
Service Discovery At Home
Vasughi Sundramoorthy, Hans Scholten, Pierre Jansen and Pieter Hartel

Faculty of EEMCS(Electrical Engineering, Mathematics & Computer Science)

Distributed & Embedded Systems Group (DIES)
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands
Tel: +31-53-489 3744 / +31-6-47838335

Fax: +31-53-489 4590

Email: vasughi@cs.utwente.nl
scholten@cs.utwente.nl
jansen@cs.utwente.nl

 pieter@cs.utwente.nl
Contact author: Vasughi Sundramoorthy

Topic Areas:

1. Networking - protocol analysis and design

2. Computer systems - parallel and distributed computing

3. Multimedia system support and networking – middleware

Service Discovery At Home
Vasughi Sundramoorthy, Hans Scholten, Pierre Jansen and Pieter Hartel

University of Twente, the Netherlands
{vasughi, scholten, jansen, pieter}@cs.utwente.nl

Abstract
Service discovery is a fairly new field that kicked off since
the advent of ubiquitous computing and has been found
essential in the making of intelligent networks by
implementing automated discovery and remote control
between devices. This paper provides an overview and
comparison of several prominent service discovery
mechanisms currently available. It also introduces the At
Home Anywhere Service Discovery Protocol (SDP@HA)
design which improves on the current state of the art by
accommodating resource lean devices, implementing a
dynamic leader election for a central cataloguing device
and embedding robustness to the service discovery
architecture as an important criterion.

Keywords: service discovery, ubiquitous computing, home
networking.

1. Introduction

The objective of a service discovery mechanism is to
develop a highly dynamic infrastructure where clients
would be able to seek particular services of interest (e.g.
printing, displaying) and devices providing those services
(e.g. printer, laptop) would be able to announce or advertise
their capabilities to the network without manual
configuration and device driver installation. Furthermore,
service discovery allows the network to be self-healing by
automatic detection of services which have become
unavailable. Resource lean devices could also take part in
service discovery activities by being able to delegate some
of their load to more powerful devices. Once services have
been discovered, devices in the network could remotely
control each other by adhering to some standard of
communication. As a result, data redundancy is also
eliminated as data stored in one place could be accessed by
any other devices without having to be copied over, e.g. an
mp3 file stored in the home PC could be accessed from any
audio device that is capable of supporting this file format.

2. State of the Art

Service discovery mechanisms [1-5] such as Service
Location Protocol (SLP), Universal Plug and Play (UPnP),
Jini and Bluetooth SDP have similar characteristics, but

This work is sponsored by the Netherlands Organization for
Scientific Research (NWO) under grant number 612.060.111, and
by the IBM Equinox program.

defer widely in implementation. Basically, they provide the
mechanisms to allow discovery of services according to
certain device/service types, advertisement of services if it
is a peer-to-peer architecture, such as in UPnP and
Bluetooth SDP, or registration of services to a central
catalogue, such as in SLP and Jini, which enlists all
available services in the network. Furthermore, most
technologies do not provide indefinite use of a service.
Instead, a leasing concept is used so service usage time is
restricted by an expiry time to allow garbage collection.

2.1 Service Location Protocol

The Service Location Protocol (SLP) was developed by the
IETF SvrLoc working group. There are three major
software entities in SLP: User Agents (UA), Service Agents
(SA) and Directory Agents (DA). UAs discover the location
and attributes of the services that the devices they represent
are requesting, while the SAs advertise the location and
attributes of the services they represent. The existence of
DA gives a cataloging facility of all services in the network.
There are two types of systems in SLP: (1) with DA, where
SAs register information on the services they represent to a
DA, so that UAs could send a query to the DA and be
returned with the contact information of the service they are
looking for, and (2) without DA where a UA will multicast
search requests to the network, and an SA matching the
service types requested will unicast a reply.

In SLP, the architecture with DAs causes the system to
be vulnerable to a single point of failure, leading to
information loss and breakdown in service discovery.
Furthermore, it adds an additional component to be
administered. Nonetheless, SLP provides good search
facilities with filters that allows attribute and predicate
string search. However, it only provides the location and
contact information of the remote service. To access the
service itself, a separate method has to be used which is left
up to the implementer.

