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Abstract 
To explain why the Java Card operating system has become the most successful smart 
card operating system to date, we analyze the realized features of the current Java Card 
version, we argue it could be enhanced by adding a number of intended features and we 
discuss a set of complementary features that have been suggested. No technology can be 
successful without the right people and the right circumstances, so we provide some 
insights in the personal and historical historic aspects of the success of Java Card 

1 Introduction 
In June 2005, one billion Java Card cards had been sold; more than any single smart card 
operating system has achieved before. This result is due partly to socio-economic 
circumstances, serendipity, and, as we will argue, in a large part to the technical 
excellence of Java Card.  

In the early nineties, conceived as a third party smart card OS under the code name 
MASS and later marketed as ‘Macsime,’ before adopting its present name, the Java Card 
concept was endowed with a number of features. Some of these have been realized in the 
product [Che00] and have contributed to the commercial success. Other features, present 
in the implemented prototype of Macsime [Jon95], have yet to be introduced in Java Card 
products, and, as we will argue, are entirely within the Java Card spirit: To deliver the 
core of a card operating system that is easy to use, secure and amenable to formal 
analysis. A third set of complementary features has been proposed, which may be useful 
for specific applications. We discuss each of these three categories of features. 

Java Card products have realized a number of innovative features, including the ability to 
program smart card applications in a high level language (a subset of the Java language), 
the ability to upgrade a Java Card smart card with new applications after the card has 
been issued, and strong security mechanisms such as fine-grain access control and strict 
applet separation. These mechanisms rely on the fact that Java has built-in concepts of 
security, and that it is object oriented; a Java Card programmer thus uses object oriented 
design methods to develop the applet code and possibly also the terminal code, supported 
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by programming tools, such as emulators and debuggers. These features have been 
described elsewhere in detail [Che00] 

Java Card technology was intended to be used in what is now called a model-based 
approach. This means that the starting point for any development is a conceptual model 
of the system under development, in this case which the model consists contains concepts 
such as persistence, transactions, authentication, authorization and integrity and the 
establishment of trust in a business transaction. The foundations for the model based 
analysis of Java Card applications have already been laid in our earlier work on the 
transaction model [Har00b], the three-phase interaction protocol [Har94f] and the 
card/terminal co-design development model [Jon00c]. 

Depending on the area of deployment, the Java Card specifications could be enhanced 
with further, complementary features, such as the provision of an IP address [Gut00] or 
the addition of web-server functionality [Ree02], interfacing to peripherals such as 
keyboards and displays [Pra01], or the integration of Biometrics on the card [Hen00]. 

Our contribution is threefold. Firstly, we present an analysis showing that Java Card 
technology as it exists today is the object-oriented core of a larger conceptual model. The 
object-oriented core is well understood and fully embraced by the industry. The main 
elements of the conceptual model have been proposed earlier, but the present paper 
emphasizes the integration of these elements into a coherent model. Secondly, we offer a 
comparison of smart card operating systems and the features they provide showing how 
the developments of each system contribute to Java Card features. Thirdly, we present a 
time line showing when Java Card technology and its conceptual model emerged, and 
who were responsible. 

In subsequent sections we provide an analysis of the realised, intended and 
complementary features of Java Card products. We also provide a brief history of the 
Java Card development. The last section concludes and provides suggestions for future 
work. We prefer to give a top down presentation and will begin with the intended 
features. 

2 Intended features: Model based development 
A smart card is component in an information system, of which the mantra can be 
described as: a smartcard is a slave to the terminal but the master of its data. This 
reflects that a smart card does not initiate communication, it responds to requests for 
(security) services. The smart card is wholly in control of access to stored data; it is up to 
the card applet to respond to requests from the terminal in a way that may vary from 
application to application. Or to say it differently, the application in the card has the sole 
discretion in determining that the necessary security conditions for its collaboration with 
the outside world have been met: this is the foundation of trust. 

