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Abstract

We consider the problem of selecting the best of a finite but very large set of alternatives.
Each alternative may be characterized by a multi-dimensional vector and has independent
normal rewards. This problem arises in various settings such as (i) ranking and selection,
(ii) simulation optimization where the unknown mean of each alternative is estimated with
stochastic simulation output, and (iii) approximate dynamic programming where we need
to estimate values based on Monte-Carlo simulation.

We use a Bayesian probability model for the unknown reward of each alternative and
follow a fully sequential sampling policy called the knowledge-gradient policy. This policy
myopically optimizes the expected increment in the value of sampling information in each
time period. Because the number of alternatives is large, we propose a hierarchical aggre-
gation technique that uses the common features shared by alternatives to learn about many
alternatives from even a single measurement, thus greatly reducing the measurement effort
required. We demonstrate how this hierarchical knowledge-gradient policy can be applied to
efficiently maximize a continuous function and prove that this policy finds a globally optimal
alternative in the limit.

Keywords: sequential decision analysis, ranking and selection, adaptive learning, hierarchical
statistics, Bayesian statistics

1 Introduction

We address the problem of maximizing an unknown function θx where x = (x1, . . . , xD), x ∈ X ,
is a discrete multi-dimensional vector of categorical and numerical attributes. We have the
ability to sequentially choose a set of measurements to estimate θx, after which we choose the
value of x with the largest estimated value of θx. Our challenge is to design a measurement
policy that produces the fastest rate of learning, so that we can find the best value within a
finite budget. Many applications in this setting involve measurements that are time consuming
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and/or expensive. This problem is equivalent to the ranking and selection (R&S) problem,
where the difference is that the number of alternatives |X | is extremely large relative to the
measurement budget.

We do not make any explicit structural assumptions about θx, but we do assume that we
are given a family of aggregation functions Gg : X → X g, g ∈ G, each of which maps X to
a region X g, which is successively smaller than the original set of alternatives. We assume
g = 0 corresponds to no aggregation, i.e., X 0 = X and G0(x) = x, which might be the finest
discretization of a continuous set of alternatives. We do not require the aggregations to be
hierarchical, although this will be common in practice. After each observation ŷnx = θx + εn, we
update a family of statistical estimates of θ at each level of aggregation. After n observations,
we obtain a family of estimates µg,nx of the function at different levels of aggregation, and we
form an estimate µnx of θx using

µnx =
∑
g∈G

wg,nx µg,nx , (1)

where the weights wg,nx sum to one over all the levels of aggregation for each point x. The
estimates µg,nx at more aggregate levels have lower statistical variance since they are based upon
more observations, but will exhibit aggregation bias. The estimates µg,nx at more disaggregate
levels will exhibit greater variance but lower bias. We design our weights to strike a balance
between variance and bias.

Our goal is to create a measurement policy π that leads us to find the alternative x that
maximizes θx. This problem generalizes the ranking and selection problem to a very large set
of potential alternatives. Rather than listing the alternatives (1, 2, . . . ,M), we retain the multi-
dimensional structure of an alternative x as a vector (x1, . . . , xD). This version of the problem
arises in a wide range of problems in stochastic search including (i) which settings of several
parameters of a simulated system has the largest mean performance, (ii) which combination of
chemical compounds in a drug would be the most effective to fight a particular disease, and (iii)
which set of features to include in a product to maximize profits. We can also consider problems
where x is a multi-dimensional set of continuous parameters. We will assume the parameters
can be discretized to an arbitrarily fine level.

A number of measurement policies have been proposed for the ranking and selection problem
when the number of alternatives is not too large, and where our beliefs about the value of each
alternative are independent. We build on the work of Frazier et al. (2009), which proposes a
policy that exploits correlations in the belief structure, but where these correlations are assumed
known, and where the number of alternatives is not too large. Instead of using a multivariate
normal belief, we develop a belief structure based on the weighted estimates given in (1). We
estimate the weights using a Bayesian model adapted from frequentist estimates proposed in
(George et al., 2008).

This paper makes the following contributions. First, we extend the knowledge-gradient
policy to problems where an alternative is described by a multi-dimensional vector in a compu-
tationally feasible way. We estimate a function using an appropriately weighted sum of estimates
at different levels of aggregation. Second, we propose a version of the knowledge gradient that
exploits aggregation structure and similarity between alternatives, without requiring that we
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specify an explicit covariance matrix for our belief. Instead, relationships between alternatives’
values are derived from the structure of the weighted estimates. In addition to eliminating the
difficulty of specifying an a priori covariance matrix, this avoids the computational challenge of
working with large covariance matrices. Third, we show that a learning policy based on this
method is optimal in the limit, i.e., eventually it always discovers the best alternative. Our
method requires that a family of aggregation functions be provided, but otherwise does not
make any specific assumptions about the structure of the function or set of alternatives.

The remainder of this paper is structured as follows. In section 2 we give a brief overview
of the relevant literature. In Section 3, we present our model, the aggregation techniques we
use, and the Bayesian updating approach. We present our measurement policy in Section 4
and a proof of convergence of this policy in Section 5. We present the numerical experiments
in Section 6. We close with conclusions, remarks on generalizations, and directions for further
research in Section 7.

2 Literature

There is by now a substantial literature on the general problem of finding the best of an unknown
function where we depend on noisy measurements to guide our search. Spall (2003) provides
a thorough review of the literature that traces its roots to stochastic approximation methods
first introduced by Robbins and Monro (1951). This literature considers problems with vector-
valued decisions, but does not address the problem of rate of convergence, which is critical when
measurements are expensive.

Some early works that deal with the challenge of determining how to optimally select mea-
surements are (Raiffa and Schlaifer, 1968) and (De Groot, 1970), where it is formulated as a
dynamic programming problem for which a practical solution has yet to be designed. An on-
line version of the so-called multiarmed bandit problem was first solved in (Gittins and Jones,
1974) but an optimal policy for the offline ranking and selection problem remains out of reach,
resulting in the development of a range of heuristics such as Boltzmann exploration, interval
estimation, and hybrid exploration-exploitation policies such as epsilon-greedy, see (Frazier and
Powell, 2008) for a review of these.

More formal search methods have been developed within the simulation-optimization com-
munity, which faces the problem of determining the best of a set of parameters, where evaluating
a set of parameters involves running what is often an expensive simulation. One class of meth-
ods evolved under the name optimal computing budget allocation (Chen et al., 1996; He et al.,
2007), and batch methods for linear loss (Chick and Inoue, 2001).

A related line of research has focused on finding the alternative which, if measured, will
have the greatest impact on the final solution. This idea was originally introduced in (Gupta
and Miescke, 1996) under the name of the (R1, . . . , R1) policy. In (Frazier et al., 2008) this
policy was introduced as the knowledge-gradient (KG) policy, where it was shown that the
policy is myopically optimal (by construction) and asymptotically optimal. An extension of the
KG policy when the variance is unknown is presented in (Chick et al., 2009) under the name
LL1, referring to the one-step linear loss, an alternative name when we are minimizing expected
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opportunity cost. A closely related idea is given in (Chick and Inoue, 2001) where samples are
allocated to maximize an approximation to the expected value of information.

A significant development was the introduction in (Frazier et al., 2009) of a version of
the knowledge-gradient algorithm in the presence of correlated beliefs, where measuring one
alternative updates our belief about other alternatives. This method was shown to significantly
outperform methods which ignore this covariance structure, but the algorithm requires the
covariance matrix to be known.

There is a separate literature on aggregation and the use of mixtures of estimates. Ag-
gregation, of course, has a long history as a method of simplifying models (see Rogers et al.,
1991). Bertsekas and Castanon (1989) describes adaptive aggregation techniques in the context
of dynamic programming, while (Bertsekas and Tsitsiklis, 1996) provides a good presentation
of state aggregation methods used in value iteration. In the machine learning community, there
is an extensive literature on the use of weighted mixtures of estimates, which is the approach
that we use. We refer the reader to (LeBlanc and Tibshirani, 1996; Yang, 2001) and (Hastie
et al., 2001). In our work, we use a particular weighting scheme proposed by George et al.
(2008) due to its ability to easily handle state dependent weights, which typically involves esti-
mation of many thousands of weights since we have a weight for each alternative at each level
of aggregation.

3 Model

We consider a set X of distinct alternatives where each alternative x ∈ X might be a multi-
dimensional vector x = (x1, . . . , xD). Each alternative x ∈ X is characterized by an independent
normal distribution with unknown mean θx and known variance λx. We use M to denote the
number of alternatives |X | and use θ to denote the column vector consisting of all θx, x ∈ X .