2.1 Universal Plug and Play

Microsoft’s Universal Plug and Play (UPnP) relies heavily
on IP and web technologies such as XML. There are three
major components in UPnP: control device, device and
services. The control device searches by means of multicast
for interesting devices whose services it wants to use. The
device is any appliance or device that has some services to
offer. It probably contains embedded devices, and could
behave as a control device. Devices advertise their
capabilities using multicast. Services meanwhile contain (1)
a state table that is updated whenever the service state

changes, (2) a control server that receives action requests
from the control devices, executes them, updates the state
table and sends responses and (3) an event server that sends
notifications to subscribers of the service whenever a state
change occurs. Service discovery in UPnP is through the
Simple Service Discovery Protocol (SSDP). XML docum-
ents provide device/service descriptions along with URLs
to view the user interface of the remote device. Control of
remote services is done using SOAP [6] and XML parsing
of action requests, while GENA [7] is used to publish
notifications to subscribers when a service’s state changes.

UPnP members need heavier resources than SLP
devices to allow support for GENA and SOAP web servers,
and XML parsing. Although it is not vulnerable to a single
point of failure like SLP, its purely peer-to-peer architecture
increases network traffic due to extensive use of multicast
messaging. Furthermore, resource starved devices would
not be able to handle such extensive processing. UPnP’s
service search capability is inferior to SLP as it is restricted
to only device/service type searches.

2.2 Jini

Jini was developed by Sun Microsystems and implemented
using Java. All members of the network are known as
services regardless whether they are hardware or purely
software based. The most important aspect of Jini is the
lookup service, where every service will have to register
with at least one lookup service. Although there is a peer
lookup mechanism, where clients could search for services
through multicast and receive replies from matching
services, this is not the norm. Once the lookup service of a
suitable group has been located by a service provider, it will
upload its service proxy object and a client service in search
of a certain service type will contact the lookup service to
download the proxy object.

The proxy object could be the complete implement-
tation of the service, in which the client executes the service
entirely by itself, or it could be an RMI stub, which, when
invoked by the client, will cause some action to be executed
by the remote service. A private communication method
can also be implemented, without the Jini client needing to
know how the actual communication takes place with the
remote service.

Using Java to implement Jini allows code mobility and
services to be represented as Java class interfaces, but the
downside is that every device in the Jini network has to run
the Java Virtual Machine (JVM), which is a very
demanding requirement for resource lean devices.
Furthermore, a detailed standardization process is necessary
if services are to be represented in Java classes.

2.3 Bluetooth Service Discovery Protocol

Bluetooth, developed by the Bluetooth Special Interest
Group, is meant for low power, short range (10m), wireless
radio system devices operating in the 2.4GHz ISM band.
Bluetooth devices periodically sniff for nearby Bluetooth
devices and form a personal area network called piconet
which has a maximum of 8 members. The member that

initiates communication becomes the master of the piconet.
Groups of piconets communicating with each other are
called scatternets. The Bluetooth Service Discovery
Protocol (Bluetooth SDP) requires an SDP server running
in any device that is capable of providing services. The
server maintains a set of service records that contain a list
of attributes which represent different service classes. Each
service is represented by one service record. A Bluetooth
device wanting to use a service is called an SDP client. The
SDP client sends a request message, which includes the list
of service classes it is looking for and the SDP server
checks if a match occurs and responds with a service
handle that will subsequently be used to learn the values of
the service’s attributes.

Like SLP, Bluetooth SDP does not provide a
mechanism to access the remote service. However, the
service provider does provide information on the
appropriate communication protocol that should be used by
the SDP client to gain access to its service. Another
drawback is devices are restricted to short range service
discovery. Furthermore, as in UPnP, the Bluetooth SDP has
a purely peer-to-peer architecture without a cataloguing
facility that is not suited for resource lean devices.

3 @HA Service Discovery Protocol

In the At Home Anywhere project (@HA) [8], home
appliances are divided into three classes:
• 3C (3+ cent) appliance: simple devices that implement
only a network stack to connect to the system.
• 3D (3+ dollar) appliance: medium complex devices
that implement a network stack and service discovery
protocol.
• 300D (300+ dollar) appliance: powerful devices, cont-
rolled by a complex embedded computer. These devices
may have 3C devices embedded in them. Their memory
requirements are high (>1MB).

 The @HA service discovery layer will only know of
the existence of 3D and 300D devices for the services
provided by 3C will be encapsulated by the host.

3.1 @HA Service Discovery Requirement

The @HA Service Discovery Protocol (SDP@HA)
addresses these major issues which are lacking in the
current state of the art:
• Participation of resource poor devices - the protocol for
the @HA network is device-aware. Current technologies
are suited only for devices in the 300D category. Thus
every feature of the service discovery protocol must take
into consideration whether it can support resource lean
devices.
• Delegation of work load - since resource lean 3D devi-
ces might not be able to stand alone, workload has to be
delegated to more powerful 300D devices.
• Robust architecture – it is vital to recognize that the ho-
me environment is unlike the professional office environ-
ment, where a system administrator attends to network
maintenance. It is essential that the system is robust and

able to recover from network errors automatically. Existing
technologies do not give this area much prominence.

