
Fair Testing

Arend Rensink
Department of Computer Science, University of Twente

Postbus 217, NL–7500 AE Enschede
rensink@cs.utwente.nl

Walter Vogler
Institut für Informatik, University of Augsburg

D–86135 Augsburg
vogler@uni-augsburg.de

December 23, 2005

Abstract

In this paper we present a solution to the long-standing problem of characterising the coars-
est liveness-preserving pre-congruence with respect to a full (TCSP-inspired) process algebra.
In fact, we present two distinct characterisations, which give rise to the same relation: an op-
erational one based on a De Nicola-Hennessy-like testing modality which we call should-testing,
and a denotational one based on a refined notion of failures.

One of the distinguishing characteristics of the should-testing pre-congruence is that it ab-
stracts from divergences in the same way as Milner’s observation congruence, and as a conse-
quence is strictly coarser than observation congruence. In other words, should-testing has a
built-in fairness assumption. This is in itself a property long sought-after; it is in notable con-
trast to the well-known must-testing of De Nicola and Hennessy (denotationally characterised by
a combination of failures and divergences), which treats divergence as catrastrophic and hence
is incompatible with observation congruence.

Due to these characteristics, should-testing supports modular reasoning and allows to use
the proof techniques of observation congruence, but also supports additional laws and tech-
niques. Moreover, we show decidability of should-testing (on the basis of the denotational
characterisation). Finally, we demonstrate its advantages by the application to a number of
examples, including a scheduling problem, a version of the Alternating Bit-protocol, and fair
lossy communication channels.

1

Contents

1 Introduction 3

2 Basic process algebraic concepts 7
2.1 The language . 7
2.2 Sorts, free variables and substitution . 8
2.3 Operational semantics . 9
2.4 Pre-congruence . 10
2.5 Bisimulation . 12
2.6 Cardinality assumptions . 13

3 Testing 15
3.1 Fairness and congruence issues . 16
3.2 Should-testing . 17
3.3 Fairness properties of should-testing . 22

4 Denotational characterisation 24
4.1 Language and failures . 24
4.2 Tree failures . 26
4.3 The denotational model . 29
4.4 The denotational semantics . 33

5 Decidability and complexity 42
5.1 Preliminary concepts and constructions . 42
5.2 Decision for F+-inclusion . 43
5.3 Decision for ⊑F+ . 44
5.4 Complexity . 45

6 Proof principles 47
6.1 The bisimulation inheritance . 47
6.2 The testing theory . 47
6.3 Denotational arguments . 49
6.4 Compositionality . 49

7 Examples 50
7.1 External choice as busy-waiting . 50
7.2 The alternating bit protocol . 50
7.3 Alternative channels . 54

8 Concluding remarks 55
8.1 Related work . 56
8.2 Open questions . 58

A Completeness 62

B Additional proofs 65

2

1 Introduction

Over the years, the specification and analysis of distributed systems by means of process-algebraic
languages and theories has become an established field of theoretical and applied research. Basic
process algebraic theories like CCS (Milner [28]), CSP (Hoare [21]) and ACP (Baeten and Weijland
[1]) as well as standardised specification formalisms like LOTOS (Bolognesi and Brinksma [5], ISO
[22]) are being routinely applied.

One of the most interesting and fruitful areas of research in process algebra is that of behavioural
equalities and pre-orders. Such a relation defines formally when one process is a correct implemen-
tation of another; ideally, the relation should regard processes as comparable if and only if one can
replace the other as far as ‘observable behaviour’ is concerned. However, one of the insights that
has been gained in the past two decades is that there does not really exist one canonical notion
of observable behaviour; rather, depending on the formalisation of observability, many different
notions of behavioural equivalence or inclusion arise (the reader may consult Van Glabbeek [39, 38]
for an overview). Of course, other criteria apply as well, such as for example the availability of a
mathematically tractable and well-understood theory, so that in practice a compromise between
the various requirements must be found.

In their seminal paper [17], De Nicola and Hennessy present a framework for defining pre-orders
that is widely acknowledged as a realistic scenario for system testing. They use their framework to
define the must-testing and may-testing pre-orders, respectively, both based on a different notion
of what one can observe when a system is submitted to an arbitrary test. Both of these pre-orders
are backed up by a relatively simple and appealing denotational semantics, combining notions of
failure and divergence in the case of must-testing (see Brookes, Hoare and Roscoe [13, 14]), and
based on traces in the case of may-testing.

Another very successful family of pre-orders (most of them actually equivalences) arises out
of the principle of (mutual) simulation of systems. The prime representatives of this family are
bisimilarity (Milner [26], Park [33]) and especially also observation congruence (Milner [28]).

In favour of testing

We recall that, at least in principle, bisimulations provide the finer equivalences that keep track of
the branching structure of behaviours in detail; moreover, they have a rather elegant proof theory
based on the construction of bisimulation relations. Testing equivalences and pre-orders developed
following the recipe of De Nicola and Hennessy are in principle coarser.

The higher resolution power of bisimulations can, in fact, be undesirable in practice. For
instance, the transition systems B1 and B2 in Figure 1.1 are not observation congruent; but they
are must-testing equivalent, and indeed one would sometimes like to implement behaviour B1 by

B2B1 τa

a

ab

c τ c

b

Figure 1.1: Must-testing equivalent behaviours that are not observation congruent.

B2, resolving the choice between the two a-actions in B1 internally through the internal τ -actions in
B2, and not through interaction with the environment. The idea is that, as the environment cannot
influence the choice in either case, this should make no difference to the observable behaviour.

It should be mentioned that, at least to some degree, successful techniques for observation
congruence can still be used if one is actually interested in a testing equivalence (or pre-order),

3

B1
ba

B3
a

ττ

a b
B2

Figure 1.2: The difference between observation congruence and must-testing equivalence.

provided that the latter is really coarser than the former. Processes shown observation congruent
by providing a bisimulation or by using suitable axioms are also seen to be testing equivalent. And,
as e.g. Valmari argues in [34], the efficient reduction of a process to a minimal observation congruent
one provides also a reduction w.r.t. testing equivalence, which then can be improved further; thus,
one can only fare better when using the testing approach.

Finally, one may argue that (non-symmetric) pre-orders have an intrinsic advantage over equiv-
alences: They better reflect the idea of an implementation relation in which moving to a smaller
element expresses an implementation choice — usually involving some sort of deterministic reduc-
tion of the specified behaviour.

In favour of observation congruence

On the other hand, there is an important feature of observation congruence that classical testing
does not provide: it incorporates a particular notion of fairness. For instance, the behaviours
B1 and B2 shown in Figure 1.2 are observation congruent. Observation congruence works on the
principle that the τ -loop of B2 is executed an arbitrary but only finite number of times, in this case
implying that eventually action b will be enabled. Such identification of behaviour can be very useful
in practice: for example, when proving properties of systems with lossy communication media. In
such cases τ -loops represent an unbounded but finite number of message losses. Interesting proofs of
protocol correctness based on this principle are given by Larsen and Milner in [24] and by Brinksma
in [9]. Most of the standard testing-preorders, on the other hand, are based on the interpretation
of τ -loops as divergences, making them quasi-observable as a chaotic or under-specified process.
In this interpretation, all behaviour after a divergence is ignored. As a consequence, the standard
testing-preorders are only coarser than observation congruence for divergence-free processes, but
not in general. For instance, B1 and B2 in Figure 1.2 are not must-testing equivalent; instead, B2

is must-testing equivalent to B3.

Joining strengths

It is of practical interest to have a testing pre-order that combines the ability to shift and reduce
nondeterminism typical for testing with the capacity to model fairness. In particular, this should
give a testing pre-order that is really compatible with observation congruence, giving the advantages
discussed above.

At the same time, an important property for a suitable implementation relation is to support
modular reasoning. Hence, the testing pre-order that we are looking for should be a pre-congruence
with respect to all important combinators; i.e., it should be preserved when substituting related
behaviours in a larger context. For instance, observation congruence and both the testing preorders
mentioned above are (pre-)congruences.

The combination of testing, fairness and pre-congruence turns out to be surprisingly hard to
achieve. A must-testing-like pre-order (which in this paper we call acceptance testing) that shares
the fairness property of observation congruence is in fact not too difficult to find: it has been defined
and studied under the name of reduction by Brinksma and Scollo in [12, 8] and the corresponding
equivalence relation also by Vogler in [40] (see also Section 3.3 of [41]). Denotationally, acceptance

4

aa
a

a

B1

a b a b

B2

a c a c

Figure 1.3: B1 and B2 are acceptance testing equivalent, but not after hiding a

����B2

a

ba
B1

a

b

a

X
t

Figure 1.4: B1 is an acceptance testing implementation of B2, but not after hiding a

testing is precisely captured by the failures model. In contrast to must-testing, however, acceptance
testing does not yield a pre-congruence with respect to abstraction (or hiding), a construction which
internalises visible actions and may thereby introduce new divergences.1 We give two examples
illustrating this fact.

Figure 1.3 is taken from Bergstra et al. [2]; it shows two acceptance testing equivalent systems
that differ when a is hidden. According to the acceptance testing scenario, the only observable fact
is that after an arbitrary nonempty sequence of a’s, either b is refused or c is refused; the difference
between the two systems in Figure 1.3 is that the left-hand system alternates between allowing
b and allowing c, whereas the right-hand side keeps on offering the same action after the initial
choice. After hiding a this difference becomes testable, at least in the acceptance testing scenario:
then the left-hand system accepts both the test for b and the test for c — meaning that in all states
reachable from the initial state through internal moves, both b and c are still possible — whereas
the right-hand system accepts neither, since after the first state either b or c has been disabled.

Another, even simpler, example is shown in Figure 1.4: the behaviour B1 is an implementation
of B2 in the sense of acceptance testing (in this case the two are not equivalent). After hiding a
on both sides, the implementation relation no longer holds: in the acceptance testing scenario, B2

accepts the test for b — i.e., b is always possible — whereas B1 will obviously refuse to perform b,
meaning that it fails to accept that test. This shows that the removal of trace capabilities (taking
away the a-b trace of B2) interferes with pre-congruence with respect to hiding.

The problem of defining a suitable fair testing pre-congruence is in fact a long-standing one; in
Section 8 we list some previous attempts at solving it. In the present article, we propose a solution
by introducing the notion of should-testing, elaborating on and extending our preliminary papers
[10, 11]. This notion of testing was also concurrently and independently developed by Natarajan and
Cleaveland [31]; again, see Section 8 for a more detailed comparison of the respective contributions.
A closely related approach based on liveness in Petri nets, giving an interesting characterization
for a coarsest congruence, has been developed by Vogler in [41].

Should-testing is based on a modified definition of a successful test: process B passes test t iff
every finite execution of B || t (the process subjected to the test, where “− || −” denotes parallel
execution of two processes, synchronized on all observable actions) has passed through or can be
extended to pass through a successful state of t. For the behaviours in Figure 1.4, for instance,
using this definition the tester process t (with ‘success label’ X) will distinguish between B1 and
B2.

Our solution is canonical in the sense that it is the coarsest fair (i.e., divergence insensitive)

1It is actually, erroneously, claimed in [12] that reduction is also a pre-congruence with respect to abstraction.

5

testing pre-congruence, even if one chooses a notion of observability-through-testing that is much
weaker than the one informally described above. In fact, no more is needed than the ability to
observe whether a system under test is alive, in the sense of being able to do any observable action.

Structure of the paper

We proceed as follows. Section 2 sets the scene by defining our process language, its operational
semantics and bisimulation, and discussing pre-congruences in general. In Section 3, we introduce
the De Nicola-Hennessy testing framework in general and should-testing in particular. We dis-
cuss the fairness properties of should-testing and show that it gives rise to a pre-congruence for
all our operators — but for the standard problem with choice, which is solved in the standard
fashion (namely, by taking initial stability into account). This pre-congruence result is one main
achievement of the present article. The pre-congruence proofs rely directly on the testing definition.

A theoretically interesting aspect is, that this pre-congruence is not the coarsest pre-congruence
for hiding within the acceptance testing preorder, since that coarsest pre-congruence surpris-
ingly fails to be a pre-congruence for parallel composition. As another surprise, our should-pre-
congruence has to be refined further (by requiring related processes to be trace equivalent) to
become a pre-congruence also for recursion. This full should-pre-congruence solves the problem of
fair testing pre-orders; in particular, it is coarser than observation congruence in all cases, with the
advantages discussed above.

As another main result, Section 4 gives a denotational characterization of the full should-
pre-congruence, based on a generalisation of the concept of failure pairs (cf. [13]) as given in
[41]. An important achievement are the suitable definitions for the operators of our language on
the denotational model — which results in alternative pre-congruence proofs — and the proof of
recursion pre-congruence, which is somewhat involved; a non-standard feature in the latter proof is
the fact that there is not one unique least element in the denotational model space, since comparable
processes must have the same language. For good measure, we have shown that the model space
is optimal in that it contains “no junk” (every model describes the semantics of some system
specifiable in our process language). Natarajan and Cleaveland [31] give another characterization
of the should-preorder (without giving denotational constructions or discussing any pre-congruence
properties).

In Section 5 we show decidability of the should-pre-congruence; an essential tool in this proof
is the (far from simple) denotational, failure-type characterization of the pre-congruence. Further
proof principles to demonstrate that the should-pre-congruence holds between two given behaviours
are presented in Section 6; they include bisimulations and axioms inherited from observational
congruence, compositional reasoning, specific axioms for should-precongruence and a special con-
traction lemma, which is proven on the basis of the denotational characterization. In Section 7 we
show the application of should-pre-congruence and these proof principles to a number of examples,
chosen so as to illustrate the practical advantages over standard observation equivalence and must-
and acceptance testing. The examples include a scheduling problem, a version of the Alternat-
ing Bit-protocol, and fair communication channels. Finally, Section 8 discusses related work and
presents our conclusions.

The “no junk” property of the model space, being quite technical and mainly of theoretical
interest, is relegated to Appendix A. Furthermore, this report version includes proofs of all the
main theorems; for readability, however, some have been deferred to Appendix B.

6

2 Basic process algebraic concepts

We start by defining our process algebraic language; then we present its operational semantics and
other basic notins, and discuss in particular the notion of pre-congruence.

We first review some general notational issues.

• We use A ⇀ B to denote the space of partial functions from A to B; f :A ⇀ B means that f
is such a partial function, in which case dom(f) equals the subset of A on which f is defined.
Note that if f :A ⇀ B then f : dom(f) → B.

• We use ~x to denote a countable (i.e., finite or countably infinite) vector of elements. |~x|
(∈ N ∪ {ω}) denotes the length of x and for all 0 ≤ i < |~x|, xi denotes the i’th element of x
(hence ~x = x0 x1 · · ·).

2.1 The language

We assume sufficiently large sets A of actions, ranged over by a, b, . . ., and X of process names,
ranged over by X,Y,Z.2 There is also a special invisible action τ /∈ A; we denote Aτ = A ∪ {τ},
ranged over by α, β, . . . Throughout the paper we consider the language L, ranged over by B,C, . . .
and generated by the following grammar:

B ::= α;B |
∑

set of B | B ||A B | B[ϕ] | B/A | X | recX θ

θ ::= set of X := B .

The “set of” construction indicates a countable set of expressions of the relevant kind. Hence
terms are constructed from the following elements:

• A family of action prefix operators “α;−” indexed by an action α ∈ Aτ ;

• A CCS-like infinitary summation operator “
∑

−” whose parameter is a countable set of terms;

• A family of CSP-like parallel composition operators “− ||A −” indexed by a set of synchroni-
sation actions A ⊆ A;

• A family of relabelling operators “−[ϕ]” indexed by a relabelling function ϕ:Aτ → Aτ , which
satisfies ϕ(α) = τ if and only if α = τ . In actual terms, we usually only list the fragment of
ϕ that is not the identity.

• A family of hiding operators “−/A” indexed by a set of actions A ⊆ A to be abstracted away
from;

• A family of process variables “X” with X ∈ X, which serve either as placeholders of sub-
terms to be inserted later (by syntactic substitution, see below) or as process invocations.
(These two uses are distinguished in [28] by using disjoint sets of so-called agent variables in
the first, and agent constants in the second case.)

• Recursive terms recX θ, where θ:X ⇀ L is a process environment (see below) and X ∈
dom(θ). θ can be regarded as a vector of equations X := θ(X), of which the recursion
operator builds a fixpoint at each given coordinate X. (See also Milner [27] for another
example of this operator.) A special case is θ = {X := B}, in which case we sometimes
simply write recX. B.

We sometimes use rec θ to denote the function dom(θ) → L that maps each X ∈ dom(θ) to
the θ-fixpoint at X, recX θ.

2In the general case, both A and X should be uncountable; see Section 2.6.

7

A process environment θ is a countable set of definitions of the form X := BX , with the additional
constraint that all the X’s are distinct; hence θ can be interpreted as a partial function X ⇀ L,
such that θ(X) = BX for all (X := BX) ∈ θ. We sometimes write θ as {X := θ(X)}X∈dom(θ).

Since it takes a function as parameter, one can regard recursion as a higher-order operator.
Accordingly, we sometimes refer to terms without recursion as the first-order fragment of L. We
denote a typical first-order operator by op, and its application to a vector of operands (of appro-
priate length) by op(~B).

Note that, in spite of the presence of two constructions with a countable number of operands
(summation and recursion), the principle of induction over the structure of terms remains valid,
due to the fact that syntax trees have finite depth (even if they have countable width).

An alternative presentation of recursion, which is more pleasant to use in practice but more awkward
in theoretical developments, is to define the process environment θ separately and in the term under
consideration just write down the variable X whose θ-defined behaviour is invoked. That is, in this
alternative presentation, every term B has an implicit context, being the process environment θ
that defines the behaviour of the process variables invoked in B; see the beginning of Section 7
for an example. We sometimes write B with θ to make the context explicit. In fact, we have the
following correspondence (which relies on syntactic substitution, to be formally defined below):

B with θ = B[recX θ/X]X∈dom(θ)

We use special abbreviations for some forms of summation, synchronisation and process definition:

0 =
∑

∅
B + C =

∑

{B,C}
B ||| C = B ||∅ C
B || C = B ||A C .

The reason why we allow infinitary summation and infinite process environments in L is to be able
to capture arbitrary tests as terms of L; cf. Section 4 below.

To save parenthesis, we will use the following implicit order of binding strength:

−[ϕ] > −/A > a;− > − ||A − >
∑

− > recX − .

2.2 Sorts, free variables and substitution

We sometimes use the (syntactic) sort of a term, this being an approximation of the actions a
system may perform during its lifetime. Since the sort is a syntactic notion, due to the Turing
power of L it cannot precisely equal the set of actions actually performed; instead, it is an over-
estimate. Sorts are given by a function S:L → P(A). The definition is inspired by Milner [28].
In particular, to define the sorts of process variables we rely on explicit sorting: for every variable
X ∈ X we assume that the sort is a pre-defined countable set SX ⊆ A. The sorting function is
defined by the following set of rules:

S(τ ;B) = S(B)
S(a;B) = {a} ∪ S(B)
S(

∑

B) =
⋃

B∈B S(B)
S(B1 ||A B2) = S(B1) ∪ S(B2)

S(B[ϕ]) = ϕ(S(B))
S(B/A) = S(B) \ A

S(X) = SX

S(recX θ) = SX

For the sake of consistency, process environments have to respect the sorts of process variables. We
call θ well-sorted if S(θ(X)) ⊆ SX for all X ∈ dom(θ); in the remainder, we will always implicitly
assume process environments to be well-sorted. Moreover, we will always assume that there are
fresh actions not in the sorts of any of the terms under consideration; see Section 2.6.

8

The free variables of a term B, denoted fv(B), are defined as usual; furthermore, fv(θ) =
⋃

X∈dom(θ) fv(θ(X). To be precise:

fv(op(~B)) =
⋃

0≤i<| ~B| fv(Bi)

fv(X) = {X}

fv(recX θ) = fv(θ) \ dom(θ) .

Note that fv(B) is always countable. We call B closed if fv(B) = ∅ (and the same for θ). We use
L• to denote the closed terms of L. The free variables of a term B can be instantiated by syntactic
substitution. This is denoted B[σ], where σ:X ⇀ L is a (partial) substitution function. We also
use θ[σ] to denote the instantiated process environment {X := θ(X)[σ]}X∈dom(θ). Substitution is
defined as follows:

op(~B)[σ] = op(B0[σ] B1[σ] · · ·)

X[σ] =
{

σ(X) if X ∈ dom(σ)
X otherwise

(recX θ)[σ] = recρ(X)((θ ◦ ρ
−1)[ρ ∪ σ]) where ρ: dom(θ) → Y (⊆ X) is bijective

with Y ∩ (dom(σ) ∪ fv(σ) ∪ fv(recX θ)) = ∅.

Note that for ρ (which we use for an α-conversion, to avoid the capture of free variables of σ) in the
last equation to exist, there must be sufficiently many process variables not in dom(σ) ∪ fv(σ); see
Section 2.6. Just as for process environments, we only consider well-sorted substitution functions,
i.e., such that S(σ(X)) ⊆ SX for all X ∈ dom(σ). We sometimes write B[σ] as B[σ(X)/X]X∈dom(σ).
(Note that process environments θ and substitution functions σ are in fact mathematically the same
kind of objects. For instance, the definition of fv(θ) directly carries over to fv(σ).)

2.3 Operational semantics

We express the behaviour of terms of L in terms of labelled transition systems, as usual. In general,
an A-labelled transition system is a triple 〈S,−→, q〉 where S is a set of states, −→ ⊆ S × A × S a
transition relation between states and q ∈ S the initial state.

The operational semantics of terms of L is defined through structural operational rules; see
Table 2.1. This gives rise to an Aτ -labelled transition system (without initial state) 〈L•,→〉 (where
L• denotes the set of closed terms of L, and −→ is generated by derivations from the rules in
Table 2.1). The rules are entirely standard.

The consistency of the sort and the operational semantics is expressed by the following propo-
sition, corresponding to the subject reduction property in typed functional languages:

Proposition 2.1 If B −α→ B′, then S(B) ⊇ S(B′) [∪ {α} if α 6= τ].

We call a transition B −α→ B′ closed if B is closed. An example of a non-closed transition is
a;X −a→ X. For any transition, closed or not, it holds that free variables of the target term are
already free in the source term, as expressed by the following proposition.

Proposition 2.2 If B −α→ B′, then fv(B′) ⊆ fv(B).

If a transition is not closed, it can be further instantiated; this is expressed by the following
proposition.

Proposition 2.3 B −α→ B′ implies B[σ] −α→ B′[σ] for arbitrary σ.

9

Table 2.1: Structural operational semantics of L

α;B −α→ B

B −α→ B′ B ∈ B
∑

B −α→ B′

B1 −α→ B′
1 α /∈ A

B1 ||A B2 −α→ B′
1 ||A B2

B2 −α→ B′
2 α /∈ A

B1 ||A B2 −α→ B1 ||A B
′
2

B1 −α→ B′
1 B2 −α→ B′

2 α ∈ A

B1 ||A B2 −α→ B′
1 ||A B

′
2

B −α→ B′

B[ϕ] −
ϕ(α)
−−→ B′[ϕ]

B −α→ B′ α ∈ A

B/A −τ→ B′/A

B −α→ B′ α /∈ A

B/A −α→ B′/A

θ(X)[recY θ/Y]Y ∈dom(θ) −
α→ B′

recX θ −α→ B′

The premise of the operational rule for recursion can be simplified if one assumes guardedness. A
variable X is called guarded in a term B if X only occurs free in sub-terms of the form α;C. More
precisely, the definition of guardedness is as follows:

• X is guarded in α;B;

• X is guarded in
∑

B iff X is guarded in all B ∈ B;

• X is guarded in B ||A C iff X is guarded in B and C;

• X is guarded in B/A and B[ϕ] iff X is guarded in B;

• X is guarded in every variable Y 6= X, but not in X.

• X is guarded in recY θ if θ is guarded and X is guarded in θ(Y).

A process environment θ as a whole is called guarded if all X ∈ dom(θ) are guarded in all θ-images.
The crucial property of guarded variables is that they are not regarded in the derivation of any
(initial) transition of the term. The following proposition states the aforementioned simplification
of the operational rule for recursion that is the essential property of guarded process environments.

Proposition 2.4 If θ is guarded, then recX θ −α→ B′ iff θ(X) −α→ B′′ such that B′ =
B′′[recY θ/Y]Y ∈dom(θ).

In the remainder of this paper, we restrict ourselves to guarded process environments.

2.4 Pre-congruence

For many purposes, the operational semantics is too fine-grained, distinguishing terms that are
intuitively equivalent — such as a;0 and a;0+a; (0+0). For that reason, one usually considers an
abstraction of the operational model. Such an abstraction can be obtained by defining a semantic
pre-order over the model, which takes the form of a relation ⊑ ⊆ S × S over the states of a given
transition system; in particular, also over the (closed) terms in the transition system generated by
Table 2.1. To be able to reason about the open terms as well, the relation ⊑ is extended in the usual
way: two open terms are related iff all their closed instantiations are related (B ⊑ C iff B[σ] ⊑ C[σ]

10

for all σ: fv(B,C) → L with fv(σ) = ∅). Furthermore, ⊑ is extended pointwise to vectors of terms
(~B ⊑ ~C iff | ~B| = | ~C| and Bi ⊑ Ci for all 0 ≤ i < | ~B|) and also to process environments (θ ⊑ η iff
dom(θ) = dom(η) and θ(X) ⊑ η(X) for all X ∈ dom(θ)).