Consider a sequence of N sampling decisions, x0, x1, . . . , xN−1. The sampling decision xn

selects an alternative to sample at time n from the set X . The sampling error εn+1
x ∼ N (0, λx)

is independent conditioned on xn = x, and the resulting sample observation ŷn+1
x = θx + εn+1

x .
Conditioned on θ and xn = x, the sample has conditional distribution

ŷn+1
x ∼ N (θx, λx) .

Because decisions are made sequentially, xn is only allowed to depend on the outcomes
of the sampling decisions x0, x1, . . . , xn−1. In the remainder of this paper, a random variable
indexed by n means it is conditional on a filtration Fn which is the sigma-algebra generated by
x0, ŷ1

x0 , x
1, . . . , xn−1, ŷnxn−1 . Further, we write En to indicate E[.|Fn], the conditional expectation

taken with respect to Fn.
In this paper we follow a Bayesian approach, which offers a method of formalizing a priori

beliefs and of combining them with the available observations to perform statistical inference.
We assume that the different alternatives share common features, such that we learn about
many alternatives from even a single measurement. A natural choice for a distribution of our
belief about θ, that takes into account theses correlations in belief about the values θx, x ∈ X ,
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is the multivariate normal with mean vector µ0 and covariance matrix Σ0,

θ ∼ N
(
µ0,Σ0

)
. (2)

As we show later on, our approach based on hierarchical aggregation requires a different
belief distribution. However, to illustrate the Bayesion approach, let us temporarily consider
(2).

Let µn be our estimate of θ after n measurements. This estimate will either be the Bayes
estimate, which is the posterior mean En[θ], or an approximation to this posterior mean as we
will use later on. Similarly, let Σn = Cov[θ|Fn] be the covariance matrix after n measurements.
In the Bayesian approach we use Bayes’ theorem to derive a posterior distribution using the prior
distribution p (θ) as a function of µn and Σn, together with the likelihood function p(ŷn+1

x |θ),
i.e., the likelihood of observing the data ŷn+1

x due to the sampling decision xn = x given µn

and Σn. The posterior distribution p(θ|ŷn+1
x ) is a function of µn, Σn, and conditional on the

observed data ŷn+1
x due to the sampling decision xn = x. Since the prior on θ is multivariate

normal and all samples are normally distributed, each of the posterior distributions on θ will
be multivariate as well. Intuitively, we may view the learning that occurs from sampling as a
narrowing of the conditional predictive distribution N (µn,Σn) for θ, and as the tendency of
µn, the center of the predictive distribution θ, to move toward θ as n increases.

After taking the N measurements, we make an implementation decision, which we assume
is given by the alternative xN that has the highest expected reward, i.e., xN = arg maxx∈X µNx .
Our goal is to choose a sampling policy that maximizes the expected value of the implemen-
tation decision xN . Therefore we define Π to be the set of sampling policies that satisfies the
requirement xn ∈ Fn and introduce π ∈ Π as a policy that produces a sequence of decisions(
x0, . . . , xN−1

)
. We further write Eπ to indicate the expectation with respect to the prior over

both the noisy outcomes and the truth θ when the sampling policy is fixed to π. Our objective
function can now be written as

sup
π∈Π

Eπ
[
max
x∈X

EN [θx]
]
.

If µN is the exact posterior mean, rather than an approximation, this can be written as

sup
π∈Π

Eπ
[
max
x∈X

µNx

]
.

3.1 Aggregation

Aggregation is performed using a set of aggregation functionsGg : X → X g, where X g represents
the gth level of aggregation of the original set X . We denote the set of all aggregation levels
by G = {0, 1, . . . , G}, with g = 0 being the lowest aggregation level, g = G being the highest
aggregation level, and G = |G| − 1.

The aggregation functions Gg are typically problem specific and involve a certain amount
of domain knowledge, but it is possible to define generic forms of aggregation. For example,
numeric data can be defined over a range, allowing us to define a series of aggregations which
divide this range by a factor of two at each additional level of aggregation. For vector valued
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data, we can aggregate by simply ignoring dimensions, although it helps if we are told in advance
which dimensions are likely to be the most important.

g = 2 13
g = 1 10 11 12
g = 0 1 2 3 4 5 6 7 8 9

Figure 1: Example with nine alternatives and three aggregation levels

Using aggregation, we create a sequence of sets {X g, g = 0, 1, . . . , G}, where each set has
fewer alternatives than the previous set, and where X 0 equals the original set X . We introduce
the following notation referring to the example of Figure 1:

G (x, x′) Set of all aggregation levels that the alternatives x and x′ have in common, with
G (x, x′) ⊆ G. In the example we have G (2, 3) = {1, 2}.

X g(x) Set of all alternatives that share the same aggregated alternative Gg(x) at the gth ag-
gregation level, with X g(x) ⊆ X . In the example we have X 1 (4) = {4, 5, 6}.

Mg = |X g|, with M0 = M . In the example we have M1 = 3.

Next, we introduce µg,nx as being the estimate of the aggregated alternative Gg(x) on the
gth aggregation level after n measurements. Using aggregation, we express µnx (our estimate of
θx) as a weighted combination of values µg,nx for all aggregation levels g ∈ G, i.e.,

µnx =
∑
g∈G

wg,nx µg,nx , (3)

where wg,nx are weights that govern the contribution of the aggregate estimate µg,nx to the overall
estimate µnx of θx. Note that although all alternatives x′ ∈ X g(x) use the same aggregate
estimate µg,nx to estimate the value of the aggregated alternative Gg(x) = Gg(x′), they use
separate weights wg,nx′ to determine how much the estimated value of this aggregated alternative
contributes to the overall estimate µnx.

We now describe the original frequentist interpretation of (3) found in (George et al., 2008).
This interpretation provides specific values for the weights wg,nx . In the next section we also
provide a Bayesian interpretation of (3) that results in the same expression for the weights.

In the frequentist interpretation, the estimator µg,nx of θx is given by the average of all
observations of alternatives in X g(x). We make two assumptions. First, we assume that the
estimators {µg,nx , ∀g ∈ G} are independent and unbiased. Second, we assume that we know the
variance of these estimators, (σg,nx )2 = V ar[µg,nx ]. This variance is taken with respect to the
“true” probability distribution, which has a fixed value of θ. Under these assumptions, the best
(minimum variance) linear unbiased estimate (BLUE) of θx is given by µnx =

∑
g∈G w

g,n
x µg,nx ,

where the weights wg,nx are given by

wg,nx =
(σg,nx )−2∑

g′∈G

(
σg
′,n
x

)−2 . (4)
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The variance (σg,nx )2 of estimates µg,nx at more aggregate levels is lower because these es-
timates are based on more measurements. However, this is done at the cost of introducing
structural aggregation errors. The aggregation error in the estimate µg,nx is given by the ex-
pected bias E [µg,nx − θx]. To cope with bias, George et al. (2008) proposes the following weights

wg,nx =

(
(σg,nx )2 + (δg,nx )2

)−1

∑
g′∈G

(
(σg,nx )2 +

(
δg
′,n
x

)2
)−1 , (5)

where δg,nx is an estimate of the bias given by

δg,nx = µg,nx − µ0,n
x . (6)

These weights are still an approximation of the optimal weights since it effectively assumes
the estimates at each level of aggregation are independent. However, George et al. (2008) have
shown empirically that these weights produce near-optimal results.

Having derived the expressions (3) for the estimator µnx and (5) for the weights, both using
a frequentist interpretation, we now derive (in the next section) the same expressions using a
Bayesian interpretation.

3.2 Bayesian updating equations

A very natural approach for integrating Bayesian updating within our aggregation structure is
to use Bayesian regression (see Gelman et al., 2004). The aggregation function (3) can be seen
as a form of linear regression where the dependent variables are the estimates of all alternatives
given by the vector µn, the independent (or explanatory) variables are the weights wg,nx , and
the regression parameters are the estimates µg,nx . In this case, our belief about θ is multivariate
normal, θ ∼ N

(
W 0v0,Σ0

)
, where W 0 is a matrix with all the weights wg,nx and v0 a vector with

the estimates µg,nx for all g ∈ G. A further derivation of this approach can be found in Appendix
A. However, as mentioned in (Gelman et al., 2004, chap. 14), and also showed in Appendix A,
this method would not be appropriate without prior information. To cope with this, we present
an alternative approach where we have a belief on each aggregation level.

The idea of using separate beliefs on the values at each aggregation level is that the correlated
multivariate normal (2) is replaced by a series of independent normal distributions for all g ∈ G,
and that these beliefs are combined using (3) to get µnx. Just as with the multivariate normal, the
normal prior with normally distributed observations will result in a normal posterior. Below we
derive a Bayesian interpretation of (3). For this we assume independence among the aggregation
levels.

