eliminated, but extension of LCM with these kinds of null values is not foreseen in the near future.

For the time being, we use the simple kludge of assuming for every abstract datatype a supertype
that contains a null value for that type. We require all attributes to be strict, i.e. if @ : s — s9 then
a(nulls,) = null,,. These null values are reminiscent of the semantic element used, in first-order logic
with descriptions, to interpret descriptions that refer to nothing.

7.2.3 Manipulating sets

There is a need to be able to manipulate sets in specifications as well as in query-answering. For
example, the constraint on the possible borrowing allowances for different classes of library members
(axiom 6 in MEMBER) currently has the following form:

forall m: MEMBER::
nr_documents_borrowed(m) < borrowing_allowance(class(m)).

This should really be expressed by means of a language that allows us to ask what the cardinality of
a solution set to a query is. This could look as follows:

forall m: MEMBER, 1: LOAN::
card{l: LOAN | document(b) = m} <= borrowing_allowance (m)

Because we cannot specify sets in LCM predicatively, we circumvented we introduced the attribute
nr _documents_borrowed to count the number of borrowed documents. We already saw that this leads
to extra complexity in the specification.

7.2.4 Real time

We encountered the need for real time in such temporal events as overdue and exclude, which trigger
certain events in the life of some objects. In the specification, we assume that there is an abstract
data type DATE with functions like before and difference as used in the axioms. These can easily
be defined in equational logic but this is not sufficient to define real time. We need for example also
a facility to specify the condition on time in which a temporal event occurs, to evaluate formulas at
a point in time, etc. Real-time temporal logic is planned as an extension to LCM.

It would have been possible to refine the creation axiom of a LOAN instance by defining ds =
add_days(dq, 21) instead of explicitly declaring dy to be a parameter. However, this is a simplistic
specification, for there is in practice no algorithm to compute dy from dy. This is so because it

71

may depend upon things like public holidays and local agreements between the university and labor
representatives about vacations what the value of dy must be. These agreements may not even be
global for the university but apply to some library departments, and they affect the possible return
days and therefore the deadline for returning documents. Currently, at the beginning of each day,
each library department computes the return day for documents, stamps a set of paper slips with the
return date and hands out this paper slip together with the borrowed document. The entry of the
return date is thus connected to business procedures.

7.2.5 Temporal logic

Past temporal logic would allow us to specify the derivation of attributes like waived and paid in FINE.
In combination with real time, we could also add an attribute like date_last_accessed of DOCUMENT.
The current specification does not contain this attribute because it would have a null value when a
document is created. In addition, it is questionable whether this is an attribute of the UoD entity;
the access intended by this attribute is an access to the record in the DBS representing the real-world
document. In general, though, past temporal logic can serve as a useful language to specify derived
attributes and as a way to avoid some kinds of null values of attributes. Needless to say, it would also
be useful as a query language for a historical database system.

7.2.6 Deontic logic

There is a rule that a borrowing period should not exceed the maximum borrowing period for the
borrowed document. This is a constraint on the UoD, not on the DBS and it should therefore be
stated in deontic logic. If we assume an attribute borrowing _period of LOAN instances, then a possible
specification of this constraint is

forall b: LOAN::
OughtToBe (borrowing_period(b) <= max_borrowing_period(document(b)))

This is one more reason to add a real-time facility in which we can specify that borrowing period is
increased by 1 every day. In addition we need a deontic logic that allows us to specify ought-to-be as
well as ought-to-do constraints [1].

7.2.7 Interrupts and premature termination

We also encountered the need for interrupt handling in the case study. We saw that lose event
in the DOCUMENT specification is really an interrupt of a DOCUMENT process, which may lead to a
termination of the DOCUMENT process or may cause a return to the state where the interrupt occurred.
Interrupts have been dealt with in process algebras as well as temporal logic and the capability to
specify them should probably be added when we move to real time applications.

7.2.8 Views

We encountered two kinds of views in the example specification. First, each service specification
provides a kind of view on the DBS, consisting of a limited number of transactions. Second, we saw
that the ACQUISITION and CATALOGING subprocesses of DOCUMENT are the views that the acquisition
and finance departments of the library have of the document life cycle. We can generalize this second
kind of view by incorporating the traditional view concept of databases: A view is a window on a DBS
that shows some, but not all objects and processes in the DBS. This can be worked out by defining a

72

view as a derived class, which is related by a theory morphism to underlying classes. It is clear that
such a mechanism must be added to LCM, but it is far from clear what the precise details of such a
mechanism must be. The addition of a view specification mechanism to LCM is not planned for the
near future.