One common use for semantic pre-orders is to formalise a notion of correctness of a design
or implementation, in such a way that a system correctly implements a given specification iff it
is smaller with respect to the pre-order under consideration. A pre-order used for this purpose
is also often called an implementation relation. The transitivity of an implementation relation
is essential to ensure that two correct design steps, executed one after the other, still give rise
to a correct implementation. If, moreover, one wants to design or verify a system in a modular
fashion, by comparing sub-systems and putting them together, a further desirable property of the
implementation relation is for it to be a pre-congruence. In fact, we distinguish several variants.

Definition 2.5 Let ⊑ ⊆ L × L be a pre-order.

• ⊑ is a first-order pre-congruence if for any n-ary operator op of L (with n ∈ N∪{ω}), ~B ⊑ ~C
with | ~B| = n implies op(~B) ⊑ op(~C).

• ⊑ is a recursion pre-congruence if θ ⊑ η implies recX θ ⊑ recX η for all X ∈ dom(θ).

• ⊑ is a full pre-congruence if it is both a first-order and a recursion pre-congruence.

Moreover, a [first-order/full/recursion] congruence is a [first order/full/recursion] pre-congruence
that is actually an equivalence relation.

Another well-known way to characterise (pre-)congruences is through so-called contexts. A context
is an incomplete term, containing so-called “holes”; the context can be instantiated by “filling” the
holes, that is, by inserting terms into them. (The holes can also be regarded as a kind of higher-level
variables; the only difference between instantiating a variable and filling a hole is that the latter
may capture free variables.) For a semantic relation to be useful in the algebraic theory, one would
like it to be preserved under substitution into arbitrary contexts. As we will now demonstrate, this
is the case if and only if the relation is a (full) pre-congruence.

In this paper, contexts are terms Ctx , with free variables from a predefined countably infinite
set {Z0, Z1, . . .} serving as holes, and no Zi bound anywhere in Ctx . Holes can be (partially) filled
by instantiating them with a vector of terms ~B. Filling holes is different from ordinary syntactic
substitution in that free variables in ~B may be captured in the instantiated context: we usually
write Ctx [−] for Ctx and Ctx [~B] for Ctx [Bi/Zi]0≤i<| ~B|. If Ctx contains only the hole Z0, we usually
denote it by −. For instance,

Ctx [−] = recX1 {X1 := a;−, X2 := − ||| a;X3, X3 := b;0}

is a context with example instantiation

Ctx [b; (X2 + recY. a;X3)]

= recX1 {X1 := a; b; (X2 + recY. a;X3), X2 := b; (X2 + recY. a;X3) ||| a;X2, X3 := b;0} .

Full pre-congruences can then be characterised as follows:

Proposition 2.6 A pre-order ⊑ is a full pre-congruence iff for all contexts Ctx [−], ~B ⊑ ~C with
| ~B| = ω implies Ctx [~B] ⊑ Ctx [~C].

11

Proof: if. For an arbitrary operator op of L, choose Ctx = op(Z0, Z1, . . .). It follows that ⊑ is
a first-order pre-congruence. Now consider θ ⊑ η, and let Y ∈ dom(θ) be arbitrary. Let ~X
represent an arbitrary ordering of the variables in dom(θ), and θ(~X) (resp. η(~X)) the vector
of θ-images of ~X . Now choose Ctx = recY {Xi := Zi}0≤i<| ~X|. The property in the proposition
then implies

recY θ = Ctx [θ(~X)] ⊑ Ctx [η(~X)] = recY η .

Since Y is arbitrary, this implies ⊑ is a recursion pre-congruence.

Only if. Assume that ⊑ is a full pre-congruence. The proof obligation then follows by induction
on the structure of Ctx . Assume ~B ⊑ ~C with | ~B| = ω:

• If Ctx = op(~D), then Di[~B] ⊑ Di[~C] for all 0 ≤ i < | ~D| by the induction hypothesis,
implying Ctx [~B] ⊑ Ctx [~C] by the fact that ⊑ is a first-order pre-congruence;

• If Ctx = X where X /∈ {Z0, Z1, . . .}, then Ctx [~B] = X ⊑ X = Ctx [~C];

• If Ctx = Zi, then Ctx [~B] = Bi ⊑ Ci = Ctx [~C];

• If Ctx = recX θ, then by the induction hypothesis we have θ(Y)[~B] ⊑ θ(Y)[~C] for all
Y ∈ dom(θ). From this we may conclude

Ctx [~B] = recX {Y := θ(Y)[~B]}Y ∈dom(θ) ⊑ recX {Y := θ(Y)[~C]}Y ∈dom(θ) = Ctx [~C]

using the fact that ⊑ is a recursion pre-congruence. 2

An example of the use of contexts is given in Ex. 3.13, where a particular context is used to show
that a relation is not a pre-congruence.

2.5 Bisimulation

In this paper, we are concerned with relations that abstract from internal activity of the system,
in the sense that finite sequences of τ -actions are simply ignored. This is achieved by using weak
(or τ -abstracting) transitions, defined as follows: for all s, s′ ∈ S,

s =
a1···an====⇒ s′ :⇔ s −τ→

∗
−a1−→−τ→

∗ · · · −τ→
∗
−an−→−τ→

∗
s′ .

In this situation, we call a1 · · · an a trace of s. A particular, well-known class of implementation
relations (in fact, equivalences) is based on the principle of bisimulation (see Milner [28], which
boils down to a step-by-step matching of transitions of two systems under comparison. The notion
of a “match” for a transition −α→ can be either strong (−α→) or weak (=

α
⇒); in the latter case, a match

for −τ→ can be either at least one (=
τ
⇒) or arbitrarily many (=

ε
⇒). Let ·̂ :Aτ → A∗ be a mapping

defined by â = a for all a ∈ A and τ̂ = ε.

Definition 2.7 (bisimilarity) Let 〈S,→〉 be a transition system.

• Strong bisimilarity ∼ ⊆ S × S is the largest symmetrical relation such that for all s1 ∼ s2
and s1 −α→ s′1 there is a s′2 ∼ s′1 such that s2 −α→ s′2.

• Weak bisimilarity ≈ ⊆ S × S is the largest symmetrical relation such that for all s1 ≈ s2 and

s1 −α→ s′1 there is a s′2 ≈ s′1 such that s2 =
α̂
⇒ s′2.

• Rooted bisimilarity ≃bis ⊆ S×S is the largest symmetrical relation such that for all s1 ≃bis s2
and s1 −α→ s′1 there is a s′2 ≈ s′1 such that s2 =

α
⇒ s′2.

12

The following result is standard; see Milner [28] for the corresponding property of CCS, and [4, 3]
for meta-results applying to the language L considered here.

Proposition 2.8 ∼ and ≃bis are full congruences.

Strong bisimulation is often regarded as the most distinguishing reasonable equivalence relation over
transition systems; in fact, all relations considered in this paper are weaker. Since it also happens
to have a relatively pleasant proof technique, we use it as a “touchstone” for the equivalence of
behaviours: equalities that hold up to strong bisimilarity are certain to be valid in all semantics
under consideration. For instance, with respect to process definitions, the following equivalence is
easily shown to hold:

Proposition 2.9 recX θ ∼ θ(X)[recY θ/Y]Y ∈dom(θ).

The following is a technical result giving sufficient conditions to conclude that a relation is a pre-
congruence with respect to parallel composition.

Lemma 2.10 If ⊑ is a pre-congruence for renaming such that ∼ ⊆ ⊑, and Bi ⊑ Ci (i = 1, 2)
implies B1 ||A B2 ⊑ C1 ||A C2 for all A ⊇ (S(B1) ∩ S(B2)) ∪ (S(C1) ∩ S(C2)), then ⊑ is a pre-
congruence for parallel composition (with arbitrary synchronisation sets).

Proof. The proof strategy is to construct, for arbitrary terms B1 ||A B2 and C1 ||A C2, renaming
functions ϕ1, ϕ2, ψ and a set of actions A′ such that

B1 ||A B2 ∼ (B1[ϕ1] ||A′ B2[ϕ2])[ψ]

C1 ||A C2 ∼ (C1[ϕ1] ||A′ C2[ϕ2])[ψ]

and both A′ ⊇ S(B1[ϕ1])∩S(B2[ϕ2]) and A′ ⊇ S(C1[ϕ1])∩S(C2[ϕ2]). It is not difficult to see that
this implies the proof obligation.

The role of the ϕi is to rename the actions (S(Bi) ∪ S(Ci)) \ A for i = 1, 2 to disjoint sets of
fresh actions. For i = 1, 2 let ϕi: (S(Bi) ∪ S(Ci) ∪A) → Ai be bijective such that ϕ1 ↾ A = ϕ2 ↾ A
and A1 ∩A2 = A′, where A′ = ϕ1(A). (Note that A is assumed to be large enough so that such Ai

can always be found.) Moreover, let ψ = ϕ−1
1 ∪ ϕ−1

2 (hence ψ is left inverse to both ϕ1 and ϕ2). It
is straightforward to show that these satisfy the requirements; for instance, the following relation
R ⊆ L × L is a bisimulation:

R = {(B′
1 ||A B

′
2, (B

′
1[ϕ1] ||A′ B

′
2[ϕ2])[ψ]) | B′

i ∈ L,S(B′
i) ⊆ S(Bi) for i = 1, 2} .

2

2.6 Cardinality assumptions

The following remarks are intended to ensure the logical consistency of our assumptions and do
not concern the main point of this article. In the present section, we have made the following
statements regarding the cardinality of various sets and constructions:

• The sets A and X are uncountable;

• The sum operator
∑

has a countable number of operands;

• Process environments θ:X ⇀ L have countable domains;

• Each process variables X ∈ X has a countable sort SX .

13

As a consequence, for all terms B ∈ L, S(B) and fv(B) are countable subsets of A and X,
respectively. Therefore, we can always assume the existence of fresh actions (not in the sort of
a given term) and of a countable set of fresh process variables disjoint from any given countable
subset of X. This, in fact, is the motivation for choosing the cardinalities in this way. We have
already seen one case of the “enough process variables” assumption in the definition of syntactic
substitution.

Occasionally we will construct terms recX θ where θ actually has an uncountable domain. How-
ever, if we define ≤θ ⊆ X × X as the smallest transitive and reflexive relation such that Y ≤θ Z
whenever Y ∈ fv(θ(Z)), then ↓θY = {Z ∈ X | Z ≤θ Y } is clearly countable and θ ↾ ↓θX intuitively
contains all process definitions that can possibly affect the behaviour of X. In fact, if we momen-
tarily treat recX θ as if it were an allowed term we obtain recX θ ∼ recX(θ ↾ ↓θX). For that reason,
we will implicitly assume recX θ to stand for recX(θ ↾ ↓θX).

14

3 Testing

The subject of this paper is the study of certain testing pre-orders. This entails a setup wherein
systems are investigated by synchronising them with tests, which are systems containing a special
success action X /∈ Aτ . A state with an outgoing X-transition is called successful. We denote
AX = A ∪ {X} for arbitrary A ⊆ Aτ , and we reuse α to range over Aτ,X. Tests, then, are closed
terms t with S(t) ⊆ AX; their operational semantics is again determined by Table 2.1. We denote
the set of tests by LX, ranged over by t. (Note that we will still use || to abbreviate ||A, and not
||AX .)

Applying the test t to the (closed) term B is done by synchronising the two on all actions
(except for τ and X), resulting in the term B || t. Whether or not a test application as a whole is
deemed successful depends on the presence of sufficiently many successful states in the behaviour of
B || t, where the notion of “sufficiently many” is itself a parameter of the testing framework, which
may be called the test modality. The landmark paper of De Nicola and Hennessy [17] essentially
defines two such modalities: may- and must-testing, which we recall here. To formulate the latter,
we define a maximal run through a transition system to be a sequence of states (si)i<n for some
n ∈ N>0 ∪ {ω} such that si−1 −αi−→ si for all 0 < i < n, and if n 6= ω then ∄α: sn−1 −α→.

B may t :⇔ ∃w ∈ A∗: (B || t) =
wX
==⇒

B mst t :⇔ ∀ maximal runs (Bi)i<n: (B || t = B0 implies ∃i < n:Bi −
X−→) .

In words, B may t if and only if there is a path from B || t to a successful state, whereas B mst t
if and only if any path from B || t eventually passes through a successful state.

Any such test modality mod ⊆ L• × LX gives rise to an implementation relation expressing
that the left-hand system (the proposed implementation) passes all the tests that the right-hand
system (the given specification) passes, in the sense of the chosen test modality mod. (If a term
does not pass a test, we say that it fails it.) That is, for I, S ∈ L• we define:

I ⊑mod S :⇔ ∀t ∈ LX:S mod t =⇒ I mod t (mod = may,mst).

The resulting relations ⊑may and ⊑mst are studied extensively in [17]. ⊑may is shown to be a full
pre-congruence (coinciding with inverse language inclusion, see the next section); ⊑mst is not a
pre-congruence with respect to choice, but becomes a full pre-congruence if we strengthen it using
a stability test, which is a unary predicate defined by:

B stb :⇔ B 6−τ−→ .

Just like test modalities, unary predicates prd ⊆ L• naturally give rise to an ordering over L•:

I ⊑prd S :⇔ S prd =⇒ I prd .

For instance, I ⊑stb S holds if either S is stable or I is not. The known (pre-)congruence properties
of may- and must-testing, then, come down to the following:

Theorem 3.1 (De Nicola and Hennessy [17]) ⊑may and ⊑mst∩⊑stb are full pre-congruences.

15

τ

τ

I

τ

S I ′

τ

τ
a

a

a

Figure 3.1: I 6⊑mst S and I ′ ⊑mst I (Ex. 3.2)

3.1 Fairness and congruence issues

Let us recall the fairness aspects of mst-testing. A must-test application, B mst t, immediately
fails if either B or t diverges, i.e., is able to do an infinite sequence of τ -moves that never reaches a
successful state. In particular, a simple τ -loop generates a divergence. The idea is that the system
may indeed choose to follow this path forever, in which case success is never attained.

For some purposes, this interpretation is too strict. For instance, the implementation technique
of busy-waiting, when formulated in terms of a transition system, gives rise to a τ -loop; so does
the assumption made in many protocols that messages may be retransmitted upon loss. In either
of theses cases, there is a fairness assumption implicitly associated with the τ -loop, which can
intuitively be understood as guaranteeing that the divergence will never actually arise; i.e., that
the path which stays in the loop forever is not a possible behaviour of the system. Because of the
way it deals with divergence, the mst-testing modality is not compatible with such an implicit
fairness assumption.

Example 3.2 Consider the systems S = τ ; a;0 and I = recX. τ ; (X + a;0) (see Figure 3.1). The
visible behaviour in both cases consists of the ability to do a after some internal moves; however,
on the face of it, I may elect to do internal moves forever and never execute a. Indeed, we have
I 6⊑mst S due to S mst a;X;0 and ¬(I mst a;X;0). A fair execution of I, on the other hand,
should not always choose τ , but should eventually choose to execute a; hence S and I are equivalent
if only fair runs are considered.

Now consider I ′ = (recX. τ ;X) + a;0 (see Figure 3.1), which can choose with its first τ never
to do a. Hence, if only fair runs are considered, I ′ should not implement I; yet I ′ ⊑mst I.

Inspired by the above example, this implicit notion of fairness can be captured by the following
liveness predicate:

B live :⇔ ∀B =
ε
⇒ B′:∃α 6= τ : B′

=
α
⇒ .

Hence B is called live if, after any amount of internal moves, there is always some visible behaviour
left. We will call an implementation relation liveness-preserving if it is at least as strong as ⊑live.
I and I ′ in Ex. 3.2 show that ⊑mst is not liveness-preserving, since I is live while I ′ is not; neither
is ⊑may liveness-preserving, witness τ ;0 + a;0 ⊑may a;0.

A liveness-preserving test modality, here called acceptance testing, was developed in [12, 40]
(and called reduction in the former). It is defined as follows:

B acc t :⇔ ∀w ∈ A∗,∀B′: (B || t) =
w
⇒ B′ implies ∃α ∈ AX:B′

=
α
⇒ .

Hence, B acc t does not automatically fail at a divergence; rather, it fails only if a divergent
path cannot be exited by a visible action. This reflects the implicit assumption that as long as
there is a visible transition reachable from the current state, that (or some other) visible transition
will eventually be performed. The resulting implementation relation, ⊑acc, is indeed liveness-
preserving, since B live iff B acc

∑

{a;X;0 | a ∈ S(B)}. For instance, in Ex. 3.2 we find that
I ′ 6⊑acc I, because I acc a;X;0 whereas ¬(I ′ acc a;X;0).

16

I

τ τ

S

a a

b

Figure 3.2: I ⊑acc S but I/a 6⊑acc S/a (Ex. 3.3)

BSI I ||a,b B S ||a,b B
a

a

a

a

b
a

c

a

b

a

b

a

a

c

bb

a

Figure 3.3: I/A ⊑acc S/A for all A ⊆ A, but (I ||A B)/a, b 6⊑acc (S ||A B)/a, b (Ex. 3.5)

Unfortunately, a new problem occurs that severely limits the usefulness of ⊑acc: it is not a
pre-congruence for hiding. The following example, demonstrating this, is due to Rom Langerak:

Example 3.3 Consider the systems S and I depicted in Figure 3.2. I satisfies all tests of S under
acc; hence I ⊑acc S. Yet after hiding a we get that S/a acc b;X;0 whereas ¬(I/a acc b;X;0);
hence I/a 6⊑acc S/a.

We recall the following result.

Theorem 3.4 (Brinksma [12], Vogler [40, 41]) ⊑acc ∩ ⊑stb is a liveness-preserving first-
order pre-congruence for all operators of L except hiding.

The natural technique to repair the deficit for hiding would be to formulate the coarsest pre-
congruence within ⊑acc with respect to hiding. Surprisingly, in this case this is not sufficient, since
the relation thus obtained fails to be a pre-congruence with respect to parallel composition.

Example 3.5 Consider systems S and I in Figure 3.3. We have I/A ⊑acc S/A for arbitrary
A. Yet after synchronising over A = {a, b} with B = recX. a; (b;X + a; c;0) we find that the
resulting systems are not ⊑acc-related after arbitrary hiding, as (S ||A B)/a, b acc c;X0 whereas
¬((I ||A B)/a, b acc c;X0).

3.2 Should-testing

It follows that in constructing the coarsest pre-congruence inside acceptance testing, one has to
take hiding and parallel composition into account at the same time. We now present a new test
modality that does this in the correct way.

B shd t :⇔ ∀w ∈ A∗,∀B′: (B || t) =
w
⇒ B′ implies ∃v ∈ A∗. B′ =

vX
==⇒ .

The difference with acc is that there, every reachable ‘pre-success’ state of the system under test
is merely required to be either live or successful, whereas for shd, every reachable state is required
to be on a path to success.

Since shd is a stronger requirement than acc, it follows that the resulting pre-order ⊑shd is
also liveness-preserving. In fact, we have the following inclusions:

17

Proposition 3.6 The following inclusions hold. All inclusions are strict; no inclusion exists where
none is shown.

∼ ⊂ ⊑mst

⊂

≃bis ⊂ ⊑shd ⊂ ⊑acc ⊂ ⊑−1
may

⊂

⊑live

Furthermore, for closed first-order terms, some of the inclusions collapse to equalities:

⊑shd = ⊑acc = ⊑mst

Proof. We only prove the inclusions that are not standard or obvious.

⊑shd ⊆ ⊑acc . Assume I ⊑shd S and let t ∈ LX be such that S acc t. If ¬(I acc t) then let
w ∈ A∗ be such that I || t =

w
⇒ I ′ and I ′ 6=

α
=⇒ for all α ∈ AX. It follows that I ′ = I ′′ || t′ for

some I ′′ and t′. Assume w = a1 · · · an and let

ti = X;0 + ai; ti+1 for 0 ≤ i < n

tn =
∑

{a;X;0 | t′ =
a
⇒ } .

By construction it follows that, on the one hand, ¬(I shd t0) and, on the other, S shd t0
and hence I shd t0. By contradiction we may conclude I acc t.

⊑shd ⊇ ⊑acc for first-order terms. Assume I ⊑acc S and let t ∈ LX be such that S shd t. It
follows that S acc t and hence I acc t. Now let w ∈ A∗ be such that I || t =

w
⇒ I ′. It follows

that I ′ = I ′′ || t′ for some I ′′ and t′. Due to the fact that I is a first-order term, there are Î
and t̂ such that I ′′ || t′ =

v
⇒ Î || t̂ for some v ∈ A∗ and ¬(Î || t̂) =

a
⇒ for all a ∈ A∗. Due to I acc t

it follows that Î || t̂ =
X
=⇒, implying I ′ =

vX
==⇒. We may conclude I shd t.

2

Moreover, as we will show, ⊑shd is a pre-congruence w.r.t. the entire first-order fragment of L
except for choice. For the choice operator, the same problem occurs that we already encountered
with must-testing: to obtain a pre-congruence, initial stability has to be preserved as well. For that
reason, we define

⊑+
shd := ⊑shd ∩ ⊑stb

We now set out to show that ⊑+
shd is indeed a first-order pre-congruence. Before giving the actual

proofs, we first need some auxiliary notation.

• For any A ⊆ AX, we use Ā = AX \ A to denote the complement of A with respect to AX.

• Any partial function ϕ:AX ⇀ AX gives rise to a (total) string homomorphism ϕ̂:A∗
X → A∗

X
with ϕ(a) = ε whenever ϕ(a) is undefined originally; this in turn gives rise, through pointwise
extension, to a (total) function ϕ:P(A∗

X) → P(A∗
X).

• A special class of such partial functions ϕ are the projections πA:AX ⇀ AX with A ⊆ A,
which are such that πA(a) = a if a ∈ A, and π(a) is undefined otherwise. Hence, πA applied
to a string w ∈ A∗

X has the effect of dropping all non-A-actions from w.

18

We now present a series of lemmas stating the pre-congruence properties of ⊑shd and ⊑+
shd with

respect to the first-order operators of L.

Lemma 3.7 ⊑shd and ⊑+
shd are pre-congruences for prefixing.

Proof. We show that ⊑shd is a pre-congruence for prefixing; since α; I ⊑stb α;S holds irregardless
of I and S, the result for ⊑+

shd follows immediately.
For this purpose, we show that, for all α ∈ Aτ ,

B shd t iff α;B shd α; t .

This suffices to conclude the lemma.

if. Assume B || t =
w
⇒ B′ for some w ∈ A∗. It follows that α;B || α; t =

α w
==⇒ B′ if α 6= τ or

α;B || α; t =
w
⇒ B′ otherwise, implying in either case (due to α;B shd α; t) that B′ =

vX
==⇒ for

some v ∈ A∗.

only if. Assume α;B || α; t =
w
⇒ B′ for some w ∈ A∗. If B′ = α;B || α; t then (since B || t =

ε
⇒ B || t,

and hence ∃v ∈ A∗ : B || t =
vX
==⇒ due to B shd t) B′ =

α vX
===⇒ if α 6= τ or B′ =

vX
==⇒ otherwise.

Otherwise B ||t =
w′

=⇒ B′ where w = αw′ if α 6= τ or w = w′ otherwise; hence ∃v ∈ A∗ : B′ =
vX
==⇒

due to B shd t.

2

Lemma 3.8 ⊑+
shd is a pre-congruence for choice.

The proof for this case is deferred to Appendix B (Page 65).

Lemma 3.9 ⊑shd and ⊑+
shd are pre-congruences for renaming.

The proof for this case is deferred to Appendix B (Page 66).

Lemma 3.10 ⊑shd and ⊑+
shd are pre-congruences for synchronisation.

Proof. We show that ⊑shd is a pre-congruence for synchronisation; since ⊑stb is also clearly a
pre-congruence, the result for ⊑+

shd follows immediately.
Assume I ⊑shd S; to be proved is I ||A B ⊑shd S ||A B for arbitrary B ∈ L and A ⊆ A.

Since ⊑shd ⊇ ∼ (Proposition 3.6) and ⊑shd is a pre-congruence for renaming (Lemma 3.9), due to
Lemma 2.10 we only have to regard the case where A ⊇ (S(I) ∪ S(S)) ∩ S(B).

For this case, it can be shown that for arbitrary C with S(C) ∩ S(B) ⊆ A:

(C ||A B) shd t iff C shd ((B ||S(B)∪A t)/(S(B) \ A)) .

which suffices to conclude the desired property.
In order to prove the above characterisation, note that

(C ||A B) || t ∼ C ||
S(B)∪A

(B ||S(B)∪A t) .

For the purpose of should-testing, the right hand term has the same “failure capabilities” as C ||
((B ||S(B)∪A t)/(S(B) \ A), in the sense that one term satisfies

∃B′ : − =
w
⇒ B′ ∧ ¬∃v ∈ A∗ : B′

=
vX
==⇒

iff the other does. 2

19

Lemma 3.11 ⊑shd and ⊑+
shd are pre-congruences for hiding.

Proof. For all A ⊆ A, let RA ∈ X be a process variable with S(RA) = A, and for all t ∈ LX, let
tA be a derived test defined by

tA = (t || recRĀ.
∑

{a;RĀ | a ∈ Ā}) ||| recRA.
∑

{a;RA | a ∈ A} .

Note that for all B, t ∈ L and A ⊆ A, then

(B/A) shd t iff B shd tA .

(This follows by the fact that for all such B and t the following holds for all w ∈ A∗
X:

B/A || t =
w
⇒ B′/A || t′ iff ∃v ∈ A∗

X : πĀ(v) = w ∧B || tA =
v
⇒ B′ || t′A

Using this fact, any failure of B/A w.r.t. t can be converted to a failure of B w.r.t. tA, and vice
versa.)

