
 -1-
-

8:56:28-10-2005

Java Card†: An analysis of the most successful smart card operating
system to date

Version 1.1 (13)

Eduard de Jong♠, Pieter Hartel♦, Patrice Peyret♣, Peter Cattaneo•

Abstract
To explain why the Java Card operating system has become the most successful smart
card operating system to date, we analyze the realized features of the current Java Card
version, we argue it could be enhanced by adding a number of intended features and we
discuss a set of complementary features that have been suggested. No technology can be
successful without the right people and the right circumstances, so we provide some
insights in the personal and historical historic aspects of the success of Java Card

1 Introduction
In June 2005, one billion Java Card cards had been sold; more than any single smart card
operating system has achieved before. This result is due partly to socio-economic
circumstances, serendipity, and, as we will argue, in a large part to the technical
excellence of Java Card.

In the early nineties, conceived as a third party smart card OS under the code name
MASS and later marketed as ‘Macsime,’ before adopting its present name, the Java Card
concept was endowed with a number of features. Some of these have been realized in the
product [Che00] and have contributed to the commercial success. Other features, present
in the implemented prototype of Macsime [Jon95], have yet to be introduced in Java Card
products, and, as we will argue, are entirely within the Java Card spirit: To deliver the
core of a card operating system that is easy to use, secure and amenable to formal
analysis. A third set of complementary features has been proposed, which may be useful
for specific applications. We discuss each of these three categories of features.

Java Card products have realized a number of innovative features, including the ability to
program smart card applications in a high level language (a subset of the Java language),
the ability to upgrade a Java Card smart card with new applications after the card has
been issued, and strong security mechanisms such as fine-grain access control and strict
applet separation. These mechanisms rely on the fact that Java has built-in concepts of
security, and that it is object oriented; a Java Card programmer thus uses object oriented
design methods to develop the applet code and possibly also the terminal code, supported

† Sun, Sun Microsystems, the Sun logo, Java and Java Card are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
♠ Sun Microsystems, Inc.
♦ University Twente
♣ Mobile365.

 -2-
-

8:56:28-10-2005

by programming tools, such as emulators and debuggers. These features have been
described elsewhere in detail [Che00]

Java Card technology was intended to be used in what is now called a model-based
approach. This means that the starting point for any development is a conceptual model
of the system under development, in this case which the model consists contains concepts
such as persistence, transactions, authentication, authorization and integrity and the
establishment of trust in a business transaction. The foundations for the model based
analysis of Java Card applications have already been laid in our earlier work on the
transaction model [Har00b], the three-phase interaction protocol [Har94f] and the
card/terminal co-design development model [Jon00c].

Depending on the area of deployment, the Java Card specifications could be enhanced
with further, complementary features, such as the provision of an IP address [Gut00] or
the addition of web-server functionality [Ree02], interfacing to peripherals such as
keyboards and displays [Pra01], or the integration of Biometrics on the card [Hen00].

Our contribution is threefold. Firstly, we present an analysis showing that Java Card
technology as it exists today is the object-oriented core of a larger conceptual model. The
object-oriented core is well understood and fully embraced by the industry. The main
elements of the conceptual model have been proposed earlier, but the present paper
emphasizes the integration of these elements into a coherent model. Secondly, we offer a
comparison of smart card operating systems and the features they provide showing how
the developments of each system contribute to Java Card features. Thirdly, we present a
time line showing when Java Card technology and its conceptual model emerged, and
who were responsible.

In subsequent sections we provide an analysis of the realised, intended and
complementary features of Java Card products. We also provide a brief history of the
Java Card development. The last section concludes and provides suggestions for future
work. We prefer to give a top down presentation and will begin with the intended
features.

2 Intended features: Model based development
A smart card is component in an information system, of which the mantra can be
described as: a smartcard is a slave to the terminal but the master of its data. This
reflects that a smart card does not initiate communication, it responds to requests for
(security) services. The smart card is wholly in control of access to stored data; it is up to
the card applet to respond to requests from the terminal in a way that may vary from
application to application. Or to say it differently, the application in the card has the sole
discretion in determining that the necessary security conditions for its collaboration with
the outside world have been met: this is the foundation of trust.