2.1 Card/terminal co-design model 
Following its mantra, we propose a card/terminal co-design model for smart cards 
[Jon00c] where the card and the terminal application are developed in a single intellectual 
exercise. Support tools separate the card (applet) part from the terminal (application) part. 
While our co-design model has not yet been embraced in the smart card world, 
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essentially the same idea has been widely accepted in the word of embedded systems as 
hardware/software co-design. We are therefore confident that eventually the smart card 
world will embrace this idea also.  

Currently a significant amount of work is devoted to developing methods and tools to 
implement the card side correctly. For an earlier survey we refer to our paper [Har01]. 
Current developments are concentrated at Gemplus (in close cooperation with the 
University of Lille) [Bon04a], Giesecke & Devrient [Phi03], Inria [Pav04], Nijmegen 
University [Bre05a], the Kestrel Institute [Cog05] etc.  

The extension of the tools into the terminal side has not been realized. An obstacle to 
realizing the terminal side code generation is the lack of a generally accepted model for 
integration of card security services and hence the absence of a sensible middleware 
implementation to provide a context to execute the generated code in. We believe that 
this is a serious problem, which deserves the attention of the research community.  

2.2 Three-phase interaction model 
Zooming in on the role of the smart card in the card/terminal co-design model, we 
observe that almost without exception in every non-trivial application the smart card 
performs in response to a request, the same three functions, which amounts to our three -
phase interaction model [Har94f] [Jon94]: 

o Input security phase: As a slave to the terminal the smart card receives and decodes a 
command and some data. Then, except in the most trivial applications, security 
processing takes place, such as the decryption of encrypted parameters, checking 
signatures etc. 

o Processing phase: Any data received and data stored on the card must be processed, 
which amounts, in almost all cases, to transaction processing where the non-volatile 
memory of the card provides persistent storage. 

o Output security phase: After data processing, another security phase ensures that any 
resulting data is encrypted before it is returned to the terminal, that appropriate 
signatures are applied etc. 

Thus sandwiching the ‘pay load’ processing of the smart card between two layers of 
security is an essential aspect of a smart card applications response: An application 
programmer following the three-phase interaction model specifies an appropriate method 
to implement each phase. In a practical implementation, to control the cost of potentially 
expensive cryptographic operations, an additional pre-flight phase can be used to 
determine appropriateness of the request and the availability of resources.  

2.3 Transacted memory model 
Transaction processing, as mentioned in the payload processing phase is another essential 
feature of a card application. Program-accessible transaction processing is distinct from 
what is called “anti-tear,” which is a transparent transaction mechanism that is in general 
provided by smartcards to be able to react to unexpected removal (tear) of the card from 
the card-reader. Our transacted memory model [Har00b], [Jon00] embodies a transaction 
mechanism that can be used explicitly in an applet. A transaction can span several 
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interactions with the terminal, e.g. sweeps of the three-phase interaction protocol and 
simultaneous transactions are supported. The transacted memory model has its origins in 
the transaction model from the data base area [Dat95] and work in the smart card area by 
Rankl and Weiss [Ran96]. An explicit programmed transaction model can enhance the 
speed and efficiency, as it can replace the relatively expensive, in processing terms, anti-
tear mechanisms and minimizes the number of time-consuming updates of the non-
volatile memory.      

Summarizing, the card/terminal co-design model, the three-phase interaction model and 
the transacted memory model form key concepts of the modern smart card. The Java 
Card specifications in their present form do not support these concepts, but there are no 
technical impediments to add these intended features to Java Card technology. Having 
described the three conceptual models underlying the Java Card design we now turn our 
attention to the realized features, which are intimately connected with the object 
orientation of the Java Card technology. 