Now assume I ⊑shd S, and let A ⊆ A be arbitrary. If S/A shd t for some arbitrary t then
S shd tA, hence I shd tA, hence I/A shd t. We may conclude I/A ⊑shd S/A; hence ⊑shd is a
pre-congruence.

Finally, if I ⊑+
shd S and S/A stb for some A ⊆ A, then S stb and S shd X;0 + a;0 for all

a ∈ A. It follows that I stb and I shd X;0 + a;0 for all a ∈ A, and hence I/A stb. We may
conclude I/A ⊑stb S/A; hence ⊑+

shd is also a pre-congruence. 2

The following is one of the main results of this paper.

Theorem 3.12 The following properties hold for ⊑shd and ⊑+
shd, regarded as relations over L:

• ⊑shd is the coarsest liveness-preserving pre-congruence for all operators except +;

• ⊑+
shd is the coarsest liveness-preserving first-order pre-congruence.

Proof.

• The fact that ⊑shd and ⊑+
shd are liveness-preserving is due to the following observation: If

I ⊑shd S and S live, then S shd t for t =
∑

{a;X;0 | a ∈ S(I) ∪ S(S)}; hence (due to
I ⊑shd S) I shd t, implying I live.

• The fact that ⊑shd and ⊑+
shd are pre-congruences for L follows from Lemmas 3.7–3.11.

• The fact that ⊑shd is the coarsest liveness-preserving pre-congruence can be proved as follows.
Assume I 6⊑shd S, and let t be such that S shd t and ¬(I shd t). Let a /∈ S(S)∪ S(I)∪ S(t)
(i.e., a is fresh w.r.t. S, I and t; such an action has been assumed to exist always) and
A = A \{a}. Now let Bt be a term obtained from t by syntactically replacing all occurrences
of X by a and all occurrences of || by ||A. It can be proved by induction on the structure of t
that Bt ∼ t[a/X] would hold if a/X were a valid relabelling function. Now let

Ctx [−] = (Z0 ||A Z1)/A .

It follows that Ctx [C,Bt] live iff C shd t whenever a /∈ S(C); hence Ctx [S,Bt] live but
¬Ctx [I,Bt] live.

20

• For the analogous claim about ⊑+
shd, again assume I 6⊑+

shd S. It now suffices to consider
the case that I 6⊑stb S, i.e., S stb and ¬I stb. Let a ∈ A \ (S(S) ∪ S(I)) and Ctx [−] =
(− + a;0) ||S(S)∪S(I) 0. It follows that Ctx [S] live whereas ¬Ctx [I] live. 2

It came as a surprise to the authors that the coarsest liveness-preserving first-order pre-congruence,
⊑+

shd, is not a full pre-congruence.3 The original observation of this fact is due to Rom Langerak.

Example 3.13 Take B = 0 and C = a;0 + τ ;0. It is clear that B ⊑stb C and B ⊑acc C; since
both systems are finite, it follows (due to Proposition 3.6) that B ⊑+

shd C. Now consider the context

Ctx [−] = recX. ((τ ;X + a; b;0) ||a −)/a .

It can be seen that Ctx [C] ∼ recX.τ ; (X |||τ ;0)+τ ; b;0+τ ; τ ;X and hence Ctx [C] shd b;X whereas
Ctx [B] ∼ recX. τ ;X and hence ¬(Ctx [B] shd b;X). It follows that Ctx [B] 6⊑shd Ctx [C].

A closer investigation shows that Ctx [−] in the above example “codes for” the trace a in the term
to be plugged in: Ctx [C] loops around internally, restarting C just as long as C has not done a.
Using this principle, we can build such “coding context” for any trace, and therefore the following
holds.

Proposition 3.14 If Ctx [I] ⊑shd Ctx [S] for all contexts Ctx , then I ⊑may S.

Proof. Let A = S(I) ∪ S(S). Let t be arbitrary such that S may t. It follows that S || t =
wX
==⇒

where (due to Proposition 2.1) w = a1 · · · an ∈ A∗ for some n. Now let b ∈ A \ A be arbitrary (by
assumption, such a b always exists) and define

Ctx [−] = recX. ((τ ;X + a1; . . . ; an; b;0) ||A −)/A .

It can be seen that for any B with S(B) ⊆ A, Ctx [B] shd b;X;0 iff B =
w
⇒. Due to Ctx [I] ⊑shd

Ctx [S], therefore, I =
w
⇒; hence I may t. 2

It follows that in order to obtain a full pre-congruence within ⊑shd, it is necessary to test for ⊑may

as well. As it turns out, this is in fact also sufficient, at least if we restrict the language to finite
summation. Let

⊑c
shd := ⊑shd ∩ ⊑stb ∩ ⊑may ;

we then have the following result, which is in fact the crucial theoretical contribution of this paper.

Theorem 3.15 ⊑c
shd is the coarsest liveness-preserving full pre-congruence over L restricted to

finite summation.

Note that it already follows from Theorems 3.1 and 3.12 that ⊑c
shd is a first-order pre-congruence.

The proof of the recursion pre-congruence property relies on the denotational characterisation of
⊑shd, presented in Section 4 below (see Theorem 4.25); the technical reasons for the restriction to
finite summation are also explained there.

3We were not yet aware of this while writing [10], and although we did not make an explicit claim of this kind,
that paper does reflect our impression at the time that ⊑+

shd is a full pre-congruence.

21

a

a

a a

b
a

a
b

a

a;B + C

a

b
a

C

a

a
a

b
a

B

Figure 3.4: KFAR is violated: B ≃c
shd a;B + C but B/a 6≃c

shd τ ;C/a

3.3 Fairness properties of should-testing

We call ⊑c
shd ‘fair testing’, but so far we have not presented any results that justify this usage of the

word ‘fair’. We will now address this issue. First we show that ⊑c
shd satisfies a weakened version

of what is known as Kooman’s Fair Abstraction Rule (KFAR); see e.g. Baeten and Weijland [1].
KFAR algebraically captures the interpretation of divergences found in weak and rooted bisim-

ilarity (see Definition 2.7). Essentially, since the only observations taken into account are visible
transitions, τ -loops in a system are ignored by ≃bis. A general form of the rule is:

Bi = ai;Bi+1 + Ci ai ∈ A

Bi/A = τ ;
∑

i∈Nn
(Ci/A)

(i ∈ Nn) (1)

where Nn denotes the natural numbers modulo n, and Bi, Ci ∈ L are arbitrary terms for i ∈ Nn.
It is a standard result that ≃bis satisfies (1).

Unfortunately, ≃c
shd does not satisfy (1), for reasons discussed below. However, it does satisfy

a weaker variant, which we call KFAR−:

Xi := ai;Xi+1 + Ci ai ∈ A

Xi/A = τ ;
∑

i∈Nn
(Ci/A)

(i ∈ Nn) (2)

The difference with (1) is in the premise: where KFAR requires that certain equations hold (under
the equivalence relation being studied), KFAR− assumes that the variables Xi are defined according
to those equations. Clearly, if a certain relation satisfies (1) then it certainly satisfies (2); for
instance, this is the case with ≃bis.

Corollary 3.16 ⊑c
shd satisfies (2).

Proof. Immediate from the fact that ≃bis ⊆ ⊑c
shd and ≃bis satisfies (2). 2

As to the question why ⊑c
shd fails to satisfy KFAR: Figure 3.4 shows a counterexample with n = 1.

In this example, B ≃c
shd a;B+C (as can be checked formally using the denotational characterisation

presented in Section 4), but B/a 6≃c
shd τ ;C/a since τ ;C/a shd b;X;0 but ¬(B/a shd b;X;0).

An analysis of why ⊑c
shd fails to satisfy the reasonable looking KFAR shows that the problem

actually lies in the failure of the so-called recursive specification principle, which states that recusive
equations have unique solutions. Indeed, it is not the case that, e.g., the equation X = a;X + C
(where C is as in Figure 3.4) has a unique solution modulo ≃c

shd; viz. both B from Figure 3.4
and recX. a;X +C are solutions. However, if t = recY. a;Y + b;X;0 then recX. a;X + C shd t
whereas ¬(B shd t); see Figure 3.5.

The built-in fairness assumption of should-testing can also be expressed in another, more classical
way. The strong fairness assumption states that, if a state is encountered infinitely often, then

22

t

a

b
a

a

recX. a;X + C

a

b
a

C

X

a

a
a

b
a

B

ab

Figure 3.5: RSP is violated: B ≃c
shd a;B + C but (recX. a;X + C) shd t whereas ¬(B shd t)

all its outgoing transitions will eventually be taken. To make this precise we define for B0 ∈ L:
B0 −α0−→ B1 −α1−→ . . . −

αn−1−−−→ Bn . . . is a fair run of B0 if it is maximal and contains infinitely often
each transition B −α→ B′ for which B occurs infinitely often. Moreover, we call a process B finite
state if there are only finitely many reachable B′ (i.e., with ∃w ∈ A∗. B =

w
⇒ B′).

Lemma 3.17 Let B ∈ L be a finite state process. If for every B′ reachable from B there is some
v ∈ A∗ with B′ =

vX
==⇒ then every fair run of B contains a X-transition.

The proof is by considering the minimal disctance from a state visited infinitely often in a fair
run to a state with an outgoing X-transition; it is omitted here. The condition of the lemma is
obviously connected to the shd-relation. The following makes the connection explicit.

Corollary 3.18 Let B ∈ L and t ∈ LX be finite state processes. B shd t if and only if every fair
run of B || t contains a X-transition.

23

4 Denotational characterisation

The testing relations of the previous section can also be characterised denotationally. With the
exception of mst-testing, we recall these (standard) characterisations here. We then show that
should-testing can be captured by an extension of the model for acceptance testing. We demonstrate
that this really gives rise to a denotational model for should-testing, including alternative proofs
for the pre-congruence results in the previous section; these proofs are for some of the operators
considerably easier than the operational ones.

We use the following notations for the prefix closure and suffix closure of a set of strings W ,
as well as the concatenation of V and W and the remainder of W after a word v; ⊑ denotes the
prefix relation.

↓W := {w ∈ A∗ | ∃v ∈W :w ⊑ v}

↑W := {w ∈ A∗ | ∃v ∈W : v ⊑ w}

V W := {v w | v ∈ V,w ∈W}

v−1W := {w ∈ A∗ | v w ∈W} .

4.1 Language and failures

We now define the language L and the failures F of a transition system T = 〈S,→, q〉.

L(T) := {w ∈ A∗ | ∃(q =
w
⇒ s)}

F(T) := {(w,A) ∈ A∗ × P(A) | ∃(q =
w
⇒ s):L(s) ∩A = ∅}

(Note that the definition of F(T) uses L(s) with s ∈ S; this is an abbreviation for L(〈S,→, s〉),
i.e., the language of T with the initial state changed to s.) In words, the meaning of a failure
(w,A) ∈ F(T) is that the initial trace w can lead to a state from which none of the actions in A
can be done, or in other words, the entire A can be refused. Intuitively, A can be understood as
describing a partial deadlock. Note that A need not be finite. The language can be derived from
the failures: L(T) = {w | (w, ∅) ∈ F(T)} for all T .

Example 4.1 Assume A = {a, b, c}. The terms B = a; b;0 ||| c; a;0 and C = a; c; (b;0 + b; b;0)
share the failure (a c b, {b, c}) (among many others). One may depict this failure by the following
“broomstick” picture:

X

X

refusalinitial trace

b
a

c

bc

Based on the language and failures, we define the following orderings over L:

I ⊑L S :⇔ L(I) ⊆ L(S)

I ⊑F S :⇔ F(I) ⊆ F(S)

We also use ≃L to denote the equivalence generated by ⊑L, i.e., ≃L = ⊑L ∩ ⊑−1
L . We now

recall, without proof, the characterisations of may- and acceptance testing in terms of language
and failures, respectively.

24

F(a;B) = {(ε,A) | (ε, a−1A) ∈ F(B)} ∪ {(aw,A) | (w,A) ∈ F(B)}

F(τ ;B) = F(B)

F(
∑

B) = {(w,A) | ∀B ∈ B: (w,A) ∈ F(B)}

∪ {(w,A) ∈ F(B) | B ∈ B, w ∈ A+ ∨ ¬B stb}

F(B[ϕ]) = {(ϕ(w), A) | (w,ϕ−1(A)) ∈ F(B)}

F(B ||A C) = {(w,AB ∪AC) | (π
S(C)\A

(w), π
S(C)\A

(AB)) ∈ F(B),

(π
S(B)\A

(w), π
S(B)\A

(AC)) ∈ F(C)} if S(B) ∩ S(C) ⊆ A

Table 4.1: Compositional construction of standard failure sets

Proposition 4.2 (cf. [12, 17, 40]) ⊑may = ⊑−1
L and ⊑acc = ⊑F .

Combined with Theorems 3.1 and 3.4, this has the following consequence:

Corollary 4.3

1. ⊑L is a full pre-congruence and ≃L a full congruence;

2. ⊑F ∩ ⊑stb is a pre-congruence for all operators except hiding.

The second clause is equivalent to saying that all first-order L-operators, with the exception of
hiding, give rise to ⊆- and ⇐=-monotonic constructions on the failure sets and stability predicate.
In Table 4.1, we have recalled the construction of the failure sets; monotonicity follows from the
fact that all of these are pointwise extensions of constructions on individual failure pairs.

Some remarks about the equations in Table 4.1 are in order.

• The equation for “a;−” specifies the union of two sets, the first of which has the condition
L(B) ∩ a−1A = ∅. Since A ⊆ A, either a−1A = ∅ (if a /∈ A) or a−1A = {ε} (if a ∈ A);
hence this condition is equivalent to the simpler a /∈ A. However, in the form given here the
construction extends more smoothly to tree failures (see Table 4.2 below).

• The equation for “− ||A −” is defined only for the case where A includes all actions that the
operands have in common. As we have seen in Lemma 2.10, with the help of well-chosen
relabellings this suffices to cover the entire family of synchronisation operators. The failures
of the synchronised term are constructed from the failures of the operands.

The condition (πS(C)\A(w), πS(C)\A(AB)) ∈ F(B) (and also the symmetrical condition on C)

are also formulated so as to extend smoothly to tree failures (Table 4.2). The condition is
equivalent to (π

S(C)\A
(w), AB) ∈ F(B) ∧ AB ∩ S(C) ⊆ A. This reflects the fact that in a

synchronised term B ||A C, B can only decide about the refusal of actions that C cannot do
independently; i.e., actions that are in the synchronisation set or outside C’s alphabet.

To see this equivalence, observe for the reverse implication that AB ∩ S(C) ⊆ A implies
πS(C)\A(AB) = AB. On the other hand, if AB ∩ S(C) ⊆ A fails, then ε ∈ πS(B)\A(AB), but ε

is never in a refusal set.

Proposition 4.4 All equations in Table 4.1 are sound.

25

4.2 Tree failures

Fairness can only be captured if we introduce information about infinite behaviour into our model;
for it is only “in the infinity” that the notion of fairness exists at all. If we take ordinary failures
as our starting point, one way to add information about infinite behaviour, due to Vogler [41], is
to extend the refusal information in a failure from sets of actions A ⊆ A, as above, to sets of words
V ⊆ A+. This results in the following definition:

F+(T) = {(w, V) ∈ L(T) × P(A+) | ∃q =
w
⇒ s:L(s) ∩ V = ∅} .

Since the set V of an extended failure (w, V) ∈ F+(T) can be interpreted as a tree with nodes ↓V
and success nodes V (corresponding to the nodes with outgoing X-transitions in Ex. 4.5), we also
call the elements of F+ tree failures. Due to the fact that the elements of V can be of unbounded
length, tree failures provide information about infinite behaviour, or in other words, about certain
liveness properties of systems.

Example 4.5 Consider B = recX. a;X and C =
∑

i τ ; a
i; b (where ai;B is recursively defined by

a0;B = B and ai+1;B = a; ai;B). It follows that F(B) = {(ai, A) | i ∈ N, a /∈ A} ⊆ F(C); hence
B ⊑acc C. Thus, B is considered a valid implementation for C up to acc despite the fact that C
will always eventually be able to execute b (which is a liveness property). This difference does show
up in the extended failure (an, a∗b) ∈ F+(B) \ F+(C) (for arbitrary n ∈ N). One may depict this
extended failure as follows:

a a

b b

refusal

a a
· · · · · ·

a

b

initial trace

X X X

In principle, it looks as if the additional information provided by tree failures is precisely what we
need to determine fairness. Unfortunately, it turns out that on the whole, tree failures provide too
much distinguishing power to be a faithful model for should-testing.

Example 4.6 (a, {b c}) is a tree failure of B = a; b; c;0+a; b; d;0 but not of C = a; (b; c;0+b; d;0);
hence B and C can be distinguished using F+-pairs, whereas they are equivalent under ≃acc and
hence (being finite) also under ≃shd (see Proposition 3.6).

As this example shows, tree failures give too much information about the moment of choice:
(a, {b c}) tells us that already after the action a, the trace b c can be refused. This information
surplus can be removed by closing up or saturating under an ordering over tree failures. We define

(v, V) � (w,W) :⇔ ∃u ∈ {ε} ∪ ↓V :w = v u, u−1V = W .

For instance, in Ex. 4.6, (a, {b c}) � (a b, {c}) ∈ F+(C). Note that if (w,W) is a tree failure then
u /∈ V , since otherwise ε ∈W which is ruled out by the definition of F+; hence u is in fact chosen
from the proper prefixes of V . The additional choice of u = ε is only relevant if V = ∅, since in all
other cases ε ∈ ↓V . Without this addition, � would not be reflexive for tree failures with an empty
refusal set, i.e., of the form (v, ∅). Just as with standard failures, tree failures with empty refusal
sets are very useful, for instance to capture the language of a term.

26

Closing up the tree failures under � means that B is considered to be smaller than C if
↓�F

+(B) ⊆ ↓�F
+(C) (where ↓� builds the �-downward-closure of its argument) rather than

F+(B) ⊆ F+(C); or equivalently (for arbitrary transition systems T, T ′):

T ⊑F+ T ′ :⇔ ∀ (v, V) ∈ F+(T):∃ (w,W) ∈ F+(T ′): (v, V) � (w,W) .

(Note that, in contrast to ⊑L and ⊑F , ⊑F+ is not defined as the direct inclusion of F+-sets.)
Combining the definitions of � and ⊑F+ , we obtain the following simplified characterisation:

T ⊑F+ T ′ ⇐⇒ ∀ (v, V) ∈ F+(T):∃u ∈ {ε} ∪ ↓V : (v u, u−1V) ∈ F+(T ′) . (3)

For instance, in Ex. 4.6 we have B ⊑F+ C ⊑F+ B; in other words, the systems presented there
cannot be distinguished by ⊑F+ . We arrive at the following hierarchy of pre-orders.

Proposition 4.7 F+-inclusion implies ⊑F+ implies ⊑F implies ⊑L.

Proof. The only non-trivial statement is that ⊑F+ implies ⊑F . This can be seen by observing that
F(T) ⊆ F+(T) and that any standard failure is always a �-maximum within a given set of tree
failures: for if (v,A) � (w,W) for some tree failure (w,W) then w = v u for some u ∈ {ε} ∪ ↓A =
{ε}∪A and W = u−1A. If u ∈ A then W = {ε}, which contradicts W ⊆ A+. It follows that u = ε,
hence (v,A) = (w,W). 2

The following theorem states that the closure of F+ under � provides precisely the necessary
abstraction to capture should-testing.

Theorem 4.8 ⊑shd = ⊑F+.

Proof. Below, we use L(t) to denote the language of a test t ∈ LX. In this case, the words
w ∈ L(t) range over A∗

X rather than A∗.

⊆ This is due to the fact that we can mimic the failure of a should-test quite closely by the
presence of a tree failure. Recursively define a family of tests tv,V with v ∈ A∗ and V ⊆ A∗

by

tε,V = XV

ta w,V = X;0 + a; tw,V

where the process variables XV are to be interpreted according to the following definition:

XV :=
∑

{X;0 | ε ∈ V } +
∑

{a;Xa−1V | a ∈ ↓V }

It follows that L(XV) = ↓(VX) for all V ⊆ A∗.4 Now assume I ⊑shd S and (v, V) ∈ F+(I).
Then I =

v
⇒ I ′ such that L(I ′)∩V = ∅; hence I ||tv,V =

v
⇒ I ′||XV and ∄v′: I ′||XV =

v′X
==⇒. It follows

that ¬(I shd tv,V), and hence ¬(S shd tv,V). The latter implies that S || tv,V =
w
⇒ S′ || t′ such

that ∄w′:S′ ||t′ =
w′X
==⇒. This implies w = v u for some u ∈ {ε}∪↓V such that t′ = Xu−1V . Since

t′ =
w′X
==⇒ t′′ iff w′ ∈ u−1V , we may conclude L(S′) ∩ u−1V = ∅; hence (w, u−1V) ∈ F+(S).

4Note that this is a case as discussed in Section 2.6, where dom(θ) is uncountable; as described there, the
invocations XV are not to be interpreted as recXV

θ but rather as recXV
(θ ↾ ↓θXV). To be exact, we have to restrict

attention to languages V over a countable subset of A, which also makes the sum in the definition of XV well-defined.

27

F+(a;B) = {(ε, V) | (ε, a−1V) ∈ F+(B)} ∪ {(aw, V) | (w, V) ∈ F+(B)}

F+(τ ;B) = F+(B)

F+(
∑

B) = {(w, V) | ∀B ∈ B: (w, V) ∈ F+(B)}

∪ {(w, V) ∈ F+(B) | B ∈ B, w ∈ A+ ∨ ¬B stb}

F+(B[ϕ]) = {(ϕ(w), V) | (w,ϕ−1(V)) ∈ F+(B)}

F+(B/A) = {(πĀ(w), V) | (w, π−1
Ā

(V)) ∈ F+(B)}

F+(B ||A C) = {(w, VB ∪ VC) | (πS(C)\A(w), πS(C)\A(VB)) ∈ F+(B),

(πS(B)\A(w), πS(B)\A(VC)) ∈ F+(C)} if S(B) ∩ S(C) ⊆ A

Table 4.2: Compositional construction of tree failures

⊇ Assume I ⊑F+ S and ¬(I shd t). It follows that I || t =
v
⇒ I ′ || t′ such that ∄v′: I ′ || t′ =

v′X
==⇒.

Let V = {v′ | v′X ∈ L(t′)}; then (v, V) ∈ F+(I). Hence (w,W) ∈ F+(S) such that w = v u
for some u ∈ {ε}∪↓V and W = u−1V . This implies S =

w
⇒ S′ such that L(S′)∩W = ∅. Since

u ∈ L(t′), there is a t′ =
u
⇒ t′′; it follows that S || t =

w
⇒ S′ || t′′. Due to {u′ | u′X ∈ L(t′′)} ⊆

u−1V = W we have ∄u′:S′ || t′′ =
u′X
==⇒, implying ¬(S shd t). 2

Note that the construction of tw,V in the first part of the proof uses both infinitary summation
and an infinite process environment. In fact, this theorem is the reason why we included those
constructs in our language in the first place.

In analogy with Corollary 4.3, which tranfers the results about ⊑may and ⊑acc in the testing
framework to ⊑L and ⊑F in the denotational setting, using Theorem 4.8 we can also transfer
Theorem 3.12 about ⊑shd to ⊑F+:

Corollary 4.9 ⊑F+ ∩ ⊑stb is a first-order pre-congruence.

In fact, the denotational construction of the tree failures appears as a straightforward extension of
the failure constructions. They are given in Table 4.2, which should be compared with Table 4.1.

The following is straightforward to prove:

Proposition 4.10 All equations in Table 4.2 are sound.

Note that this in itself does not yet imply that ⊑F+ is a pre-congruence, merely (because all the
constructions are pointwise) that F+-inclusion is one. The denotational pre-congruence proof of
⊑F+ is delayed until we have fully introduced the denotational model.

Alternative definition of ⊑F+. An alternative characterisation ⊑F+ is obtained by using the
�-downward-closure of F+ as a model and the subset relation as the corresponding ordering. This
is in fact the original formulation in [41], which we also used in [10, 11]. More precisely, one defines

F++(T) = {(w, V) ∈ L(T) × P(A+) | ∃v ∈ ↓V :∃(q =
w v
=⇒ s):L(s) ∩ v−1V = ∅}

and regards set inclusion over this model as a semantic relation:

B ⊑F++ C :⇔ F++(B) ⊆ F++(C) .

It is not difficult to see that F++(B) = ↓�F
+(B) and hence ⊑F+ = ⊑F++. The reason why we

chose the simpler model with the more complex ordering is to have better model constructions (see
Table 4.2) directly extending those for standard failures (Table 4.1)— although the price is a more
involved proof of pre-congruence, especially for parallel composition (Lemma 4.18 below). Also,
⊑F+ corresponds more closely to the way the decision algorithm works (Section 5 below).

28

4.3 The denotational model

After having given the intuitions and preliminary definitions, we now switch to a purely denotational
perspective. We have seen that the denotation of terms has to take three factors into account:

• A system satisfies more tests if and only if it has fewer tree failures.

• In order to obtain a pre-congruence with respect to choice, initial stability has to be preserved.

• In order to obtain a recursion pre-congruence, language equivalence has to be preserved.

We first consider tree failures sets as objects in their own right.

The space of tree failures. We now give an explicit definition of the sets of tree failures that
constitute valid models. This space of tree failures is denoted T; we use F ,G to range over T.