Define latent variables θgx, where g ∈ G and x ∈ X . These variables satisfy θgx = θgx′ when
Gg(x) = Gg(x′). Also, θ0

x = θx for all x ∈ X . We have a belief about these θgx, and the posterior
mean of the belief about θgx is µg,nx .

We see that, roughly speaking, θgx is the best estimate of θx that we can make from aggrega-
tion level g, given perfect knowledge of this aggregation level, and that µg,nx may be understood
to be an estimator of the value of θ for a particular alternative x at a particular aggregation
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level g.
We begin with a normal prior on θx that is independent across different values of x, given

by
θx ∼ N (µ0

x, (σ
0
x)2).

The way in which θgx relates to θx is formalized by the probability model

θgx ∼ N (θx, νgx),

where νgx is the variance of θgx − θx under our prior belief.
The values θgx−θx are independent across different values of g, and between values of x that

differ at aggregation level g, i.e., that have different values of Gg(x). The value νgx is currently
a fixed parameter of the model, and later we use the empirical Bayes approach, first estimating
it from data and then using the estimated value as if it were given a priori.

When we measure alternative x at time n, we observe a value ŷn+1
x . In reality, this obser-

vation has distribution N (θx, λx). But in our model, we make the following approximation.
We suppose that we observe a value ŷg,n+1

x for each aggregation level g ∈ G. These values are
independent and satisfy

ŷg,n+1
x ∼ N (θgx, 1/β

g,n,ε
x ), (7)

where again βg,n,εx is, for the moment, a fixed known parameter, but later will be estimated
from data and used as if it were known a priori. In practice we set ŷg,n+1

x = ŷn+1
x . It is only

a modeling assumption that breaks this equality and assumes independence in its place. This
probability model for ŷg,n+1

x in terms of θgx induces a posterior on θgx.
Momentarily fix g. We define µg,nx and βg,nx recursively by considering two cases. When

Gg(xn) 6= Gg(x) we let µg,n+1
x = µg,nx and βg,n+1

x = βg,nx . When Gg(xn) = Gg(x) we let

µg,n+1
x =

[
βg,nx µg,nx + βg,n,εx ŷn+1

x

]
/βg,n+1

x , (8)

βg,n+1
x = βg,nx + βg,n,εx , (9)

where βg,0x = 0 and µg,0x = 0. We also define (σg,nx )2 = 1/βg,nx , with σg,0 = ∞. Note that µg,nx ,
(σg,nx )2 and βg,nx are the mean, variance and precision of the belief that we would have about θgx
if we had a noninformative prior on θgx and then observed ŷg,m

xm−1 for only those m < n satisfying
Gg(xm) = Gg(x) and only for the given value of g. These are the observations from level g
pertinent to alternative x.

Using these quantities, we may obtain an expression for the posterior belief on θx. We define
µnx, (σnx)2 and βnx = (σnx)−2 to be the mean, variance, and precision of this posterior belief. By
proposition 3 (Appendix B), the posterior mean and precision are given by

µnx =
1
βnx

β0
xµ

0
x +

∑
g∈G

(
(σg,nx )2 + νgx

)−1
µg,nx

 , (10)

βnx = β0
x +

∑
g∈G

(
(σg,nx )2 + νgx

)−1
. (11)
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We generally work with a noninformative prior on θx in which β0
x = 0. In this case, the

posterior variance is given by

σnx =

∑
g∈G

(
(σg,nx )2 + νgx

)−1

−1

, (12)

and the posterior mean µnx is given by the weighted linear combination µnx =
∑

g∈G w
g,n
x µg,nx ,

where the weights wg,nx are given by

wg,nx =

(
(σg,nx )2 + νgx

)−1

∑
g′∈G

((
σg
′,n
x

)2
+ νg

′
x

)−1 .

Thus, we see that the modeling assumption we made (that actually we had multiple in-
dependent observations instead of just one) has an identical effect to the one assumed in the
frequentist derivation (in Section 3.1) because it causes the posterior means of θgx across dif-
ferent values of g to be independent under the model when conditioned on θx. It also causes
the posterior means to have the same form as the BLUE estimator (4) from the frequentist
derivation.

Now, we assumed that we knew νgx and βg,n,εx as part of our model, while in practice we do
not. We follow the empirical Bayes approach, and estimate these quantities, and then plug in
the estimates as if we knew these values a prior.

First, we estimate νgx by (δgx)2. Obviously, this is an approximation, but it does result in
the same weights as proposed by George et al. (2008). However, the aggregation error δg,nx is
undefined when m0,n

x = 0. To cope with this, we introduce a base level g∗x for each alternative
x, being the lowest level g for which mg,n

x > 0. Further, we set wg,nx = 0 and δg,nx = 0 for all
levels g < g∗x and define the aggregation error in terms of the base levels, i.e., δg,nx = µ

g∗x,n
x −µg,nx

for g ≥ g∗x.
Next, we estimate βg,n,εx using βg,n,εx = (σg,n,εx )−2 where (σg,n,εx )2 is the group variance (also

called the population variance). The group variance
(
σ0,n,ε
x

)2
at the disaggregate (g = 0)

level equals λx, and we may use analysis of variance (see, e.g., Snijders and Bosker, 1999) to
compute the group variance at g > 0. The group variance over a number of subgroups equals the
variance within each subgroup plus the variance between the subgroups. The variance within
each subgroup is a weighted average of the variance λx′ of measurements of each alternative
x′ ∈ X g(x). The variance between subgroups is given by the sum of squared deviations of
the disaggregate estimates and the aggregate estimates of each alternative. The sum of these
variances gives the group variance as

(σg,n,εx )2 =
1

mg,n
x

 ∑
∀x′∈X g(x)

m0,n
x′ λx′ +

∑
∀x′∈X g(x)

m0,n
x′

(
µ0,n
x′ − µ

g,n
x

)2

 ,

where mg,n
x is the number of measurements from the aggregated alternative Gg(x) at the gth

aggregation level, i.e., the total number of measurements from alternatives in the set X g(x),

9



after n measurements. For g = 0 we have (σg,n,εx )2 = λx.
In the computation of (σg,n,εx )2, the numbers m0,n

x′ can be regarded as weights: the sum of the
bias and measurement variance of the alternative we measured the most contributes the most to
the group variance (σg,n,εx )2. In a way this makes sense because observations of this alternative
also have the biggest impact on the aggregate estimate µg,nx . The problem, however, is that we
are going to use the group variances (σg,n,εx )2 to get an idea about the range of possible values
of ŷn+1

x′ for all x′ ∈ X g(x). By including the number of measurements m0,n
x′ , this estimate of the

range will heavily depend on the measurement policy. We propose to put equal weight on each
alternative by setting mg,n

x = |X g(x)| (so m0,n
x = 1). The group variance (σg,n,εx )2 is then given

by

(σg,n,εx )2 =
1

|X g(x)|

 ∑
∀x′∈X g(x)

λx′ +
(
µ0,n
x′ − µ

g,n
x

)2

 . (13)

We end this section by summarizing the Bayesian updating procedure. After sampling
xn = x, we use the resulting observation ŷn+1

x in (8) and (9) to compute µg,n+1
x and βg,n+1

x for
all g ∈ G. Next, we use µg,n+1

x′ in (6) to compute the biases δg,n+1
x′ for all x′ ∈ X and g ∈ G.

Finally, we use (5) and (13) to compute the weights wg,n+1
x′ and group variances (σg,n+1,ε

x )2

for all x′ ∈ X and g ∈ G. The one task remaining is to derive a formal procedure for the
measurement decisions xn which we present in the next section.

As an aid to the reader, we briefly summarize the notation defined throughout this paper.

G highest aggregation level

Gg(x) aggregated alternative of alternative x at level g

G set of all aggregation levels

G (x, x′) Set of all aggregation levels that the alternatives x and x′ have in common

X set of all alternatives

X g set of all aggregated alternatives Gg(x) at the gth aggregation level

X g(x) Set of all alternatives that share the same aggregated alternative Gg(x) at the gth ag-
gregation level

N maximum number of measurements

M = |X |

Mg = |X g|

θx unknown mean of the true value of alternative x

θgx latent variable desribing the unknown mean of the “true” value of alternative Gg(x)

λx measurement variance of alternative x

xn nth measurement decision

ŷnx nth sample observation of alternative x

εnx measurement error of the sample observation ŷnx

µnx estimate of θx after n measurements
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µg,nx estimate of the aggregated alternative Gg(x) on the gthaggregation level after n measure-
ments

wg,nx contribution (weight) of the aggregate estimate µg,nx to the overall estimate µnx of θx

mg,n
x number of measurements from the aggregated alternative Gg(x)

βnx = 1/(σnx)2, the precision of µnx

βg,nx = 1/(σg,nx )2, the precision of µg,nx

βg,n,εx = 1/(σg,n,εx )2, the measurement precision of observations from alternatives x′ ∈ X g(x)

δg,nx estimate of the aggregation bias

νg,nx variance of θgx − θx

4 Measurement decision

Our goal is to maximize the expected reward µN
xN of the implementation decision xN = arg maxx∈X µNx .