3 Realized features: Object oriented programming 
Java Card applets are small ‘programs’, that can communicate to each other and the 
terminal,  that are developed in a high level language, and then either pre loaded, or, more 
interestingly, loaded into a smart card once it has been fielded. Other smart card 
operating systems allow development in high level languages (e.g. Multos [Eve01], Basic 
card [Mil04a]), post issuance update (e.g. Carte Blanche [Pel95]), and secure 
communication between applets (e.g. Firewall patent [Jon95a]). The innovation of the 
Java Card technology is that it supports a combination of these features all exploiting the 
fact that it is object oriented. 

3.1 Applet loading is class loading 
Loading an applet means loading a class (which once instantiated becomes an object in 
its own right). The security of applet loading is intimately connected with access control 
to the class and the resulting object. This idea can be traced directly back to Java itself, 
which offers secure loading of classes. The case for post issuance update of card 
functionality has been demonstrated with the Blank Card concept of Peltier [Pel95]. 

The Java Card specification itself does not cover life cycle management [Gri03]. With the 
hindsight of its success it is clear that a practical business case for dynamic cards 
involves an active card issuer that guards access to the card. The Visa Open Platform, 
later Open Platform, was introduced by Visa international [Kek01] to implement this 
commercially critical role of the card issuer. 

3.2 Applet communication is object sharing 
Applets communicate by sharing objects, again linking the access control directly to the 
(shared) object. Not all objects can be shared by all applets, that is, the Java heap is 
partitioned in to a number of virtual heaps.  This form of access control has become 
known as the Java Card firewall, which is actually a bit of a misnomer. A more 
appropriate description would be an ‘execution context’, which is something that main 
stream operating systems have offered for at least 50 years [Sal75]. The application of 
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this idea into the smart card world originates from Banerjee’s work on virtual cards in 
OSCAR, Ugon’s work on SPOM [Ugo83]. 

 3.3 Byte code verification alone is not enough 
As part of applet loading, Java Card run-time environment performs byte code 
verification. This is conventionally done in two stages, where the verifier runs off-card, 
and once the applet has been verified it is digitally signed and installed on the card. 
Lightweight byte code verification for Java Card management performs on-card 
verification [Ler02]. In both cases the implicit assumption is that once verified, the applet 
cannot be changed. This assumption may be too strong, especially if native code can be 
downloaded and executed in the card. Recently an attack on the Java runtime has been 
shown by inducing memory errors [Gov03], while, as published only applicable to 
applications that can control a large amount of RAM, which is not available on smart 
cards it demonstrates that additional defensive mechanism may be needed, for instance 
computing and verifying checksum over code before executing [Jon04]. Typically a 
smart card memory is well protected by error correction and tamper detection circuitry, 
but additional hardware may be needed to support such run-time code verification 
mechanism. We believe that this is a clear example where the Java Card platform’s Java 
parentage alone is not sufficient for security. 

3.4 Summary of features  
Table 1 provides an overview of card operating system features and the support in the 
current version of the Java Card operating system, its precursors and a number of related 
systems, which have been influential for the development of the Java Card specifications. 
The card operating systems are presented in the table in chronological order (as indicated 
by the row ‘introduction’) to illustrate the development over time (see Table 2 for further 
historic details). For each operating system instance the various features are summarily 
indicated, a more expressive description follows the table; 

The following card operating systems are presented: 

Oscar is one of the first third party smart card operating system implementations made 
by GIS in Cambridge (UK), which was available on smart cards produced by OKI. It 
is a file structured storage card. It’s main feature is what was called the ‘virtual card’, 
which separates zones of storage and a mechanism to initialize each zone securely 
with its own set of keys. With Oscar, a virtual card could be created after issuance.  

Macsime/TOSCA a portable card execution environment designed and implemented in 
Zaandam, The Netherlands, aimed at the payment market with a focus on high-level 
security evaluation. The name was changed into TOSCA when the technology was 
transferred to Integrity Arts in California. 

Blue, the card operating system originally built by DigiCash in The Netherlands to 
support the eCash payment protocol specified in a manner to support high-level 
security evaluation. 