The SDP@HA makes several assumptions, including
that the network has broadcast capability, the device/service
type is preset according to some naming standard, the
physical location of devices is known so user could search
for services according to the rooms in his/her home and
there is a reliable gateway for security authentication that
ensures integrity of the devices in the network.

The focus of this paper is to highlight the resource
awareness of this protocol and its robust architecture. The
mechanisms for service search and control of remote
devices are not explicitly detailed in this paper.

3.2 @HA Service Discovery Design

The architecture of the SDP@HA is a hybrid of client-
server and peer-to-peer. The client-server model is
incorporated so that there is a server-like device called the
Central that reduces communication cost as search and
service advertisement messages are addressed to one
particular device instead of broadcasted to the entire
network. It also provides aid to resource lean devices so
their memory, processing power and energy usage are
reduced and thus able to prolong their services. The client-
server environment requires at least one 300D device to be
available. It is assumed that a home has at least one
appliance with more than 1MB of memory available, as in
TV, PC, VCR, etc.

As explained in the next section, the most powerful
300D device is elected to become the Central, which acts as
a repository for service information in the network. When a
Central is not available (no 300D device available, or a
leader election process is being carried out, with no Central
selected yet), devices requiring a service will enter Peer
Search mode as explained in section 3.2.4.

3.2.1 Central election

The Central election algorithm in SDP@HA is based
on the resources of 300D devices. This algorithm allows
any 300D device to be a potential Central, instead of
making the Central a separate entity to be added to the
network, which will then require additional administration.
Wireless 300D devices are given lower priority in Central
election. This is because of energy constraints and possible
higher mobility which make them unreliable candidates for
the position of Central. A wireless 300D device could still
become the Central in the absence of their wired peers
because it could still provide service cataloguing facility for
3D devices and reduce the burden on their resources.

 When a 300D device initializes, it will broadcast a
MyResource message. If the 300D device does not receive
any reply from an existing Central after a timeout, it
assumes that Central is unavailable and elects itself as the
Central and informs the network. If it does receive My-
Resource messages from other 300D devices, a leader
election protocol is started. Four parameters are considered
as basis for Central election:

i. device orientation , e ={-1, 0, 1} where if:
e = −1, wireless device (lowest priority)
e = 0, wired devices with wireless capability
e = 1, wired devices (highest priority)

i. processing power, p
ii. memory size, m
iii. generated random number, r
A 300D device (d) checks the parameters of a remote

device (d’) contained in the MyResource message received
to determine whether it is superior. The values of e and p
are given more priority thus will be compared first. Values
of m and r will only be considered to break a tie between
two devices with the same device orientation and
processing power, because any device with a minimum
available memory requirement of 1MB (300D) is capable
of handling the job required of the Central. For the
algorithm, we need the following definitions:

Definition 1. For any two tuples of equal length, d = (x1, …, xn)
and d’ = (x’1, …, x’n), the operator > on d and d’ is defined such
that one of the following is true:
(1) x1 > x’1
(2) ∃i ∈{2,…n} such that xi > x’i, and xj = x’j ,∀j ∈ {1, … i-1}

Definition 2. For any two tuples of equal length, d = (x1, …, xn)
and d’ = (x’1, …, x’n), the operator < on d and d’ is defined such
that one of the following is true:
(1) x1 < x’1
(2) ∃i ∈{2,…n} such that xi < x’i, and xj = x’j , ∀j ∈ {1, … i-1}

Definition 3. For any two tuples of equal length, d = (x1, …, xn)
and d’ = (x’1, …, x’n), the operator = on d and d’ is defined such
that the following is true:
 (1) ∃i ∈{2,…n} such that xi = x’i, and xj = x’j , ∀j ∈ {1, … i-1}

Algorithm 1: For the Central election algorithm, the parameters
of the local device, d = (e, p, m, r) and remote device, d’= (e’, p’,
m’. r’) are compared and result in 3 scenarios:

Case 1: if (d < d’): Drop out of Central election
Case 2: if (d > d’): Create RankList in descending order
Case 3: if (d = d’): Request new r’ from remote device
(Case 3 is exceptional because the generated r value is the same
for both devices. New value of r and r’ are regenerated and
compared to break the tie between two Central candidates.)