During the sequence of N sampling decisions, x0, x1, . . . , xN−1 we gain information that in-
creases our expected final reward µN

xN . We may formulate an equivalent problem in which the
reward is given in pieces over time, but the total reward given is identical. Then the reward
we gain in a single time unit might be regarded as an increase in knowledge. The knowledge-
gradient policy maximizes this single period reward. In Section 4.1 we provide a brief general
introduction of the knowledge-gradient policy. In Section 4.2 we summarize the knowledge-
gradient policy for independent and correlated beliefs as introduced in (Frazier et al., 2008,
2009). Then, in Section 4.3, we adapt this policy to our hierarchical setting.

4.1 The knowledge-gradient policy

The knowledge-gradient policy was first introduced in (Gupta and Miescke, 1996) under the
name (R1, . . . , R1) policy, further analyzed in (Frazier et al., 2008), and extended in (Frazier
et al., 2009) to cope with correlated beliefs. The idea works as follows. Let Sn be the knowledge
state at time n. In (Frazier et al., 2008, 2009) this is given by Sn = (µn,Σn). If we were to stop
measuring now, our final expected reward would be maxx∈X µnx. Now, suppose we were allowed
to make one more measurement xn. Then, the observation ŷn+1

xn would result in an updated
knowledge state Sn+1 which might result in a higher expected reward maxx∈X µn+1

x at the next
time unit. The expected incremental value due to measurement x is given by

υKGx (Sn) = E
[
max
x′∈X

µn+1
x′ |S

n, ŷn+1
x

]
−max
x′∈X

µnx′ . (14)

The knowledge-gradient policy πKG chooses its sampling decisions to maximize this expected
incremental value. That is, it chooses xn as

xn = arg max
x∈X

υKGx (Sn) .

11



4.2 Knowledge gradient for independent and correlated beliefs

In (Frazier et al., 2008) it is shown that when all components of θ are independent under the
prior and under all subsequent posteriors, the knowledge gradient (14) can be written as

υKGx (Sn) = σ̃x (Σn, x) f
(
−|µnx −maxx′ 6=x µnx′ |

σ̃x (Σn, x)

)
,

where σ̃x (Σn, x) = V ar
(
µn+1
x |Sn, x

)
= Σn

xx/
√
λx + Σn

xx, with Σn
xx the variance of our estimate

µnx, and where f (z) = ϕ (z) + zΦ (z) where ϕ(z) and Φ(z) are, respectively, the normal density
and cumulative distribution functions.

In the case of correlated beliefs, an observation ŷn+1
x of alternative x may change our estimate

µnx′ of alternatives x′ 6= x. The knowledge gradient (14) can be written as

υKG,nx (Sn) = E
[
max
x′∈X

µnx′ + σ̃x′ (Σn, x)Z|Sn, ŷn+1
x

]
−max
x′∈X

µnx′ , (15)

where Z is a standard normal random variable and σ̃x′ (Σn, x) = Σn
x′x/

√
λx + Σn

xx with Σn
x′x

the covariance between µnx′ and µnx.
Solving (15) involves the computation of the expectation over the maximum of M linear

functions. To do this, Frazier et al. (2009) provides an algorithm (Algorithm 2) which solves
h (a, b) = E [maxi ai + biZ] − maxi ai as a generic function of any vectors a and b (where the
elements of a and b are given by µnx′ and σ̃x′ (Σn, x) respectively). The algorithm works as
follows. First it sorts the sequence of pairs (ai, bi) such that the bi are in non-decreasing order
and ties in b are broken by removing the pair (ai, bi) when bi = bi+1 and ai ≤ ai+1. Next, all
pairs (ai, bi) that are dominated by another pair (aj , bj), i.e., ai + biZ ≤ aj + bjZ for all values
of Z, are removed. Throughout the paper, we use ã and b̃ to denote the vectors that result from
sorting a and b by bi followed by the dropping of the unnecessary elements, producing a smaller
M̃ . Further, we use ãi and b̃i to denote the ith element of a and b respectively. The function
h (a, b) is computed using

h (a, b) =
∑

i=1,...,M̃

(
b̃i+1 − b̃i

)
f

(
−
∣∣∣∣ ãi − ãi+1

b̃i+1 − b̃i

∣∣∣∣) . (16)

Note that some variations of (16) are considered in (Frazier et al., 2009) to avoid rounding
errors in the implementation. Further note that the knowledge gradient algorithm for correlated
beliefs requires that the covariance matrix Σn be provided as an input. These correlations are
typically attributed to physical relationships among the alternatives.

4.3 Hierarchical knowledge gradient

We derive the hierarchical knowledge-gradient (HKG) policy based on our choice of using sep-
arate beliefs on each aggregation level (see Section 3.1). For completeness, we added the
knowledge-gradient sampling decision that exploits the Bayesian regression approach in Ap-
pendix D.

Our knowledge state is now given by Sn = {µg,nx , βg,nx : x ∈ X , g ∈ G}. From these parame-
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ters we are able to compute the knowledge gradient values. Before working out the knowledge
gradient (14), we first focus on the aggregate estimate µg,n+1

x . We rewrite the updating equation
(8) as

µg,n+1
x = µg,nx +

βg,n,εx

βg,nx + βg,n,εx

(
ŷn+1
x − µg,nx

)
.

For reasons that become clear later on, we further rewrite this equation by splitting the
second term using

µg,n+1
x = µg,nx +

βg,n,εx

βg,nx + βg,n,εx

(
ŷn+1
x − µnx

)
+

βg,n,εx

βg,nx + βg,n,εx
(µnx − µg,nx ) .

Now, the new estimate is given by the sum of (i) the old estimate, (ii) the deviation of ŷn+1
x

from the current expectation µnx times the relative increase in precision, and (iii) the deviation
of the expectation µnx from the aggregate estimate µg,nx times the relative increase in precision.
This means that even if we observe precisely what we expected

(
ŷn+1
x = µnx

)
, the aggregate

estimate µg,n+1
x still shrinks towards our current weighted estimate µnx. However, the more

observations we have, the lower this update will be because the precision of our belief on µg,nx

becomes higher.
The conditional distribution of ŷn+1

x is N
(
µnx, (σ

n
x)2 + λx

)
where the variance of ŷn+1

x is
given by the measurement noise λx of the current measurement plus the variance (σnx)2 of µnx
given by (12). So,

(
ŷn+1
x − µnx

)
/
√

(σnx)2 + λx is a standard normal. Now we can write

µg,n+1
x = µg,nx +

βg,n,εx

βg,nx + βg,n,εx
(µnx − µg,nx ) + σ̃ (g, x)Z, (17)

where

σ̃ (g, x) =
βg,n,εx

√
(σnx)2 + λx

βg,nx + βg,n,εx
.

We are interested in the effect of decision x on the weighted estimates
{
µn+1
x′ , ∀x′ ∈ X

}
. The

problem here is that the values µnx′ for all alternatives x′ ∈ X are updated whenever they share
at least one aggregation level with alternative x, which is to say for all x′ for which G (x′, x) is
not empty. To cope with this, we break our expression (3) for the weighted estimate

{
µn+1
x′
}

into two parts
µn+1
x′ =

∑
g/∈G(x′,x)

wg,n+1
x′ µg,n+1

x′ +
∑

g∈G(x′,x)

wg,n+1
x′ µg,n+1

x .

After substitution of (17) and some rearrangement of terms we get

µn+1
x′ =

∑
g∈G

wg,n+1
x′ µg,nx′ +

∑
g∈G(x′,x)

wg,n+1
x′

βg,n,εx

βg,nx + βg,n,εx
(µnx − µg,nx ) (18)

+Z
∑

g∈G(x′,x)

wg,n+1
x′ σ̃ (g, x) .

Because the weights wg,n+1
x′ depend on the unknown observation ŷn+1

x′ , we use an estimate
w̄g,nx′ (x) of the updated weights given we are going to sample x. Note that we use the superscript
n instead of n+ 1 to denote its Fn measurability.
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To compute w̄g,nx′ (x), we use the updated precision βg,n+1
x due to sampling x in the weights

(5). However, we use the current biases δg,nx because the updated bias δg,n+1
x depends on the

µg,n+1
x which we aim to estimate. The predictive weights w̄g,nx′ (x) are given by

w̄g,nx′ (x) =

((
βg,nx′ + Igx′,xβ

g,n,ε
x′

)−1
+
(
δg,nx′

)2)−1

∑
g′∈G

((
βg
′,n
x′ + Ig

′

x′,xβ
g′,n,ε
x′

)−1
+
(
δg
′,n
x′

)2
)−1 , (19)

where

Igx′,x =

{
1 if g ∈ G (x′, x)
0 otherwise

.