2.1 Card/terminal co-design model
Following its mantra, we propose a card/terminal co-design model for smart cards
[Jon00c] where the card and the terminal application are developed in a single intellectual
exercise. Support tools separate the card (applet) part from the terminal (application) part.
While our co-design model has not yet been embraced in the smart card world,

 -3-
-

8:56:28-10-2005

essentially the same idea has been widely accepted in the word of embedded systems as
hardware/software co-design. We are therefore confident that eventually the smart card
world will embrace this idea also.

Currently a significant amount of work is devoted to developing methods and tools to
implement the card side correctly. For an earlier survey we refer to our paper [Har01].
Current developments are concentrated at Gemplus (in close cooperation with the
University of Lille) [Bon04a], Giesecke & Devrient [Phi03], Inria [Pav04], Nijmegen
University [Bre05a], the Kestrel Institute [Cog05] etc.

The extension of the tools into the terminal side has not been realized. An obstacle to
realizing the terminal side code generation is the lack of a generally accepted model for
integration of card security services and hence the absence of a sensible middleware
implementation to provide a context to execute the generated code in. We believe that
this is a serious problem, which deserves the attention of the research community.

2.2 Three-phase interaction model
Zooming in on the role of the smart card in the card/terminal co-design model, we
observe that almost without exception in every non-trivial application the smart card
performs in response to a request, the same three functions, which amounts to our three -
phase interaction model [Har94f] [Jon94]:

o Input security phase: As a slave to the terminal the smart card receives and decodes a
command and some data. Then, except in the most trivial applications, security
processing takes place, such as the decryption of encrypted parameters, checking
signatures etc.

o Processing phase: Any data received and data stored on the card must be processed,
which amounts, in almost all cases, to transaction processing where the non-volatile
memory of the card provides persistent storage.

o Output security phase: After data processing, another security phase ensures that any
resulting data is encrypted before it is returned to the terminal, that appropriate
signatures are applied etc.

Thus sandwiching the ‘pay load’ processing of the smart card between two layers of
security is an essential aspect of a smart card applications response: An application
programmer following the three-phase interaction model specifies an appropriate method
to implement each phase. In a practical implementation, to control the cost of potentially
expensive cryptographic operations, an additional pre-flight phase can be used to
determine appropriateness of the request and the availability of resources.

2.3 Transacted memory model
Transaction processing, as mentioned in the payload processing phase is another essential
feature of a card application. Program-accessible transaction processing is distinct from
what is called “anti-tear,” which is a transparent transaction mechanism that is in general
provided by smartcards to be able to react to unexpected removal (tear) of the card from
the card-reader. Our transacted memory model [Har00b], [Jon00] embodies a transaction
mechanism that can be used explicitly in an applet. A transaction can span several

 -4-
-

8:56:28-10-2005

interactions with the terminal, e.g. sweeps of the three-phase interaction protocol and
simultaneous transactions are supported. The transacted memory model has its origins in
the transaction model from the data base area [Dat95] and work in the smart card area by
Rankl and Weiss [Ran96]. An explicit programmed transaction model can enhance the
speed and efficiency, as it can replace the relatively expensive, in processing terms, anti-
tear mechanisms and minimizes the number of time-consuming updates of the non-
volatile memory.

Summarizing, the card/terminal co-design model, the three-phase interaction model and
the transacted memory model form key concepts of the modern smart card. The Java
Card specifications in their present form do not support these concepts, but there are no
technical impediments to add these intended features to Java Card technology. Having
described the three conceptual models underlying the Java Card design we now turn our
attention to the realized features, which are intimately connected with the object
orientation of the Java Card technology.

3 Realized features: Object oriented programming
Java Card applets are small ‘programs’, that can communicate to each other and the
terminal, that are developed in a high level language, and then either pre loaded, or, more
interestingly, loaded into a smart card once it has been fielded. Other smart card
operating systems allow development in high level languages (e.g. Multos [Eve01], Basic
card [Mil04a]), post issuance update (e.g. Carte Blanche [Pel95]), and secure
communication between applets (e.g. Firewall patent [Jon95a]). The innovation of the
Java Card technology is that it supports a combination of these features all exploiting the
fact that it is object oriented.

3.1 Applet loading is class loading
Loading an applet means loading a class (which once instantiated becomes an object in
its own right). The security of applet loading is intimately connected with access control
to the class and the resulting object. This idea can be traced directly back to Java itself,
which offers secure loading of classes. The case for post issuance update of card
functionality has been demonstrated with the Blank Card concept of Peltier [Pel95].

