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Abstract

At present, many information sources are available wherever you are. Most
of the time, the information needed is spread across several of those information
sources. Gathering this information is a tedious and time consuming job. Automat-
ing this process would assist the user in its task. Integration of the information
sources provides a global information source with all information needed present.

All of these information sources also change over time. With each change of
the information source, the schema of this source can be changed as well. The data
contained in the information source, however, cannot be changed every time, due
to the huge amount of data that would have to be converted in order to conform to
the most recent schema.

In this report we describe the current methods to information integration, evo-
lution and versioning. We distinguish between integration of schemas and integra-
tion of the actual data. We also show some key issues when integrating XML data
sources.
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1 Introduction

Nowadays, a lot of different information sources exist, ranging from large database
systems used at global multinationals, to small applications on private PDA’s. Large
companies merge, more than ever, with other companies, or at least merge some of
there departments to increase overall efficiency. These mergers have their influence
on the database systems used by these companies. Either a new systems is set-up and
information from all original companies has to be conformed to this new system, or
one of the systems is chosen and all information from the other systems has to be
transformed to fit into the new system. Either way, information is being altered, while
the facts described by the information didn’t change.

On a smaller scale, people at home use PDA’s that can communicate with other
devices. The applications used on different devices, aren’t necessarily the same. They
can vary in vendor and version, or a combination of both. Even when someone buys a
new PDA with different software, or just upgrades the applications on an existing PDA,
data should be able to be used without having to manually restore the information.

Integrating these information sources, requires a lot of work from the users of the
systems involved. The structure of the data sources that need to be integrated usually
differ. The data is described in various ways, or the granularity of the data stored varies.

The problems described here, are caused by evolution or versioning of the software,
from one version to the next, or integration of different information sources. This report
describes the current state of the art in integration, versioning and evolution of data
systems.

1.1 AmbientDB

This research is carried out as part of the MultimediaN project, subproject AmbientDB.
The overall goal of this project is to facilitate user friendly, global data management
for the purpose of ambient intelligence. With the integration of information we will
provide a global view to the data, without the user having to know where (in what
information source) the data resides. The overall architecture of AmbientDB is given
in Figure 1. The goal of this research is focused on the integration of information
sources, indicated by the circle in the figure.

1.2 Information transformation

Integration of information sources, like databases, or data from different PDA’s, re-
quires at least one of those information sources to be transformed into a format that
can be matched against one of the other information sources. This transformation is
split into two separate phases. First the schemas of the data sources involved will have
to be conformed. During the next step, the data integration phase, the data of the infor-
mation sources is transformed to match the newly composed schema and merged into
the integrated information source.

In this document we show several methods to integrate information sources. Both
methods for schema integration and data integration will be discussed.
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Figure 1: Overall architecture of AmbientDB

1.3 Outline

The remainder of this report is organized as follows. Section 2 gives an overview
of information integration, the general steps involved and the areas in which these
problems occur. Versioning and evolution of the information schema is discussed in
Section 3, while data integration is discussed next, in Section 4.
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2 Integration of information

This section gives a broad overview of integration of information sources, versioning
and evolution. It describes what integration is, the overall process and problems of
integration of information, different kinds and levels of integration, approaches to solve
the problem of integration and how to query integrated data. First we define what
integration of information is.

2.1 What is integration of information

Integration of information is accessing different sources of data, containing possibly
overlapping information as one single source. The most common approach is demon-
strated in Figure 2, others will be described later. The different sources of information
may, and probably will, have different schemas to represent the data. Wrappers are
used to transform the data to fit into the global schema. A mediator is used to ac-
cess the integrated data. This mediator will translate user queries to fit the individual
schemas provided by the wrappers.

Mediated schema

Wrapper Wrapper Wrapper

DB1 DB2 DBn

Figure 2: Integration of Information

The concepts of integration, versioning and evolution, used in this report, are schemat-
ically shown in Figure 3. We use the following symbols in this figure and throughout
the rest of the document

data

schema

system

collection of systems

query, queryresult
system transformation
schema reformulation
data transformation

The following definitions are used:
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(a) Materialized Integration

Q

(b) Mediated Integration

Q

(c) Evolution

Q Q

(d) Versioning

Figure 3: Schematic view of concepts
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• Synchronization
If one object is contained in more than one information source, after synchro-
nization the desciptions of the object in all information sources have to be in
agreement.

• Information Integration
We distinguish between materialized (Figure 3(a)) and mediated (Figure 3(b))
information integration. In both cases, multiple information sources, contain-
ing possibly overlapping information are presented as one global information
source. In case of materialized information integration, the integration process
takes place at one specific time at which a new global information source is cre-
ated. This new information source can than be used as a normal information
source. In case of mediated information integration, the information sources
are not actually integrated, but the global information source is virtual. A com-
ponent, called a mediator, acts as the global information source. This mediator
transforms queries to the global information source into queries to the underlying
information sources and gathers and combines the results from these information
sources, which can than be presented as the result from the global information
source. The underlying information sources in this case remain autonomous.