After combining (14) with (18) and (19), we get the following knowledge gradient

υKGx (Sn) = E
[
max
x′∈X

anx′(x) + bnx′(x)Z|Sn, ŷn+1
x

]
−max
x′∈X

µnx′ , (20)

where

anx′(x) =
∑
g∈G

w̄g,nx′ (x)µg,nx′ +
∑

g∈G(x′,x)

w̄g,nx′ (x)
βg,n,εx

βg,nx + βg,n,εx
(µnx − µg,nx ) , (21)

bnx′(x) =
∑

g∈G(x′,x)

w̄g,nx′ (x)σ̃ (g, x) . (22)

Note that if we would have used the current weights wg,nx′ instead of the predictive weights
w̄g,nx′ (x), the convergence proofs of Section 5 would no longer hold.

Following the approach of Frazier et al. (2009), which was briefly described in Section 4.2,
we define an(x) as the vector

{
anx′(x), ∀x′ ∈ X

}
and bn(x) as the vector

{
bnx′(x), ∀x′ ∈ X

}
.

From this we derive the adjusted vectors ãn(x) and b̃n(x). The knowledge gradient (20) can
now be computed using

υKG,nx =
∑

i=1,...,M̃−1

(
b̃ni+1(x)− b̃ni (x)

)
f

(
−

∣∣∣∣∣ ãni (x)− ãni+1(x)

b̃ni+1(x)− b̃ni (x)

∣∣∣∣∣
)
, (23)

where ãni (x) and b̃ni (x) follow from (21) and (22), after the sort and merge operation as described
in Section 4.2.

The form of (23) is quite similar to that of the expression in (Frazier et al., 2009) for
the correlated knowledge-gradient policy, and the computational complexities of the resulting
policies are the same. Thus, like the correlated knowledge-gradient policy, the complexity of
the hierarchical knowledge-gradient policy is O

(
M2 logM

)
.

4.4 Remarks

Before presenting the convergence proofs and numerical results, we first provide the intuition
behind the hierarchical knowledge gradient (HKG) policy. As illustrated in (Frazier and Powell,
2008), the independent KG policy prefers to measure alternatives with a high mean and/or with
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a low precision. If the precision is the same, KG would select the alternative with the highest
mean. If the means are the same, KG would select the alternative with the lowest precision. In
the HKG policy, the means are given by weighted sums of estimates at all aggregation levels,
and the precisions are given by weighted sums of precisions at all aggregation levels.

Now, consider a problem with eight alternatives and an aggregation structure given by a
perfect binary tree, as illustrated in Figure 2. The first measurement will be random among the
eight alternatives, in this case alternative 6. The next measurement will generally be chosen
such that it shares the least number of aggregation levels with the first measurement, in this case
random among alternatives 1 through 4, which results in alternative 1. The next measurement
will generally be between alternatives 3, 4, 7, and 9 because they have the lowest precision.
However, HKG prefers to measure alternatives 3 and 4 because they have a higher weighted
mean due to observation 2.

In Figure 2, we have shown the weighted estimates after the first four measurements. In
case of common measurement noise, the fifth measurement under the HKG policy will be either
alternative 8 (highest mean of the four alternatives with lowest precision) or alternative 7 to
gain more confidence (increase the precision) in the highest weighted estimate.

1 2 3 4 5 6 7 8

x1

x2

x3

x4

Estimate at level 3 Estimate at level 2 Estimate at level 1

Weighted estimate Truth xn nth measurement

Figure 2: Illustration of the behavior of HKG

5 Convergence results

In this section we show that the value of the hierarchical knowledge-gradient policy converges
to the value of the optimal policy in the limit as N →∞, and that the hierarchical knowledge-
gradient policy eventually finds an optimal alternative almost surely. The theorem and corollary
presented in this section depend on various lemmas that can be found in Appendix C.

Theorem 1 In the limit, the HKG policy measures every alternative infinitely often, almost
surely.
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Proof. Consider what happens as the number of measurements n we make under the HKG
policy goes to infinity. Let X ′ be the set of all alternatives measured infinitely often under our
HKG policy, and note that this is a random set. Suppose for contradiction that X ′ 6= X with
positive probability, i.e., there is an alternative that we measure only a finite number of times.
Let N1 be the last time we measure an alternative outside of X ′. We compare the KG values
υKG,nx of those alternatives within X ′ to those outside X ′.

Let x ∈ X ′; we show that limn υ
KG,n
x = 0. Since f is an increasing function, and b̃ni+1(x)−

b̃ni (x) ≥ 0 by the assumed ordering of the alternatives, we have the bound

υKG,nx ≤
∑

i=1,...,M̃−1

(
b̃ni+1(x)− b̃ni (x)

)
f(0).

Taking limits, limn υ
KG,n
x = 0 follows from limn b̃

n
i (x) = 0 for i = 1, . . . , M̃ since limn b

n
x′(x) =

0 ∀x′ ∈ X as shown in Lemma 8.
Next, let x /∈ X ′. We show that limn→∞ υ

KG,n
x > 0. Define the set I to contain all indices i

such that lim infn→∞ b̃ni (x) > 0. From Lemma 8, we know there exists at least one x′ for which
lim infn→∞ bnx′(x) > 0, namely x′ = x and there exists at least one x′ for which limn b

n
x′(x) = 0

since X ′ is nonempty. As a result, both I and its complement are nonempty. Thus, an N2 <∞
exists such that mini∈I b̃ni (x) > maxj /∈I b̃nj (x) for all n > N2. By the ordering of b̃ni (x) used to
compute υKG,nx , and the monotonicity and nonnegativity of f , we have for all n > N2,

υKG,nx ≥ min
i∈I,j /∈I

(
b̃ni (x)− b̃nj (x)

)
f

(
−

∣∣∣∣∣ ãni (x)− ãnj (x)

b̃ni (x)− b̃nj (x)

∣∣∣∣∣
)
.

Now define U = supn,i,x |ãni (x)|, which is almost surely finite since supn |anx′(x)| is almost
surely finite ∀x, x′ ∈ X by Lemma 6. From this bound on |ani |, we have the uniform bound
supn,i,x |ani (x)− ani+1(x)| ≤ 2U . Then, for all n > N2, the monotonicity of f implies

υKG,nx ≥ min
i∈I,j /∈I

(
b̃ni (x)− b̃nj (x)

)
f

(
−2U

b̃ni (x)− b̃nj (x)

)
.

Taking limits, noting the continuity of f , and substituting b∗ = mini∈I b̃ni (x) > 0, we obtain

lim
n
υKG,nx ≥ b∗f

(
−2U
b∗

)
> 0.

Finally, since limn υ
KG,n
x = 0 for all x ∈ X ′ and limn υ

KG,n
x′ > 0 for all x′ /∈ X ′, each x′ /∈ X ′

has an n > N1 such that υKG,nx′ > υKG,nx ∀x ∈ X ′. Hence we choose to measure an alternative
outside X ′ at a time n > N1. This contradicts the definition of N1 as the last time we measured
outside X ′, contradicting the supposition that X ′ 6= X is nonempty. Hence we may conclude
that X ′ = X meaning we measure each alternative infinitely often.

Corollary 2 Under the HKG policy, limn µ
n
x = θx almost surely for each alternative x.

Proof. Fix x and note that Theorem 1 implies that x is measured infinitely often. The
estimate µ0,n

x at the disaggregate level is a linear combination of the average of all observations
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of alternative x, and the prior value µ0,0
x . As n → ∞, the weight placed on the prior value

vanishes, and limn µ
0,n
x is the same as the limit of the average of all observations of alternative x,

which, by the law of large numbers, is almost surely equal to θx. This shows that limn µ
0,n
x = θx

almost surely.
Turning our attention to the aggregate estimates µg,nx and the overall estimate µnx, define

G′ = {g ∈ G : limn δ
g,n
x = 0} to be the levels of aggregation for which the bias is zero in the limit.

Since the limiting bias on these levels is zero, we have limn µ
g,n
x = limn µ

0,n
x = θx almost surely

for g ∈ G′.
For each g /∈ G′, the statements δ0,n

x = 0 for all n and limn β
g,n
x =∞ (implied by Theorem 1)

together imply that limn→∞w
g,n
x = 0. Thus, in the limit, all weight is given to levels g ∈ G′.