The Java Card specification itself does not cover life cycle management [Gri03]. With the
hindsight of its success it is clear that a practical business case for dynamic cards
involves an active card issuer that guards access to the card. The Visa Open Platform,
later Open Platform, was introduced by Visa international [Kek01] to implement this
commercially critical role of the card issuer.

3.2 Applet communication is object sharing
Applets communicate by sharing objects, again linking the access control directly to the
(shared) object. Not all objects can be shared by all applets, that is, the Java heap is
partitioned in to a number of virtual heaps. This form of access control has become
known as the Java Card firewall, which is actually a bit of a misnomer. A more
appropriate description would be an ‘execution context’, which is something that main
stream operating systems have offered for at least 50 years [Sal75]. The application of

 -5-
-

8:56:28-10-2005

this idea into the smart card world originates from Banerjee’s work on virtual cards in
OSCAR, Ugon’s work on SPOM [Ugo83].

 3.3 Byte code verification alone is not enough
As part of applet loading, Java Card run-time environment performs byte code
verification. This is conventionally done in two stages, where the verifier runs off-card,
and once the applet has been verified it is digitally signed and installed on the card.
Lightweight byte code verification for Java Card management performs on-card
verification [Ler02]. In both cases the implicit assumption is that once verified, the applet
cannot be changed. This assumption may be too strong, especially if native code can be
downloaded and executed in the card. Recently an attack on the Java runtime has been
shown by inducing memory errors [Gov03], while, as published only applicable to
applications that can control a large amount of RAM, which is not available on smart
cards it demonstrates that additional defensive mechanism may be needed, for instance
computing and verifying checksum over code before executing [Jon04]. Typically a
smart card memory is well protected by error correction and tamper detection circuitry,
but additional hardware may be needed to support such run-time code verification
mechanism. We believe that this is a clear example where the Java Card platform’s Java
parentage alone is not sufficient for security.

3.4 Summary of features
Table 1 provides an overview of card operating system features and the support in the
current version of the Java Card operating system, its precursors and a number of related
systems, which have been influential for the development of the Java Card specifications.
The card operating systems are presented in the table in chronological order (as indicated
by the row ‘introduction’) to illustrate the development over time (see Table 2 for further
historic details). For each operating system instance the various features are summarily
indicated, a more expressive description follows the table;

The following card operating systems are presented:

Oscar is one of the first third party smart card operating system implementations made
by GIS in Cambridge (UK), which was available on smart cards produced by OKI. It
is a file structured storage card. It’s main feature is what was called the ‘virtual card’,
which separates zones of storage and a mechanism to initialize each zone securely
with its own set of keys. With Oscar, a virtual card could be created after issuance.

Macsime/TOSCA a portable card execution environment designed and implemented in
Zaandam, The Netherlands, aimed at the payment market with a focus on high-level
security evaluation. The name was changed into TOSCA when the technology was
transferred to Integrity Arts in California.

Blue, the card operating system originally built by DigiCash in The Netherlands to
support the eCash payment protocol specified in a manner to support high-level
security evaluation.

Multos the card operating system originally built by the Nat West Development Team in
London to support the MONDEX payment protocol specified and implemented to
support high-level security evaluation.

 -6-
-

8:56:28-10-2005

Technology

Feature

O
SC

A
R

M
ac

si
m

e
/

T
O

SC
A

B
lu

e

M
ul

to
s

B
as

ic
ar

d

Ja
va

 C
ar

d

Source GIS QC
technology

/
Integrity

Arts

Digi-
Cash

NWDT Zeit
Control

Sun
Microsystems

Country UK NL /
US

NL UK GE US

Introduction 1990? 1994 /
1995

1996? 1996? 1997 19971

Multi-
application /
firewall

X X X X

Interpreter SCIL /
CLASP

J-Code MEL ZC byte
code

Java Card
Byte Code

Application
programming
language

 Data
model /
ADA

J-Code MEL /
C

Basic Java

Dynamic X X ? X X

Card
Management

master
file

 ? Multos One-
shot

loader

(VISA)
Open

Platform

Cross-firewall
communication

 X Via I/O
buffer

 API

Program
accessible
Transactions

 X ? Single

3-phase
interaction
model

 X

Basicard a programmable smart-card product from ZeitControl in Germany that can be

one-time programmed in a specific flavour of BASIC.