Finally, only one device should have a complete
RankList with itself on top which becomes the Central. The
Central will broadcast its status at least twice to ensure
every member receives this message due to the unreliable
nature of the broadcast network.

Communication failure could occur where not all
MyResource messages are received. This would result in
more than one device finding itself on top of its RankList.
Negotiation of the Central position will be done between
these devices, and one of them will be elected (not detailed
in this paper).

3.2.2 Device and Service Registration

Once a Central has been selected, it will appoint the next
device in the RankList as its Backup. The RankList will be
backed up by the Backup device. Central then broadcasts a
ServiceRegistrationRequest, as shown in Figure 1. A device

receiving this message sends a ServiceRegistrationReply
containing the list of services it provides (represented by
ServiceTypes), their attributes, and a lease period for each
service. Central will enlist them in the ServiceLookUp
table, and generate a unique ServiceID for each of the
service types. The ServiceLookUp table will also be back-
ed up in the Backup device.

The lease period for each 300D service has to be
renewed before its expiry time. If not, Central purges the
data, assuming the device has gone offline. In the case of
3D devices, Central will poll them periodically, as these
devices will not be able to send lease renewals constantly.
Central sends updates to the Backup devices whenever a
change occurs in the ServiceLookup table.

3.2.3 Search, Subscription and Control

When a device wants to look for a particular ServiceType
with certain attributes, it sends a ServiceSearch message to
Central. Central checks the ServiceLookUp table if a match
occurs, and replies with a ServiceReply, containing the list
of ServiceTypes that match. Here, the device can request
for only the best match out of several possibilities. Once the
best matched service is chosen, the device (now known as
the Control device) can send an ActionRequest to the
remote service. This is done through simple XML parsing.
The remote service (Service Provider) executes the action
and returns an ActionResponse, to indicate whether the
action has been successful or not.

Control devices can cache the best matched service and
its lease period with the Central for future use. Optionally,
they can also go into the Subscription mode for specific
services. Subscription allows the Control device to reuse
the same service without going through the Search process
via the Central. Control devices become Subscribers by
sending a SubscriptionRequest with a certain lease period
to the remote service. Any change in the state of services
will be notified to the Subscribers through event messages.

If the Service Provider is a 3D device, it might not be
able to maintain a SubscriptionTable necessary to
administer subscriptions. In which case, the Central will
administer a CentralSubscriptionTable and the remainder of
the subscription is done through the Central instead of
burdening the 3D device. All ActionRequests from
Subscribers will be sent through Central and Central will
inform the 3D device what needs to be done, reply to the
Control devices and notify the subscribers when the state of
the 3D service changes.

3.2.4 Robust Architecture

The SDP@HA is robust because it (1) recovers from
Central/Backup failure, (2) allows any device to detect loss
of service, (3) requests Central election when Central
disappears, (4) hands over the Central/Backup to a more
powerful new device, and (5) preserves service lifetime of
resource lean devices.

Polling is used to ensure the online status of Central
and Backup. Central polls Backup periodically, to which
Backup sends a reply. Retransmission is used for reliability.
When Central finds the Backup not responding, it will
remove Backup from its ServiceLookUp table and
RankList. The next device in RankList will be chosen as the
new Backup. On the other hand if the Backup finds the
Central is not polling, it will elect itself as the new Central
and inform the network of its new status. The rest of the
members will reroute messages to this new Central.

 As mentioned earlier in section 3.2.3, service
registration leases are renewed to indicate the online status
of a 300D device, while 3D devices are polled periodically
by Central. Also, if an action requested by a Control device
is not executed, it will send a notice to the Central. Central
will poll the failing device to check if it is still alive.
Meanwhile if a device finds the Central missing after a
timeout, it may request for a Central election. All these
steps lead towards detecting a missing service and add to
the robustness of the system.

There are 2 scenarios when new devices are detected:
• 300D device detected: the broadcasted MyResource
message is used. When Central receives this message, it has
to determine if the new device is superior in resources than
itself or the Backup. Algorithm 2 shows how this is done:

Algorithm 2: For the Central/Backup handover, the parameters of
the Central, d = (e, p), the new device d’= (e’, p’) and the Backup
d”= (e”, p”) are compared. x is the threshold set to ensure that
Central handover takes place only when the new device’s
processing power is sufficiently higher than the Central’s. The
Definitions used in Section 3.2.1 are applied here.