• Schema Integration
Information integration can be split into two phases. The first phase, integrates
the schema of the information sources. The schemas of both information sources
are compared and a global schema is composed.

• Data Integration
The second phase of the integration of information is the integration of the actual
data. Schemas between different sources are assumed to match. The data is
transformed to match the schema of the global information source. Possible
conflicts between information from both information sources are solved.

• Schema Evolution
Schema evolution (Figure 3(c)) is accommodated when a database system facil-
itates the modification of the database schema without loss of existing informa-
tion. When the schema of the database changes, information already contained
in the database, can still be accessed, using the new schema. Also in the case of
evolution, there is a distinction between materialized and a mediated. In the case
of materialized, the data is converted to the new schema, whenever the schema
changes. Data is always stored using the current schema. In case of mediated
evolution, the data is stored using the schema used to insert the data into the
database. When a query is passed to the database, the mediator transforms the
schema to match the schema of the data.

• Schema Versioning
Schema versioning (Figure 3(d)) is accommodated when a database system al-
lows the accessing of all data, both retrospectively and prospectively, through
user definable version interfaces. The data is stored in the database using the
newest schema at the time the data was inserted into the database. Queries to the
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database can use any of the schemas ever used in the database. A mediator will
have to transform the schema to match that of the data.

The latter two definitions are taken from and further explained in [Rod95]. Evolution
and versioning can be seen as specializations of information integration. In all cases,
data stored using different schemas are presented as having one schema. With integra-
tion, two or more information sources are combined into one source. Evolution allows
users of the data to access old data through new schemas, demanding for inteInforma-
tion integration, gration of, at least, schemas of old and new data source. Versioning
allows the user to access the data through any of the old or new schemas.

There is however one difference between information integration and evolution /
versioning. Schemas of information sources in a versioning or evolution setting are
likely to be largely the same. The schemas all have a common ancestor.

At present, there is a number of existing systems that provide data integration,
SimInt [LC94], LSD [DDH01], SKAT, TransScm [MZ98], DIKE, ARTEMIS [BBC+00]
and CUPID [MBR01]. An overview of these systems is given in [RB01].

2.2 Why integration

The number of information sources has grown enormously. Companies and govern-
ments use several databases to store information about customers, citizens, products,
regulations, etc. Many of these companies, or departments, and even (local) govern-
ments merge. As a result their information, stored in databases, needs to be merged as
well.

However, also individuals have their own databases. With computer chips becom-
ing smaller and smaller, data can be stored on tiny surfaces. PDA’s today contain more
data than a personal computer did several years ago and can be considered an informa-
tion source. Owning a PDA is no different, and not even more expensive, than owning
a paper calendar and address book. Most people also use such systems at home on
their personal computer. These information sources can easily come from different
vendors, or are different versions of the same vendor. However, they need to be syn-
chronized to maintain consistency and correctness. Also synchronization, or updates
between PDA’s from different people should be possible, because PDA’s are often used
to exchange information between people.

In eBusiness, companies use different information sources for selling their prod-
ucts. A company may sell products from different vendors. Each of these vendors
has an information source with a specific schema. Automating the ordering process,
requires the schema of the selling company to be converted into schemas of the differ-
ent vendors. Also, product information from one vendor can be different from product
information from another vendor. The customer, however wants a one view on all
products. Converting these schemas both to vendor and customer can be seen as an
information integration process.
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2.3 Casestudy

In this section, we will provide a motivating example on which we will base most of
our next examples. Although this examle is taken from actual data1, some parts are
fiction.

Information about citizens in The Netherlands is maintained by the municipality in
which the citizen lives. These municipalities have one general data source for the per-
sonal information of each of their inhabitants, this data source is called GBA2. Besides
GBA, the municipalities have several other independent data sources, of which some
are listed here:

• FIS4ALL
Financial information.

• PIV4ALL
Information about citizens.

• VGS4U
Tax registration for local (municipal) taxes.

• DocMan
Document Manager. This data source contains correspondence with citizens of
the municipality.

Some data sources have overlapping information, e.g. both PIV4ALL and GBA
contain information about citizens, which is an example of overlapping information.
Also some data sources depend on data from other data sources, e.g. VGS4U uses
FIS4ALL to register tax invoices. Although information is updated in all data sources,
overlapping information should be consistent. At present most of this work is done
manually, which is time consuming and very unsatisfying work. The problems are
even larger when the data sources of the central government and local taxes are taken
into account.

Access rights permit or prohibited certain employees at the municipal office to
access some or all data sources. For example, at the person administration office,
employees are allowed to acces and alter PIV4ALL and GBA, but not the other data
sources. At the tax office, access to FIS4ALL and VGS4U is granted. There are many
different offices and employees with different kinds of access rights. As a result all
possible combinations of access to the available data sources are present within one
municipality.

There is a need to automate these processes. Not only because of the work it would
save, but also to ensure correctness and consistency.