1 The feature are those presented in the 2.0 specifications

 -7-
-

8:56:28-10-2005

Java Card, a portable card execution environment that can be programmed in Java that
incorporated the Macsime technology.

The features in the table can be summarized as follows:

Multi Application means that the role of the card can be selected to support operations
for a specific purpose, conventionally called the card application. Partitioning the
card into independent execution contexts is a necessary mechanism in multi-
application cards.

Interpreter means that the card operating system incorporates a virtual machine
interpreter, either to interpret application code, e.g. Java Card platform, to interpret
the OS implementation, e.g. Blue or both, e.g. Macsime.

Application programming language The language in which application program can de
implemented and in which an application-programming environment (API) is
available.

Dynamic the property that a multi-application card can be modified after issuance by
removing or adding applications using a card management mechanism

Card Management the particular mechanism used for card management implemented on
cards with a particular operating system. In the Java Card framework management is
realized as a card application in its own right allowing for alternative card
management schemes, however Open Platform is used in almost all cards.

Cross firewall communication a mechanism that allows applications to collaborate
securely inside the card.

Progam-accesible transaction model a model of transactions and persistence
specifically tailored to smart cards.

3-phase interaction model a model of the typical interaction between the smart card and
its environment.

Summarising, the marriage of Java and the smart card has created an elegant and
powerful platform for smart card application development. This concludes the
presentation of the realised features.

4. Complementary features
Several proposals have been made to enhance the functionality of Java Card, and more
importantly, a significant number of experiments have been carried out to evaluate such
proposals for effectiveness and efficiency. We discuss a limited selection of the proposals
for complementary features, which we hope give a good coverage of the field.

4.1 Addressing the card by a unique number
One widely suggested complementary feature is the provision of an IP address to a smart
card with the implementation of a stripped down TCP/IP communication stack in the card
[Ree02]. Without an IP address a Java Card can act as what could be called an
anonymous server. This has benefits for security and the protection of privacy.
Anonymity of the card is an essential property of a multi application card and not

 -8-
-

8:56:28-10-2005

“security by obscurity” [Ker1883]; instead the anonymity of the Java Card smart card
enables a card applet to take the appropriate security measures required by its application
purpose without concern for identity-based attacks on security or privacy.

In some applications there is little harm in addressing the smart card by a unique
identification (such as an IP address). For example the SIM card, one of the most popular
Java Card applications, is embedded in a handset that is already replete with
identification (phone number, IMEI etc), in a sense the damage has already been done..

In other applications, addressing a smart card by a unique identification would be
harmful. For example, we would not like our banking cards to leave a clearly visible trail
of our payments to shops, hotels, restaurants etc. A banking card does carry an account
number that is diligently guarded by the card application, and not used to advertise the
presence of the card to the world. Like an IP address, a card should not advertise its
public key certificate: such a certificate is by its construction a unique ID.

4.2 Enhanced interaction with the environment
The Java Card basic processing model is independent of the communication method
between card and the terminal, and supports a packet transport protocol specified in an
international standard [ISO97] and the application-level command response protocol in
[ISO05]. To hide details of APDU processing a variation on the remote procedure call
has been proposed by Gemplus [Van98] which was adopted in the Java Card
specification [Sun03] using the syntax of Java RMI to indicate a card specific
serialization and object referencing mechanism. While providing some of the intended
abstraction for the communication details, the RPC realization actually exposes many of
the Java Card Java-language restriction to the terminal application designer. When,
additionally security processing is part of the RPC handling the net benefits for the
implementer seem very small.

4.3 Freeing the card from slavery
Lecomte et al [Lec99] and Deville et al [Dev03] argue that the card should be freed from
slavery, giving the card a more active role. The reasoning is that an active card can take
initiative, serve applications concurrently and generally perform multiple tasks. A typical
application is a SIM card issuing proactive SIM commands. However, we believe that
this inherently weakens the security of the smart card. Multi tasking (as opposed to
supporting multi application), creates an opportunity for interference in the execution of
the applets, which might be exploited in one applet o spy on the actions of another. For
example using the timing attack [Koc96] an applet observes that some computations that
normally take a short amount of time (when the current applet is the only applet running),
can also take larger amounts of time. The history of this kind of attack traces back to the
70s with the infamous TENEX password attack [Gol99]. So we believe that more
research is needed to make sure that active cards do weaken the security of the smart
card.