This, together with the relation, µnx =
∑

g∈G w
g,n
x µg,nx , implies that limn µ

n
x = limn µ

0,n
x = θx

almost surely.
As an addendum to the proof, we note that usually the only level with zero limiting bias is the

disaggregate level. In such cases, limn→∞w
0,n
x = 1, i.e., we put full weight on the disaggregate

level in the limit.

6 Numerical experiments

To evaluate the hierarchical knowledge-gradient policy, we perform a number of experiments
using two different settings. First, we evaluate the performance of our approach in finding
the maximum of a continuous one-dimensional function. Second, we consider an application
in logistics where we aim to find the best multi-attribute vector out of a large set of possible
attribute vectors, which can be seen as maximizing a multi-dimensional and possible non-
continuous function. We present these experiments in Sections 6.1 and 6.2 respectively. We
end, in Section 6.3 with some remarks on the choice of aggregation structure.

6.1 One-dimensional functions

First we test our approach on one-dimensional functions on a continuous domain. In this case,
the alternatives x simply represent a single value, which we express by i or j. As test functions
we use a Gaussian process with zero mean and power exponential covariance function

Cov (i, j) = σ2 exp
{
−
(
|i− j|

(M − 1) ρ

)η}
, (24)

which results in a stationary process with variance σ2 and a length scale ρ.
The idea is that higher values of ρ will have less peaks in the domain and higher values of

η will result in smoother functions. Here we fix η = 2 and vary ρ. The choice of σ2 determines
the vertical scale of the function. Here we fix σ2 = 0.5 and we vary the measurement variance
λ. The settings of ρ and λ are given in Table 1.

Because our approach requires discretization, we use integer values for i and j in (24) with
values between 1 and 128. We use a fixed aggregation structure for all test functions. This
structure is given by a binary tree, i.e., |X g(x)| = 2g for all x ∈ X g and g ∈ G. Given M = 128
we have eight aggregation levels (including the disaggregate level).
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Factor Value
ρ 0.05, 0.1, 0.2, 0.5
λ 0.01, 0.25

Table 1: Values for ρ and λ

To generate test functions, we first generate a column vector Z = (z1, z2, . . . , z128), where
the elements zi are independent draws from a standard normal distribution. Then we compute
a covariance matrix of size 128 × 128 with elements given by (24) and compute the Cholesky
decomposition of the covariance matrix resulting in a lower-triangular matrix C. The test
functions follow from θ = CZ. Measuring from the test functions was done with normally
distributed noise λ. To provide an illustration of the test functions, we show in Figure 3 one
test function for each value of ρ.
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 0.5
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 1.5
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 10  20  30  40  50  60  70  80  90  100  110  120

θ x

x

ρ=0.5
ρ=0.2
ρ=0.1

ρ=0.05

Figure 3: Illustration of one-dimensional test functions

We compare the hierarchical KG policy (HKG) against (i) a pure exploration policy (EXPL),
i.e., we measure each alternative with the same probability, (ii) the independent KG policy (IKG)
of (Frazier et al., 2008), and (iii) the correlated KG policy (CKG) of (Frazier et al., 2009) where
the covariance function is assumed known. Because the CKG policy requires prior knowledge of
the covariance function, we use the covariance function (24) with given parameters σ2, η and ρ.
Hence, CKG has perfect knowledge of the covariance matrix and, as a result, the performance
of this policy can be regarded as a bound for HKG. We did not consider classical strategies
such as interval estimation, Boltzmann exploration, and epsilon-greedy exploration since these
require either an informed prior, or at least one measurement of each of the M alternatives. Our
interest is primarily in problems where M may be much larger than the measurement budget.
For further comparisons of IKG and CKG with several well known ranking and selection policies
and Bayesian global optimization methods, we refer to (Frazier et al., 2008, 2009).

In our experiments we randomly generate 10 functions for all combinations of ρ and λ

(resulting in 10×4×2 = 80 test functions). Next, we test each policy on each function using 25
replications with different random number streams. We compare the policies for given values of
ρ and λ, based on their average performance on the 25 replications and 10 test functions. As a
primary performance indicator we use the opportunity cost which is defined as (maxi θi)− θi∗ ,
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with i∗ ∈ arg maxx µnx, i.e., the difference between the true maximum and the value of the best
alternative found by the algorithm.

The results for various length scale parameters ρ can be found in Figures 4 and 5 for λ = 0.01
and λ = 0.25 respectively. From these figures we draw the following conclusions.
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Figure 4: Comparison of EXPL, IKG, HKG, and CKG using λ = 0.25 and various settings for
ρ.

First, we see that HKG consistently outperforms exploration and independent knowledge
gradient, especially in the critical early iterations (since we are interested in doing as much as
possible with very few iterations). Not surprisingly, CKG works best because it is given the
true covariance function, something that HKG is not given.

Second, we see that HKG starts to approach the performance of CKG as the scale param-
eter ρ is decreased and/or the measurement noise λ is increased. For ρ = 0.05, the function
fluctuates fairly rapidly, producing multiple local maxima even within relatively small areas
(see Figure 3). For CKG this means that the prior covariance matrix contains relatively low
covariances Cov(i, j), especially when the difference between i and j is relatively big. As a
result, a measurement from a single alternative provides relatively little information about the
other alternatives. For HKG this means that within one aggregated set, we might have a local
maximum and local minimum. HKG is able to deal with this by placing a relatively low weight
on such sets. As a result, HKG is fairly robust against settings for ρ.

Third, we see that IKG and HKG seem to converge to each other. The IKG policy requires
that we first measure all the 128 alternatives once. After this, the opportunity cost drops
quickly with IKG. In some cases with low noise (λ = 0.01, shown in Figure 5) and a high
number of measurements, we see that IKG result in slightly lower opportunity costs than HKG.
The reason for this is that HKG still tends to put some weight on the aggregate levels. However,
with increasing number of measurements, HKG tend to put all weight on the disaggregate level
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Figure 5: Comparison of EXPL, IKG, HKG, and CKG using λ = 0.01 and various settings for
ρ.

(see the proof of Corollary 2) such that HKG coincides with IKG.
To provide an indication of the significance of the results, we display the standard deviation

of the performance of the policies after the 128th measurement. The standard deviation is
computed using the average performance for each of the 10 individual functions for each value
of ρ. The results can be found in Figure 6. We see that for low values of ρ, CKG performs
significantly better than HKG (but of course requires prior knowledge on the covariance matrix).
However, with increasing ρ, the difference between HKG and CKG clearly declines.

6.2 Multi-dimensional functions

Next, we consider an application that arose in a transportation application (see Simao et al.,
2009) where we had to decide where to send a driver described by three attributes: (i) the
location to which we are sending him, (ii) his home location (called his domicile) and (iii)
which of six fleets to which he belongs. The “fleet” is a categorical attribute that describes
whether the driver works regionally or nationally and whether he works as a single driver or in
a team. The spatial attributes (driver location and domicile) were divided into 100 regions (by
the company) which is further discretized into 10 areas. At the most disaggregate level, there
are 100× 100× 6 = 60, 000 attributes. Our problem is to find which of these 60,000 attributes
is best.

To reduce computation time, we divide the spatial attributes into 25 regions and 5 areas.
Further, we consider five levels of aggregation. At aggregation level 0, we have 25 regions for
location and domicile, and 6 capacity types, producing 3750 attribute vectors. At aggregation
level 1, we represent the driver domicile as one of 5 areas. At aggregation level 2, we ignore the
driver domicile; at aggregation level 3, we ignore capacity type; and at aggregation level 4, we
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Figure 6: Comparison of EXPL, IKG, HKG, and CKG at the 128th measurement using λ = 0.25.

represent location as one of 5 areas.
To evaluate the quality of our search, we have to use a known function that describes the

underlying truth. We describe the expected single period reward using a standard test function
called the six-hump camel back from (Branin, 1972) which is given by

f (x1, x2) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2,

with x1 ∈ [−1.6, 2.4] and x2 ∈ [−0.8, 1.2].
We let x1 be the location and x2 be the driver domicile, which are both discretized into

25 pieces to represent the regions and into 5 pieces to represent the areas. To include the
dependence on capacity type, we use the following transformation

g (x1, x2, x3) = p1 (x3)− p2 (x3) (|x1 − 2x2|)− f (x1, x2) ,

where x3 denotes the capacity type. We use p2(x3) to describe the dependence of capacity type
on the distance between the location of the driver and his domicile.