In order for T to be adequate, we impose a number of saturation conditions on elements F ∈ T,
which extend the closure conditions on failure sets; see, e.g., [13]:

• F may not be empty: even a completely deadlocked system has failures (namely, at least
(ε, ∅) is a failure).

• The refusal part of F is saturated in the sense that the upward-closure ↑V of the refusal set
V of any tree failure (v, V) ∈ F again gives rise to a tree failure, namely (v, ↑V) ∈ F . We
call this particular property suffix saturation; it reflects the fact that if the traces in V can
be refused in a given state, then all longer traces can naturally also be refused.

• The refusal part of F is also saturated in the sense that the refusal set V of any (v, V) ∈ F
can be decreased arbitrarily: that is, (v,W) ∈ F for all W ⊆ V .

• The refusal part of F is also saturated in the sense that the refusal set V of any (v, V) ∈ F
can be extended to any set of traces w such that (v w,w−1V) /∈ F . (Note that all w ∈ V
themselves satisfy this criterion, since then ε ∈ w−1V and no refusal set can contain ε.) We
call this particular property extension saturation. The intuition behind it is the following: if
state at which V can be refused had such a w-path, this would apparently lead to a state
where some u ∈ w−1V is enabled; this, however, contradicts the refusal of V . Hence there is
no such w-path.

• The trace part of F is saturated in the sense that for any tree failure (v, V) ∈ F and any
prefix w ⊑ v, there is also a tree failure (w, ∅) ∈ F .

We thus arrive at the following definition of the model space:

T = {F ⊆ A∗ × P(A+) | F 6= ∅ and for all (v, V) ∈ F :
(v, ↑V) ∈ F ,
∀W ⊆ V : (v,W) ∈ F ,
∀W ⊇ V : (∀w ∈W : (v w,w−1V) 6∈ F) ⇒ (v,W) ∈ F ,
∀w ⊑ v: (w, ∅) ∈ F }

T is interpreted under the pre-order ⊑T, which carries the definition of ⊑F+ over to T (see (3)):

F ⊑T G :⇔ ∀(v, V) ∈ F :∃u ∈ {ε} ∪ ↓V : (v u, u−1V) ∈ G .

The following proposition (the proof of which is left to the reader) states that we have indeed
correctly characterised the model space.

29

Proposition 4.11 F+(B) ∈ T for all closed B ∈ L.

The dual property (i.e., that we have also completely characterised the model space, in the sense
that all F ∈ T correspond to the set of tree failures of some closed B ∈ L), is discussed in
Appendix A; we regard this to be of limited interest, and the proof is very technical.

The full model. As recalled above, we already know that, apart from the tree failures, the initial
stability of terms must be encoded in their denotations; moreover, language equality is a necessary
condition for semantic inclusion. This gives rise to the following definition of M, the space of
denotational models. Moreover, in the remainder of this section we use W to denote the universe
of non-empty prefix-closed sets of words.

M = T × B

W = {W ⊆ A∗ |W 6= ∅, ↓W = W} .

The ordering over M accordingly extends ⊑T with the requirement of stability preservation and
language equivalence.

〈F1, P1〉 ⊑M 〈F2, P2〉 :⇔ (F1 ⊑T F2) ∧ (P1 ⇐ P2) ∧ (L(F1) = L(F2)) .

We can derive the tree failure semantics operationally as follows (for any B ∈ L•):

O(B) := 〈F+(B), B stb〉 .

By combining Proposition 4.2, Proposition 4.7 and Theorem 4.8, we get:

Theorem 4.12 For all closed B,C ∈ L, B ⊑c
shd C iff O(B) ⊑M O(C).

In the remainder of this section, essentially 〈M,⊑M〉 will be our denotational semantic domain.
However, this domain deviates from what is usual in denotational semantics in several respects,
which are potentially troublesome in the fixpoint construction needed to define the semantics of
recursion:

1. M does not have all least upper bounds with respect to ⊑M;

2. In particular, M does not have a bottom (smallest) element with respect to ⊑M;

3. ⊑M is a pre-order rather than a partial order, so least upper bounds are in general not uniqe
even if they do exist.

The last point turns out to be less of a problem: obviously least upper bounds (when they exist)
are unique up to the kernel of the pre-order, ≃M = ⊑M ∩⊒M, and since due to Theorem 4.12 this
coincides with our semantic equivalence over terms, ≃c

shd, this is good enough for our purpose.
The other points can be solved by restricting the fixpoint constructions to sub-domains of M

in which all tree failure sets have the same language. That is, for all W ∈ W, we define a subset
of models, MW , that contains just the models with language W ; moreover, in MW we distinguish
a special element ⊥W , that will turn out to be a smallest element (in MW).

MW = {〈F , P 〉 ∈ M | L(F) = W}

⊥W = ({(w, V) | w ∈W,V ∩ w−1W = ∅}, tt) .

First we state that ⊥W is indeed a smallest element. The following is straightforward to prove.

30

Proposition 4.13 For every W ∈ W and 〈F , P 〉 ∈ MW , ⊥W ⊑M 〈F , P 〉.

Note that therefore ⊥W is a least upper bound of the empty set. For non-empty I we define

⊔

i∈I 〈Fi, Pi〉 = 〈
⋃

i∈I Fi,
∧

i∈I Pi〉

The following proposition states that this yields a least upper bound.

Proposition 4.14 Let I 6= ∅ and 〈Fi, Pi〉i ∈ MW for all i ∈ I; then
⊔

i∈I 〈Fi, Pi〉 ∈ MW is a least
upper bound with respect to ⊑M.

Proof. First note that
⋃

i Fi ∈ T and L(
⋃

i Fi) =
⋃

i L(Fi) = W , and hence
⊔

i 〈Fi, Pi〉 ∈ MW .
Let 〈F , P 〉 =

⊔

i 〈Fi, Pi〉. It is clear that 〈Fi, Pi〉 ⊑M 〈F , P 〉 for all i; hence 〈F , P 〉 is an upper
bound. Now assume ∀i : 〈Fi, Pi〉 ⊑M 〈G, Q〉 for some 〈G, Q〉 ∈ M. Let (v,W) ∈

⋃

i Fi be arbitrary.
It follows that (v,W) ∈ Fi for some i; hence (due to Fi ⊑T G) we have ∃u ∈ {ε} ∪ ↓V such that
(v u, u−1V) ∈ G. We may conclude F ⊑T G. Furthermore, it is also straightforward to see that
Q⇒ P ; hence 〈F , P 〉 ⊑M 〈G, Q〉. 2

It follows from the propositions above that, for every W ∈ W, the quotient model MW /≃M (which
is the set of ≃M-equivalence classes [〈F , P 〉]≃M

= {〈G, Q〉 | 〈G, Q〉 ≃M 〈F , P 〉} for all 〈F , P 〉 ∈ MW)
is a complete lattice under the ordering ⊑ defined by [〈F , P 〉]≃M

⊑ [〈G, Q〉]≃M
iff 〈F , P 〉 ⊑M 〈G, Q〉.

This observation can serve as an intuition and justification for our denotational semantics, even
though, for the sake of simplicity, we carry out the actual constructions and proofs in M. In
particular, the

⊔

-construction defined above, lifted to the quotient model, indeed yields the (unique)
least upper bound.

First-order operators. Since we have already proved, using only the operational test framework,
that ⊑c

shd is a first-order pre-congruence (Theorems 3.1 and 3.12), this is an indication that there
exist constructions over M that correspond to the first-order L-operators and are monotonic with
respect to ⊑M. The definitions are given in Table 4.3.

The constructions over T in Table 4.3 are in fact strongly analogous to the equalities in Table 4.2.
The first task is to show that all these constructions stay within the denotational model space. The
proof is left to the reader.

Lemma 4.15 The constructions a;F ,
⊕

i 〈Fi, Pi〉, F [ϕ] and F ||A G in Table 4.3 map into T.

Note that the construction for parallel composition in Table 4.3 yields the same result when we
replace A(F) throughout by some A1 ⊇ A(F) and A(G) by some A2 ⊇ A(G), provided A1∩A2 ⊆ A.
Hence, we can also apply this construction to F+(B) and F+(C) if we only know the static sorts
S(B) and S(C) and not the (potentially smaller) dynamic alphabets A(F+(B)) and A(F+(C)).

The constructions in Table 4.3 are all clearly monotonic with respect to set inclusion on the set
of tree failures. Since, however, ⊑M is not based on a simple set inclusion (like ⊑F) but relies on
a form of saturation, it does not immediately follow from this observation that these constructions
preserve ⊑M. Nevertheless, a more careful analysis shows that the desired property does hold. (In
terms of the quotient model discussed above, this preservation property is necessary to establish
that the constructions are well-defined in M/≃M.)

Proposition 4.16 The constructions over M defined in Table 4.3 are monotonic with respect to
⊑M.

31

Constructions over T

a;F = {(ε, V) | (ε, a−1V) ∈ F} ∪ {(aw, V) | (w, V) ∈ F}
⊕

i 〈Fi, Pi〉 =
⋂

i Fi ∪
⋃

i {(w, V) ∈ Fi | w ∈ A+ ∨ ¬Pi}

F [ϕ] = {(ϕ(w), V) | (w,ϕ−1(V)) ∈ F}

F/A = {(πĀ(w), V) | (w, π−1
Ā

(V)) ∈ F}

F ||A G = {(w, V ∪W) | (π
A(G)\A

(w), π
A(G)\A

(V)) ∈ F ,

(π
A(F)\A

(w), π
A(F)\A

(W)) ∈ G} if A(F) ∩ A(G) ⊆ A

Constructions over M

a; 〈F , P 〉 = 〈a;F , tt〉

τ ; 〈F , P 〉 = 〈F , ff〉
∑

i〈Fi, Pi〉 = 〈
⊕

i 〈Fi, Pi〉,
∧

i Pi〉

〈F , P 〉[ϕ] = 〈F [ϕ], P 〉

〈F , P 〉/A = 〈F/A,P ∧ (A ∩ L(F) = ∅)〉

〈F , P 〉 ||A 〈G, Q〉 = 〈F ||A G, P ∧Q〉

Table 4.3: Model constructions on T and M

For the proof, we restrict ourselves to the tree failures component of M; monotonicity w.r.t. stability
is straightforward to prove, whereas preservation of language equality follows from standard theory
(see Corollary 4.3). We show the required property for relabelling and synchronisation; the case
for hiding is analogous to relabelling.

Lemma 4.17 If F ⊑T G then F [ϕ] ⊑T G[ϕ].

Proof. Assume (v,W) ∈ F [ϕ].

• By definition (Table 4.3), v = ϕ(w) for some (w,ϕ−1(W)) ∈ F .

• F ⊑M G then implies (w u, u−1ϕ−1(W)) ∈ G for some u ∈ {ε} ∪ ↓ϕ−1(W).

• It can be shown that ϕ−1(ϕ(u)−1W) = u−1ϕ−1(W).

• By definition (Table 4.3), it follows that (ϕ(w u), ϕ(u)−1W) ∈ G[ϕ].

• Since ϕ(w u) = ϕ(w)ϕ(u) and ϕ(u) ∈ {ε} ∪ ↓W , we are done. 2

The monotonicity for synchronisation is by far the most complex to prove. Let us regard for a
moment the special case of full synchronisation (i.e., synchronisation set A) so that the string
homomorphisms π

A(F)\A
and π

A(G)\A
in Table 4.3 equal the identity function and can hence be

omitted. The first proof idea is as follows. If Fi ⊑M Gi for i = 1, 2, then any tree failure (w, V) ∈
F1 || F2 is constructed from (w, Vi) ∈ Fi such that V = V1 ∪ V2; these in turn imply the existence
of elements of the Gi of the form

(w u1, u
−1
1 V1) ∈ G1 (w u2, u

−1
2 V2) ∈ G2

where ui ∈ {ε}↓Vi for i = 1, 2. However, it is not automatically the case that u1 = u2 or even
that one is a prefix of the other, and hence these Gi-elements do not immediately combine into an
element of G1 || G2. Consequently, the monotonicity proof is a good deal more involved than this
simple idea, and we refer it to Appendix B (Page 68).

32

Lemma 4.18 If Fi ⊑T Gi for i = 1, 2 with A(G1) ∩ A(G2) ⊆ A, then F1 ||A F2 ⊑T G1 ||A G2.

4.4 The denotational semantics

We now set out to develop the actual denotational semantics. For this purpose, we first prove
continuity of our M-constructions. Unfortunately, here it turns out that the infinite choice operator
is not continuous in any obvious sense, and for that reason, we prove the results of this subsection
for the language with finite sums only.

Continuity. First let us clarify what we mean by continuity in a setting where least upper bounds
are not unique. We define this as preservation of the construction

⊔

, defined above, that picks
a particular representative from the set of (equivalent) least upper bounds, modulo the kernel
equivalence ≃M. Let us call a subset of M consistent if it has an upper bound (as we have seen
above, this is the case if and only if it is actually a subset of some MW).

Definition 4.19 (continuity) A function f :M → M is continuous if for any consistent subset
{xi}i∈I ⊆ M

f(
⊔

i xi) ≃M

⊔

i f(xi) .

f is chain-continuous if the above property holds for all cases where {xi}i∈I is a chain, i.e., is
linearly ordered according to ⊑M.

Note that this is a necessary and sufficient condition for “real” [chain-]continuity of f lifted to the
quotient model M/≃M. In practice we will always use subsets of N as index sets, and the chain
will correspond to the ordering of the indices; that is, xi ⊑M xj iff i ≤ j. The desired property is
stated in the following proposition.

Proposition 4.20 The constructions over M defined in Table 4.3 are chain-continuous.

Proof. Since all our operators have finite arity (recalling that we have restricted summation to
finite sets), they are essentially functions g:Mn → M (n being the arity of the function), which
can be split into f :Tn × Bn → T and p:Tn × Bn → B such that

g(〈F1, P1〉, . . . , 〈Fn, Pn〉) = 〈f(F1, . . . ,Fn, P1, . . . , Pn), p(F1, . . . ,Fn, P1, . . . , Pn)〉 .

Note that (taking B to be ordered in the standard fashion, with ff smaller than tt), the f are
monotonic in their Fk-parameters and anti-monotonic in the Pk, whereas the p are anti-monotonic
in the Fk and monotonic in the Pk. This is consistent with the definition of ⊑M, which corresponds
to set inclusion for the tree failure sets but reverse implication for the stability predicate.

We show continuity for f ; that of p is proved along the same lines. Furthermore, since the Pk

can only change once (from tt to ff), monotonicity actually implies continuity in these parameters.
Thus, the proof can be reduced to showing that the f are ⊑T-chain-continuous in the Fk.

For the purpose of this proof we write ~F ∈ Tn for vectors of tree failure sets, with elements
Fk ∈ T for 1 ≤ k ≤ n; the elements of a vector ~Fi are likewise denoted Fk,i. We also write
Q = A∗ × P(A∗) for the set of which tree failures are subsets.

The crux of the proof is the observation that the functions f are all defined pointwise on the
individual tree failures, in the sense that, for every vector ~P ∈ Bn, there is a pointwise construction
ϕ~P

:Qn → P(Q) satisfying, for all ~F ∈ Mn

f(~F , ~P) =
⋃

{ϕ~P
(~q) | ~q ∈ ~F}

33

where ~q ∈ ~F has to be understood componentwise. (In fact, with the exception of
⊕

, the ϕ~p are
actually insensitive to ~p.)

Over Tn we define ⊑ as the component-wise extension over the subset relation (i.e., ~F ⊑ ~G iff
Fk ⊆ Gk for 1 ≤ k ≤ n) and

⊔

as the component-wise union (i.e.,
⊔

i
~Fi = (

⋃

i F1,i, . . . ,
⋃

i Fn,i)).

We now show that for all ⊑-chains of vectors { ~Fi ∈ Tn}i,

f(
⊔

i
~Fi, ~P) =

⋃

i f(~Fi, ~P) .

⊆ Assume G ∈ f(
⊔

i
~Fi, ~P); hence G ∈ ϕ~P

(~q) for some ~q ∈
⊔

i
~F . It follows that for all k ∈

{1, , n} there is some ik such that qk ∈ Fk,ik . Let j = max {ik | 1 ≤ k ≤ n}; due to the

fact that all {Fk,i}i
are ⊆-chains it follows that qk ∈ Fk,j for all 1 ≤ k ≤ n. But then ~q ∈ ~Fj ,

hence G ∈
⋃

{ϕ~P
(~q) | ~q ∈ ~Fj} = f(~Fj, ~P), implying G ∈

⋃

i f(~Fi, ~P).

⊇ Assume G ∈
⋃

i f(~Fi, ~P); hence G ∈ ϕ~P
(~q) for some i and some ~q ∈ ~Fi. Since clearly

~Fi ⊑
⊔

i
~Fi, it follows that ~q ∈

⊔

i
~Fi, hence G ∈

⋃

{ϕ~P
(~q) | ~q ∈

⊔

i
~Fi} = f(

⊔

i
~Fi, ~P).

This shows that f is ⊑-chain-continuous in the “tree failures” parameters. However, for the con-
tinuity of g we actually need ⊑T-chain-continuity of f . Fortunately, we can turn any ⊑T-chain of
vectors { ~Fi}i into a ⊑-chain of equivalent vectors {~Gi}i (i.e., with Gi ≃T Fi for all i ∈ N) and the
same component-wise union (

⊔

i Fi =
⊔

i Gi), as follows:

Gk,0 = Fk,0 Gk,i+1 = Gk,i ∪ Fk,i+1 .

Gk,i ≃T Fk,i follows by induction on i, using transitivity of ⊑T and the fact that ⊆ over T is

stronger than ⊑T. It is not difficult to see (recalling that f is monotonic in the ~Fk-parameters)
that necessarily

⋃

i f(~Fi, ~P) ≃T

⋃

i f(~Gi, ~P). 2

Fixpoints. In the following we discuss a fixpoint construction for recursion that is essentially
standard domain theory, except that we keep all our constructions in the concrete, pre-ordered
set MW . Let us first discuss the necessary concepts not for the specific domain MW but for an
arbitrary domain 〈A,⊑,

⊔

〉 with ⊑ a pre-order and
⊔

a construction that selects a representative
least upper bound w.r.t. ⊑ for each B ⊆ A.

Let Y,Z denote sets of variables. First recall that there is a standard extension of ⊑ from A
to functions Y → A, according to which f ⊑ g for f, g:Y → A iff f(x) ⊑ g(x) for all x ∈ Y,
and likewise for

⊔

. The notions of monotonicity and [chain-]continuity are extended accordingly
to functions (Z → A) → (Y → A).

We use functions in Φ: (Z → A) → (Y → A) to model the semantics of process environments
defined on Y and with free variables in Z (where one may imagine that usually Y ⊆ Z). When such
a process environment is closed recursively, essentially this provides values for the free variables in
x ∈ Y ∩ Z, by “feeding Φ(x) back into Φ”.

To define this precisely, we alternatively portray Φ as a function Ψ: (Z → A) → (Y → A) →
(Y → A) defined by Ψ(f)(g) = Φ(f ⊳ g), where f ⊳ g, pronounced “f overwritten by g”, acts as
g where that is defined, and as f elsewhere — in other words, f is ignored whenever g offers an
alternative. For every f :Z → A, Ψ(f) is a function from Y → A to Y → A, and this is where we
can finally apply fixpoint theory. A function g:Y → A is a pre-fixpoint of Ψ(f) if g ⊑ Ψ(f)(g),
and a fixpoint if g ≃ Ψ(f)(g), where ≃ = ⊑ ∩⊒. A least fixpoint (if it exists) is a fixpoint that is
“equal to or below” all others (w.r.t. ⊑).

34

As usual, if Ψ(f) is continuous, then one can show that every least upper bound of all pre-
fixpoints is a least fixpoint of Ψ(f). This implies that if our original Φ is continuous, then every
Ψ(f) has a least fixpoint. In our case, where we have only chain-continuity, we construct a particular
chain of pre-fixpoints and we define a mapping µΦ: (Z → A) → (Y → A) yielding a particular least
fixpoint µΦ(f) of Ψ(f) for every f :Z → A. In terms of the original function Φ, µΦ satisfies, for
every f :Z → A:

µΦ(f) = Φ(f ⊳ µΦ(f)) .

A more constructive characterisation of a least fixpoint is through approximation: define ⊥ =
⊔

∅
and (for all f :Z → A)

Φ0 : f 7→ {(x,⊥) | x ∈ Y}

Φi+1 : f 7→ Φ(f ⊳ Φi(f)) (i ≥ 0)

µΦ : f 7→
⊔

i Φ
i(f) .

Proposition 4.21 Φ: (Z → A) → (Y → A) is a monotonic and chain-continuous function, then
for every f :Z → A, µΦ(f) is a least fixpoint of Ψf : g 7→ Φ(f ⊳ g).

Proof. First of all, due to the fact that ⊥ is a smallest elements of A and hence Φ0(f) is a smallest
element of Y → A, plus monotonicity of Φ, it can be proved by induction on i that Φi(f) ⊑ Φi+1(f)
for all i; hence {Φi(f)}i is a chain, and hence so is {f ⊳Φi(f)}i.

The following sequence of equalities then shows that µΦ(f) is a fixpoint for Ψf :

Ψf (µΦ(f)) = Φ(f ⊳
⊔

i Φ
i(f)) = Φ(

⊔

i(f ⊳ Φi(f))) ≃
⊔

i Φ(f ⊳ Φi(f))

=
⊔

i Φ
i+1(f) =

⊔

i Φ
i(f) = µΦ(f)

where the last step but one is due to the fact that, for any element g:Y → A, Φ0(f)⊔ g = g (where
in this particular case g =

⊔

i Φ
i+1(f)).

If g is a fixpoint of Ψ, then clearly Φ0(f) ⊑ g. By induction on i it can then be shown (using
monotonicity of Φ and the fixpoint property of g) that Φi(f) ⊑ g for all i. But then g is an upper
bound to {Φi(f)}i, and hence µΦ(f) ⊑ g by the properties of least upper bounds. This proves that
µΦ(f) is a least fixpoint of Ψf . 2

Proposition 4.22 Let Φ be as in Proposition 4.21; then µΦ is monotonic and chain-continuous.

Proof. By induction on i it can be proved that all Φi are monotonic and chain-continuous. Now
assume f, g:Z → A such that f ⊑ g; then

µΦ(f) =
⊔

i Φ
i(f) ⊑

⊔

i Φ
i(g) = µΦ(g) .

Similarly, let {fk:Z → A}k∈K be a chain; then

µΦ(
⊔

k fk) =
⊔

i Φ
i(

⊔

k fk) ≃
⊔

i

⊔

k Φi(fk) =
⊔

k

⊔

i Φi(fk) =
⊔

k µΦ(fk) .

2

35

The semantic mapping. We are now ready to define the denotational semantics of L directly,
rather than through the operational semantics as in Theorem 4.12. As usual, the denotational
semantics takes the form of a mapping [[−]]−:L → (X ⇀ M) ⇀ M, which for any term B ∈ L
yields a function [[B]]−: (fv(B) → M) → M, the parameter of which provides the interpretation of
the free variables of the term. Actually, in the sequel we will allow any function Ω:X ⇀ M for
which dom(Ω) ⊇ fv(B) to play the role of such an interpretation. We write [[B]]Ω (∈ M) for the
semantics of B in the context Ω. If B is closed, we may omit the paramter Ω.

In addition, for the semantics of process environments θ we will use the same notation, where
now we impose [[θ]]−: (Z → A) → (Y → A) with Y = dom(θ) and Z = fv(θ). Thus, [[θ]]− has the
shape of Φ in Propositions 4.21 and 4.22 above. This means that we can put Propositions 4.13
and 4.14 on the one hand, and Propositions 4.16 and 4.20 on the other, to good use: indeed for
each W ∈ W, 〈MW ,⊑M,

⊔

〉 is just such a domain as 〈A,⊑,
⊔

〉 in Proposition 4.21, and functions
[[θ]]− satisfy the required properties to construct least fixpoints.

However, we have cheated in one respect. Obviously the interpretations Ω are to play the
role of the functions f :Z → A, but in fact Ω does not range over a single domain A; rather, for
any X ∈ fv(B) the interpretation has a different associated WX ∈ W such that Ω(X) ∈ MWX

.
Though this makes no difference to our least upper bound construction, which as we have shown
in Proposition 4.14 is the same irregardless of the trace set W , it does influence the construction
of the bottom element, ⊥WX

. This does raise a problem, for where does WX come from? Here we
rely on another semantic mapping L[[−]]− that yields the trace language of terms.

Proposition 4.23 There is a function L[[−]]−:L → (X ⇀ W) ⇀ W such that for every closed
σ:X ⇀ L with dom(σ) ⊇ fv(B),

L[[B]]L[[σ]] = L(B[σ]) .

We omit the actual definition of this function, since it is standard (in fact, it coincides with the
“initial trace” part of the tree failures).

Thus the definition of the approximants and least fixpoint becomes, for every Ω:X ⇀ M with
dom(Ω) ⊇ fv(θ) \ dom(θ):

[[θ]]0Ω = {(X,⊥W) | X ∈ dom(θ),W = L[[recX θ]]L(Ω)}

[[θ]]i+1
Ω = [[θ]]Ω⊳[[θ]]iΩ

(i ≥ 0)

µ[[θ]]Ω =
⊔

i [[θ]]
i
Ω .

The following is an immediate corollary of Propositions 4.16 and 4.22.

Theorem 4.24 For all B ∈ L, [[B]]− is ⊑M-monotonic.