4.4 Adding new APIs
The Java Card specifications provides a number of API’s, for cryptography [Gui01]
[Bor01], vendor specific functions etc. Java Card currently does not provide APIs for

 -9-
-

8:56:28-10-2005

other functions. It is notably lacking an appropriate API for Biometrics [Lop04]. There
is, however, a Biometric API from the Java Card Forum (JCF) with some limited
functionality, which will be incorporated in the next specifications. One of the results of
the European Inspired project (See http://www.inspiredproject.com/) should be an API
for Biometrics.

 In France, Patrice Peyret with Gemplus, then the leading card
manufacturer initiatesd a long lasting term research collaboration
project called “RD2P2” with the university of Lille, initially engaging
Vincent Cordonier, Pierre Paradinas and others in work on the
software suitable for a smart card for health card applications.

1989

Autumn Ram Banerjee and others at GIS in Cambridge (UK) release the
OSCAR operating system.

Mar In the Netherlands, Digicash BV starts development of a smart-card
operating system to host the e-cash ultra-fast payment protocol. In
that development effort Jelte van der Hoek and Jurjen Bos work on an
interpreter, the J-Code engine in the card while Eduard de Jong
designs the card OS, implemented by interpreted code, with a focus
on security evaluation.

1990

Sep Pierre Paradinas, Eduard Gordons and Georges Grimonprez complete
work on an SQL implementation engine on for a smart card that
results in a C-language interpreter in the card to interpret the C
implementation of a subset of SQL based on interpreted C and file a
patent on interpreting a high level language program in a card
[Gor03]

1991 Oct Conception by Eduard de Jong of the transacted non-volatile memory
model

Mar Conception by Eduard de Jong of the three-phase interaction model

Mar Start of the European-funded ESPRIT-II project named CASCADE
with participation form the RD2P team, Gemplus, ARM Ltd, Nokia
and others with the objective to research new hard and software
architectures for cards, including RISC and high level languages.

1992

Oct QC Technology founded by Eduard de Jong and Boudewijn de Kerf,
after both had left Digicash BV.

 Conception by Eduard de Jong of a model based development system
using data definition models

1993

Feb Jurjen Bos starts working for QC and begins developing the SCIL
interpreter as implementation of a prototype for card OS Macsime.

2 Not the cute Star Wars droid, but an acronym, in French, standing for “research and development on
portable data”

 -10-
-

8:56:28-10-2005

Feb Eduard de Jong files a patent covering Execution contexts, the Object
Oriented access control model and three-phase interaction protocol.

1994

 Prototype of Macisme technology built as 2-CPU demo board,
Marketing of Macsime technology started with visits to IBM,
Gemplus, Gieseck&Devrient presenting the CPU-level
interoperability and its capacity for high-level formal security
evaluation.

Mar In California, Patrice Peyret and Phil Trice, with strong backing from
Gemplus start Integrity Arts Inc with purpose to develop and
commercialize an interpretive secure structure for cards and other
portable devices.

May SUN announces Java at SunWorld ‘95

May At National Westminster bank in London, the Nat West Development
Team, led by David Peacham and David Everett and engaged in
developing the Mondex pre-paid purse card system, begin to develop
the Mondex card operating system as a distinct project: Multos.

Jun Integrity Arts acquires the Macsime technology, and Eduard de Jong
joins its ranks.

Aug Eduard de Jong with help from Phil Trice files a second Macsime
technology patent that focuses on model-based development.

1995

Dec Visa international signs a first contract with Integrity Arts.

Spring The Integrity Arts engineering team decides to use ADA as the
application programming language for the TOSCA card OS because
the Java language, while attractive is deemed unavailable due to its
explicit restrictions on sub-setting.

Sep Conception by Eduard de Jong of the split Java VM with a perpetual
processing model, and the Integrity Arts engineering team adopts
Java as its application language target.

Oct Sun Microsystems, Inc. initiates discussions on the acquisition of
Integrity Arts.

1996

Nov Announcement of Java Card technology and release of the
specifications 1.0 developed by Scott Guthery and Krisna at
Schlumberger’s Austin microprocessor development team that
defines the Java Card Virtual Machine as add-on to a file structured
smartcard with a per-session execution model. [Sun96??]

May At Java One, Rinaldo Di Giorgio presents basic features of the Java
Card 2.0 specifications.