We consider the following capacity types: CAN for Canadian drivers that only serve Cana-
dian loads, WR for western drivers that only serve western loads, US S for United States (US)
solo drivers, US T for US team drivers, US IS for US independent contractor solo drivers, and
US IT for US independent contractor team drivers. The parameter values are shown in Table
2.

x3 CAN WR US S US T US IS US IT
p1 (x3) 4800 4800 4700 4500 4200 4000
p2 (x3) 100 100 200 0 200 0

Table 2: Parameter settings

To cope with the fact that some drivers (CAN and WR) are bounded by certain locations,
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we exclude combinations {x3 = CAN ∧ x1 < 1.8} and {x3 = WR ∧ x1 > −0.8}. As a result, the
number of different attributes is 2725. The maximum of g (x1, x2, x3) is attained at g (0, 0,US S)
with value 4700.

To provide an indication of the resulting function, we show maxx3 g (x1, x2, x3) in Figure 7.
This function has similar properties as the six-hump, except for the presence of discontinuities
due to the capacity types CAN and WR, and a twist at x1 = x2. We compare EXPL, IKG, and
HKG using the opportunity cost. To get reliable results, we perform 10 replications with IKG
and 50 replications with EXPL and IKG.

-1.5-1-0.5 0 0.5 1 1.5 2
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Figure 7: maxx3g (x1, x2, x3)

The results can be found in Figure 8. Again we see, that HKG outperforms EXPL and IKG.
In fact, in all 10 replications, HKG converged to the optimum solution, i.e., it finds the best
out of 2725 alternatives in less than 1200 measurements.
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Figure 8: Comparison of IKG with HKG using various aggregation structures and various
settings for ρ.

6.3 Remarks on the aggregation structure

We end this section with a short note on the choice of aggregation structure since it is the
only “tunable parameter” in HKG. Without showing the results, we experienced that HKG is
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relatively robust to the choice of aggregation structure. For example, we tested HKG on the
one-dimensional test functions using a minimal aggregation structure where we use only one
aggregated estimate µg,nx , g ≥ 1. We found that HKG still significantly outperforms EXPL and
IKG in the case where N ≤ M . The reason for this is as follows. The mean and precision of
the unmeasured alternatives equal the grand mean and the precision of the grand mean. The
precision of the alternatives we measured is most of the time bigger than those we did not
measure, and the mean of some of these are above the grand mean and some of them are below
the grand mean. As long as there are unmeasured alternatives, HKG tends not to measure
alternatives with mean below the grand mean. So, the grand mean forms a kind of threshold
in the sampling decision. In general, a finer aggregation structure with more levels is always
better. If it appears that higher aggregation levels are not required, or even not appropriate,
HKG automatically puts higher weights to the lower levels.

7 Conclusions

We have presented an efficient learning strategy to optimize an arbitrary function that depends
on a multi-dimensional vector with numerical and categorical attributes. We do not attempt to
fit a function to this surface, but we do require a family of aggregation functions. We produce
estimates of the value of the function using a Bayesian adaptation of the hierarchical estimation
procedure suggested by George et al. (2008). We then present an adaptation of the knowledge-
gradient procedure of Frazier et al. (2009) for problems with correlated beliefs. This method
requires the use of a known covariance matrix. In our strategy, we compute covariances from
our statistical model which estimates the value of the function using weighted estimates.

The hierarchical knowledge-gradient (HKG) algorithm shares the inherent steepest ascent
property of the knowledge gradient algorithm which makes observations that produce the great-
est improvement in our estimate of the maximum of the function. We also prove that the al-
gorithm is guaranteed to produce the optimal solution in the limit, since the HKG algorithm
shares the inherent characteristic of knowledge-gradient policies of measuring every alternative
infinitely often, in the limit. This feature, however, was not automatic and required the careful
design of the updating strategy to handle the fact that we are approximating the covariance
structure from data rather than assuming it as input.

We close with experimental results on a class of scalar functions and a multi-attribute prob-
lem drawn from a transportation application. The scalar functions were randomly generated
using a specified covariance structure, allowing us to compare the performance of HKG against
the knowledge-gradient algorithm which takes the covariance structure as input. HKG was
shown to produce fast convergence in the early iterations, a feature that is critical in many
applications. For the transportation application, we showed that, HKG finds the best of 2725
alternatives in all replications in less than 1200 measurements, despite the presence of noisy
observations.

Our HKG policy has several limitations. First, it requires a given aggregation structure
which means that we depend on having some insight into the problem. When this is the case,
the ability to capture this knowledge in an aggregation structure is actually a strength, since
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we can capture the most important features in the highest levels of aggregation. If we do not
have this insight, designing the aggregation functions imposes an additional modeling burden.

Second, the HKG policy requires enumerating all possible choices before determining the
next measurement. The logic in this paper can handle perhaps thousands of choices, but not
millions. Our own work is motivated by applications where we need to make good choices with
a small number of measurements, typically far smaller than the set of potential measurements.
The HKG policy can work quite well even when we sample only a portion of all potential mea-
surements (of course this performance depends on the structure of the problem), but specialized
algorithms would need to be designed if |X | is extremely large.

Third, we assumed the measurement noise to be known. We might overcome this by placing
a normal-gamma prior on the unknown means and variances at each aggregation level (see Chick
et al., 2009). In this case we basically rely on the sample variances. As a result, it would take
some measurements before we get reliable estimates of the variances.

We mention two areas for further research. HKG is designed to work on functions which
depend on a multiattribute vector, and as we have presented it, requires that we scan all
possible measurements before making a decision. When the number of measurements is large
(something we would expect with a multidiensional vector) this step becomes prohibitive. As
an alternative, we can use HKG to choose regions to measure at successively finer levels of
aggregation, corresponding to the family of aggregation functions. More specifically, we might
first make an aggregated sampling decision xg,n = x with x ∈ X g. Because the aggregated
sets X g for g > 0 have fewer elements than the disaggregated set X we might gain some
computational advantage. Preliminary experiments have shown that this method can drastically
reduce computation time without harming the performance too much. In addition, this option
scales much better in the number of alternatives. However, there is still more research required
on this issue. Another area for further research is the applicability of HGK for approximate
dynamic programming. The main challenge here is to find a way to cope with the bias in
downstream values.
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Appendix A

In the Bayesian regression approach we assume the truth can be expressed by a system of
linear equations θ = Wv. Conditioned on W , v, and xn = x, the sample now has conditional
distribution

ŷn+1
x ∼ N (θx, λx) .

Now assume W is a given matrix with weights where W =
[
W 0 · · · WG

]
, where the

elements W g are matrices themselves consisting of all the weights at aggregation level g. Each
row in W g consists of at most one non-zero. So, the number of nonzero weights at a given row
of W is at most G + 1. The vector v contains the regression parameters which are unknown.
Therefore we formulate a normal belief on v with mean vector vn and covariance matrix Σv,n

v ∼ N (vn,Σv,n) ,

where vn is the column vector vn =
[
µ0,n · · · µG,n

]T where µg,n =
(
µg,n1 , . . . , µg,n|X g |

)
, i.e.,

the vector of unique estimates at level g. Further, Σv,n is the covariance matrix of vn with
size

(
M0 + . . .+MG

)
×
(
M0 + . . .+MG

)
. We write Σv,n (g, g′) to indicate a submatrix of the

covariance matrix of size Mg ×Mg′ which provides the covariances between µg,nx and µg
′,n
x′ .

Suppose we are at time n and we are going to measure one additional alternative x resulting
in the observation ŷn+1

x . The posterior distribution of v can be computed by treating the prior
as additional data points, and then weighing their contribution to the posterior (Gelman et al.,
2004). Using the techniques described in (Gelman et al., 2004), it can be shown that the
posterior mean and covariance are given by

vn+1 =
(

(Σv,n)−1 + (Wx)T Wx
1
λx

)−1(
(Σv,n)−1 vn + (Wx)T

ŷn+1
x

λx

)
,

Σv,n+1 =
(

(Σv,n)−1 + (Wx)T Wx
1
λx

)−1

,

where Wx denotes the xth row of W .
The vector vn+1 of regression parameters contains predictions because ŷn+1

x is still unknown.
We are interested in the value µn+1 = Wvn+1 where we, for illustrative purposes, still use the
current weights W . Using the Sherman–Morrison formula we can rewrite the posterior mean of

26



the vector vn+1 as follows

vn+1 =

(
Σv,n −

Σv,n (Wx)T Wx
1
λx

Σv,n

1 +WxΣv,n (Wx)T 1
λx

)(
(Σv,n)−1 vn +

1
λx

(Wx)T ŷn+1
x

)

= vn − Σv,n (Wx)T Wxv
n

WxΣv,n (Wx)T + λx
+

(
Σv,n − Σv,n (Wx)T WxΣv,n

WxΣv,n (Wx)T + λx

)
ŷxn+1

λx
(Wx)T

= vn − Σv,n (Wx)T Wxv
n

WxΣv,n (Wx)T + λx
+ ŷxn+1

(
Σv,n (Wx)T

WxΣv,n (Wx)T + λx

)

= vn +
Σv,n (Wx)T

WxΣv,n (Wx)T + λx

(
ŷn+1
x −Wxv

n
)
.