7.3 Functions for a LCM workbench

One of the functions of a LCM workbench which we sorely missed is a bookkeeping facility that main-
tained consistency between transaction decomposition tables, the function decomposition tree, service
specifications, process graphs, class diagrams, class specifications, and transaction specifications.

A second important function of a workbench, related to the first, is to maintain traceability of the
requirements. This means that each informal requirement must be traceable to one or more parts of
the specification which formalizes this DBS requirement. The business rules in the dictionary entry
for a class attempt to establish this tracability. Ideally, each business rule is formalized at one place
in the specification. We have not been able to do this but the example specification comes close to it.

A third major function is of course the ability to prove properties of the specification. We should
like to know, for example, where the transactions preserve the static integity constraints. For example,
axiom 13 in MEMBER (which says that the PASS.member attribute is the left inverse of the MEMBER . pass
attribute) must be respected by the issue pass transaction.

73

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]
[11]

[12]

[13]

P.d’ Altan, J.-J.Ch. Meyer, and R.J. Wieringa. An integrated framework for ought-to-be and
ought-to-do constraints. Technical Report IR-342, Faculty of Mathematics and Computer Science,
Vrije Universiteit, December 1993.

S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A Core Language for Specifying Objects.
Informatik-Bericht 92-02, TU Braunschweig, 1992.

J.F. Costa, A. Sernadas, and C. Sernadas. OBL-89 User’s Manual, version 2.3. Instituto Superior
Técnico, Lisbon, May 1989.

R.B. Feenstra and R.J. Wieringa. LCM 3.0: a language for describing conceptual models. Techni-
cal Report IR-344, Faculty of Mathematics and Computer Science, Vrije Universiteit, December
1993.

J.A. Goguen and J. Meseguer. Unifying functional, object-oriented and relational programming
with logical semantics. In B. Shriver and P. Wegner, editors, Research Directions in Object-
Oriented Programming, pages 417-477. MIT Press, 1987.

T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kusch. TROLL-2 report. Informatik-
bericht, TU Braunschweig, 1993. In preparation.

E.G. IJff. Conceptueel model van de uitleenfuncties van een bibliotheek. Master’s thesis, Faculty
of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, 1991. In Dutch.

A.J.1. Jones and M. Sergot. On the role of deontic logic in the characterization of normative
systems. In J.-J.Ch. Meyer and R.J. Wieringa, editors, Deontic Logic in Computer Science:
Normative System Specification, pages 275-307. Wiley, 1993.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-Oriented Specification of Infor-
mation Systems: The TROLL Language. Informatik-Bericht 91-04, TU Braunschweig, 1991.

N. Rescher. Introduction to Logic. St. Martin’s Press, 1964.

P.A. Spruit. Function symbols in dynamic database logic. Technical report, Department of
Mathematics and Computer Science, Vrije Universiteit, Amsterdam, 1993.

P.A. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer. Dynamic database logic: The first-order case. In
U.W. Lipeck and B. Thalheim, editors, Modelling Database Dynamics, pages 103—120. Springer,
1993.

UBVU. Gids voor bezoekers van de bibliotheek vrije universiteit. 9e herziene druk, 1990.

74

[14]

[15]

[16]

[17]

18]

[19]

R.J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel,
M. Kifer, and Y. Masunaga, editors, 2nd International Conference on Deductive and Object-
Oriented Databases, pages 431-452. Springer, 1991. Lecture Notes in Computer Science 566.

R.J. Wieringa. Information System Development and Conceptual Modeling: A Comparative
Study. Department of Mathematics and Computer Science, Vrije Universiteit, 1993.

R.J. Wieringa. A method for building and evaluating formal specifications of object-oriented
conceptual models of database systems (MCM). Technical Report IR-340, Faculty of Mathematics
and Computer Science, Vrije Universiteit, December 1993.

R.J. Wieringa and P.A. Spruit Jonge, W. de. Roles and dynamic subclasses: a modal logic
approach. Technical Report TR-341, Faculty of Mathematics and Computer Science, Vrije Uni-
versiteit, December 1993.

R.J. Wieringa, J.-J. Ch. Meyer, and H. Weigand. Specifying dynamic and deontic integrity
constraints. Data and Knowledge Engineering, 4:157-189, 1989.

R.J. Wieringa and J.-J.Ch. Meyer. Actors, actions, and initiative in normative system specifica-
tion. Annals of Mathematics and Artificial Intelligence, 7:289-346, 1993.

75