Case 1: if (d<d’) and (p’>x): Central handover to new device and

 Backup takeover by current Central
Case 2: if (d<d’) and (p’<x): Backup handover to new device
Case 3: if (d>d’) and (d’>d”): Backup handover to new device

• 3D device detected: the 3D device broadcasts a Small-
DeviceAnnounce message when it initializes. Upon re-
ceiving this, the Central recognizes it as a 3D device and
provides the necessary support (polling for online status,
subscription, etc). If a 3D device does not receive any
response from Central, it resends the message every w
period according to a delay of:

w = 2 x (initial wait period)
This preserves resources especially for energy deficient
wireless 3D devices. If during this time, the 3D device
needs a service, it takes part in Peer Search, by
broadcasting a ServiceSearch message to the network.

Peer Search allows 3D devices to search for services
even when no 300D devices are around, and allows 300D
devices to search for services during Central election. Figure 1: Service Registration

Central

Backup

Device
(300D / 3D)

Central

 (2) ServiceRegistration
 Reply

(1) ServiceRegistration
 Request

(4) ServiceLookUp
 Update

(3) ServiceLookUp (5) ServiceLookUpCopy

Table 1 compares critical features of the existing state

of the art against the SDP@HA. Although the existence of
Central may be similar to SLP’s Directory Agent
architecture, it is important to note that the Central is not
simply a service broker, nor is it a separate entity to be
installed in the network. Any 300D device is a potential
Central that can monitor the network for new devices
according to their resources. With a dynamic backup
mechanism available, the loss of the Central is not critical.
Even if the backup mechanism fails, the network can
reinitiate a new Central discovery without external
configuration.

 The SDP@HA is currently being simulated using
Rapide [9]. This will provide performance analysis
measurements against existing models [10], determine the
optimum backup mechanism for the Central and test how
SDP@HA fares against communications and node failures.

4. Conclusion

The novel concept of searching, discovering and remotely
controlling services introduces a highly dynamic behavior
in today’s networks. This paper provides a brief overview
of existing service discovery mechanisms. It introduced a
more resource aware and robust SDP@HA design, which
allows participation of resource lean devices and ensures
better error recovery mechanisms. Future work in this area
will include implementation of the protocol on top of @HA
network layer [8].

References

[1] Guttman, E. Perkins, C., Veizades, J., and Day, M.
“Service Location Protocol, V.2”, Internet Engineering
Task Force (IETF), RFC 2608.

[2] Microsoft. “Universal Plug and Play Architecture,
V1.0”, Jun 8, 2000.

[3] Ken Arnold et al. “The Jini Specification, V1.0”,
Addison-Wesley 1999. Latest version is 1.1.

[4] The Bluetooth SIG, Inc. “Specification of the Bluetooth
System, Core, Vol. 1”, Version 1.1, Feb 22, 2001, 1999.

[5] Christian Bettstetter and Christoph Renner. “A Compar-
ison Of Service Discovery Protocols and Implementation of
The Service Location” Proceedings of 6th EUNICE Open
European Summer School: Innovative Internet Applications
(EUNICE), Twente, Netherlands, Sept 13-15, 2000.

[6] Don Box, et al., “Simple Object Access Protocol
(SOAP) 1.1”, W3C Note; http://www.w3.org/TR/SOAP.

[7] Cohen, J., Aggarwal, S., and Goland, Y. “General Event
Notification Architecture Base: Client to Arbiter”
http://www.upnp.org/draft-cohen-gena-client-01.txt

[8] F.T.Y. Hanssen, P.H. Hartel, T. Hattink, P.G. Jansen, J.
Scholten and J. Wijnberg. “A Real-Time Ethernet Network
at Home”, published by Real-Time Systems Group, Vienna
Univ. of Technology, Vienna, Austria, Jun 2002.

[9] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events”, http://anna.stanford.edu/rapide, Aug, 1996.

[10] Dabrowski, C. and Mills, K. “Analyzing Properties
and Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, Dec 2001.

Feature SLP UPnP Jini Bluetooth SDP SDP@HA

Architecture Client-server /
Peer-to-peer

Peer-to-peer Client-server /
Peer-to-peer
(peer lookup)

Peer-to-peer Client-server /
Peer-to-peer (Peer
Search)

Catalogue
service

Directory
Agent

No Lookup service No Central

Leasing concept

Yes Yes Yes No Yes

Remote control No Yes
(SOAP)

Yes (service
proxy object)

No Yes (simple XML
parsing)

Scope of search Service type
Attributes
String

Device type
Service type

Service type
ServiceID
Attributes

ServiceType
Attributes

Service type
Attributes

Robust No No No No Yes (with Backup)

Resource
awareness

No No No No Yes

Work load
delegation

No No No No Yes

Table 1: Comparison of state of the art with SDP@HA