2.4 Kinds of integration

There are two kinds of integration of information sources. The first one, integrates the
data at a given point and then materializes this integrated source. From this point on,

1The example was provided by eMaxx, one of the participants in the AmbientDB subproject of Multime-
diaN.

2which stands for Gemeentelijke Basis Administratie (Municipal Basic Administration).
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the information can be accessed through the newly created information source. We will
refer to this kind of integration as materialized integration.

The second kind of integration is achieved by designing a mediated schema on
top of existing information sources. These information sources may need a wrapper
to through which can be communicated with the mediated schema. This kind of in-
tegration is shown in Figure 2. We will refer to this kind of integration as mediated
integration.

The advantage of mediated integration is that the original information sources still
exist after integration. If, for some reason, an application still wants to use this infor-
mation source in its original form this is possible. Especially when information sources
are the property of different companies, this is a big advantage. Mediated integration
also ensures that if the integration process introduces errors in the information, the
original information isn’t lost. Naturally, data obtained with this method is still inaccu-
rate, but the correct data could be retrieved manually. The advantages of materialized
integration over mediated integration are that the integration process occurs only once.
Queries to the integrated data source will therefore be quicker with the materialized
integration than with the mediated integration. Since this integration step only occurs
once, it doesn’t matter if it takes longer. More advanced methods can then be used to
integrate, ensuring a better result in the integrated data.

2.5 Levels of integration

Integration of Information sources has to be performed at two levels. First the schemas
of the sources has to be integrated. Mapping rules from a source to the resulting in-
formation source have to be designed. When these mapping rules are known, data
contained in the information sources has to be integrated into the new information
source.

Information integration can be seen as a combination of both schema integration,
followed by data integration. The data integration step, however, depends on the result
of the schema integration step and cannot be performed independently.

Consider two address books as given in Table 1. If we merge these address books,
first the schemas of both books have to be transformed to match. To the user it is
apparent that room in address book A matches location in address book B and also
that name in book A matches the concatenation of firstname and surname of book B.
However, phone in address book B cannot be matched with an attribute in address book
B. In other words, the schema (name, room) has to be matched with schema (surname,
firstname, location, phone).

If the schemas are integrated, the data from both original information sources has to
be transformed to match the resulting schema. Next, the data from the different infor-
mation sources has to be integrated, which means that duplicates have to be eliminated,
conflicts have to be solved and possibly missing information has to be dealt with. The
data itself may also have to be converted to match the new schema. This process is
illustrated in Figure 4.

Techniques and methods used to integrate information sources at schema level is
discussed in detail in Section 3. Different approaches to integration at the data level is
described in Section 4.
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name room

fistname surname location phone

Figure 4: Matching of Schemas

name room
John Doe 3122
Ed King 2012

(a) Address book A

surname firstname location phone
Doe John 3122 4243
King Ed 2012 3519
Hamburg Mark 2022 3530

(b) Address book B

Table 1: Two address books

2.6 Differences in data models

Integration of information sources can be based on a number of properties of the origi-
nal information sources, e.g. attribute names or attribute values. The data model used
for the information source has a great influence on which property can be used. In-
tegration of object oriented databases as in [Thi95, Ver97] is based on structure and
behaviour of the information source. Structure of an object oriented database is repre-
sented by its attributes, while behaviour in these databases is represented by the meth-
ods.

Evolution, and therefore also versioning, of object oriented databases is especially
difficult, since both structure and behaviour can change from version to version. Add
[Zic92]

XML information sources, however, are not capable of representing behaviour, but
structure is very suitable to be used as an integration property in XML. Relational
databases have attribute names and (foreign) keys on which integration can be based.

2.7 Data retrieval

Querying an integrated information source should be no different than querying an
ordinary information source. With a materialized integrated information source, this
is automatically true, since the result of the integration process is a new information
source. This information source is the global view of all information sources used in
the integration process.
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For materialized integration, evolution and versioning, however, queries to the
global information source have to be changed. First the mediator has to determine
which information source contains which part of the requested information. Next,
queries to the individual information sources have to be formulated. Results from these
information sources are combined and transformed to match the original schema of the
query. This information is then returned as the result to the query.

Retrieving and querying data from these integrated sources is discussed in detail in
chapter 5.

2.8 Semantics

Although, the integration process should be automated as much as possible, the user
will at some point, be involved. If the system is able to fully integrate information
sources without immediate help from the user, errors in the integrated information
source are possible and even likely to happen. The main reason for this errors is the
semantics of the information source.

For the user, these semantics are mostly very easy to understand. For a device,
the semantics is much harder to obtain. For example, if we have two information
sources. Source A contains information about employees at the university and has
schema (name, room, number), where name is the name of the employee, room is the
room number and number is the phone number. Source B contains information about
students of the same university. The schema of source B is (name, address, number),
where name is the name of the student, address is the home address and number is the
student id number.