The remainder of this section is spent in proving the following characterisation theorem, which states
the correspondence between the denotational semantics in Table 4.4 and the operational semantics
of the previous section. Together with Theorems 4.12 and 4.24 this proves Theorem 3.15, i.e., in
particular the recursive pre-congruence of ⊑c

shd.

Theorem 4.25

1. For all B ∈ L and σ:X ⇀ L• with dom(σ) ⊇ fv(B), [[B]]O(σ) ≃M O(B[σ]).

2. For all B ∈ L•, [[B]] ≃M O(B).

36

[[0]]Ω = ⊥{ε}

[[α;B]]Ω = α; [[B]]Ω
[[
∑

iBi]]Ω =
∑

i[[Bi]]Ω
[[B[ϕ]]]Ω = [[B]]Ω[ϕ]

[[B/A]]Ω = [[B]]Ω/A

[[B ||A C]]Ω = [[B]]Ω ||A [[C]]Ω
[[X]]Ω = Ω(X)

[[recX θ]]Ω = µ[[θ]]Ω(X)

Table 4.4: Denotational semantic function

Obviously, the second clause is a direct consequence of the first. The proof is given below; it is by
induction on the structure of B and, not surprisingly, the hard case is recursion. To prepare this,
we essentially need an operational counterpart of the approximations [[θ]]i. For arbitrary θ:X ⇀ L
with fv(θ) ⊆ dom(θ) let

θW = [
∑

a∈W a;Za−1W /ZW]W∈W

θ0 = [recZW
θW/X]X∈dom(θ),W=L(recX θ)

θi+1 = θ[θi] .

Intuitively, each ZW recursively defined in θW
5 is a stable and completely deterministic process

(no reachable state has an outgoing τ -transition or more than one outgoing a-transition for any
given a ∈ A) with W as its language; in other words, it is the operational equivalent of ⊥W . This
is formulated in the following lemma.

Lemma 4.26 For all W ∈ W, O(recZW
θW) = ⊥W .

Proof. In the proof we write ZW for recZW
θW. We first establish ZW =

w
⇒ B if and only if w ∈ W

and B = Zw−1W , by induction on the length of w. This implies L(ZW) = W .

Base case. w = ε. We have ZW =
w
⇒ B iff B = ZW since ZW 6−τ−→; on the other hand, w ∈W due

to W 6= ∅ and W = ↓W .

Induction step. w = v a for some v and a.

If. If w ∈W then v ∈W by ↓W = W , and a ∈ v−1W . By induction, ZW =
v
⇒ Zv−1W , and it

follows that Zv−1W −a→ Za−1v−1W = Zw−1W ; hence ZW −w→ Zw−1W .

Only if. If ZW −w→ B then ZW =
v
⇒ B′ =

a
⇒ B. By induction, v ∈ W and B′ = Zv−1W .

It follows that Zv−1W =
a
⇒ B; hence (by the definition of Zv−1W) a ∈ v−1W and B =

Za−1v−1W = Zw−1W . The former implies w = v a ∈W .

ZW stb is immediate for all W . It remains to be proved that FW = F+(ZW).

⊆ Assume w ∈W and w−1W ∩V = ∅. As proved above, ZW =
w
⇒ B; it follows that L(B)∩V ⊆

w−1L(ZW) ∩ V = w−1W ∩ V = ∅.

5Interpreted as the countable restriction of θW as discussed in Section 2.6. Again, we really should restrict
ourselves to languages W that only use a countable subalphabet.

37

⊇ Assume (w, V) ∈ F+(ZW); i.e., there is a B such that ZW =
w
⇒ B and L(B) ∩ V = ∅. As

proved above, B = Zw−1W , thus L(B) = w−1W . Thus, w−1W ∩ V = ∅.

2

The following is an important element in the proof of Theorem 4.25. (Note that we freely apply
O(−) to mappings X ⇀ L•; the result is a mapping X ⇀ M defined in the obvious way.)

Lemma 4.27 Let θ:X ⇀ L be such that [[θ]]O(σ) ≃M O(θ[σ]) for all σ:X ⇀ L• with dom(σ) ⊇

fv(θ); then [[θ]]iO(σ) ≃M O(θ[σ]i) for all i ≥ 0 and all σ:X ⇀ L• with dom(σ) ⊇ fv(θ) \ dom(θ) and
dom(σ) ∩ dom(θ) = ∅.

Proof. By induction on i.

Base case. For i = 0 the property follows from

[[θ]]0O(σ) = {(X,⊥W) | X ∈ dom(θ),W = L[[recX θ]]L(O(σ))}

= {(X,O(recZW
θW)) | X ∈ dom(θ),W = L(recX θ[σ])}

= O(θ[σ]0)

where the first equality is by definition of [[θ]]0, the last by definition of θ[σ]0 and the second
is due to a combination of Lemma 4.26 and

L[[recX θ]]L(O(σ)) = L[[recX θ]]L[[σ]] = L(recX θ[σ]) .

This, in turn, follows from two successive applications of Proposition 4.23, where for the first
application we also use L(F+(B)) = L(B) (= L[[B]] by Proposition 4.23).

Induction step. For the induction step, we have

[[θ]]i+1
O(σ) = [[θ]]O(σ)⊳[[θ]]i

O(σ)
≃M [[θ]]O(σ)⊳O(θ[σ]i) ≃M O(θ[σ ⊳ θ[σ]i]) = O(θ[σ][θ[σ]i]) = O(θ[σ]i+1)

where the first step is by definition of [[θ]]i+1, the second by the induction hypothesis (also
using Theorem 4.24), the third by the assumption on θ, the fourth by the properties of
substitution and the last by definition of θi.

2

Lemma 4.28 Let θ:X ⇀ L be such that fv(θ) ⊆ dom(θ). For every X ∈ dom(θ) and i ≥ 0 let Xi

be a distinct, fresh name. Define θω, θ∗: {Xi | X ∈ dom(θ), i ≥ 0} → L by

θω:Xi 7→ recX θ

θ∗:Xi 7→ θi(X) .

Let n ≥ m ≥ 0 and let B ∈ L be a term such that Xi ∈ fv(B) implies i ≥ n. For every sequence of
transitions

B[θω] −α1−→ · · · −αm−→ C

there is a term C ′ for which Xi ∈ fv(C ′) implies i ≥ n−m, such that C = C ′[θω] and

B[θ∗] −α1−→ · · · −αn−→ C ′[θ∗] .

38

Proof. By induction on m.

m = 0. In this case, C = B[θω] and hence C ′ = B satisfies the requirements.

m = 1. This is proved by induction on the derivation of B[θω] −α1−→ C. Thus, there will be one case
for each of the operational rules in Table 2.1. The cases for the first-order operators really
follow from the fact that the corresponding rules are all in the SOS format of De Simone [18].
As an example, we show the case of the synchronisation rule.

• B = B1 ||AB2 such that Bk[θ
ω] −α1−→ Ck for k = 1, 2 and C = C1 ||AC2. By the induction

hypothesis, for k = 1, 2 there are transitions

Bk[θ
∗] −α1−→ C ′

k[θ
∗]

such that Ck = C ′
k[θ

ω] for k = 1, 2. It follows that C ′ = C ′
1 ||A C

′
2 satisfies the criteria,

since clearly

B[θ∗] = B1[θ
∗] ||A B2[θ

∗] −α1−→ C ′
1[θ

∗] ||A C
′
2[θ

∗] = C ′[θ∗] .

Now we consider the most interesting case, namely the recursion rule. Note that, for the
entire term B[θω] to be of the form recY η, there are two sub-cases: B may equal one of the
Xi, or B may itself be of the form recY η.

• B = Xj for some X ∈ dom(θ) and j ≥ n ≥ 1; hence B[θω] = θω(Xj) = recX θ. Due to
guardedness of θ, by Proposition 2.4 the premise of the rule can be given as θ(X) −α→ D
such that C = D[recX θ/X]X∈dom(θ). By the definition of θj and Proposition 2.3, it
follows that

B[θ∗] = θj(X) = θ(X)[θj−1] −α1−→ D[θj−1] .

Then C ′ = D[Xj−1/X]X∈fv (D) satisfies the requirements of the lemma, due to C ′[θ∗] =
D[θj−1(X)/X]X∈fv (D) = D[θj−1].

• B = recY η. W.l.o.g. assume dom(θω) ∩ dom(η) = ∅. Since θω and θ∗ are closed and
fv(B) ∩ dom(η) = ∅, it follows that

B[θω] = recY (η[θω])

B[θ∗] = recY (η[θ∗]) .

Since η is guarded (by default assumption), due to Proposition 2.4 we can write the
premise of the recursion rule as

η(Y)[θω] −α1−→ C .

By the induction hypothesis, it follows that there is a C ′ such that Xi ∈ fv(C ′) implies
i ≥ n− 1, and

η(Y)[θ∗] −α1−→ C ′[θ∗]

and C ′[θω] = C. But then also

B[θ∗] = recY (η[θ∗]) −α1−→ C ′[θ∗]

and hence C ′ satisfies the requirements of the lemma.

39

m > 1. This follows immediately from putting together the case of m = 1 and the induction
hypothesis. Assume

B[θω] −α1−→ D −α2−→ · · · −αm−→ C ;

then by the case for m = 1 we know that there is a term D′ for which Xi ∈ fv(D′) implies
i ≥ n− 1 such that D = D′[θω] and

B[θ∗] −α1−→ D′[θ∗] ,

from which, by the induction hypothesis, we can deduce the existence of term C ′ for which
Xi ∈ fv(C ′) implies i ≥ (n− 1) − (m− 1) and hence i ≥ n−m such that C = C ′[θω] and

D′[θ∗] −α2−→ · · · −αm−→ C ′[θ∗] .

2

Proposition 4.29 Let θ satisfy fv(θ) ⊆ dom(θ), and let X ∈ dom(θ). For every sequence of
transitions

recX θ −α1−→ · · · −αn−→ B

there is a sequence of transitions
θn(X) −α1−→ · · · −αn−→ B′

such that L(B) = L(B′).

Proof. This is a consequence of Lemma 4.28, as follows: Define the term B in Lemma 4.28
to be Xn; then Xn[θω] = recX θ and Xn[θ∗] = θn(X). Let C ′ be the term whose existence is
guaranteed in the lemma, such that B = C ′[θω] and Xn[θ∗] −α1−→ · · · −αn−→ C ′[θ∗]. One can prove
L(θi(X)) = L(recX θ) for all X ∈ dom(θ) and i ≥ 0 (by induction, using Proposition 4.23 and
L(recX θ) = L(θ(X)[recX θ]X∈dom(θ) — cf. Proposition 2.9); hence it follows from Proposition 4.23
that

L(C ′[θω]) = L[[C ′]]L[[θω]] = L[[C ′]]L[[θ∗]] = L[[C ′[θ∗]]] .

It follows that the proof obligation is fulfilled if we take B′ = C ′[θ∗]. 2

Proposition 4.30 Let θ:X ⇀ L be such that fv(θ) ⊆ dom(θ); then O(recX θ) ⊑M

⊔

i O(θi(X))
for all X ∈ dom(θ).

Proof. We show (1) F+(recX θ) ⊆
⋃

i F
+(θi(X)) and (2) recX θ stb if

∧

i θ
i(X) stb.

1. Assume recX θ =
w
⇒ B and V ∩ L(B) = ∅. It follows that there is a sequence of transitions

recX θ −α1−→ · · · −αn−→ B such that w = πA(α1 · · ·αn) (in words, w is the concatenation of the
non-τ -actions). Due to Proposition 4.29 we have θn(X) −α1−→ · · · −αn−→ B′ with L(B) = L(B′);
hence θn(X) =

w
⇒ B′. Since clearly V ∩ L(B′) = ∅ it follows that (w, V) ∈ F(θn(X)).

2. Assume ¬ recX θ stb. It follows that recX θ −τ→ B for some B. Due to Proposition 4.29 it
follows that θ1(X) −τ→ B′ for some B′, and hence ¬θ1(X) stb.

2

Proof of Theorem 4.25.1. By induction on the structure of B. For first-order operators, the proof
obligation follows immediately from a comparison of the equalities in Table 4.2 with the definitions
in Tables 4.3 and 4.4. The only interesting cases are B = X and B = recX θ.

40

B = X. This follows from the following sequence of equalities:

[[B]]O(σ) = O(σ)(X) = O(σ(X)) = O(B[σ]) .

B = recX θ. W.l.o.g. assume dom(σ)∩dom(θ) = ∅. We show [[B]]O(σ) ≃M O(B[σ]) by splitting the
equivalence in two parts.

⊑M Consider the function Ψ defined by Ψ : Ω 7→ [[θ]]O(σ)⊳Ω for all Ω:X ⇀ M with dom(Ω) ⊇
fv(θ)\dom(σ). Then the following sequence of equalities holds (where rec θ is shorthand
for [recX θ/X]X∈dom(θ)):

Ψ(O(rec θ[σ])) = [[θ]]O(σ)⊳O(rec θ[σ])

= O(θ[σ ⊳ rec θ[σ]])

≃M O(θ[σ][rec θ[σ]])

≃M O(rec θ[σ])

The first step is by definition of Ψ, the second by the induction hypothesis, and the
third by Proposition 2.9 (which proves this equivalence up to ∼) in combination with
the observation that ∼ ⊆ ≃M due to Proposition 3.6, Theorem 4.12 and the fact that ∼
is stability-preserving.

This proves that O(rec θ[σ]) is a fixpoint of Ψ. But then [[recX θ]]O(σ) ⊑M O(recX θ[σ])
for all X ∈ dom(θ) due to the fact that [[rec θ]]O(σ) = µ[[θ]]O(σ) is a least fixpoint of Ψ
(Proposition 4.21).

⊒M This follows from the following sequence of (in)equalities:

[[recX θ]]O(σ) =
⊔

i [[θ]]
i
O(σ)(X) ≃M

⊔

i O(θ[σ]i(X)) ⊒M O(recX θ[σ])

where the first step is by definition of [[recX θ]], the second by Lemma 4.27 and the third
by Proposition 4.30.

2

41

UT

I

a

ba

a

1 32

Figure 5.1: Example transition systems for the decision algorithms

5 Decidability and complexity

In this section, we will show that ⊑shd is decidable, with linear exponential time complexity. Since
⊑−1

L and ⊑stb are known or obvious to be decidable, with a complexity that is no worse, it follows
that ⊑c

shd is decidable in linear exponential time.
The relation we eventually want to check is T ⊑F+ U for some finite transition systems T and

U ; that is,
∀ (v, V) ∈ F+(T):∃ (w,W) ∈ F+(U): (v, V) � (w,W) .

As an exercise, we will first show in Section 5.2 how to check F+(T) ⊆ F+(U). As a running
example, we will treat the transition systems T and U shown in Figure 5.1 where neither F+(T) ⊆
F+(U) nor T ⊑F+ U is true.

5.1 Preliminary concepts and constructions

Throughout this section, we assume that two finite transition systems T and U with initial states p0

and q0 are given such that L(T) ⊆ L(U), which is known to be decidable. We denote the transition
relations with −→T and =⇒T etc., and by abuse of notation we use A for the finite set of visible
actions occurring in T or U ; hence, in the running example A = {a, b}.

We can view each finite transition system as a finite automaton where all states are final. For
an automaton A with some state s (we write s ∈ A), LA(s) denotes the language of the automaton
if we change the initial state to s; observe that the arc-label τ corresponds to the empty word in
automata theory. We call a state productive, if it lies on a path from the initial state to a final
state, i.e. if it is used by the automaton when accepting a word.

As a first step, we extend the automaton T to an automaton of automata AA by adding a
family of deterministic automata Ap, p ∈ T , such that for each p ∈ T the language of Ap is the set
A∗ \ LT (p) of traces that T cannot perform from p. The following holds:

(v, V) ∈ F+(T) if and only if ∃p0 =
v
⇒AA p:V ⊆ L(Ap) .

Thus, the automata Ap represent some tree failures (v, V) ∈ F+(T) in the sense that there is a
p ∈ T with p0 =

v
⇒AA p and V = L(Ap); in particular, they represent all maximal tree failures, i.e.

all those (v, V) ∈ F+(T) with maximal V . Since in a finite transition system T there exists for
each (v,W) ∈ F+(T) a maximal (v, V) ∈ F+(T) with W ⊆ V , maximal tree failures of F+(T) are
all we have to consider when checking F+(T) ⊆ F+(U) or F+(U) ⊆ F+(T).

Similarly, we construct an automaton of automata for U , but this time, we additionally make
U deterministic more or less by the usual power set construction. This results in a deterministic
automaton of automata BB , which is a deterministic automaton extended with a family BBQ,
Q ∈ BB , where each BBQ is a set of automata: for each state Q (being a set of states of U) BBQ

consists of deterministic automata Bq, q ∈ Q, with L(Bq) = A∗ \ LU(q).

42

121 3
b

a

a

b

a,b

a,b

B2

∅

a,b

2 3
b

a,ba

B1 B3

∅

a,b

3
a,b

1 12 3
a b

a
aB

∅

Figure 5.2: BB for the example transition system U in Figure 5.1

More in detail, the automaton part of BB is defined as follows. The initial state of BB is Q0 =

{q | q0 −
τ∗

−→U q}; the transition relation is defined by Q −
a
→BB Q′ if Q′ = {q′ | ∃q ∈ Q: q −

a
→U−

τ∗

−→U q′}.
We restrict BB to the nonempty states reachable from Q0 and let each state of BB be final.6 As
a consequence, all states of BB are productive and L(BB) = L(U).

This way, Q0 =
v
⇒BB Q iff Q = {q | q0 =

v
⇒U q} for all v ∈ A∗ and

(v, V) ∈ F+(U) if and only if ∃Q0 =
v
⇒BB Q, B ∈ BBQ:V ⊆ L(B) .

Example 5.1 Figure 5.2 shows BB for U as in Figure 5.1, where all states are final, and the
associated automata, where only ∅ is final. Each state Q of BB is connected with thick lines to
the automata in BBQ. (We write a state {1, 2} as 12 etc.) Note that these automata are also
obtained from a power set construction and complementation of final states, and that one only has
to construct one automaton for each state q of U .

5.2 Decision for F+-inclusion

As an exercise, we will now show how to check F+(T) ⊆ F+(U). For this, from AA and BB ,
we construct the following (partial) product automaton S, which can also be seen as the minimal
simulation from AA to BB (where a simulation is a relation between the states of AA and that of
BB).7

• (p0, Q0) ∈ S is the initial state of S and all states are final.

• If (p,Q) ∈ S, a ∈ A and p −
a
→AA p′, then by language inclusion and definition of BB , there is

a unique Q′ ∈ BB such that Q −
a
→BB Q′; we add (p′, Q′) and the transition (p,Q) −a→ (p′, Q′)

to S.

• If (p,Q) ∈ S and p −
τ
→AA p′, then we add (p′, Q) and the transition (p,Q) −τ→ (p′, Q) to S.

(Observe that BB has no τ -arcs.)

6Note that BB is deterministic in the sense that there are no τ -labelled arcs and for each state Q and each a ∈ A

there is at most one outgoing a-labelled arc.
7In fact, initial state, final states and arcs of S are technically irrelevant, but we consider them as intuitively

helpful.

43

The algorithm for checking F+(T) ⊆ F+(U) now is based on the following principle. For every
sequence p0 =

v
⇒AA p, V = L(Ap) is a maximal refusal set for v in T (i.e., a maximal set for which

(v, V) ∈ F+(T)); moreover, all refusal sets are a subset of some maximal refusal set that is encoded
this way. Since BB is deterministic, v also determines a unique state Q with Q0 =

v
⇒BB Q; by

construction we have (p,Q) ∈ S. The automata in BBQ likewise represent all maximal refusal sets
for v in U . Hence, we simply have to check for each (p,Q) ∈ S whether there is some B ∈ BBQ

with L(Ap) ⊆ L(B).

Example 5.2 Figure 5.3 shows S for T (i.e. the corresponding AA) and BB as in Figures 5.1
and 5.2, as well as the only associated automaton AI of AA, where ∅ is the only final state. Since
(I, 1) ∈ S and ab ∈ L(AI) \ L(B1), we conclude that F+(T) ⊆ F+(U) fails.

5.3 Decision for ⊑F+

Checking ⊑F+ entails checking whether for all (v, V) ∈ F+(T) with V 6= ∅ we have (v u, u−1V) ∈
F+(U) for some u ∈ ↓V . (Recall that, by language inclusion, we do not have to check pairs (v, ∅).)
As above, we construct AA, BB and S. This time, we have to check for each (p,Q) ∈ S and each
∅ 6= V ⊆ L(Ap) that

∃u ∈ ↓V, Q′ ∈ BB , B ∈ BBQ′ :Q =
u
⇒BB Q′ and u−1V ⊆ L(B) . (4)

Let us fix (p,Q); we now show how to check (4) for all ∅ 6= V ⊆ L(Ap). This means that we have to
compare runs of Ap (u in (4)) with runs of BB . To do this, we construct another (partial) product
automaton P , similar to the one above, but this time between the automaton Ap (whose initial
state we also denote by p) and BB where the initial state is changed to Q. Another difference with
the case above is that, this time, we do not necessarily have L(Ap) ⊆ L(BB) — i.e., BB might not
be able to simulate Ap — but still we want to represent all of L(Ap) in order to check the inclusion
in (4). Therefore, P is constructed as follows (here ∗ is a dummy element, not appearing anywhere
else):

• (p,Q) ∈ P is the initial state;

• if (p′, Q′) ∈ P and p′ −
a
→Ap

p′′

– and Q′ −
a
→BB Q′′, we add the state (p′′, Q′′) and the transition (p′, Q′) −a→ (p′′, Q′′) to P ;

– and Q′ 6−
a
−→BB (in particular, if Q′ = ∗), we add (p′′, ∗) and the transition (p′, Q′) −a→

(p′′, ∗) to P ;

• (p′, Q′) is final iff p′ is.

Since Ap and BB are deterministic, P is also deterministic, and we have L(P) = L(Ap) by con-
struction. We will call R a productive sub-automaton of P , if R is obtained from P by restricting
all components (in particular also the final states) to a subset M of the state set such that each
state of R is productive (in R).8 We will show that (4) is satisfied for all ∅ 6= V ⊆ L(P) if and only
if for each productive sub-automaton R of P

∃(p′, Q′) ∈ R, Q′ ∈ BB , B ∈ BBQ′ :LR(p′, Q′) ⊆ L(B) . (5)

Since the latter clearly is decidable, it then follows that that ⊑F+ is decidable. (Note that Q′ ∈ BB
in (5) is equivalent to Q′ 6= ∗.)

8Recall that a state of an automaton is called productive if it lies on a path from the initial to some final state.

44

So assume (4) is satisfied for all ∅ 6= V ⊆ L(P). If R is a productive sub-automaton, then ∅ 6=
L(R) ⊆ L(P). Hence (due to (4)), ∃u ∈ ↓L(R), Q′ ∈ BB , B ∈ BBQ′ :Q =

u
⇒BB Q′ and u−1L(R) ⊆

L(B). Then (p,Q) =
u
⇒R (p′, Q′) for some p′; since R is deterministic, (p′, Q′) is uniquely determined

by u, and therefore u−1L(R) = LR(p′, Q′). Thus, (p′, Q′) and B are the state and the automaton
whose existence is asserted in (5).

Vice versa, assume that (5) holds for each productive sub-automaton R and take some ∅ 6=
V ⊆ L(P). The set of states that are needed in P to accept the words of V defines a productive
sub-automaton R with V ⊆ L(R). Take (p′, Q′) ∈ R and B ∈ BBQ′ that satisfy (5). Then there
is some u ∈ ↓V with (p,Q) =

u
⇒P (p′, Q′) by choice of R, and Q =

u
⇒BB Q′ by construction of P and

since Q′ ∈ BB . Now u−1V ⊆ u−1L(R) = LR(p′, Q′) by determinism of R, and we conclude that
u−1V ⊆ L(B).

Therefore we have shown:

Theorem 5.3 ⊑F+ , i.e. ⊑shd, is decidable.

a,b

(I, 1)

(I, 12)

P

b a,b
a

a b

I

AI

a,b

a

(∅, 3)

(∅, ∗)

b

∅

(I, 1)

(I, 12)

S

a

a

Figure 5.3: S, P and the only Ap for the example transition systems

Example 5.4 Figure 5.3 shows S for T (i.e., its corresponding AA) and BB as in Figures 5.1
and 5.2, as well as the only associated automaton AI of AA, where ∅ is the only final state.
Moreover, for the case (p,Q) = (I, 1) it shows the product automaton P , where (∅, 3) and (∅, ∗) are
final states. If we omit (∅, ∗) from P , we get a productive sub-automaton R for which (5) fails:

• (p′, Q′) = (I, 1): ab ∈ LR(I, 1), ab 6∈ L(B1);

• (p′, Q′) = (I, 12): b, ab ∈ LR(I, 12), ab 6∈ L(B1), b 6∈ L(B2);

• (p′, Q′) = (∅, 3): ε ∈ LR(∅, 3), ε 6∈ L(B3).

Since we reach (I, 1) in S by ε and L(R) = a+b, the fact that (5) fails corresponds to (ε, a+b) ∈
F+(T) which is not �-dominated by any element of F+(U); hence T 6⊑F+ U .

5.4 Complexity

The above decision algorithm for ⊑F+ builds BB and P which could have in the order of 2m

states, where m is the number of states of U ; then, P could have in the order of 22m

productive
sub-automata. It follows that one would expect the algorithm to take at least double exponential

45

time in the worst case. We will now refine the algorithm and show that ⊑F+ can be decided in
exponential, even linear exponential time.