1997

Sept Sun Microsystems, Inc. acquires Integrity Arts.

 -11-
-

8:56:28-10-2005

Nov Visa International introduces the Open Platform for post issuance
management.

Nov Java Card 2.0 specification released by Sun Microsystems based on
the split VM, perpetual processing models and incorporating some
key technical features from the Macsime prototype as presented here.

1998 Nov Release of the specifications 2.1 for the Java Card execution
platform.

1999 Dec Sun Microsystems, Inc. announces that 24 Million Java Card cards
have been sold.

2001 May Sun Microsystems, Inc. announces that 100 million Java Card cards
have been sold

2002 April Sun Microsystems, Inc. announces that 200 million Java Card cards
have been sold and releases the specification 2.2 for the Java Card
execution platform.

Sept Sun Microsystems, Inc. announces that 400 million Java Card cards
have been sold.

2003

Nov Release of the specifications 2.2.1 for the Java Card execution

platform.

2005 June Sun Microsystems, Inc. announces that 1 billion Java Card cards have
been sold.

2006 April Final release of the next specification of the technology.

Table 2 : History of Java Card technology in a nutshell

5 Related Work
There are a number of historical accounts on smart cards. Quisquater provides a brief
survey [Qui97]. Jurgensen and Guthery [Jur02] provide an overview of multi-application
card technology with an historic perspective.

6 Conclusions
The Java Card execution platform is a commercial successful product, basically because
it fits the needs of mobile-phone operators in their relationship with card manufacturers
and their need for short product lead times.

As witnessed by our references and our earlier survey [Har01], Java Card technology has
attracted a significant number of researchers from main-stream areas such as operating
systems, software engineering, programming languages and formal methods. They have
discovered it as an attractive target for applying new ideas or for a testing ground for old
ideas analyzing Java Card features and implementations. The Java Card execution

 -12-
-

8:56:28-10-2005

platform is a realistic application domain and yet its specification is relatively simple and
small enough to manage in a research context.

A Java Card system has a number of powerful features, some of which are tried and
tested (like Object Orientation), and others are truly innovative, such as the applet
firewall.

The Java Card framework as a development tool is still in its early days. Life-cycle
management is separate, and card/terminal co-development is still in the experimental
stage. Model-based development, code generation and testing are currently receiving
attention, thus raising hope that co-development might evolve also via this route.

Java Card development as a historical phenomenon is interesting in the sense that just a
handful of people have generated most of the ideas, and a small number of companies
proved instrumental in fielding the first systems in a relatively short period of time.

References
[Bon04a] S. Bonnet, O. Potonniée, R. Marvie, and J.-M. Geib. A model-driven approach
for smart card configuration. In G. Karsai and E. Visser, editors, Generative
Programming and Component Engineering (GPCE), volume LNCS 3286, pages 416-435,
Vancouver, Canada, 2004. Springer-Verlag, Berlin.

[Bor01] J. Borst, B. Preneel, and V. Rijmen. Cryptography on smart cards. Computer
Networks, 36(4):423-435, Jul 2001.

[Bre05a] C.-B. Breunesse, N. Catano, M. Huisman, and B. Jacobs. Formal methods for
smart cards: an experience report. Science of Computer Programming, 55(1-3):53-80,
Mar 2005.

[Che00] Z. Chen. Java Card Technology for Smart Cards: Architecture and programmer's
guide. Addison Wesley, Reading, Massachusetts, 2000.

[Cog05] A. Coglio and C. Green. A constructive approach to correctness, exemplified by
a generator for certified Java Card appplets. In IFIP Working Conference on Verified
Software: Tools, Techniques, and Experiments, Zürich, Switzerland, Oct 2005.

[Dat95] C. J. Date. An introduction to data base systems. Addison Wesley, Reading,
Massachusetts, sixth edition, 1995.

 -13-
-

8:56:28-10-2005

 [Dev03] D. Deville, A. Galland, G. Grimaud, and S. Jean. Smart card operating systems:
Past, present and future. In 5th USENIX/NordU Conf., pages 14-28, Vasteräs, Sweden,
Feb 2003. Unpublished.

[Eve01] D. B. Everett, S. J. Miller, A. D. Peacham, I. S. Simmons, T. P. Richards, and J.
C. Viner. Multi-application IC card with delegation feature. United States Patent and
Trademark Office, Apr 2001. Patent Nr. US6220510.