For humans the integration of these two information sources would be relatively
easy. Both employees and students have an address, which might be just a room num-
ber. Employees have a phone number, but students do not and students have an id
number. Automating this process would probably result in phone numbers from em-
ployees and id numbers from students being merged. This, clearly, is an undesired
effect.

14



3 Reconciling schemas

The integration of information starts at the schema level. As shown earlier, schemas of
the original information sources have to be transformed in order for the data to be in-
tegrated. The transformation of these schemas is preceeded by a matching of schemas,
i.e. what parts of schema 1 match with what parts of schema 2. The methods used to
match these schemas depends on the kind of schemas used in the information sources.
Also, if instead of integration of data sources, evolution or versioning is used, matching
will most likely be easier, since both schemas originate from the same ancestor schema.

The process of schema integration is discussed in section 3.1. Wrappers are an
important aspect of integration and these will be the topic of section 3.2. In section 3.3
we will discuss the role of mediators and the way in which they can be designed. In
section 3.4, matching techniques are discussed, taking into account the different types
of schemas we can encounter. Using the notion of time is helpful with evolution and
versioning, this will be the topic of section 3.6.

3.1 Integration process

The process of integrating different schemas into one global schema [SL90], can be
divided into four different phases [BLN86]:

• Preintegration
During this phase, the integration method is chosen and additional information
is gathered.

• Comparison
Source schemas are compared and similarities and differences are detected

• Conformation
If conflicts in the schemas are detected, an attempt is made to resolve these con-
flicts.

• Merging and restructuring
The results of the conformation phase are merged and restructured to ensure
minimality and understandability.

3.2 Wrappers

Wrappers provide a common interface to a data source. If we have a data source A and a
data source B, that both have different schemas, then wrappers translate the interaction
from the user, specified in using the global schema, to the schema of the data source.
Consider the two data sources shown in Figure 2. The schema which the user uses
to pose queries could be (name, room). In this case, firstname and name from data
source A should be mapped to name in the global schema and building and room in
data source B should be mapped to room. But wrappers should also be able to map the
other way, i.e. from user schema to actual data source.
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name firstname room
Doe John ZI-3122
King Ed ZI-2012

(a) Data source A

name building room phone
John Doe ZI 3122 4243
Ed King ZI 2012 3519

(b) Data source B

Table 2: Two Semantically similar data sources with different schemas

Besides converting between schemas, a wrapper is also used to convert between
data models. If the global information source is presented as an XML source, under-
lying information sources can still be relational, object-oriented, or any other kind of
information source. The function of the wrapper is to convert these relational and other
kinds of information to equivalent data in the XML schema.

In short, the function of a wrapper is to provide a common interface to the underly-
ing data source. The mediated schema in Figure 2 can access all data sources through
a common interface provided by the wrappers in between the mediator and the actual
data source.

Designing these wrappers for various data sources is a tedious and time consuming
process. In the TSIMMIS project [CGMH+94, GMPQ+97] wrappers are created semi-
automatically.

3.3 Mediators

A mediator acts as integrated information source for several independent autonomous
information sources (see Figure 2). Queries passed to the mediator are translated into
queries to underlying information sources and the resulting information is combined
and presented as result of the mediated information source. The underlying information
sources are usually accessed through wrappers.

The TSIMMIS system [GMPQ+97, GMHI+95] is a mediated system. The system
uses the Object Exchange Model (OEM) to query to data.

Mediating can be looked at from different perspectives. The first, and obvious, way
to mediate is Global as View, or GAV. With GAV the mediated schema is composed of
the different original information sources. The second way to mediate is using Local
as View, or LAV. Here the different autonomous information sources are considered to
be subsets of the mediated schema. We will show both GAV and LAV in the following
sections.

3.3.1 Object Exchange Model

The mediator distributes the query over the different available information sources. The
mediator can do this using a uniform schema kind. The main focus of the mediator in
case of a query is distributing the query over the information sources itself, collecting
the different parts of the information from all information sources.
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In the TSIMMIS system this uniform schema is the Object Exchange Model (OEM)
[GMPQ+97, PGMW95]. Data in OEM is self-describing, i.e. it contains its own
schema and does not need an external schema. Objects in the model consist of four
parts. They have an object ID, a label, which describes what the object represents. La-
bels are human readable and therefore contain all information needed about the object.
The third part is a type of the value. The type can be either atomic or set. The last part
of an object is the value, which is either an atomic value, or a set of objects.

Our address book example in OEM would look like

<set-of-addresses, set, {ad_1, ad_2}>
ad_1: <name-and-address, set, {name_1, room_1}>
ad_2: <name-and-address, set, {name_2, room_2}>

name_1: <name, string, ’John Doe’>
room_1: <room, string, ’3122’>
name_2: <name, string, ’Ed King’>
room_2: <room, string, ’2012’>

Wrappers will transform the query distributed by the mediator to the local informa-
tion source. This might entail rewriting the query to a different language that can be
handled by the information source, or using a different schema kind.

