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Abstract — (1) Regular control does not increase the generating power of 1-
restricted [d]K-iteration grammars provided that K ⊇ SYMBOL, and K is closed
under isomorphism and under union with SYMBOL-languages.

(2) Let Γ be a prequasoid closed under the regular operations. If K is a prequasoid
[pseudoid], then H(Γ) ⊆ H(Γ,K) [η(Γ) ⊆ η(Γ,K)]. In particular we have H(Γ) ⊆
(Γ)ETOL and η(Γ) ⊆ (Γ)EDTOL.

(3) Under weak conditions on Γ and K, the decidability of the emptiness problem
for Γ and K implies the decidability of the emptiness problem and the membership
problem for the families η(Γ,K) and η(K).
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Research (ZWO).
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1 Regularly Controlled 1-Restricted Hyper-Algebraic and

Dhyper-Algebraic Extensions

In [1, 3] we showed that regular control does not increase the generating capacity of hyper-
algebraic and dhyper-algebraic extensions. In the proof the number of substitutions is
however increased with 1 [1, 3] and since we can only reduce the number of substitutions
to 2 in general [1, 3], the argument cannot be applied in the 1-restricted case, i.e., to
iteration [d-iteration] grammars containing only one substitution [d-substitution].

In this note we show that for 1-restricted hyper-algebraic and dhyper-algebraic exten-
sions, regular control does also not provide any additional generating power; thus yielding
a similar result as in the unrestricted case.

Remember that a family K of languages is called α-simple [2] if K includes SYMBOL
and if K is closed under isomorphism (“renaming of symbols”) and under union with
SYMBOL-languages. For all unexplained terminology we refer to [1, 2, 3] and the references
mentioned there.

Theorem. If K is α-simple, then

(i) H1(REG, K) = H1(K),

(ii) η1(REG, K) = η1(K).

Proof. (i) Obviously, H1(K) ⊆ H1(REG, K).
Conversely, let G = (V, Σ, τ, M, S) be a (REG, K)-iteration grammar with a single

K-substitution τ . Let (Q, {τ}, δ, q0, QF ) be a complete deterministic finite-state acceptor
for M , where Q is the set of states, {τ} is the input alphabet, δ : Q × {τ} → Q is the
transition function, q0 ∈ Q is the initial state, and QF ⊆ Q is the set of final states.

Consider the K-iteration grammar G0 = (V0, Σ, τ0, S0), where V0 = V × Q ∪ Σ ∪ {F},
S0 = [S, q0], and F is a rejection symbol. Distinguish the following cases.

Case 1: M is finite.
We may assume that each state in Q is non-recurrent, i.e., it is impossible to visit a state
more than one time. Then we define for α in V and q in Q,

τ0([α, q]) = {[α1, q
′] · · · [αn, q

′] | n ≥ 0, α1 · · ·αn ∈ τ(α); δ(q, τ) = q′; q ∈ Q}∪Tα,q ∪{F},

and for α ∈ Σ ∪ {F},

τ0(α) = {F},

with Tα,q = {α} if q ∈ QF and α ∈ Σ and Tα,q = ∅ otherwise.
Clearly, we have L(G0) = L(G), and hence H1(REG, K) ⊆ H1(K).

Case 2: M is infinite.
In this case the substitution τ0 is defined as follows: for α ∈ V and q ∈ Q,

τ0([α, q]) = {[α1, q
′] · · · [αn, q

′] | n ≥ 0, α1 · · ·αn ∈ τ(α); δ(q, τ) = q′} ∪ Tα,q ∪ {F},

and for α ∈ Σ ∪ {F},

τ0(α) = {F},

where Tα,q is as in Case 1.
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It is easy to prove that L(G0) ∩Σ+ = L(G) ∩Σ+. As usual the only possible difficulty
is caused by the empty word.

Assume λ ∈ L(G), i.e., there exists n ≥ 1 with λ ∈ τn(S) and τn ∈ M . By the
construction of G0, we have λ ∈ τn

0 (S0).
On the other hand we have to show that λ ∈ L(G0) only if λ ∈ L(G). Suppose

λ ∈ L(G0), then two possibilities occur.

(α) There exists a derivation S0 ⇒ w1 ⇒ · · · ⇒ wn = λ according to G0 such that wi 6= λ
(1 ≤ i ≤ n−1) and τn ∈ M . From the construction of G0 it follows that λ ∈ L(G).