Multos the card operating system originally built by the Nat West Development Team in 
London to support the MONDEX payment protocol specified and implemented to 
support high-level security evaluation. 
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Basicard a programmable smart-card product from ZeitControl in Germany that can be 

one-time programmed in a specific flavour of BASIC.   

                                                 
1 The feature are those presented in the 2.0 specifications 
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Java Card, a portable card execution environment that can be programmed in Java that 
incorporated the Macsime technology.  

The features in the table can be summarized as follows: 

Multi Application means that the role of the card can be selected to support operations 
for a specific purpose, conventionally called the card application. Partitioning the 
card into independent execution contexts is a necessary mechanism in multi-
application cards.  

Interpreter means that the card operating system incorporates a virtual machine 
interpreter, either to interpret application code, e.g. Java Card platform, to interpret 
the OS implementation, e.g. Blue or both, e.g. Macsime. 

Application programming language The language in which application program can de 
implemented and in which an application-programming environment (API) is 
available. 

Dynamic the property that a multi-application card can be modified after issuance by 
removing or adding applications using a card management mechanism 

Card Management the particular mechanism used for card management implemented on 
cards with a particular operating system. In the Java Card framework management is 
realized as a card application in its own right allowing for alternative card 
management schemes, however Open Platform is used in almost all cards. 

Cross firewall communication  a mechanism that allows applications to collaborate 
securely inside the card.  

Progam-accesible transaction model a model of transactions and persistence 
specifically tailored to smart cards. 

3-phase interaction model a model of the typical interaction between the smart card and 
its environment. 

Summarising, the marriage of Java and the smart card has created an elegant and 
powerful platform for smart card application development. This concludes the 
presentation of the realised features. 

4. Complementary features 
Several proposals have been made to enhance the functionality of Java Card, and more 
importantly, a significant number of experiments have been carried out to evaluate such 
proposals for effectiveness and efficiency. We discuss a limited selection of the proposals 
for complementary features, which we hope give a good coverage of the field. 

4.1 Addressing the card by a unique number 
One widely suggested complementary feature is the provision of an IP address to a smart 
card with the implementation of a stripped down TCP/IP communication stack in the card 
[Ree02]. Without an IP address a Java Card can act as what could be called an 
anonymous server. This has benefits for security and the protection of privacy. 
Anonymity of the card is an essential property of a multi application card and not 
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“security by obscurity” [Ker1883]; instead the anonymity of the Java Card smart card 
enables a card applet to take the appropriate security measures required by its application 
purpose without concern for identity-based attacks on security or privacy. 

In some applications there is little harm in addressing the smart card by a unique 
identification (such as an IP address). For example the SIM card, one of the most popular 
Java Card applications, is embedded in a handset that is already replete with 
identification (phone number, IMEI etc), in a sense the damage has already been done.. 

In other applications, addressing a smart card by a unique identification would be 
harmful. For example, we would not like our banking cards to leave a clearly visible trail 
of our payments to shops, hotels, restaurants etc. A banking card does carry an account 
number that is diligently guarded by the card application, and not used to advertise the 
presence of the card to the world. Like an IP address, a card should not advertise its 
public key certificate: such a certificate is by its construction a unique ID.  

4.2 Enhanced interaction with the environment 
The Java Card basic processing model is independent of the communication method 
between card and the terminal, and supports a packet transport protocol specified in an 
international standard [ISO97] and the application-level command response protocol in 
[ISO05]. To hide details of APDU processing a variation on the remote procedure call 
has been proposed by Gemplus [Van98] which was adopted in the Java Card 
specification [Sun03] using the syntax of Java RMI to indicate a card specific 
serialization and object referencing mechanism.  While providing some of the intended 
abstraction for the communication details, the RPC realization actually exposes many of 
the Java Card Java-language restriction to the terminal application designer. When, 
additionally security processing is part of the RPC handling the net benefits for the 
implementer seem very small. 