3.3.2 Global as view

With Global as View, the mediated information source is viewed as a composition of the
original information sources. Suppose we have three information sources, addressbook
(name, room, phone), addresses (name, room) and phones (name, phone). In all sources
attribute name is key. We want to create a mediated information source which provides
the same information as as initial address book example. We can compose a mediated
view completebook as follows

CREATE View completebook AS
SELECT * FROM addressbook

union

SELECT name, room, phone
FROM addresses, phones
WHERE addresses.name=phones.name

In this example the mediated view completebook is composed of the union of ad-
dressbook with the join of addresses and phones.

A drawback of Global as View is that extending the system with additional infor-
mation sources is hard, since the mediated schema has to be redesigned and rebuilt.

3.3.3 Local as view

Local as View considers the original information source to be derived from the medi-
ated schema. It describes the information sources in terms of queries to this mediated
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information source. Given the previous completebook example, three views would be
created, for addressbook, addresses and phones.

CREATE SOURCE addressbook AS
SELECT * FROM completebook

CREATE SOURCE addresses AS
SELECT name, room FROM completebook

and

CREATE SOURCE phones AS
SELECT name, phone FROM completebook

The information source completebook does not exist, but is a virtual information
source composed of actual information sources addressbook, addresses and phones.
Adding an information source in this case, is easy as the information sources are inde-
pendent of each other. Adding one source would result in adding one extra query.

3.4 Matching

Before schemas can be integrated, they have to be matched first. A formalization of
the schema matching problem is given in [SvKJ05]. In [RB01] an overview is given
of approaches to automatic schema matching. A hierarchical classification of schema
matching approaches is presented. Schemas can be matched based on a number of
characteristics. Names of attributes or elements can be compared. If they match, or are
relatively similar, the attributes are matched and the associated data can be integrated.
Instance data can also be compared. If the data contained in an attribute is similar, it
is likely that the attributes have to be merged. These methods base their decision on
one property of one attribute and are therefore referred to as element matching. Other
approaches use the structure of the schema itself, or a combination of attributes. These
methods are called structure matching.

When trying to match two schemas R1 and R2, a number of situations can occur
[BLN86]. The schemas can be

1. Identical. In this case R1 and R2 are exactly the same. This is the case for sys-
tems for which the same modeling constructs are used and the same perceptions
are applied.

2. Equivalent. In this case R1 and R2 are not identical. This is caused by use of
different modeling constructs. However, the perceptions applied are the same
and must be coherent. Definitions of equivalence are usually based on three
different types:

(a) Behavioural. Two schemas are equivalent if for every instance of one
schema, there is a corresponding instance of the second schema, that gives
the same answers to every possible query.

18



base

base

base

meta

Figure 5: Using Learners

(b) Mapping. This is the case, when instances of both schemas can be put in a
one to one correspondence, see [Ris77].

(c) Transformational. This types of equivalence holds, if one of the schemas
can be transformed into the other by using atomic transformations that
make the schemas behavioural or mapping equivalent.

3. Compatible. The two schemas are neither identical, nor equivalent, but they
are also not in contradiction. This means that modeling constructs, designer
perception and integrity constraints cannot be contradictory.

4. Incompatible. If two schemas are not identical, equivalent or compatible, they
are incompatible. The two schemas contradict, because of the incoherence of the
specification.

3.5 Learners

In the Learning Source Description (LSD) system [DDH03], learning modules, called
base learners, are used. Each base learner uses well one certain type of information to
find semantical mappings between schemas.

There are many different base learners. Examples include: Name Learners, Naive
Bayes Learner, Content Learner and XML Learner. The Name Learner matches ele-
ments based on their name. In case of XML, this name is the tag name. The learner
can use lists of synonyms to match similar, but not equal names. The Content Learner
matches elements based on the content of the attribute. In case of XML, this is the
data value of the XML element. The learners use a set of recognizers, which are each
capable of recognizing a certain kind of item, i.e. a zip code or a phone number. A
schematic example of learner process is shown in Figure 5.

The base learners are first trained in a phase called the training phase. During this
phase, the user has to confirm the results so the learner knows if the results are correct.
After this training phase, the learner can be used, this is called the matching phase
[Hal04].

Base learners now how to map on schemas, using one technique. Meta Learners
combine the results of base learners to match using multiple techniques. See [DDH03].
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3.6 Using time

If we allow the schema of an information source to change over time, data stored at
different moments can have a different schema. A query to this information source
should, at a minimum (evolution), be possible using the latest version of the schema.
To keep track of the version used for particular parts of the data, a notion of time can
be added to the schema and data. There is much overlap with this kind of time usage
and time in temporal databases.

Different notions of time can be used, to accommodate for different functionality
of the system. Keeping track of the original schema of a particular part of the data is
one aspect, but also rolling back the information source to a prior state, or being able
to answer time related queries, are possibilities of using time.

3.6.1 Valid time

The first notion of time that can be included in an information source is the time at
which the recorded event occurred. Suppose we change the address of one of the
persons in our address book, indicating this person has moved. We can attach a time
stamp to this record indicating from which point in time this record is valid. This kind
of time is referred to as valid time.