(β) There exists a derivation S0 ⇒ w1 ⇒ · · · ⇒ wn = λ according to G0 such that wi 6= λ
(1 ≤ i ≤ n−1) and τn /∈ M . Since M is infinite, there is a control word τp ∈ M with p > n.
Then λ ∈ τp(S) and hence λ ∈ L(G) as τp−n(λ) = {λ}. Note that in the subderivation
wn ⇒ · · · ⇒ wp = λ, wi = λ (n ≤ i ≤ p) no state from Q is attached to λ and so we
lost the remaining part of the control word. This loss is however quite immaterial since
τp−n
0 (λ) can only yield λ.

So we have L(G0) = L(G) and consequently H1(REG, K) ⊆ H1(K),

(ii) Exactly the same construction can be applied in the deterministic case. �
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2 A Remark on Controlled Hyper-Algebraic and Dhyper-

Algebraic Extensions

In [1] we showed that under weak assumptions on the families Γ and K, the Γ-controlled
hyper-algebraic extension H(Γ, K) of K is a full hyper-AFL including the families K, Γ
and H(K). Similarly, in the deterministic case [3] we have that under weak conditions on
Γ and K the Γ-controlled dhyper-algebraic extension η(Γ, K) of K is a full dhyper-QAFL
including the families K, Γ and η(K).

We now prove that under an additional assumption on Γ the family H(Γ, K) [η(Γ, K)]
also includes H(Γ) [η(Γ), respectively]. (This result has been inspired by a remark in [4].)

Remember that a full [FIN, REG]-structure is a quasoid closed under the regular oper-
ations (union, concatenation and Kleene ⋆).

Theorem. Let Γ be a full [FIN, REG]-structure.

(i) If K is a prequasoid, then H(Γ) ⊆ H(Γ, K).

(ii) If K is a pseudoid, then η(Γ) ⊆ η(Γ, K).

Proof. Let M ⊆ Σ⋆ be a language in Γ and let a and b be symbols not in Σ. Both {a}
and {b} are in Γ, because Γ is a prequasoid and therefore REG ⊆ Γ. Since Γ is closed
under concatenation, we have aMb ∈ Γ, i.e., Γ is closed under full marking.

(i) The main result in [1] implies that H(Γ, K) is a full hyper-AFL including Γ. Since Γ is a
prequasoid, H(Γ) is the smallest full hyper-AFL including Γ [1, 2]. Hence H(Γ) ⊆ H(Γ, K).

(ii) From [3] it follows that η(Γ, K) is a full dhyper-QAFL. Similar to Lemma 4.1 in [1]
it is easy to show that η(Γ, K) includes Γ. As Γ is a pseudoid, η(Γ) is the smallest full
dhyper-QAFL including Γ [3]. Hence η(Γ) ⊆ η(Γ, K). �

Corollary. [4] Let Γ be a full [FIN, REG]-structure. Then

• H(Γ) ⊆ H(Γ, FIN) = (Γ)ETOL,

• η(Γ) ⊆ η(Γ, ONE) = (Γ)EDTOL. �
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3 Decision Problems for the Families η(Γ, K) and η(K)

In the following we restrict our attention to effective closure properties only; cf. [1], §7.
Since [1] Lemma 7.1 (i.e., [5] Theorem 1) can easily be proved for dK-iteration grammars

[3] too, we obtain by an argument almost identical to the non-deterministic case (cf. [1],
§7) the following decidability results.

Theorem.

(1) Let Γ and K be closed under intersection with regular languages and let the emptiness

problem be decidable in Γ and in K. Then the emptiness problem is decidable for languages

in η(Γ, K).

(2) Let K be a pseudoid and let Γ be closed under full marking and intersection with regular

languages. If the emptiness problem is decidable in Γ and in K, then the membership

problem is decidable in η(Γ.K). �

Corollary.

(1) If K is closed under intersection with regular languages and if the emptiness problem

is decidable for languages in K, then the emptiness problem is also decidable in η(K).

(2) Let K be a pseudoid and let the emptiness problem be decidable in K. Then the

membership problem is decidable in η(K). �
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Note

The original typescript of this report consists of 7 pages; the present LaTeX version reduced
this number to 6.