Consider P as productive sub-automaton of itself, and consider respective (p′, Q′) ∈ P and
B ∈ BBQ′ that make P satisfy (5). If some productive sub-automaton R contains (p′, Q′), then
clearly LR(p′, Q′) ⊆ LP (p′, Q′) ⊆ L(B). Thus, once we have found (p′, Q′), we have to check
(5) further only for productive sub-automata R′ of P ′, where P ′ is obtained from P by removing
(p′, Q′) and all states that then are not on a path from (p,Q) to a final state, i.e. are not productive
anymore. Now P ′ can be treated in the same way, and all in all we only have to check (5) for
a number of productive sub-automata bounded by the number of states of P . We arrive at the
following result, whose proof can be found in Appendix B (Page 69).

Theorem 5.5 For a fixed finite alphabet size, T ⊑shd U and T ⊑c
shd U can be decided in time

linear exponential in the numbers of states of T and U .

Actually, our algorithm can be further simplified: one can show that the states (p, ∗) of P are not
needed. Since this does not improve the complexity in the worst case, we do not go into details
here.

46

B =
∑

{B} (6)
∑

i∈I

∑

j∈J Bij =
∑

{Bij | i ∈ I, j ∈ J} (7)

B ||A C =
∑

{βi; (Bi ||A C) | βi /∈ A}
+

∑

{γk; (B ||A Ck) | γk /∈ A}
+

∑

{βi; (Bi ||A Ck) | βi = γk ∈ A}

(8)

B[ϕ] =
∑

{ϕ(βi); (Bi[ϕ]) | i ∈ I} (9)
B/A =

∑

{τ ; (Bi/A) | βi ∈ A}
+

∑

{βi; (Bi/A) | βi /∈ A}
(10)

recX θ = θ(X)[recθ] (11)

α; τ ;B = α;B (12)
B + τ ;B = τ ;B (13)

α; (B + τ ;C) + α;C = α; (B + τ ;C) (14)

Table 6.1: Bisimulation axioms, where B =
∑

i∈Iβi;Bi and C =
∑

k∈Kγk;Ck.

6 Proof principles

We discuss a number of general methods to prove that the ⊑c
shd-preorder holds between a given

pair of systems, avoiding the direct use of the (costly) denotational characterisation as much as
possible. In the next section, we use these methods in a number of examples of system specifications
and their implementations on the basis of should-testing.

6.1 The bisimulation inheritance

Since observation congruence is stronger than all our testing pre-orders (see Proposition 3.6), all
known methods to prove ≃bis are valid for proving ≃c

shd. This is an advantage because, as men-
tioned before, the proof techniques for observation congruence are relatively simple; hence, if it
holds, it is cheaper to show ≃bis than to try to show ≃c

shd directly. Of course, it may be that
observation congruence fails to hold between two given ⊑c

shd-related systems, in which case the
inherited proof techniques obviously cannot work. If this is so, then one can still try methods more
directly tuned to the testing notion one is actually interested in. (This point is made very forcefully
by Valmari [34] in the context of transition system reduction.)

Of the proof techniques available for observation congruence we mention two: constructing a
bisimulation relation and applying the equational theory. The details of bisimulation relations are
omitted here; see [28] for an exposition. With respect to the equational theory, we recall the axioms
in Table 6.1, adapted from Milner to our setting.

Axioms (8)–(10) explain, respectively, synchronisation, renaming and hiding in terms of action
prefix and choice. In fact, using (6)–(10) one may rewrite every finite term into a term of the form
∑

i∈I αi;Bi where the Bi are again of this form. Axiom (11), on the other hand, states that we
may always unfold fixpoint terms.

6.2 The testing theory

We do not have a complete equational theory of ⊑c
shd. However, there are a number of axioms

that this relation satisfies beyond those of observation congruence. For one thing, although ⊑c
shd

is incomparable to the standard must-testing of De Nicola and Hennessy [17] (see Proposition 3.6),

47

α;B + α;C = α; (τ ;B + τ ;C) (15)
τ ; (B + C) ⊑ B + τ ;C (16)

α;B + τ ; (α;C +D) = τ ; (α;B + α;C +D) (17)
B ⊑ τ ;B (18)

if B ⊑ C then C ⊑ τ ;B + τ ;C (19)
if θ[σ] = σ then rec θ ⊑ σ (20)

Table 6.2: Should-testing axioms and rules.

most of their axioms dealing with nondeterminism do hold in our setting as well. Furthermore, the
fact that recursion builds smallest fixpoints (Proposition 4.21), can be lifted to the language and
transferred to ⊑c

shd (Theorem 4.25). Table 6.2 contains the resulting axioms and rules. Rule (19)
comes in the place of B ⊑ τ ;B + τ ;C, which is an important axiom of must-testing that is not
satisfied by ⊑c

shd (it contradicts the language equality implicit in ⊑c
shd). Rule (20) is a weaker

version of the recursive specification principle that we have shown in Figure 3.5 not to hold for
≃c

shd: even though a recursive set of equations θ does not generate a unique solution, every solution
is ⊑c

shd-related to the fixpoint generated by rec θ.

Theorem 6.1 ⊑c
shd and ≃c

shd satisfy the axioms and rules in Table 6.2.

Proof. Clearly, language equality and reverse implication for stability are satisfied in all cases. In
the cases (15), (16), (18) and (19), we even have equality or inclusion of F+-semantics (in (19)
without any assumption on B and C) and are done by Proposition 4.7; as an example, we treat
(16).

If (w, V) ∈ F+(τ ; (B + C)) arises from τ ; (B + C) =
w
⇒ τ ; (B + C) or τ ; (B + C) =

w
⇒ B + C,

then w = ε and V ∩ L(τ ; (B + C)) = V ∩ L(B + C) = ∅; thus, (w, V) ∈ F+(B + τ ;C) since
L(τ ; (B + C)) = L(B + τ ;C). If it arises from some other τ ; (B + C) =

w
⇒ D, then B =

w
⇒ D or

C =
w
⇒ D, hence also B + τ ;C =

w
⇒ D; therefore (w, V) ∈ F+(B + τ ;C) in this case, too.

For (17), we have F+(τ ; (α;B+α;C+D)) ⊆ F+(α;B+τ ; (α;C+D)) with a similar argument,
and we almost have the other inclusion as well. The only exception is (w, V) ∈ F+(α;B+τ ; (α;C+
D)) arising from α;B+τ ; (α;C+D) −τ→ α;C+D, i.e. w = ε and L(α;C+D)∩V = ∅. If L(α;B)∩V =
∅, we have (w, V) ∈ F+(τ ; (α;B + α;C +D)); otherwise α ∈ ↓V and (α,α−1V) ∈ F+(τ ; (α;B +
α;C +D)) by τ ; (α;B +α;C +D) =

α
⇒ C since L(C)∩α−1V ⊆ α−1(L(α;C +D))∩α−1V = ∅. 2

Note that the axioms in Table 6.2 (together with the idempotence of choice, which is derivable in
our setting) imply the τ -laws of observation congruence in Table 6.1.

In addition to these axioms, we recall from Section 3.3 that ≃c
shd also satisfies the weakened fairness

rule KFAR− (see Page 22). For instance, KFAR− in combination with Axiom (12) can be used to
show that τ -loops at non-initial states can be ignored: if a is an arbitrary action not occurring in
B then

α; (recX. τ ;X +B) ≃c
shd α; ((recX. a;X +B)/a) ≃c

shd α; τ ; (B/a) ≃c
shd α;B

where the second step is by KFAR−. It may be worthwile noting that, in combination with
Rule (20), KFAR− can actually be adapted somewhat to approach the original KFAR (1) —
where, with respect to Rule (20), θ = [ai;Xi+1/Xi]i∈Nn and σ = [Xi/Bi]i∈Nn :

Bi = ai;Bi+1 + Ci ai ∈ A

Bi/A ⊒ τ ;
∑

i∈Nn
(Ci/A)

(i ∈ Nn) (21)

48

b bs′

c c=⇒

s

d d
⇐=

τ

Figure 6.1: preconditions for contraction

6.3 Denotational arguments

As remarked before, the equational theory presented above is not complete. This means that
occasionally one may be forced to show that two systems are ⊑c

shd-related by directly accessing
the denotational characterisation. As an example of a property proved in this way, we formulate
a contraction lemma stating that under certain circumstances, two states of a transition system
can be identified. The proof is rather technical and thus deferred to Appendix B (Page 70). An
algebraic counterpart of this lemma is difficult to give.

Lemma 6.2 (contraction lemma) Let T = 〈S,→, q〉 be a transition system with states s′ 6= q
and s that satisfy the following conditions (see Figure 6.1):

a) s −α→ s′ iff α = τ ;

b) for all α 6= τ we have s −α→ s iff s′ −α→ s′;

c) if s −α→ t for some t ∈ S \ {s, s′}, then s′ −α→ t′ for some t′ ∈ S \ {s′};

d) if t −α→ s′ for some t ∈ S \ {s, s′}, then t −α→ s, too.

Let U = 〈S′,→, q〉 be obtained from T by contracting s and s′ to s, i.e., by putting S′ = S \ {s′}
and replacing s′ in the arcs by s. Then T ≃c

shd U .

Another denotational argument is presented in the following proposition. We call a transition
system deterministic if for all reachable states s, s −α→ s1 and s −α→ s2 implies α 6= τ and s1 = s2.

Proposition 6.3 If S is deterministic and I ⊑c
shd S, then I ≃bis S.

Proof. The absence of τ -moves implies stability of S and hence of I; thus, it is sufficient to
show that R = {(I ′, S′) | ∃w: I =

w
⇒ I ′ ∧ s =

w
⇒ S′} is a weak bisimulation. Given (I ′, S′) ∈ R and a

respective w, we have: I ′ −τ→ I ′′ implies (I ′′, S′) ∈ R; I ′ −a→ I ′′ implies w a ∈ L(I) = L(S), and since
S′ is unique with S =

w
⇒ S′ by determinism, there is some S′ −a→ S′′ with (I ′′, S′′) ∈ R. Finally,

assume S′ −a→ S′′; if I ′ =
a
⇒, we are done, and otherwise (w, {a}) ∈ F(I) ⊆ F(S); but the latter is a

contradiction, since S′ is unique with S =
w
⇒ S′. 2

As a final “denotational” proof technique, we mention the result from the preceding section that
⊑shd and ⊑c

shd are decidable for finite-state systems.

6.4 Compositionality

In conjunction with the methods presented above, it is very important to realise that, due to
the fact that our notion of implementation is pre-congruent, proofs of correctness can be done
in a compositional manner. This means that it is not necessary to consider complete systems;
rather, one may take a single module and replace that by a “better” one (more fault-tolerant, more
deterministic, etc.); the entire system will thereby be improved, and the result of this replacement
is a formal implementation of the original system.

49

to

init

to

init

B

C

BW 1init

C

B

Choice

init

to

init

to

C

B

BW 0

Figure 7.1: Correct and incorrect versions of busy waiting (to abbreviates timeout).

7 Examples

The purpose of this section is to demonstrate the advantages of shd-testing compared to observa-
tion congruence, acc- and divergence-sensitive must-testing. In this section, we make use of the
alternative presentation of recursion mentioned in Section 3, i.e. we give the process environment
θ by listing defining equations and use X in place of recX θ, leaving θ implicit. In Section 7.3, we
also use the with-notation.

7.1 External choice as busy-waiting

Our first, simple example concerns the implementation of external choice as busy waiting; see
Figure 7.1. In the process Choice := init; (B+C) we have that, after initialisation, either B or C
can be chosen. A busy-waiting implementation oscillates between B and C:

BW 0 := init;WaitB + init;WaitC

WaitB := B + timeout;WaitC

WaitC := C + timeout;WaitB

where timeout is assumed not to occur in B or C (hence B/timeout ≃bis B and C/timeout ≃bis

C). From KFAR− (2), Axiom (12) and idempotence of +, it can be derived that Choice ≃bis

BW 0/timeout; hence this also holds for ≃c
shd and ≃acc (Proposition 3.6). The systems are

not equivalent under De Nicola-Hennessy must-testing, since this is sensitive to the divergence
in BW 0/timeout. To show the advantage of ≃c

shd over ≃acc, consider

BW 1 := init;Wait ′B + init;Wait ′C

Wait ′B := B + timeout;Wait ′B

Wait ′C := C + timeout;Wait ′C .

BW 1 fails to change between options, so in general BW 1/timeout is certainly not a correct im-
plementation of Choice . Accordingly, BW 0 6≃c

shd BW 1; but acceptance testing suggests that BW 0

and BW 1 can be used interchangeably, since BW 0 ≃acc BW 1 (any failure of BW 0 can be found in
BW 1 and vice versa, by taking the appropriate initial init-branch). This, therefore, is an example
where the lack of pre-congruence w.r.t. hiding makes acceptance testing unsuitable.

7.2 The alternating bit protocol

As a more extensive example we will use ≃c
shd to show the correctness of a version of the alternating-

bit protocol. The desired behaviour is that of a one-place buffer:

Buf := snd; rcv;Buf ,

50

s1 c0, c1 c1

2

s0

r1

3 3

a1

c0

2Ms Mar0 a0

11

s0, s1

Figure 7.2: Two lossy channels.

where we abstract from the content of the message sent. The implementation is built from the
sender Snd0 and the receiver Rcv , which are connected by two lossy channels Ms and Ma for
transmitting messages and acknowledgements. An additional bit is appended to the messages and
acknowledgements, so Ms participates in sending with si on the one side and in receiving with ri
on the other, while Ma participates in confirming with ci and in acknowledging with ai (i = 0, 1).
The channels are given by

Ms := s0; r0;Ms + s0;Ms + s1; r1;Ms + s1;Ms

Ma := c0; a0;Ma + c0;Ma + c1; a1;Ma + c1;Ma

(see Figure 7.2). Since Ms can repeatedly and unboundedly often lose the message, which at best
leads to an infinite repetition of this message, it is clear that an implementation on this basis will
be able to diverge instead of delivering the message. Hence, such an implementation cannot be
correct with respect to a divergence-sensitive relation like De Nicola-Hennessy must-testing. In
contrast, ⊑acc, ⊑

c
shd and ≃bis can ignore divergence due to their built-in fairness assumption; and

indeed, our implementation will be correct for each of these.
In this implementation, the sender Snd0 gets a message with snd, appends the bit 0, forwards

it with s0 to the receiver and waits in state Ack0 for an acknowledgement. In this state, the sender
may accept an acknowledgement a1 with the wrong bit, but will ignore it; the sender may repeat
the message; upon getting the correct acknowledgement a0, it will repeat its behaviour using bit 1.
The receiver works analogously, starting in state Rcv where it waits for the first reception. Sender
and receiver are defined by:

Snd i := snd; si;Ack i

Ack i := ai;Snd1−i + a1−i;Ack i + si;Ack i

Rcv := r0;Rcv 0

Rcv i := rcv; ci;Cnf i

Cnf i := r1−i;Rcv1−i + ri;Cnf i + ci;Cnf i

(see Figure 7.3). In the implementation, the four components are composed using suitable synchro-
nisation sets, and all actions except snd and rcv are hidden, i.e.

ABP := ((Snd0 ||s0,s1
Ms)/s0, s1 ||r0,r1,a0,a1

(Rcv ||c0,c1
Ma)/c0, c1)/r0, r1, a0, a1 .

We will show Buf ≃c
shd ABP in a compositional fashion, viz. by reducing subsystems of ABP while

building up its transition system, which in the end will be checked against the specification. First,
we compose Snd 0 with Ms synchronising over s0, s1. The resulting transition system is shown in
Figure 7.4, where a state ij corresponds to Snd0 being in state i according to Figure 7.3 and Ms
being in state j according to Figure 7.2. s0 and s1 are subsequently hidden.

For the reduction of the resulting system we can use the contraction lemma (Lemma 6.2) of the
previous section, by applying it to s = 31 and s′ = 32 on the one hand and to s = 61 and s′ = 63

51

2 5

6

rcv

3r0, c0 r1, c1

0 1

s0
a0 a1

s1

snd

4

2 5

3

snd

6

1
Snd0

s1, a0s0, a1

Rcv
4

c0

r0

c1
r1 r0

rcv

Figure 7.3: Sender and receiver.

snd

s0

s1a0

s0, a1

s0

s1

a1

a0

r0

r0

r0

s1, a0

r1

snd
s0

snd

snd

13 41

32

42

31

525163 61

11

2123
r1

r1

s1

a0

a1 a1

Figure 7.4: Sender composed with message channel.

snd

snd snd

7

8 2

4

5

3

6

1

snd a0

a1

a1, r0

a0
r0

a0, r1

a1

r1

r0

r1

Figure 7.5: Sender and message channel after contraction.

on the other. Afterwards, we can omit the τ -loops at the contracted states according to KFAR−

(2) as argued in Section 6.1. Consequently, there is only one arc leaving 21 and this is a τ -arc;
according to Axiom (12), we can contract this arc and similarly for 51. The resulting system is
shown in Figure 7.5 with a new enumeration of the states.

Note that this transition system is not observation congruent to the one in Figure 7.4 (with s0
and s1 hidden). The latter can perform snd to reach 32 from which a0 can always be followed by
r0. The former necessarily reaches 2 when performing snd, and from there a0 can be performed
such that r0 is impossible. Hence, the reduction discussed above is not valid up to ≃bis; indeed,
Lemma 6.2 fails for ≃bis.

Similarly as above, we construct the transition system of Rcv ||{c0,c1}
Ma (Figure 7.6) and reduce

it after hiding c0 and c1 (Figure 7.7). As a final step, we compose the systems of Figures 7.5 and 7.7
to get the transition system of (Snd0 ||s0,s1

Ms)/s0, s1 ||r0,r1,a0,a1
(Rcv ||c0,c1

Ma)/c0, c1 reduced up

52

21

11

31

r0

c0

c1r1

r0, c0

c0

c1

r0

a0

a0

a0

r1, c1

23
c0r1

32

rcvrcv

rcv

525163 61

0113 4241

rcv

a1

a1

a1

c1

r1

r0 r0

Figure 7.6: Receiver composed with acknowledgement channel.

rcv

rcv
rcv

7

8 2

6

1 3 4
a0

5

0

rcv r1 r1

a0, r0

r0

a1, r1

r0
a1

a0

a1

r0

Figure 7.7: Receiver and acknowledgement channel after contraction.

21 6463

86

snd

snd

rcv

rcv

a1

r0

r1

a0

r1

a0

r1

r0

r0

a1

a1

27

52
snd

42

r1
snd

rcv

10

28

rcv

76

22 6232

65661626

snd

20

r1

a0

r0

a0

r0

a1

a1

a0

r0

Figure 7.8: The reduced implementation.

to ≃c
shd; see Figure 7.8.

Now one can show observation congruence of Buf with the system in Figure 7.8 after hiding
r0, r1, a0, a1. Informally, from the start state 10 we reach 22 by performing snd and rcv; from 22,
the system moves to 62 with snd, from 62 to 66 with rcv, and so on. Formally:

s ≈ Buf for s = 10, 16, 22, 28, 32, 42, 65, 66, 76

s ≈ rcv;Buf for s = 20, 21, 26, 27, 52, 62, 63, 64, 86

53

r1r0

ττ

s1s0τ τ

Figure 7.9: A different message channel Ms1.

and hence ABP ≃c
shd 10 due to compositionality of ≃c

shd for hiding and 10 ≃bis Buf , implying
ABP ≃c

shd Buf . Because Buf is clearly stable and deterministic, from Proposition 6.3 it now even
follows that ABP ≃bis Buf .

7.3 Alternative channels

To further stress the advantages of ≃c
shd, we will discuss the effect of changing the behaviour of

the channel Ms. For this purpose, we introduce a notation for changing environments: let θB
X map

X to B and coincide with θ otherwise. Furthermore, we define a number of contexts.

C0[−] = s0; r0;− + s0;− + s1; r1;− + s1;−

C1[−] = s0; (τ ; r0;− + τ ;−) + s1; (τ ; r1;− + τ ;−)

C2[−] = s0; (r0;− + −) + s1; (r1;− + −)

C3[−] = s0; (r0;− + τ ;−) + s1; (r1;− + τ ;−)

Above, we defined the message channel by Ms := C0[Ms]. An alternative definition is Ms1 :=
C1[Ms1]; the resulting behaviour is shown in Figure 7.9. This channel is perhaps more realistic
than the original one, since the decision to lose or to deliver a message is taken after (and not
while) accepting it with s0 or s1. The above implementation remains correct if we change to Ms1:
since C0[Ms] ≃c

shd C1[Ms] in arbitrary environments due to Axiom (15) and ⊑c
shd is a recursive

pre-congruence (Theorem 3.15), for θ as implicitly introduced in Section 7.2 we have

ABP with θMs1
Ms ≃c

shd ABP with θ
C1[Ms]
Ms ≃c

shd ABP with θ ≃c
shd Buf

and hence (again due to Proposition 6.3) ABP with θMs1
Ms ≃bis Buf . Hence, in proving correctness

with respect to should-testing, we can reuse the existing proof to a large degree.
This argument, which is an example of the compositionality principle discussed in Section 6.4,

fails for observational congruence, since Ms ≃bis Ms1 is false. The compositionality argument also
fails for ≃acc: we do have Ms ≃acc Ms1, but since ≃acc is not a congruence for hiding, we cannot
exchange Ms and Ms1 in the context of ABP .

As a further variation, consider the channel Ms2 := C2[Ms2]. This channel cannot lose a message
autonomously, but if the next message arrives before the previous one was read, then it over-
writes this previous message. Since C2[Ms] ⊑c

shd C1[Ms] for arbitrary process environments by
Axiom (18), it follows by recursive pre-congruence that

ABP with θMs2
Ms ⊑c

shd ABP with θ
C2[Ms]
Ms ⊑c

shd ABP with θ
C1[Ms]
Ms ≃c

shd Buf .

Again, Proposition 6.3 then implies ABP with θMs2
Ms ≃bis Buf and, thus, also ABP with θMs2

Ms ≃c
shd

Buf . The same argument works for the channel Ms3 := C3[Ms3] used by Natarajan and Cleaveland
[31], where the part τ ;Ms3 describes the autonomous decision to lose the message, which can also
serve for freeing the channel for the next message.

54

8 Concluding remarks

We briefly summarise the achievements of this paper, after which we review related work. We end
the section with a discussion of open questions.

• We have defined a testing scenario, along the lines of the De Nicola-Hennessy framework,
which we called should-testing. In this scenario, a test is satisfied if success always remains
within reach in the system under test. Clearly, this is less demanding than requiring that
success is always reached ; in fact, there is an implicit fairness assumption in should-testing.
(Section 3.2)

• We have made this fairness assumption explicit in several manners: we have shown that (for
finite state systems) the should-satisfaction of a test corresponds to the certainty of reaching
success under a strong fairness assumption, and we have pointed out that should-testing
is strictly weaker than observation congruence, and hence satisfies (a weakened version of)
Kooman’s Fair Abstraction Rule. (Section 3.3)

• We have shwon that should-testing gives rise to the coarsest liveness-preserving pre-
congruence for a fragment of process algebra consisting of prefixing, synchronisation, renaming
and hiding — where the notion of liveness that is being preserved is that a system can’t unob-
servably get to a state where it can never perform any visible action any more. In this respect,
should-testing improves upon pure failure inclusion, which is the coarsest liveness-preserving
pre-congruence for the same fragment with the exception of hiding. (Section 3.2)

• We have shown that the combination of should-testing and the preservation of stability gives
rise to the coarsest liveness-preserving pre-congruence for the aforementioned fragment of
process algebra plus choice. (This is in fact the standard way to obtain (pre-)congruence
with respect to choice.) (Section 3.2)

• We have shown that the combination of should-testing, the preservation of stability and
language equality gives rise to the coarsest liveness-preserving pre-congruence for the afore-
mentioned fragment of process algebra plus choice and recursion — thus, for a full-fledged
process algebra containing all the standard features, such as CSP, CCS, ACP or LOTOS.
(Section 3.2)

• We have characterised a space of denotational models for should-testing, with constructions
modelling the aforementioned process algebraic operators. At the heart of the denotational
model lies an extension of standard failures which we call tree failures, previously studied by
Vogler. (Section 4.3)

• We have defined a denotational semantics, based on the first-order constructions mentioned
above and the usual least-fixpoint construction for recursion, and shown it to be equivalent
to the combination of tree failures and stability from the operational semantics (Section 4.4).

• We have proved decidability of should-testing for finite state systems, and shown the decision
procedure to be linear exponential. (Section 5)

• We have provided several axioms, laws and proof principles for should-testing (albeit no full
axiomatisation). (Section 6)

55

• We have demonstrated the practical applicability of should-testing on several examples, in-
cluding a busy-waiting scheme and the Alternating Bit-protocol. It is crucial here that should-
testing is a pre-congruence in order for the proof to be carried out in the given, modular
fashion. (Section 7)

8.1 Related work

In the introduction and in Section 3 we have already discussed the position of should-testing in
the lattice of behavioural equivalences and pre-orders; see especially Proposition 3.6. Rather than
repeating ourselves, here we limit ourselves to pointing out avenues of research similar to ours, and
compare the results achieved.

This paper is a continuation and extension of our own work with Brinksma [10, 11], where we first
presented the should-testing scenario and stated some of the congruence results, resp. presented
some applications. The main achievement over these preliminary versions (apart from the fact
that the present paper contains full proofs) are the denotational characterisations (which provide
independent proofs for the pre-congruence properties of should-testing, which are at least in some
cases much easier than the operational proofs we had in mind previously), the recursion pre-
congruence result, and the proof of decidability of should-testing.