With valid time, we can ask the information source questions like: What was the
address of person X on February 2nd last year. A schematic representation of valid
time is given in Figure 6

3.6.2 Transaction time

Another notion of time, is the time when the record was inserted into the information
source. If all the records are associated with such a time stamp and provided that
deletions are also recorded, we can reconstruct the information source for a certain date
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and time. The time recorded is the time at which the transaction occurred that created
that particular record, and is therefore referred to as transaction time. Transaction time
enables the system to do a roll back to any particular point in time. This is shown in
Figure 7.

3.6.3 User defined time

The last notion of time we discuss, is already present in current relational database
systems. If the user wants to represent time, he can use the DATETIME type. The
database system itself regards this information as just another type of data. From the
database point of view there is no special meaning associated with this type of time and
it is therefore known as user defined time.

3.7 Semantics of schema

As indicated earlier, the semantics of schemas is important when integrating data
sources. Only semantically similar data can meaningfully be integrated. A possible
solution to this problem, and also commonly used, is to let the user provide the seman-
tics. Most of the time, this is done by letting the user specify how the data has to be
integrated. In the case of the LSD system, this is achieved by first specifying mappings
manually in the training phase. Next, in the matching phase, the system can match the
schemas automatically.

Another method to collect semantical information is to use an ontology, indicated
by [Ver97]. This process, however, is error prone and calls for an accurate and up to
date ontology. Another problem that arises when using ontologies for integration of
information sources, is that they would have to support versioning and/or evolution as
well [NK04].
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3.8 Distributed integration

Integration of information can also be accomplished in a distributed setting. Different
clients own different parts of the overall information source. In this case, not all clients
have to be available at a particular time, therefore the mediated schema has to adapt to
the information sources available. A distributed setting is shown in Figure 8

Figure 8: Distributed environment
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4 Data integration

After the schemas of two data sources have been integrated, the data contained in these
information sources has to be integrated as well. This chapter describes the problems
arising when data is conformed to the global schema. In section 4.1 the requirements
for data integration are discussed. Section 4.2 shows several problems when integrating
data into the global schema, using the mappings from the schema integration phase. In
section 4.3 we will show one novel technique for conflict handling.

Many of the methods mentioned in the context of reconciling schemas can also
be used in data integration. Especially, learners are a good method to improve data
integration. Using feedback from the user can improve the integration result. We will,
however, not mention these methods here again.

4.1 Requirements

The newly integrated information should contain the same information as the union of
the original information sources. This means that the integration process has to pre-
serve the data contained in the information sources, i.e. if an object is contained in one
of the original information sources, it should be contained in the resulting information
source. This requirement is referred to as preservation.

Another requirement is that of consistency. The appearance of an object should not
have been changed by the integration process. For example, if we integrate two address
books and one of these books contains persoon John with room number 3122, then the
resulting information source should contain John (preservation) and his phone number
should be 3122 (consistency).

4.2 Matching and merging

The result of the schema integration phase is a set of mappings from a source schema
to the global schema. There are four kinds of mappings possible, i.e. one to one, many
to one, one to many and many to many.

One to one mappings are easiest to integrate. In the simplest case, the attribute
value just has to be copied the the global information source. We will, however, show
that this is not always the case. An example of a one to one mapping is shown in
Table 1. If these two tables are integrated, attribute room maps to attribute location and
attribute values from one table can just be copied to the other table.

With many to one mappings the integration process becomes more difficult. If we
map table B from Table 1 onto table A, there is a many to one mapping from (firstname,
surname) to name. The rule that has to be specified for this conversion is

A.name = B.firstname + ’ ’ + B.surname

If we compare this rule to the schema integration rule (B.firstname, B.surname) 7→
(A.name), we see that the data integration rule is much more complicated, because it
specifies how the data is transformed, whereas the schema integration rules just specify
which attributes are mapped.
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One to many mappings are even harder than the many to one mappings. Consider
the previous example, but with a mapping from A to B. The schema mapping rule then
becomes (A.name) 7→ (B.firstname, B.surname), but specifying the data integration
rule is not as easy as before. If we take ’John Doe’ as an example, we can just split the
name at the space, obtaining John as a first name and Doe as the surname. This rule
could be specified as

(B.firstname, B.surname) = split(A.name, ’ ’)

where split is a function that splits the first parameter at the first occurrence of the
second parameter. If we use this specification and take the typical Dutch name ’Jan de
Boer’, the result (’Jan’, ’de Boer’) is not perfect, since sorting on the surname should
normally result in ’Jan the Boer’ being sorted on ’Boer’ instead of ’de Boer’. The
result, however, is acceptable, but if we use a more complicated Dutch name like ’Jan
Hendrik de Jong’, the specification fails. The firstname of this person consists of both
Jan and Hendrik, but the specification will only use Jan.