4.3 Freeing the card from slavery 
Lecomte et al [Lec99] and Deville et al [Dev03] argue that the card should be freed from 
slavery, giving the card a more active role. The reasoning is that an active card can take 
initiative, serve applications concurrently and generally perform multiple tasks. A typical 
application is a SIM card issuing proactive SIM commands. However, we believe that 
this inherently weakens the security of the smart card. Multi tasking (as opposed to 
supporting multi application), creates an opportunity for interference in the execution of 
the applets, which might be exploited in one applet o spy on the actions of another. For 
example using the timing attack [Koc96] an applet observes that some computations that 
normally take a short amount of time (when the current applet is the only applet running), 
can also take larger amounts of time. The history of this kind of attack traces back to the 
70s with the infamous TENEX password attack [Gol99]. So we believe that more 
research is needed to make sure that active cards do weaken the security of the smart 
card. 

4.4 Adding new APIs 
The Java Card specifications provides a number of API’s, for cryptography [Gui01] 
[Bor01], vendor specific functions etc. Java Card currently does not provide APIs for 
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other functions.  It is notably lacking an appropriate API for Biometrics [Lop04]. There 
is, however, a Biometric API from the Java Card Forum (JCF) with some limited 
functionality, which will be incorporated in the next specifications. One of the results of 
the European Inspired project (See http://www.inspiredproject.com/ ) should be an API 
for Biometrics.  

 

 In France, Patrice Peyret with Gemplus, then the leading card 
manufacturer initiatesd a long lasting term research collaboration 
project called “RD2P2” with the university of Lille, initially engaging 
Vincent Cordonier, Pierre Paradinas and others in work on the 
software suitable for a smart card for health card applications.     

1989 

Autumn Ram Banerjee and others at GIS in Cambridge (UK) release the 
OSCAR operating system.  

Mar In the Netherlands, Digicash BV starts development of a smart-card 
operating system to host the e-cash ultra-fast payment protocol. In 
that development effort Jelte van der Hoek and Jurjen Bos work on an 
interpreter, the J-Code engine in the card while Eduard de Jong 
designs the card OS, implemented by interpreted code, with a focus 
on security evaluation.   

1990 

Sep Pierre Paradinas, Eduard Gordons and Georges Grimonprez complete 
work on an SQL implementation engine on for a smart card that 
results in a C-language interpreter in the card to interpret the C 
implementation of a subset of SQL based on interpreted C and file a 
patent on interpreting a high level language program in a card 
[Gor03]  

1991 Oct Conception by Eduard de Jong of the transacted non-volatile memory 
model 

Mar Conception by Eduard de Jong of the three-phase interaction model 

Mar Start of the European-funded ESPRIT-II project named CASCADE 
with participation form the RD2P team, Gemplus, ARM Ltd, Nokia 
and others with the objective to research new hard and software 
architectures for cards, including RISC and high level languages. 

1992 

 

Oct QC Technology founded by Eduard de Jong and Boudewijn de Kerf, 
after both had left Digicash BV. 

 Conception by Eduard de Jong of a model based development system 
using data definition models 

1993 

Feb Jurjen Bos starts working for QC and begins developing the SCIL 
interpreter as implementation of a prototype for card OS Macsime.  

                                                 
2 Not the cute Star Wars droid, but an acronym, in French, standing for “research and development on 
portable data” 



 -10- 
- 

8:56:28-10-2005 

Feb Eduard de Jong files a patent covering Execution contexts, the Object 
Oriented access control model and three-phase interaction protocol.  

1994 

 Prototype of Macisme technology built as 2-CPU demo board, 
Marketing of Macsime technology started with visits to IBM, 
Gemplus, Gieseck&Devrient presenting the CPU-level 
interoperability and its capacity for high-level formal security 
evaluation. 

Mar In California, Patrice Peyret and Phil Trice, with strong backing from 
Gemplus start Integrity Arts Inc with purpose to develop and 
commercialize an interpretive secure structure for cards and other 
portable devices.   