Natarajan and Cleaveland [31] concurrently and independently developed the same testing
scenario that we call should-testing in this paper. They also present a — different — denotational
characterisation (but no denotational constructions), and moreover give a topological argument
that the difference with must-testing is small. However, they do not address congruence issues.

Boreale et al. [6] discuss and compare our should-testing to some other testing scenarios in “a
general approach to define behavioural pre-orders by considering the pre-congruences induced by
three basic observables”. That is, they start with “basic observables” and investigate the coarsest
pre-congruences generated by those, in the barbed bisimulation style (see Milner and Sangiorgi
[29]). One of these basic observables corresponds to our liveness predicate, and indeed our coarsest
liveness-preserving pre-congruence result corresponds to the characterisation of should-testing in
that setting. Pre-congruence with respect to recursion, however, is not considered there.

Our notion of test satisfaction corresponds to the notion of liveness in Petri net theory. There-
fore, the study of liveness in arbitrary contexts performed in a Petri net setting by Vogler [41] is
very close to our should-testing; the impact on hiding and divergence was not considered in [41],
but our denotational semantics is derived from this study.

The issue of fair testing has also been investigated in the context of the join calculus by Fournet
and Gonthier [20]; it turns out that in that setting, part of the hierarchy of equivalences collapses
so that fair testing comes to coincide with coupled simulation.

A preorder closely related to our full pre-congruence is studied by Voorhoeve and Mauw [42]
for a process algebra with a very restricted form of recursion: this preorder combines F+-inclusion
with language equality and, to cater for choice, preservation of initial stability. The authors argue
that this incorporates fairness in a sensible way, but has nicer algebraic properties than our should-
testing. Their claim is substantiated by giving characteristic formulae in Hennessy-Milner logic for
their preorder as well as an axiomatisation. Voorhoeve and Van Glabbeek have announced that
this preorder is the coarsest full pre-congruence refining acceptance testing and satisfying RSP; this
is currently work in progress [37].

There is a natural link between fairness and probability theory. Roughly, one would expect
that a process satisfies a test under a fairness assumption if and only if it satisfies that test under
a uniform distribution of probabilities over outgoing transitions, where satisfaction becomes “even-

56

tually reaching success with probability 1”. Núñez and Rupérez [32] show that this correspondence
indeed holds, under certain restrictions stating essentially that (i) the system under test may not
be infinitely branching and (ii) there is an upper bound to the ‘distance’ (measured in number of
transitions, including internal ones) from an arbitrary state of the system under test to the nearest
success state. On the other hand, the testing pre-orders studied by, e.g., Jonsson et al. [23] and
Cleaveland et al. [15] are different in that they compare the likelihood of success for arbitrary tests
(and hence do not restrict themselves to tests for which success is certain, as in [32]). This leads
to greater distinguishing power, as shown in [30].

With respect to the examples we treat in Section 7, especially the Alternating Bit Protocol,
comparable proofs in the literature have been carried out for observation congruence; see, e.g.,
Larsen and Milner [24]. Since our examples are indeed also correct up to observation congruence,
and observation congruence is less costly to check than should-testing, one may wonder where the
added value of should-testing lies. As an answer to this, we have pointed out that, up to should-
testing, state space reductions are possible on individual modules of the system that are invalid
up to observation congruence; since the sub-systems that are being reduced are much smaller than
the total system, there is a real space and time benefit. See also Valmari [34] for an extensive
discussion of this point. Another advantage of should-testing is that it is a pre-order rather than
an equivalence. Again in Section 7, several communication channel implementations are considered,
each modelling a subtly different kind of data loss. We could immediately conclude that the protocol
is correct for each of these kinds of media. Observation congruence does not support this particular
proof strategy, because the different channels are not observation congruent — even if the protocol
as a whole is still correct modulo observation congruence.

We close with a short review of earlier attempts to solve the problem to find a fair testing pre-
congruence. In fact, we can here rely very much on Leduc [25], who compares three approaches
and presents a new one. To ease the discussion, we limit this review to equalities, although there
are related pre-orders in all cases.

The first approach, called FAUD-semantics (Failures with Abstraction from Unfair Divergences)
in [25], was developed by Bergstra et al. [2]. Here, processes are considered equivalent if they are
language equivalent and have the same stable failures; a stable failure is a failure pair (w,A) of a
process B, if B =

w
⇒ C such that L(C)∩A = ∅ and C is stable. Clearly, this semantics ignores runs

that lead to a diverging process.
The second and third approaches are defined by Valmari and Tienari [35, 36]. The CFFD-

semantics (Chaos-Free Failures Divergences, see [35]) refines the FAUD-semantics by additionally
considering the set of traces that lead to a diverging process and the set of infinite traces. This
semantics has been studied in a number of later papers. The NDFD-semantics (Non-Divergent
Failures Divergences, see [36]) abstracts to some degree from the CFFD-semantics, by considering
only convergent failures instead of stable failures. A failure pair (w,A) of B is convergent, if B′ is
not divergent for any B′ with B =

w
⇒ B′.

Leduc [25] shows that CFFD-equivalence is the intersection of FAUD- and NDFD-equivalence,
and that none of the three is comparable to simple failure equivalence. Since in the present paper we
have looked at the coarsest congruence within simple failure equivalence, and since FAUD-, CFFD-
and NDFD-equivalence are congruences as well, it follows that should-testing cannot be weaker
than these three. A significant example taken from [25] are the processes B = recX. a;0 + τ ;X
and C = a;0 + τ ; recX. τ ;X . These processes are FAUD-, CFFD- and NDFD-equivalent; note
that the empty sequence leads to divergence, and that all stable/convergent failures have the form
(a,A). We would argue that this is intuitively wrong, and B and C are indeed distinguished by
should-testing: B has a τ -loop initially, which under the assumption of fairness will eventually be

57

abandoned in favour of a; in contrast, C can choose internally to behave like a livelock that will
never perform a. On the other hand, the processes B = a;0 and C = a; recX.τ ;X are distinguished
by FAUD and NDFD (and hence also by CFFD) but not by should-testing. Hence should-testing
is incomparable to these three.

The new suggestions in [25] are two semantics supported by intuitive arguments. The respective
equivalences are not congruences, and the coarsest congruence refining these equivalences turns out
to be NDFD-equivalence. Thus, this contribution actually supports NDFD-equivalence.

Finally, we want to mention Erdogmus et al. [19]. They introduce a variant of labelled transition
systems where internal transitions are avoided; instead, the system has a kind of macro states
corresponding to processes, where each macro state corresponding to B has a set of internal states
which correspond more or less to the processes that can be reached from B internally. Furthermore,
divergence predicates are added to the macro states which allow to distinguish divergences that a
process can depart from under a fairness assumption from other divergences. While this is a point
of contact to our approach, a clear difference is that an operational semantics defined according to
[19] is divergence-sensitive. They do not present congruence results.

8.2 Open questions

The largest remaining open question is that of the axiomatic theory of should-testing. Section 6
provides some axioms and laws, but they are not complete. We have the impression (supported by
the complexity of the denotational characterisation) that if it exists at all, a complete axiomatisation
will be very difficult to construct.

To give one particular example where the axiomatic theory is lacking: it is not yet completely
understood whether the contraction lemma (Lemma 6.2), which is currently given in operational
terms, has a proper algebraic formulation. So far, we have only found algebraic statements corre-
sponding to special cases.

Acknowledgements

We thank Ed Brinksma for his contribution to the precursors of this paper, and for numerous
discussions on the current one. The first author also gladly acknowledges fruitful discussions on
the topic of this paper with Rom Langerak (who provided the counter-example against recursion
pre-congruence in the absence of language equivalence) and Rob van Glabbeek (who put us on the
right track towards the coarsest pre-congruence property for synchronisation and hiding).

58

References

[1] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.

[2] J. A. Bergstra, J. W. Klop, and E.-R. Olderog. Failures without chaos: A new process semantics for fair
abstraction. In M. Wirsing, editor, Formal Description of Programming Concepts — III, pages 77–103.
IFIP, Elsevier Science Publishers B.V., 1987.

[3] B. Bloom. Structural operational semantics for weak bisimulation. Theoretical Comput. Sci., 146:25–68,
1995. Report version: TR 93–1373, Dept. of Computer Science, Cornell University, Aug. 1993.

[4] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232–268, Jan. 1995.

[5] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14:25–59, 1987.

[6] M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. Information and Compu-
tation, 149:77–98, 1999.

[7] E. Brinksma. On the existence of canonical testers. Memorandum INF-87-5, University of Twente,
1987.

[8] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani, editors, Protocol
Specification, Testing, and Verification VIII, pages 63–74. Elsevier Science Publishers B.V., 1988. Report
version: Memoranda Informatica 88–19, University of Twente.

[9] E. Brinksma. Cache consistency by design. Distributed Computing, 2–3(12):552–565, 1999. Conference
version in PSTV ’94.

[10] E. Brinksma, A. Rensink, and W. Vogler. Fair testing. In I. Lee and S. A. Smolka, editors, Concur ’95:
Concurrency Theory, volume 962 of Lecture Notes in Computer Science, pages 313–327. Springer-Verlag,
1995.

[11] E. Brinksma, A. Rensink, and W. Vogler. Applications of fair testing. In Protocol Specification, Testing,
and Verification, XVI. IFIP, Chapman & Hall, 1996.

[12] E. Brinksma and G. Scollo. The characterization of implementations of LOTOS specifications. In
NGI-SION Symposium ‘Stimulerende Informatica’, pages 485–496. Stichting Informatica Congressen,
Amsterdam, 1986. Full report version: Memorandum INF–86–13, University of Twente.

[13] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes.
J. ACM, 31(3):560–599, July 1984.

[14] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating processes. In S. D.
Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on Concurrency, volume 197 of Lecture Notes
in Computer Science, pages 281–305. Springer-Verlag, 1985.

[15] R. Cleaveland, Z. Dayar, S. A. Smolka, and S. Yuen. Testing preorders for probabilistic processes.
Information and Computation, 154(2):93–148, 1999.

[16] R. Cleaveland and M. C. B. Hennessy. Testing equivalence as a bisimulation equivalence. Formal Aspects
of Computing, 5:1–20, 1993.

[17] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Comput. Sci.,
34:83–133, 1984.

[18] R. De Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical Comput. Sci., 37:245–267,
1985.

[19] M. H. Erdogmus, R. Johnston, and M. Ferguson. On the operational semantics of nondeterminism and
divergence. Theoretical Comput. Sci., 159:271–317, 1996.

[20] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. J. Logic and Algebraic
Programming, 63:131–173, 2005.

59

[21] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[22] ISO. Information processing systems — open systems interconnection — LOTOS — a formal description
technique based on the temporal ordering of observational behaviour. International Standard 8807, ISO,
Geneva, Feb. 1989. 1st Edition.

[23] B. Jonsson, W. Yi, and K. G. Larsen. Probabilistic extensions of process algebras. In J. A. Bergstra,
A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, chapter 11, pages 685–710. Elsevier,
2001.

[24] K. G. Larsen and R. Milner. Verifying a protocol using relativized bisimulation. In T. Ottman, editor,
Automata, Languages and Programming, volume 267 of Lecture Notes in Computer Science, pages 126–
135. Springer-Verlag, 1987.

[25] G. Leduc. Failure-based congruences, unfair divergences, and new testing theory. In S. Vuong and
S. Chanson, editors, Protocol Specification, Testing, and Verification, XIV, IFIP Series. Chapman &
Hall, 1995.

[26] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.
Springer-Verlag, 1980.

[27] R. Milner. Calculi for synchrony and asynchrony. Theoretical Comput. Sci., 25:267–310, 1983.

[28] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[29] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Automata, Languages and
Programming, volume 623 of Lecture Notes in Computer Science, pages 685–695. Springer-Verlag, 1992.

[30] K. Narayan Kumar, R. Cleaveland, and S. A. Smolka. Infinite probabilistic and nonprobabilistic test-
ing. In V. Arvind and R. Ramunajam, editors, Foundations of Software Technology and Theoretical
Computer Science, volume 1530 of Lecture Notes in Computer Science, pages 209–220. Springer-Verlag,
1998.

[31] V. Natarajan and R. Cleaveland. Divergence and fair testing. In Z. Fülöp and F. Gécseg, editors,
Automata, Languages and Programming, volume 944 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

[32] M. Núñez and D. Rupérez. Fair testing through probabilistic testing. In J. Wu, S. T. Chanson, and
Q. Gao, editors, Formal Methods for Protocol Engineering and Distributed Systems, volume 156 of IFIP
Conference Proceedings, pages 135–150. Kluwer, 1999.

[33] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proceedings 5th GI
Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer-Verlag, 1981.

[34] A. Valmari. Failure-based equivalences are faster than many believe. In J. Desel, editor, Structures in
Concurrency Theory, Workshops in Computing, pages 326–340. Springer-Verlag, 1995.

[35] A. Valmari and M. Tienari. An improved failures equivalence for finite-state systems with a reduction
algorithm. In B. Jonsson, J. Parrow, and B. Pehrson, editors, Protocol Specification, Testing and
Verification XI, pages 3–18. IFIP WG 6.1, North-Holland Publishing Company, 1991.

[36] A. Valmari and M. Tienari. Compositional failure-based semantic models for basic LOTOS. Formal
Aspects of Computing, 7:440–468, 1995. Report version: Tampere University of Technology, Software
Systems Laboratory, Report 16, Tampere, Finland, July 1993.

[37] R. van Glabbeek. A congruence result for impossible futures. Private communication, 2005.

[38] R. J. van Glabbeek. The linear time – branching time spectrum II: The semantics of sequential systems
with silent moves. In E. Best, editor, Concur ’93, volume 715 of Lecture Notes in Computer Science,
pages 66–81. Springer-Verlag, 1993.

60

[39] R. J. van Glabbeek. The linear time – branching time spectrum I: The semantics of concrete, sequential
processes. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, chapter 1,
pages 3–100. Elsevier, 2001.

[40] W. Vogler. Failures semantics and deadlocking of modular Petri nets. Acta Inf., 26:333–348, 1989.

[41] W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets, volume 625 of Lecture
Notes in Computer Science. Springer-Verlag, 1992.

[42] M. Voorhoeve and S. Mauw. Impossible futures and determinism. Information Processing Letters,
80(1):51–58, 2001.

61

A Completeness

Apart from the correctness property in Proposition 4.11, which confirms that the tree failures of any term
of L form an element of T and thus tells us that the saturation properties of T are not too strong, we would
like to know the (dual) completeness property that any element of T constitutes the set of tree failures of a
term, or in other words, that T contains ‘no junk’, which tells us that we have not ‘forgotten’ any saturation
properties.

Unfortunately, in its simplest form the completeness property does not hold, due to the cardinalities
of tree failure sets (which may be uncountable) on the one hand and of terms of L (which have countable
sums and sorts) on the other. However, the reason why this fails is beside the main point of this paper: it
has nothing to do with the tree failures or with fair testing in itself, merely with the very technical issue of
choosing the right cardinalities. Let us elaborate on this.

Calling a tree failure set F ∈ T countably representable if there is a term B ∈ L such that F = F+(B),
F may fail to be countably representable for two distinct reasons:

• The alphabet of actions that can be performed may be uncountable: for instance, (a, ∅) ∈ F for all
a ∈ A. A term representing this behaviour would need to have an uncountable sort, which is ruled
out in L.

• The degree of nondeterminism may be uncountable: for instance, if there is a countably infinite set of
actions A ⊆ A such that for all A′ ⊆ A, (ε,A′) ∈ F iff A \A′ is infinite.

It is not difficult to formulate a restriction ruling out the first of these cases. For this purpose, we successively
define the language and the alphabet of a tree failure set, F ∈ T:

L(F) := {w ∈ A∗ | (w, ∅) ∈ F}

A(F) := {a ∈ A | ∃w ∈ A∗ : w a ∈ L(F)}

It should be clear that L(B) = L(F+(B)) for all closed B ∈ L; moreover, for arbitrary F ,G ∈ T, if F ⊑T G
then L(F) ⊆ L(G). An alternative characterisation for the language is L(F) = {w ∈ A∗ | ∃(w v, V) ∈ F}.

Note the difference between the concepts of alphabet and sort : the latter is a syntactic notion, which
is defined for terms only, whereas the alphabet is the set of actions actually occurring. Since the latter is a
subset of the former, and the former is countable, for the completeness of T we have to restrict to F ∈ T
for which A(F) is a countable set.

On the other hand, we have not found a good characterisation for countable non-determinism, due to the
aforementioned discrepancies in cardinalities between syntax and semantics. In fact, we can recover the ‘no
junk’ property by (temporarily) allowing uncountable sums and process environments. To remain consistent
(for instance, to guarantee the existence of fresh variables in the definition of syntactic substitution, see
Section 2.2) we should then also choose a higher cardinality for X, the set of all process variables.

In the following theorem, we use
∑∞

i∈I Bi to denote summation with a possibly uncountable index set I,
with

⋃

i∈I S(Bi) countable, and rec∞X θ to denote recursion with a possibly uncountable process environment
θ, with S(θ(X)) countable for all X ∈ dom(θ). The extended language is denoted L∞. Note that the
semantics of the extended operators is the same as for the original ones.

Theorem A.1 F ∈ T with A(F) countable if and only if F = F+(B) for some B ∈ L∞.

The proof is quite involved, and since this is an isolated result not used in the main body of the paper, we
advise the casual reader to move on to Section 4.3.

Proof of Theorem A.1. First, we show a property we will need in this proof: for w 6∈ ↑W we have
w−1↑W = ↑(w−1W). For the inclusion, consider x ∈ w−1↑W , i.e. w x ∈ ↑W ; by assumption on w, we get
x = x1x2 with w x1 ∈W , hence x1 ∈ w−1W and x = x1x2 ∈ ↑(w−1W). The reverse inclusion is easy.

The “if” direction of the theorem consists of proving that F+(B) meets the constraints in the definition
of T, which is a straightforward generalisation of Proposition 4.11 and omitted here, and proving that
A(F+(B)) is countable, which follows from the fact that A(F+(B)) ⊆ S(B) and S(B) is countable.

62

For the “only if”, we have to construct a term B ∈ L∞ for an arbitrary F ∈ T with A(F) countable,
such that F+(B) = F . For this purpose, first we concentrate on the saturated tree failures of F , which are
the pairs (v, V) ∈ F that satisfy

V = ↑V ∧ ∀w /∈ V : (v w,w−1V) ∈ F .

Let us denote the saturated tree failures of F by sat(F). The saturated failures satisfy a number of special
properties, of which we list some that we will use later on.

(i) (ε,A∗ \ L(F)) ∈ sat(F) for all F ∈ T.

To see this, take w ∈ L(F) andW = w−1(A∗ \ L(F)); then u ∈ W implies wu 6∈ L(F), i.e. (wu, ∅) 6∈ F ;
with this we can apply extension saturation to (w, ∅) ∈ F to get (w,W) ∈ sat(F). In particular, for
w = ε this gives (∅,A∗ \ L(F)) ∈ sat(F).

(ii) (v, V) ∈ sat(F) implies ↓V = A∗ for all F ∈ T.

To see this, take a ∈ A \ A(F) (which exists due to the difference in cardinalities between A(F)
and A); then for all w ∈ A∗ we have v w a /∈ L(F), implying (v w a,w a−1V) /∈ F and hence (by
saturation) w a ∈ V ; it follows that w ∈ ↓V .

(iii) If (v, V) ∈ sat(F) and w /∈ V , then (v w,w−1V) ∈ sat(F) as well.

To see this, note that w−1V = ↑(w−1V); moreover, u 6∈ w−1V implies w u 6∈ V and (v w u, u−1w−1V) ∈
F .

(iv) sat(F) ⊆ G implies F ⊆ G for arbitrary F ,G ∈ T.

To see this, consider arbitrary F ∈ T and (v, V) ∈ F and let

(v, V) = (v, ↑V ∪ ↑{w | (v w,w−1V) /∈ F}) .

We will show that (v, V) ∈ sat(F); then (v, V) ∈ G implies (v, V) ∈ G for arbitrary G ∈ T.

Take W = {w | (v w,w−1V) /∈ F}; then (v, V) = (v, ↑(V ∪W)). By saturation under extension, (v, V ∪
W) ∈ F and thus (v, ↑(V ∪W)) ∈ F . It remains to show that (v, ↑(V ∪W)) is saturated. Obviously,
↑↑(V ∪W) = ↑(V ∪W). Now take some u 6∈ ↑(V ∪W); we have to show (v u, u−1↑(V ∪W)) ∈ F . Since
u 6∈ ↑(V ∪W), we have by the property shown at the beginning of this proof that u−1↑(V ∪W) =
↑u−1(V ∪W); thus it suffices to show (v u, u−1(V ∪W)) ∈ F . Since u 6∈W , we have (v u, u−1V) ∈ F ;
now we are done by saturation under extension since w ∈ u−1(V ∪W) \ u−1V implies uw ∈ W , i.e.
(v uw,w−1u−1V) 6∈ F .

Now we assume the existence of a set of variables Zv,V for all (v, V) ∈ sat(F), and we define a process
environment θF with

Zv,V :=
∑∞ {τ ;Zv,W | V ⊂W, (v,W) ∈ sat(F)} +

∑

{a;Zv a,a−1V | a /∈ V } .

for all (v, V) ∈ sat(F).9 Note that dom(θF) is, in general, uncountable, and so is the first summation in the
above definition; here is where we need the corresponding extensions to L. Note that (v a, a−1V) ∈ sat(F)
for all (v, V) ∈ sat(F) and a /∈ V , due to property (iii) above; hence rec∞Z θF is closed for all Z ∈ dom(θF).

We have Zε,A∗\L(F) ∈ dom(θF) due to property (i) above. We will denote BF = Zε,A∗\L(F) (where all
variables Z ∈ dom(θF) are implicitly interpreted as rec∞Z θF); this is the required term whose tree failure set
equals F . The heart of the proof is the following property:

(∗) For all (v, V) ∈ sat(F), Zv,V =
w
⇒ B if and only if B = Zv w,W for some (v w,W) ∈ sat(F) with

W ⊇ w−1V .

Among other things, from this it follows that L(Zv,V) ∩ V = ∅ (since ε /∈ W); hence (in combination with
(iii) above) L(Zv,V) = A∗ \ V for all (v, V) ∈ sat(F). The required property F+(BF) = F is then proved
by the combination of the following two items, together with property (iv) above:

9This process definition is the counterpart, for the case of tree failures, of the canonical testers in [7] or the
acceptance graphs in [16].

63

• F+(BF) ⊆ F . To see this, let (v, V) ∈ F+(BF) be arbitrary; thus ∃(BF =
v
⇒ B) such that L(B)∩V = ∅.

According to (∗), this implies B = Zv,W for some (v,W) ∈ sat(F). As observed above, it follows that
L(B) = A∗ \W , and thus V ⊆W ; hence (v, V) ∈ F due to the saturation properties of F .

• sat(F) ⊆ F+(BF). To see this, let (v, V) ∈ sat(F) be arbitrary. w ∈ v−1(A∗ \ L(F)) implies
(v w,w−1V) /∈ F and hence (by definition of sat(F)) w ∈ V ; thus we have V ⊇ v−1(A∗ \ L(F)). Due
to (∗), it follows that BF =

v
⇒ Zv,V and (as noted above) L(Zv,V) ∩ V = ∅; hence (v, V) ∈ F+(BF).

It only remains to prove (∗).

If. By induction on the length of w.

Base case. Assume w = ε. It follows that V ⊆ W , implying either Zv,V = Zv,W or Zv,V −τ→ Zv,W ;
in either case, Zv,V −w→ Zv w,W .

Induction step. Assume w = a u, and assume the property has been proved for u. If a ∈ V then
by V = ↑V we would have w ∈ V , which contradicts (v w,W) ∈ F with W ⊇ w−1V . Thus, we
have a /∈ V . We can therefore derive

Zv,V −a→ Zv a,a−1V =
u
⇒ Zv w,W

where the first step is by the definition of θF and the second by the induction hypothesis (noting
that w−1V = u−1a−1V).

Only if. By induction on the length n of the transition sequence Zv,V −α1−→ · · · −αn−→ B underlying Zv,V =
w
⇒ B

(hence w equals α1 · · ·αn with τ ’s removed). If n = 0, then the property trivially holds (with W = V).
Now assume the property holds up to n − 1, and regard the transition Zv,V −α1−→ B′ −α2−→ · · · −αn−→ B.
Let u equal α2 · · ·αn with τ ’s removed. By construction of θF , we distinguish two cases.

• α1 = τ , in which case u = w and B′ = Zv,W for some W ⊃ V . By the induction hypothesis,
then, B = Zv w,W ′ for some W ′ ⊇ w−1W . Since w−1W ⊇ w−1V , we are done.

• α1 = a ∈ A, in which case w = a u, a /∈ V and B′ = Zv a,a−1V . By the induction hypothesis,
then, B = Zv a u,W for some (v a u,W) ∈ sat(F) where W ⊇ u−1a−1V ; since the latter set equals
w−1V , we are done.

2

64

B Additional proofs

This appendix contains some of the more technical and uninteresting proofs.

Lemma 3.8 ⊑+
shd

is a pre-congruence for choice.

In order to prove this, we first show that stable tests are sufficient to check ⊑shd.

Lemma B.1 If S shd t implies I shd t whenever t stb, then I ⊑shd S.