For obvious reasons, the many to many mappings are more diffecult than one to
many and many to one. As an example, we will use the name mappings, but with an
additional attribute called prefix. The word ’de’ in the lastname of ’Jan de Boer’ is
called a prefix and often stored separately. If we have two information sources, A with
schema (firstname, address) and B with schema (firstname, prefix, surname, location),
mapping the name from one schema to the other is a many to many mapping.

4.3 Uncertain and imprecise data

Instead of matching the data and storing just the matches, while discarding all non
matches, match results can be assigned a level of confidence. This level of confidence
is presented by a number, ranging from 0 to 1, where 0 indicates a total mismatch and
1 indicates a perfect match. If the matches and their confidence levels are stored in the
resulting information source, more data will be stored, but there will be no data loss.
This method, however, will result in a ever growing information source, and very soon
the information will be to large to handle. A simple, but effective solution is only to
store attributes with a confidence level larger than a certain α.

One model describing uncertain data is the possibilistic relational model [BDP03].
An attribute value in this model may be a possibility distribution, indicating for each
possible attribute value the level of confidence. Table 3 shows a possibilistic address
book, where the room of John Doe is uncertain. The level of confidence for room 3035
is 0.8, while the level of confidence for room 3122 is 0.5.

name room
John Doe 0.8/3035 + 0.5/3122

Table 3: Possibilistic address book

Another possibility to handle uncertain data is by using cisets [Nai03]. With cisets,
both the level of confidence and the level of disprove are stored. This methods allows
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for a more accurate registration of certainty. If there is a lot of evidence a certain
attribute value is false, than the level of disprove is increased. If, at the same time, a lot
of evidence is collected that the same attribute value is true, the level of confidence is
increased as well. In this case, there is a lot of doubt about the attribute value.

A somewhat simpler way to handle uncertain data, is the probabilistic data model.
It can be compared to the ciset solution, where the level of confidence + the level of
disprove equals 1. Probabilistic databases are explained in section 6.2.
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5 Querying

This section will show some methods to query data that results from one of the previ-
ously mentioned processes, such as mediated data, probabilistic data or time enriched
data.

5.1 Object Exchange Model

The Object Exchange Model, described in section 3.3.1 allows a mediator to commu-
nicate with all wrappers using a single data model. Besides the data model, a query
language is designed. This query language, called Mediator Specification Language
(MSL) [GMPQ+97] allows declarative queries to be formulated. A query constists of
a head, followed by :- and a body. The head describes objects that are requested, com-
pare with the SELECT statement in SQL. The body describes the conditions that have
to be met, compare with the WHERE statement.

The following query retrieves the room from person ’John Doe’ in addressbook A
in Table 1

<room X> :-
<addressbook { <person {<name "John Doe"> <room X>}> }>@A

Here the room number is returned from the person with name ’John Doe’, who is a
person in the addressbook, using information source A.

5.2 Uncertain data

Uncertainty in the data entails that query results will contain uncertainty as well. Con-
sider the address book example from Figure 3. If we were to ask for the room of John
Doe, the database contains both rooms 3122 and 3035 as a result.

A different approach to querying uncertain data, is that of possible worlds. Using
the possible world approach when querying uncertain (relational) data provides clear
and sound results. In our example, both rooms have an associated probability, creating
possible worlds with 2 variants for real world object John Doe. The result to the query
will have to reflect the existence of these two possibilities.

Using aggregates in the query normally summarize data. If we view a normal
database a description of the real world and a probabilistic database as a description
of multiple possible worlds, then aggregates can be applied accordingly. Probabilistic
aggregates summarize the data in all possible worlds and associate the probabilit of
that particular possible world with the summary. Querying of probabilistic relational
data with the possible world approach is described in [dKvK04]. Querying possibilistic
XML using the possible world approach is described in [vKdKA05]

There are other ways to query probabilistic data, that are not related to the possible
world approach. The semantics behind these methods is often harder for humans to
grasp, but is aimed more at computers. Querying probabilistic data is described in
[dKvK04, vKdKA05].
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Possibilistic databases are queried in a similar manner. Also in this case the result
will contain uncertainty [BP04]. More specifically, the result will be a possibilistic
relation.

Independent of the the way in which data is presented or queried, the wrappers used
will have to be aware of the fact that uncertain information is present in the information
source, because the result will also contain uncertain information. Depending on the
application, the wrapper will have to either return the uncertain data in some form, or
convert the data to a certain representation.

5.3 Querying with time

In [MS87] the algebra is extended with transaction time. This means that when query-
ing the data, the time that that the data was entered can be specified. The transaction
time allows users to roll back the system, which makes it possible to create snapshots
of the data of any desired time.
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6 XML specific issues

Most of the methods presented in this report can be applied to XML integration, ver-
sioning and evolution. However, some methods are diffecult to implement in case of
XML, due to its properties. Also these properties sometimes allow for different ap-
proaches or provide additional information that can be used to simplify integration,
versioning or evolution.