May SUN announces Java at SunWorld ‘95 

May At National Westminster bank in London, the Nat West Development 
Team, led by David Peacham and David Everett and engaged in 
developing the Mondex pre-paid purse card system, begin to develop 
the Mondex card operating system as a distinct project: Multos.  

Jun Integrity Arts acquires the Macsime technology, and Eduard de Jong 
joins its ranks. 

Aug Eduard de Jong with help from Phil Trice files a second Macsime 
technology patent that focuses on model-based development. 

1995 

Dec Visa international signs a first contract with Integrity Arts. 

Spring The Integrity Arts engineering team decides to use ADA as the 
application programming language for the TOSCA card OS because 
the Java language, while attractive is deemed unavailable due to its 
explicit restrictions on sub-setting.  

Sep Conception by Eduard de Jong of the split Java VM with a perpetual 
processing model, and the Integrity Arts engineering team adopts 
Java as its application language target. 

Oct Sun Microsystems, Inc. initiates discussions on the acquisition of 
Integrity Arts. 

1996 

 

Nov Announcement of Java Card technology and release of the 
specifications 1.0 developed by Scott Guthery and Krisna at 
Schlumberger’s Austin microprocessor development team that 
defines the Java Card Virtual Machine as add-on to a file structured 
smartcard with a per-session execution model. [Sun96??] 

May At Java One, Rinaldo Di Giorgio presents basic features of the Java 
Card 2.0 specifications. 

1997 

 
Sept Sun Microsystems, Inc. acquires Integrity Arts. 
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Nov Visa International introduces the Open Platform for post issuance 
management. 

 

Nov Java Card 2.0 specification released by Sun Microsystems based on 
the split VM, perpetual processing models and incorporating some 
key technical features from the Macsime prototype as presented here. 

1998 Nov Release of the specifications 2.1 for the Java Card execution 
platform.  

1999 Dec Sun Microsystems, Inc. announces that 24 Million Java Card cards 
have been sold. 

2001 May  Sun Microsystems, Inc. announces that 100 million Java Card cards 
have been sold 

2002 April Sun Microsystems, Inc. announces that 200 million Java Card cards 
have been sold and releases the specification 2.2 for the Java Card 
execution platform. 

Sept  Sun Microsystems, Inc. announces that 400 million Java Card cards 
have been sold. 

2003 

 
Nov  Release of the specifications 2.2.1 for the Java Card execution 

platform. 

2005 June Sun Microsystems, Inc. announces that 1 billion Java Card cards have 
been sold. 

2006  April  Final release of the next specification of the technology.  

 

Table 2 : History of Java Card technology in a nutshell 

 

5 Related Work 
There are a number of historical accounts on smart cards. Quisquater provides a brief 
survey [Qui97]. Jurgensen and Guthery [Jur02] provide an overview of multi-application 
card technology with an historic perspective.  

6 Conclusions 
The Java Card execution platform is a commercial successful product, basically because 
it fits the needs of mobile-phone operators in their relationship with card manufacturers 
and their need for short product lead times. 

As witnessed by our references and our earlier survey [Har01], Java Card technology has 
attracted a significant number of researchers from main-stream areas such as operating 
systems, software engineering, programming languages and formal methods. They have 
discovered it as an attractive target for applying new ideas or for a testing ground for old 
ideas analyzing Java Card features and implementations. The Java Card execution 
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platform is a realistic application domain and yet its specification is relatively simple and 
small enough to manage in a research context. 

A Java Card system has a number of powerful features, some of which are tried and 
tested (like Object Orientation), and others are truly innovative, such as the applet 
firewall. 

The Java Card framework as a development tool is still in its early days. Life-cycle 
management is separate, and card/terminal co-development is still in the experimental 
stage. Model-based development,  code generation and testing are currently receiving 
attention, thus raising hope that co-development might evolve also via this route. 

Java Card development as a historical phenomenon is interesting in the sense that just a 
handful of people have generated most of the ideas, and a small number of companies 
proved instrumental in fielding the first systems in a relatively short period of time. 
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