[Gol99] D. Gollmann. Computer Security. John Wiley & Sons, Chichester, UK, 1999.

[Gor03] E. Gordons, G. Grimonprez, and P. Paradinas. Portable support with easily
programmable microcircuit and method of programming this microcircuit. European
Patent Office, Mar 1992.

[Gov03] S. Govindavajhala and A. W. Appel. Using memory errors to attack a virtual
machine. In 24th Symp. on Security and Privacy (S&P), pages 154-165, Berkeley,
California, May 2003. IEEE Computer Society Press, Los Alamitos, California.

[Gri03] G. Grimaud and J.-J. Vandewalle. Introducing research issues for next generation
Java-based smart card platforms. In Smart Objects Conf. (SOC), pages 138-141,
Grenoble, France, May 2003. France Telecom and CNRS.

[Gui01] L. C. Guillou, M. Ugon, and J-J. Quisquater. Cryptographic authentication
protocols for smart cards. Computer Networks, 36(4):437-451, Jul 2001.

[Gut00] S. Guthery, R. Kehr, and J. Posegga. How to turn a GSM SIM into a web server.
In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, 4th Int. IFIP wg 8.8 Conf. Smart
card research and advanced application (CARDIS), pages 209-222. Kluwer Academic
Publishers, Boston, Massachusetts, Sep 2000.

[Har00b] P. H. Hartel, M. J. Butler, E. K. de Jong, and M. Longley. Transacted memory
for smart cards. In J. N. Olivieira and P. Zave, editors, 10th Formal Methods for
Increasing Software Productivity (FME), volume LNCS 2021, pages 478-499, Berlin,
Germany, Mar 2001. Springer-Verlag, Berlin.

[Har94f] P. H. Hartel and E. K. de Jong. Towards testability in smart card operating
system design. In V. Cordonnier and J.-J. Quisquater, editors, 1st Smart card research and

 -14-
-

8:56:28-10-2005

advanced application (CARDIS), pages 73-88, Lille, France, Oct 1994. Univ. de Lille,
France.

[Har01] P. H. Hartel and L. A. V. Moreau. Formalizing the safety of Java, the Java
virtual machine and Java card. ACM Computing Surveys, 33(4):517-558, Dec 2001.

[Hen00] N. J. Henderson and P. H. Hartel. Pressure sequence - A novel method of
protecting smart cards. In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, 4th Int.
IFIP wg 8.8 Conf. Smart card research and advanced application (CARDIS), pages 241-
256, Bristol, UK, Sep 2000. Kluwer Academic Publishers, Boston, Massachusetts.

[ISO95] ISO/IEC. 7816-4:1995 Information technology - Identification cards - Integrated
circuit(s) cards with contacts part4: Inter-Industry commands for interchange. Int.
Standards Organization, Geneva, Switzerland, 1995.

[ISO97] ISO/IEC. 7816-3:1997 Information technology - Identification cards - Integrated
circuit(s) cards with contacts part 3: Electronic signals and transmission protocols. Int.
Standards Organization, Geneva, Switzerland, 1997.

[Jon95a] E. K. de Jong. Data exchange system comprising portable data processing units.
European Patent Office, Aug 1995. Patent Nr. EP0666550.

[Jon95] E. K. de Jong. Objects in smart cards. In B. Struif, editor, 5th GMD-Smart card
Workshop, pages 12.1-12.6, Darmstadt, Germany, Jan 1995. GMD, Darmstadt.

[Jon00] E.K. de Jong and J. N. E. Bos US 6769053 Arrangement storing different
versions of a set of data in separate memory areas and method for updating a set of data
in a memory

 [Jon00c] E. K. de Jong. Data exchange system comprising portable data processing
units. United States Patent and Trademark Office, Jul 2000. Patent Nr. US6094656.

[Jon04] E. K. de Jong. Run time code integrity checks. United States Patent and
Trademark Office, Jul 2004. Patent Application Nr. US20040143739.

[Jon94] E. K. de Jong and J. N. E. Bos. An application tool kit for smart cards: Security
``as you like it''. In Smart Card 1994, Day one: Market overview of Leisure, finance and

 -15-
-

8:56:28-10-2005

security, pages 76-81, London, UK, Mar 1994. Lowndes Exhibition Organisers,
Peterborough, UK.