6.1 Versioning

In order to support versioning, instead of the data itself, changes to the XML document
can be stored [CTZ01]. Possible changes are insert and delete. An update of the data
can be accomplished by first deleting the object and then inserting the new value.

In [CTZ01] a method is described to obtain any previously stored version of the
document. Since an XML document contains both data and structure, any version of
the schema can be obtained as well.

6.2 Probabilistic data

When data is integrated, one of the problems that may arise, is that of data loss. Two
objects from different sources that seem similar are combined in the final data source.
When in fact, these merged descriptions are not representing the same object, informa-
tion about at least one of the objects is lost. This problem could be solved, if we saved
both instances, however, if we just copy them both in the resulting data source, the pur-
pose of integrating the two sources is lost. With probabilistic databases, we have the
means to indicate that both descriptions could be about the same real world object. For
one particular real world object, we can also indicate that there are multiple possible
appearances, of which one is more likely than the other.

6.2.1 Model

There are several models introduced to hold probabilistic data. All models are based
on the same principle, data is assigned a probability. In the case of relational data,
probabilities can be either assigned to a relation itself, or to attribute-values contained
in the relation. The former type of probabilities is said to be of Type-1, while the latter
is of Type-2. Both types of probabilities are shown in Table 4.

name room
[0.2] John Doe 3035
[0.8] John Doe 3122

(a) Type-1 probabilities

name room
John Doe 3035 [0.2]

3122 [0.8]

(b) Type-2 probabilities

Table 4: Two types of probabilities
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Both relations in this example assign a probability of 20% to the fact that John Doe
occupies room 3035. However, in case of the Type-1 relation there could exist two
persons, both with name John Doe, but occupying a different room, whereas in the
Type-2 instance, there can only be one person John Doe, who either occupies room
3035, or room 3122. This is due to the fact that in case of a Type-1 probability, the
probability is associated with the relation itself. In our example, there is a 20% chance
that the relation (John Doe, 3035) exists. A Type-2 probability is associated with an
attribute-value, therefore the relation itself remains if the attribute-value itself doesn’t
exist. In other words, there is a 80% chance room 3035 is not occupied by John Doe
(according to the Type-2 example), but this has no effect on the person.

A side effect from the differences in the two types of probabilities, is the fact that
with Type-1 probabilities, there can be 0, 1 or 2 persons in the database. There is a
chance of (1 − 0.2) × (1 − 0.8) = 0.16 that there is no person in the database. There
is also a chance of 0.2 × (1 − 0.8) + (1 − 0.2) × 0.8 = 0.68 that there is one person
in the database and a remaining chance of 0.2 × 0.8 = 0.16 that there are two persons
in the database. The Type-2 probability ensures the existence of just one person. The
object must exist, because the chance of the relation is 1, but it is impossible that there
is more than one person.

These two types of probabilities can also be combined. This enables a data integra-
tor to model the situation where it is likely that two persons in different data sources
could be different persons, but could also be the same person, in which case the ap-
pearance is uncertain.

Models of probabilistic data, both relational and XML are described in [BGMP90,
ZP97, DS96, dKvK04, vKdKA05, LLRS97, NJ02, ELW01, Nai03].

6.2.2 Semantics

Proper use of probabilistic data calls for a sound semantic underpinning. If the se-
mantics of the data is clear, arguing about uncertain data is easier. Furthermore, the
semantics has to be suitable for use in a data integration application. A sound and
natural semantic background is that of possible worlds. Each possible appearance of
a real world object is called a possibility en a combination of one possibility for every
existing real world object is called a possible world. The notion of possible worlds is
discussed in [ZP97, dKvK04, vKdKA05].

6.3 Issues

The first thing that can be observed about XML, is that due to the semi-structured way,
integrating the schema is difficult. The schema is contained within the data source
itself and without a DTD or XMLSchema, the schema is unknown to the system and
can change from object to object. Even worse, semantically different kinds of objects
can be contained in one source document.

The same problem we saw with XML schema integration, the lack of knowledge
about the schema, is a problem for data integration. Unless the XMLSchema of the
document is known, types of elements are unknown. Attribute types can normally be
used, as a base learner, to estimate or improve matching. In the case of XML data
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integration, this information is unavailable. Also, in contrast with object oriented data,
behaviour can not be inferred from the data.
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7 Future research

In this report we have shown the process of integration, evolution and versioning of
information sources. Many of the steps involved in these processes are still open issues,
or have just been partially solved, with solutions only for specific domains.

Matching algorithms at present are specialized for certain domains. Most algo-
rithms also only handle one to one mappings. Designing and implementing many to
one, one to many and many to many, more general matching algorithms is one of the
main reaserch areas. Such algorithms would greatly improve integration of information
sources.

The term understandability, used in the requirements of reconciling schemas has
to be formalized. At present, understandability is subjective and therefore different for
every person using the system.

Solving the problem of semantically different objects in the same XML docu-
ment. Designing a detection mechanism for different kinds of objects, so they won’t
be matched even if attribute names and/or values are similar.
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