Proof. For arbitrary t ∈ LX, let t̂ =
∑

{α; t′ | t =
α
⇒ t′, α 6= τ}. Note that t =

w
⇒ iff t̂ =

w
⇒ for all w ∈ A∗

X, and
moreover, if |w| > 0 then t =

w
⇒ t′ iff t̂ =

w
⇒ t′.

We show that for arbitrary B ∈ L and t ∈ LX, B shd t iff B shd t̂′ whenever t =
ε
⇒ t′. Since t̂′ stb for

all t′ ∈ LX, this establishes the lemma.

if. Assume B || t =
w
⇒ B′ for some w ∈ A∗. If |w| > 0 then B || t̂ =

w
⇒ B′, and hence ∃v ∈ A∗ : B′ =

vX
==⇒ due

to B shd t̂. Otherwise B′ = B′′ || t′′ where B =
ε
⇒ B′′ and t =

ε
⇒ t′′. Due to B shd t̂′′ it follows that

∃v ∈ A∗ : B′′ || t̂′′ =
vX
==⇒; but then also B′ =

vX
==⇒. We may conclude B shd t.

only if. Assume B || t̂′ =
w
⇒ B′ for some t =

ε
⇒ t′ and w ∈ A∗. If |w| > 0 then B || t =

w
⇒ B′, and hence

∃v ∈ A∗ : B′ =
vX
==⇒ due to B shd t. Otherwise B′ = B′′ || t′′ where B =

ε
⇒ B′′ and t̂′ =

ε
⇒ t′′; hence (due

to t̂′ stb) t′′ = t̂′. Due to B shd t it follows that ∃v ∈ A∗ : B′′ || t′ =
vX
==⇒; but then also B′ =

vX
==⇒. We

may conclude B shd t̂′.

2

Moreover, we need another auxiliary relation. We define a sub-predicate shd1 of shd that tests just for
states reachable through at least one visible action.

B shd1 t :⇔ ∀w ∈ A+ : ∀B′ : (B || t) =
w
⇒ B′ implies ∃v ∈ A∗ : B′

=
vX
==⇒ .

The following lemma states that the resulting testing pre-order, ⊑shd1 , is weaker than ⊑shd.

Lemma B.2

⊑shd ⊆ ⊑shd1 .

Proof. Assume I ⊑shd S and S shd1 t, and assume I || t =
w
⇒ I ′ || t′ for some w ∈ A+. Let

t̂ = t || (X;0 + recX.
∑

{a;X | a ∈ S(t)})

t̂′ = t′ || recX.
∑

{a;X | a ∈ S(t)} .

Clearly S shd t̂ and hence I shd t̂. Since t̂ =
w
⇒ t̂′ it follows that I ||t̂ =

w
⇒ I ′||t̂′ and hence ∃v ∈ A∗ : I ′||t̂′ =

vX
==⇒.

But then also I || t′ =
vX
==⇒. We may conclude I shd1 t, and hence I ⊑shd1 S. 2

Proof of Lemma 3.8. Assume Ik ⊑+
shd

Sk for k ∈ K; we have to show that I ⊑+
shd

S for I =
∑

k∈KIk and
S =

∑

k∈KSk. The case for ⊑stb is easily shown, so we concentrate on demonstrating I ⊑shd S.
We show that the following characterisation for the stable should-tests of a sum-term B =

∑

k∈KBk

holds, i.e., assuming t stb:

B shd t iff (∀k ∈ K : Bk shd1 t) ∧ (∀k ∈ K : Bk shd t ∨Bk stb) ∧ (∃k ∈ K : Bk shd t) .

if. Assume B || t =
w
⇒ B′. If w ∈ A+ then Bk|| =

w
⇒ B′ for some k ∈ K, hence ∃v ∈ A∗ : B′ =

vX
==⇒ by

Bk shd1 t. Otherwise one of the following cases holds:

• B′ = B || t. Since Bk shd t for some k ∈ K it follows that ∃v ∈ A∗ : Bk || t =
vX
==⇒ and hence

B′ =
vX
==⇒;

65

• B′ = B′′ || t where B =
τ
⇒ B′′. In that case Bk =

τ
⇒ B′′ for some k ∈ K, implying ¬(Bk stb) and

hence Bk shd t. It follows that B′ =
vX
==⇒.

only if. The proof obligation consists of three parts, which we prove separately.

• Assume Bk || t =
w
⇒ B′ for some k ∈ K and w ∈ A+. It follows that B || t =

w
⇒ B′ and hence

B′ −vX−−→. We may conclude Bk shd1 t.

• Assume Bk ||t =
w
⇒ B′ for some k ∈ K and w ∈ A∗, where ¬(Bk stb). If B′ = Bk ||t then there is a

transition Bk −τ→ B′
k; hence B || t =

ε
⇒ B′

k || t and (due to B shd t) ∃v ∈ A∗ : B′
k || t =

vX
==⇒; thus also

B′ =
vX
==⇒. Otherwise it follows (due to B shd t) that B || t =

w
⇒ B′ and hence ∃v ∈ A∗ : B′ −vX−−→.

We may conclude Bk shd t.

• Due to B shd t and B || t =
ε
⇒ B || t we have ∃v ∈ A∗ : B || t =

vX
==⇒. It follows that Bk || t =

vX
==⇒ for

some k ∈ K. If ¬(Bk stb) then Bk shd t by the above. Otherwise let Bk || t =
ε
⇒ B′; it follows

that B′ = Bk || t, and hence B′ =
vX
==⇒. Since in addition we have Bk shd1 t, we may conclude

Bk shd t.

Using this characterisation, it is not difficult to show that I ⊑shd S. Assume t stb and S shd t.

• For all k ∈ K, Sk shd1 t, implying (since Ik ⊑shd1 Sk by Lemma B.2) Ik shd1 t;

• For all k ∈ K, Sk shd t or Sk stb, implying (by Ik ⊑+
shd

Sk) Ik shd t or Ik stb;

• There exists k ∈ K such that Sk shd t, implying (by Ik ⊑shd Sk) Ik shd t.

We may conclude I shd t. Due to Lemma B.1, then, I ⊑shd S. 2

Lemma 3.9 ⊑shd and ⊑+
shd

are pre-congruences for renaming.

Proof. We show that ⊑shd is a pre-congruence for renaming; since ⊑stb is also clearly a pre-congruence (due
to the fact that ϕ(α) = τ iff α = τ) the result for ⊑+

shd
follows immediately.

The proof proceeds by constructing, from a given test t and renaming function ϕ, a test t↑ϕ−1 such that
for an arbitrary term B

B[ϕ] shd t iff B shd t↑ϕ−1 .

Essentially, the behaviour of t↑ϕ−1 is described by the operational rule

B −α→ B′ α = ϕ(β)

B↑ϕ−1 −β→ B′↑ϕ−1

That is, “−↑ϕ−1” is very much like renaming according to “−[ϕ−1],” except that ϕ−1 is in general not a
function. If we assume for the moment that LX is extended with an operator with precisely this behaviour,
then it is not difficult to show that indeed

B[ϕ] shd t iff B shd t↑ϕ−1

if Assume B[ϕ] || t =
w
⇒ B′ for some w ∈ A∗. It follows that B′ = B′′[ϕ] || t′′ such that B =

w′

=⇒ B′′

for some w′ ∈ A∗ such that w = ϕ(w′), and t =
w
⇒ t′′. But then t↑ϕ−1 =

w′

=⇒ t′′↑ϕ−1, and hence

B || (t↑ϕ−1) =
w′

=⇒ B′′ || (t′′↑ϕ−1). Due to B shd t↑ϕ−1, it follows that B′′ || (t′′↑ϕ−1) =
vX
==⇒ for some

v ∈ A∗, implying B′′ =
v
⇒ and t′′↑ϕ−1 =

vX
==⇒. But then B′′[ϕ] =

v′

=⇒ and t′′ =
v′X
==⇒ for v′ = ϕ(v), implying

B′ =
v′X
==⇒.

only if Analogous to the above.

66

However, we do not want to extend the language just in order to facilitate this test construction. Instead,
we will define t↑ϕ−1 syntactically.

For the purpose of this construction, we need some auxiliary constructs. First, we assume (essentially)
that AX is closed under Cartesian product. To be precise, we assume a product operation ⊗ over the
universe of actions, which is an injective partial function ⊗:AX × AX ⇀ AX such that α⊗ β is defined iff
{α, β} ∩ {τ,X} = ∅ or α = β, and τ ⊗ τ = τ and X ⊗ X = X. Moreover, for i = 1, 2 we assume projection
operations

πi:α 7→
{

αi if α = α1 ⊗ α2

α otherwise.

The inverse ϕ−1 is to be treated as a function from actions to sets of actions (since ϕ is in general non-
injective); it is an inverse renaming in the following sense. In general, an inverse renaming is a function
Φ:AX → P(AX) such that Φ(τ) = {τ}, Φ(X) = {X} and Φ(α) ∩ Φ(β) = ∅ if α 6= β. Inverse renamings
induce a mapping over X, associating with each X ∈ X a variable XΦ ∈ X such that SXΦ

=
⋃

Φ(S(X)).
To combine an inverse renaming and an (ordinary) renaming into a new inverse renaming, we define

Φ;ψ:α 7→ {α⊗ β | β ∈ Φ(ψ(α))}

Note that Φ;ψ is indeed an inverse renaming. If we had simply defined Ψ;ψ as α 7→ Φ(ψ(α)) then this would
not have been the case: one can have ψ(α) = ψ(β) and thus Φ(ψ(α)) = Φ(ψ(β)) even though α 6= β. As it
is, we can construct Φ(ψ(α)) from Φ;ψ(α) by applying π2.

For arbitrary inverse renamings Φ and (test) terms B ∈ LX, let B↑Φ be defined inductively by

(α;B)↑Φ :=
∑

β∈Φ(α)β; (B↑Φ)

(
∑

i∈IBi)↑Φ :=
∑

i∈I(Bi↑Φ)

(B1 ||A B2)↑Φ := (B1↑Φ) ||S Φ(A) (B2↑Φ)

B[ψ]↑Φ := (B↑Φ;ψ)[π2]

(B/A)↑Φ := (B↑Φ)/(
⋃

Φ(A))

X↑Φ := XΦ

(recX θ)↑Φ := recXΦ
(θ↑Φ) where (θ↑Φ) = {YΦ := θ(Y)↑Φ}Y ∈dom(θ) .

The following properties can then be shown to hold, essentially reflecting the operational rule given above:

1. B −α→ B′ implies B↑Φ −
β
→ B′↑Φ for all β ∈ Φ(α);

2. B↑Φ −
β
→ B′ implies B −α→ B′′ such that β ∈ Φ(α) and B′ = B′′↑Φ.

The proof of these properties is (naturally) by induction on the structure of B. We show the more interesting
cases of the proof: synchronisation and renaming.

• Assume B = C1 ||A C2. It follows that B↑Φ = (C1↑Φ) ||S Φ(A) (C2↑Φ).

1. B −α→ B′ can be generated in either of three possible ways:

– α /∈ A, C1 −α→ C′
1 and B′ = C′

1 ||A C2. By the induction hypothesis, it follows that

C1↑Φ −β→ C′
1↑Φ for all β ∈ Φ(α). Due to the properties of inverse renamings, β /∈

⋃

Φ(A);

hence B↑Φ −β→ C′
1↑Φ ||S Φ(A) C2↑Φ (= B′↑Φ).

– α /∈ A, C2 −α→ C′
2 and B′ = C1 ||A C′

2. Analogous to the above.
– α ∈ A, Ci −α→ C′

i for i = 1, 2 and B′ = C′
1 ||A C′

2. By the induction hypothesis, it follows

that Ci↑Φ =
β
⇒ C′

i↑Φ for all β ∈ Φ(α) and i = 1, 2. Since β ∈
⋃

Φ(A), we then have

B↑Φ −β→ C′
1↑Φ ||S Φ(A) C

′
2↑Φ = B′↑Φ.

2. B↑Φ −
β
→ B′ can be generated in either of three possible ways:

– β /∈
⋃

Φ(A), C1↑Φ −
β
→ C′

1 and B′ = C′
1 ||S Φ(A) C2↑Φ. By the induction hypothesis, it

follows that C1 −α→ C′′
1 such that β ∈ Φ(α) and C′

1 = C′′
1 ↑Φ. It follows that α /∈ A, hence

B −α→ C′′
1 ||A C2; moreover, B′ = (C′′

1 ||A C2)↑Φ.

67

– β /∈
⋃

Φ(A), C2↑Φ −β→ C′
2 and B′ = C1↑Φ ||S Φ(A) C

′
2. Analogous to the above.

– β ∈
⋃

Φ(A), Ci↑Φ −β→ C′
i for i = 1, 2 and B′ = C′

1 ||S Φ(A) C
′
2. By the induction hypothesis,

it follows that for i = 1, 2, Ci −αi−→ C′′
i such that β ∈ Φ(αi) and C′

i = C′′
i ↑Φ. Due to

the properties of inverse renamings, it follows that α1 = α2 ∈ A, hence B −α1−→ C′′
1 ||A C′′

2 ;
moreover, B′ = (C′′

1 ||A C′′
2)↑Φ.

• Assume B = C[ψ]. It follows that B↑Φ = (C↑Φ;ψ)[π2].

1. B −α→ B′ implies C −δ→ C′ where α = ψ(δ) and B′ = C′[ψ]. By induction, we have that C↑Φ;ψ −γ→
C′↑Φ;ψ for all γ ∈ Φ;ψ(δ); i.e., for all γ = δ ⊗ β with β ∈ Φ(α). But then B↑Φ −β→ (C′↑Φ;ψ)[π2]
for all β ∈ Φ(α); moreover, B′↑Φ = (C′↑Φ;ψ)[π2].

2. B↑Φ −β→ B′ implies C↑Φ;ψ −γ→ C′ where β = π2(γ) and B′ = C′[π2]. By induction, we have

that C −δ→ C′′ such that γ ∈ Φ;ψ(δ) and C′ = C′′↑Φ;ψ. Let α = ψ(δ). It follows that β ∈ Φ(α);
furthermore, if B′′ = C′′[ψ] then B −α→ B′′ and B′ = (C′′↑Φ;ψ)[π2] = B′′↑Φ.

2

Lemma 4.18 If Fi ⊑T Gi for i = 1, 2 with A(G1) ∩ A(G2) ⊆ A, then F1 ||A F2 ⊑T G1 ||A G2.

Proof. Note that Fi ⊑T Gi implies L(Fi) ⊆ L(Gi) and hence A(Fi) ⊆ A(Gi); therefore F1 ||A F2 is defined.
By commutativity of ||A, we may assume that F2 = G2. For understandability, we show the full proof for the
case where A = A, since there the restriction functions in the construction of the synchronised tree failures
become the identity over A and hence disappear.

• First note that ↑(V ∪W) = ↑V ∪ ↑W and u−1(V ∪W) = u−1V ∪ u−1W . Furthermore, for w 6∈ ↑W
we have w−1↑W = ↑(w−1W).

• These properties imply the following law, which we will need below: w 6∈ ↑W implies w−1(V ∪ ↑W) ⊆
↑(w−1(V ∪W)), due to

w−1(V ∪ ↑W) = w−1V ∪ w−1↑W ⊆ ↑(w−1V) ∪ ↑(w−1W) = ↑(w−1(V ∪W)) .

• Let (v, V1 ∪ V2) ∈ F1 || F2 be arbitrary, such that (v, Vi) ∈ Fi for i = 1, 2.

• We will shift some of the traces in the refusal set V1 (which is refused by F1) to V2 (which is refused
by F2). For this purpose we define the following sets:

W = {w | (v w,w−1V2) /∈ F2}

V ′
1 = V1 \ ↑W

V ′
2 = V2 ∪ ↑W .

It should be clear that V ′
1 ∪ V ′

2 ⊇ V1 ∪ V2. Furthermore, by the saturation properties of M, clearly
(v, V ′

1) ∈ F1. (Actually, also (v, V ′
2) ∈ F2, and hence (v, V ′

1 ∪ V ′
2) ∈ F1 || F2. In effect, this constitutes

a new “explanation” of the tree failure (v, V1 ∪ V2) ∈ F1 || F2.)

• Due to F1 ⊑T G1, there is a w ∈ {ε} ∪ ↓V ′
1 such that (v w,w−1V ′

1) ∈ G1. Note that w 6∈ ↑W (in
particular, since ε 6∈W).

• From w /∈ W it follows that (v w,w−1V2) ∈ F2. By construction, (v w u, u−1w−1V2) /∈ F2 for all
u ∈ w−1W ; by saturation, it follows that (v w,w−1(V2 ∪W)) ∈ F2.

• By F2 = G2, the saturation properties of M and the above law we have (v w,w−1V ′
2) ∈ G2.

• By definition (Table 4.3) we have (v w,w−1(V ′
1 ∪ V ′

2)) ∈ G1 || G2.

• By V ′
1 ⊆ V1 we have found a w ∈ {ε} ∪ ↓(V1 ∪ V2) with (due to V ′

1 ∪ V ′
2 ⊇ V1 ∪ V2 and saturation)

(v w,w−1(V1 ∪ V2)) ∈ G1 || G2.

68

Now we show the (entirely analogous) proof for the general case, without comment. Let ϕ1 = πA(G2)\A

and ϕ2 = πA(G1)\A
. We implicitly use some algebraic properties of our string homomorphisms, for instance

ϕ(V ∪W) = ϕ(V) ∪ ϕ(W), ϕ(↓V) = ↓ϕ(V), ϕ(↑V) ⊆ ↑ϕ(V) and ϕ(w−1V) ⊆ ϕ(w)−1ϕ(V).

• Let (v, V1 ∪ V2) ∈ F1 ||A F2 be arbitrary, such that (ϕi(v), ϕi(Vi)) ∈ Fi for i = 1, 2.

• Let W = {w | (ϕ2(v w), ϕ2(w
−1V2)) /∈ F2}, and let V ′

1 = V1 \ ↑W and V ′
2 = V2 ∪ ↑W . It follows that

(ϕ1(v), ϕ1(V
′
1)) ∈ F1.

• Due to F1 ⊑T G1, there is a w ∈ {ε} ∪ ↓V ′
1 such that (ϕ1(v w), ϕ1(w)−1ϕ1(V

′
1)) ∈ G1; hence (by

ϕ1(w
−1V ′

1) ⊆ ϕ1(w)−1ϕ1(V
′
1) and saturation) (ϕ1(v w), ϕ1(w

−1V ′
1)) ∈ G1. Again, w 6∈ ↑W .

• From w /∈ W it follows that (ϕ2(v w), ϕ2(w
−1V2)) ∈ F2. For all u ∈ w−1W , we have by construction

that (ϕ2(v w u), ϕ2((wu)
−1V2)) 6∈ F2, hence (ϕ2(v w u), ϕ2(u)

−1ϕ2(w
−1V2)) 6∈ F2. By saturation, this

implies (ϕ2(v w), ϕ2(w
−1(V2 ∪W))) ∈ F2.

• By F2 = G2 and the saturation properties of M, we get (ϕ2(v w), ϕ2(↑(w−1(V2 ∪W)))) ∈ G2. With
the above law, we have (ϕ2(v w), ϕ2(w

−1V ′
2)) ∈ G2.

• The rest of the proof is exactly as in the special case above.

2

Theorem 5.5 For a fixed finite alphabet size, T ⊑shd U and T ⊑c
shd

U can be decided in time linear
exponential in the numbers of states of T and U .

Proof. First note that language inclusion (or equality) has to be checked first, which can be done within the
given time bound. We have to determine the time complexity of our improved algorithm. Let T have n and
U have m states. We assume that T and U are given by adjacency matrices for each α ∈ Aτ , i.e., T and U
have sizes O(n2) and O(m2).

Making U deterministic as described above costs O(m22m), in fact we can construct the complete
powerset automaton in this time: first, we determine the transitive closure of the τ -edges in O(m3), which is
subsumed by the complexity of the next step. Given a state Q among the 2m many subsets of the state set
of U and a ∈ A, we build Q′ with Q −

a
→BB Q′ by constructing Q′′ = {q′ | ∃q ∈ Q: q −

a
→U q′} in O(m2) and

then constructing Q′ from Q′′ in O(m2) using the transitive closure. We can store the complete powerset
automaton as a 2m × |A|-matrix where Q′′ is the entry for Q and a.

BB consists of the nonempty states reachable from Q0 as above. The complete deterministic powerset
automaton can also serve for describing all associated automata; in this role, the empty state ∅ is the only
final state and the automata in BBQ are obtained by taking the {q} with q ∈ Q as initial states. Compare
our running example and Figure 5.2.

Similarly, we construct the complete powerset automaton for T to have a description of the associated
automata for AA. Thus, building AA and BB costs O(n22n + m22m). From S, we only need the states;
building these takes time O(n22m), since AA has n states having O(n) edges each, while BB has O(2m)
states having O(1) edges each. S has O(n2m) states.

For each state (p,Q) of S we do the following: We construct P from two deterministic automata with
O(2n) and O(2m) states; this takes time O(2n+m) and results in as many states. Searching for a suitable
(p′, Q′) in P or any productive sub-automaton R, we check for all of the O(2n+m) possible (p′, Q′) and all
of the O(m) associated B ∈ BBQ′ whether LR(p′, Q′) ⊆ L(B). R and B are deterministic of sizes O(2n+m)
and O(2m); hence, this inclusion is checked by building yet another product, which takes time O(2n+2m).
Hence, treating R takes time O(2n+m)O(m)O(2n+2m) = O(m22n+3m). (Building the new productive sub-
automaton is a simple graph-theoretic reachability analysis and takes time in the order of the number of
edges, i.e. O(2n+m).)

Thus, treating (p,Q), we build P with O(2n+m) states and check as many productive subautomata; this
takes time O(m23n+4m). Since S has O(n2m) states, for deciding ⊑shd we need altogether time O(n22n +
m22m) + O(n22m) + O(n2m)O(m23n+4m) = O(nm23n+5m). Deciding ⊑c

shd
additionally involves deciding

inverse stability implication and inverse language inclusion; both can be done within the given time bound.
2

69

Lemma 6.2 Let T = 〈S,→, q〉 be a transition system with states s′ 6= q and s that satisfy the following
conditions (see Figure 6.1):

a) s −α→ s′ iff α = τ ;

b) for all α 6= τ we have s −α→ s iff s′ −α→ s′;

c) if s −α→ t for some t ∈ S \ {s, s′}, then s′ −α→ t′ for some t′ ∈ S \ {s′};

d) if t −α→ s′ for some t ∈ S \ {s, s′}, then t −α→ s, too.

Let U = 〈S′,→, q〉 be obtained from T by contracting s and s′ to s, i.e., by putting S′ = S \{s′} and replacing
s′ in the arcs by s. Then T ≃c

shd
U .

Proof. Initial stability is not modified by the contraction, hence it suffices to check T ≃shd U (which includes
language equality) using our denotational characterization. We proceed in several steps.

i) For all t, t′ ∈ S − {s′}, we have t =
w
⇒ t′ in T iff t =

w
⇒ t′ in U .

Proof. Paths in T can be translated to paths in U easily, replacing s′ by s. To translate a path in U
to one in T , we consider several cases. On such a path, an arc that does not start in s exists in T as
well. A loop s −τ→ s can be ignored. A loop s −α→ s with α 6= τ either exists in T as well; or it arises
from a loop s′ −α→ s′, but then it exists in T as well by b); or by a) it arises from an arc s′ −α→ s, in
which case it can be translated to s −τ→ s′ −α→ s. Finally, an arc s −α→ t′′ with t′′ 6= s either exists in T
or can be translated to s −τ→ s′ −α→ t′′.

ii) For all t ∈ S − {s′}, we have that t =
w
⇒ s′ in T implies t =

w
⇒ s in T .

Proof. Very similar to the second part of the above proof, also using d).

iii) Let V ⊆ A∗ and u ∈ A∗ be given such that in U q =
u
⇒ t and ∄v ∈ V. t =

v
⇒. Then the same holds in T .

Proof. The proof follows directly from i) and ii), since t 6= s′.

iv) Let V ⊆ A∗ and u ∈ A∗ be given such that in T q =
u
⇒ t with t 6= s′ and ∄v ∈ V. t =

v
⇒. Then the same

holds in U .

Proof. The proof follows directly from i).

v) Let V ⊆ A∗ and u ∈ A∗ be given such that in T q =
u
⇒ s′ and ∄v ∈ V. s′ =

v
⇒. Then there exists some

t 6= s′ and some w ∈ ↓V such that in T q =
uw
=⇒ t and ∄v ∈ w−1V. t =

v
⇒.

Proof. This is shown in two steps:

α) If for some w ∈ ↓V we have s′ =
w
⇒ t with some t 6= s′, then we can choose this t and w.

β) Otherwise we choose t = s and w = ε. By ii) we have q =
u
⇒ s. If we had s =

v
⇒ for some

v ∈ w−1V = V , then consider the corresponding path. If this path consists of loops at s only,
we find the same loops at s′ by b), which gives the contradiction s′ =

v
⇒. If the first state 6= s on

the path is s′, then the path starts with loops at s and the arc s −τ→ s′ by a), we find the same
loops at s′ by b), and again get the contradiction s′ =

v
⇒. Finally, if the first state 6= s on the

path is some t′′ 6= s′ reached with the arc s −α→ t′′, then we find the same loops at s′ by b) and
an arc s′ −α→ t′ by d), hence we are in case α), which is a contradiction.

We now conclude from i) and ii) that T and U have the same language; iii) shows F+(U) ⊆ F+(T), and
iv) and v) show T ⊑F+ U . 2

70