[Jur02] T. M. Jurgensen and S. B. Guthery. Smart Cards: The Developer's Toolkit
(Paperback). Prentice Hall, Upper Saddle river, New York, 2002.

[Kek01] M. Kekicheff, F. Kashef, and D. Brewer. Open platform security. In I. Attali and
T. P. Jensen, editors, 2st Int. Workshop Java on Smart Cards: Programming and Security
(JavaCard), volume LNCS 2041, pages 98-113, Cannes, France, Sep 2001. Springer-
Verlag, Berlin.

[Ker1883] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires,
9:5-38, Jan 1883.

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS
and other systems. In N. Koblitz, editor, 16th Advances in Cryptology (CRYPTO),
volume LNCS 1109, pages 104-113, Santa Barbara, California, Aug 1996. Springer-
Verlag, Berlin.

[Lec99] S. Lecomte, G. Grimaud, and D. Donsez. Implementation of transactional
mechanisms for open smartcard. In Electronic Proc. Gemplus Developer Conf (GDC),
Paris, France, Jun 1999. Gemplus SA, France.

[Ler02] X. Leroy. Bytecode verification on Java smart cards. Software - Practice and
Experience, 32(4):319-340, 2002.

[Lop04] C. López-Ongil, R. Sánchez-Reillo, J. Liu-Jimenez, F. Casado, L. Sánchez, and
L. Entrena. FPGA implementation of biometric authentication system based on hand
geometry. In J. Becker, M. Platzner, and S. Vernalde, editors, 14th Int. Conf. on Field
Programmable Logic and Application (FPL), volume LNCS 3203, pages 43-53, Leuven,
Belgium, Aug 2004. Springer-Verlag, Berlin.

[Mil04a] B. Millier. BasicCard 101: Program your first smartcard. Circuit Cellar, the
Magazine for Computer Applications, 164, Mar 2004.

[Pav04] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing High-
Level security properties for applets. In J.-J. Quisquater, P. Paradinas, Y. Deswarte, A. A.
El Kalam, J.-J. Quisquater, P. Paradinas, Y. Deswarete, and A. A. El Kalam, editors, 6th

 -16-
-

8:56:28-10-2005

Int. Conf. on Smart Card Research and Advanced Applications (CARDIS), pages 1-16,
Toulouse, France, Aug 2004. Kluwer Academic Publishers, Boston, Massachusetts.

[Pel95] T. Peltier. La carte blanche: un nouveau systeme d'exploitation pour objets
nomades. PhD thesis, Univ. de Lille, France, Dec 1995.

[Phi03] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and K. Scholl.
Model-Based test case generation for smart cards. Electronic Notes in Theoretical
Computer Science, 80:1-15, Aug 2003.

[Pra01] D. Praca and C. Barral. From smart cards to smart objects: the road to new smart
technologies. Computer Networks, 36(4):381-389, Jul 2001.

[Qui97] J. J. Quisquater. The adolescence of smart cards. Future Generation Computer
Systems, 13(1):3-7, Jul 1997.

[Ran96] W. Rankl and D. Weiss. System for conducting transactions with a
multifunctional card having an electronic purse. United States Patent and Trademark
Office, Jul 1996. Patent Nr. US5534683.

[Ree02] J. Rees and P. Honeyman. Webcard: a Java card web server. In J. Domingo-
Ferrer, D. Chan, and A. Watson, editors, 4th Int. IFIP wg 8.8 Conf. Smart card research
and advanced application (CARDIS), pages 197-208. Kluwer Academic Publishers,
Boston, Massachusetts, Sep 2000.

[Sal75] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278-1308, Sep 1975.

[Sun03] Sun Microsystems, Inc., Java Card Platform, version 2.2.1, Runtime
Environment Specification, http://java.sun.com/products/javacard/specs.html March 2003

[Ugo83] M. Ugon. Single chip microprocessor with on-chip modifiable memory. United
States Patent and Trademark Office, May 1983. Patent Nr. US4382279.

[Van98] J.-J. Vandewalle and E. Vétillard. Developing smart Card-Based applications
using Java card. In J.-J. Quisquater and B. Schneier, editors, 3rd Smart card research and
advanced application (CARDIS), volume LNCS 1820, pages 167-182 and 105-124,
Louvain la Neuve, Belgium, Sep 1998. Springer-Verlag, Berlin.