The predictive mean µn+1
x′ of alternative x′ after observing the value ŷn+1

x of alternative x
is given by

µn+1
x′ = Wn

x′v
n+1

= Wn
x′v

n +
Wn
x′Σ

v,n (Wx)T

WxΣv,n (Wx)T + λx

(
ŷn+1
x −Wxv

n
)

= µnx′ +
Wn
x′Σ

v,n (Wx)T

WxΣv,n (Wx)T + λx

(
ŷn+1
x − µnx

)
.

Using the Sherman–Morrison formula, the posterior covariance matrix Σv,n+1 can be written
as

Σv,n+1 =
(

(Σv,n)−1 + (Wx)T Wx
1
λx

)−1

= Σv,n − Σv,n (Wx)T WxΣv,n

WxΣv,n (Wx)T + λx
.

Obviously, the treatment of weights as independent variables is not appropriate since they
will be influenced by the measurement. Another disadvantage of this approach is that it requires
a prior on vn as noted in (Gelman et al., 2004, chap. 14). This can also be seen from the above
updating equations. When no prior information is available, we have to rely on a non-informative
prior where the diagonal elements of Σv,n are infinite. Whenever we have an observation for
some alternative x at some aggregation level g with weight less then one, the posterior variance
remains infinite. Hence, this approach would not be appropriate without prior information.
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Appendix B

Proposition 3 The posterior belief on θx given observations up to time n for all aggregation
levels is normally distributed with mean and precison

µnx =
1
βnx

β0
xµ

0
x +

∑
g∈G

(
(σg,nx )2 + νgx

)−1
µg,nx

 ,
βnx = β0

x +
∑
g∈G

(
(σg,nx )2 + νgx

)−1
.

Proof. Let Y g,n
x =

{
ŷg,m
xm−1 : m ≤ n,Gg(x) = Gg(xm−1)

}
. This is the set of observations from

level g pertinent to alternative x.
Let H be a generic subset of G. We show by induction on the size of the set H that the

posterior on θx given Y g,n
x for all g ∈ H is normal with mean and precision

µH,nx =
1

βH,nx

β0
xµ

0
x +

∑
g∈H

(
(σg,nx )2 + νgx

)−1
µg,nx

 ,
βH,nx = β0

x +
∑
g∈H

(
(σg,nx )2 + νgx

)−1
.

Having shown this statement for all H, the proposition follows by taking H = G.
For the base case, when the size of H is 0, we have H = ∅ and the posterior on θ is the same

as the prior. In this case the induction statement holds because µH,nx = µ0
x and βH,nx = β0

x.
Now suppose the induction statement holds for all H of a size m and consider a set H ′ with

m+ 1 elements. Choose g ∈ H ′ and let H = H ′ \ {g}. Then the induction statement holds for
H because it has size m. Let PH denote the prior conditioned on Y g′,n

x for g′ ∈ H, and define
PH′ similarly. We show that the induction statement holds for H ′ by considering two cases:
Y g,n
x empty and non-empty.

If Y g,n
x is empty, then the distribution of θx is the same under both PH and PH′ . Additionally,

from the fact that σg,nx =∞ it follows that µH,nx = µH
′,n

x and βH,nx = βH
′,n

x . Thus, the induction
statement holds for H ′.

Now consider the case that Y g,n
x is non-empty. Let ϕ be the normal density, and let y denote

the observed value of Y g,n
x . Then, by the definitions of H and H ′, and by Bayes rule,

PH′ {θx ∈ du} = PH {θx ∈ du | Y g,n
x = y} ∝ PH {Y g,n

x ∈ dy | θx = u}PH {θx ∈ du} .

The second term may be rewritten using the induction statement as

PH {θx ∈ du} = ϕ
(
(u− µH,nx )/σH,nx

)
.

The first term may be rewritten by first noting that Y g,n
x is independent of Y g′,n

x for g′ ∈ H,
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and then conditioning on θgx. This provides

PH {Y g,n
x ∈ dy | θx = u} = P {Y g,n

x ∈ dy | θx = u}

=
∫

R
P {Y g,n

x ∈ dy | θgx = v}P {θgx = v | θx = u} dv

∝
∫

R
ϕ

(
µg,nx − v
σg,nx

)
ϕ

(
v − u√
νgx

)
dv

∝ ϕ

(
µg,nx − u√

(σg,nx )2 + νgx

)
.

In the third line, we use the fact that PH {Y g,n
x ∈ dy | θgx = v} is proportional (with respect

to u) to ϕ ((µg,nx − v)/σg,nx ), which may be shown by induction on n from the recursive definitions
for µg,nx and βg,nx .

Using this, we write

PH′ {θx ∈ du} ∝ ϕ

(
u− µg,nx√

(σg,nx )2 + νgx

)
ϕ

(
u− µH,nx

σH,nx

)
∝ ϕ

(
u− µH

′,n
x

σH
′,n

x

)
,

which follows from an algebraic manipulation that involves completing the square.
This shows that the posterior is normally distributed with mean µH

′,n
x and variance (σH

′,n
x )2,

showing the induction statement.

Appendix C

The variance of the sample observation ŷn+1
x = Wn

x v
n+1 + ε is given by the measurement error

plus a prediction error

V ar
(
ŷn+1
x

)
= V ar

(
Wn
x v

n+1
)

+ λx

= Wn
x Σv,n+1 (Wn

x )T + λx.

Therefore, the random variable Z =
(
ŷn+1
x −Wn

x v
n+1
)
/

√
Wn
x Σv,n+1 (Wn

x )T + λx is a stan-
dard normal. So we write:

µn+1 = µn + σ̃
(
Σv,n+1, x

)
Z,

where

σ̃
(
Σv,n+1, x

)
=

WnΣv,n+1 (Wn
x )T√

Wn
x Σv,n+1 (Wn

x )T + λx

.

The knowledge-gradient policy can now be rewritten as

xn = arg max
x∈X

E
[
max
x′∈X

µnx′ + (ex′)
T σ̃x′

(
Σv,n+1, x

)
Z

]
−max
x′∈X

µnx′ ,

where σ̃x′(Σv,n+1, x) denotes the row σ̃(Σv,n+1, x) corresponding with alternative x′.
The sampling decision xn is equal to the one proposed in (Frazier et al., 2009) with the

exception of the column vector σ̃(Σv,n+1, x). However, we can use the same approach to solve
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the sampling decision.
Note that without aggregation, which basically means we are only using the aggregation

level g = 0 with weights w0
x′ = 1, σ̃x′(Σv,n+1, x) would simply be given by

σ̃x′
(
Σv,n+1, x

)
= Σv,n+1

x′,x (0, 0) /
√
λx + Σv,n+1

xx (0, 0).

Given that Σv,n+1
x′,x (0, 0) = Σn+1

x′,x the resulting equation coincides with the results of Frazier
et al. (2008).

Appendix D

This appendix contains all the lemmas required in the proofs of Theorem 1 and Corollary 2.

Lemma 4 If z1, z2, . . . is a sequence of non-negative real numbers bounded above by a constant
a <∞, and sn =

∑
k≤n zk, then

∑
n(zn/sn)21{sn>0} is finite.

Proof. Let n0 = inf {n ≥ 0 : sn > 0}, and, for each integer k, let nk = inf {n ≥ 0 : sn > ka}.
Then, noting that sn = 0 for all n < n0 and that sn > 0 for all n ≥ n0, we have

∑
n

(zn/sn)21{sn>0} =

 ∑
n0≤n<n1

(zn/sn)2

+
∞∑
k=1

 ∑
nk≤n<nk+1

(zn/sn)2

 .
We show that this sum is finite by showing that the two terms are both finite. The first

term may be bounded by

∑
n0≤n<n1

(zn/sn)2 ≤
∑

n0≤n<n1

(zn/zn0)2 ≤

 ∑
n0≤n<n1

zn/zn0

2

≤ (a/zn0)2 <∞.

The second term may be bounded by

∞∑
k=1

nk+1−1∑
n=nk

(zn/sn)2 ≤
∞∑
k=1

nk+1−1∑
n=nk

(zn/ka)2 ≤
∞∑
k=1

nk+1−1∑
n=nk

zn/ka

2

=
∞∑
k=1

(
snk+1−1 − snk

+ znk

ka

)2

≤
∞∑
k=1

(
(k + 1)a− ka+ a

ka

)2

=
∞∑
k=1

(2/k)2 =
2
3
π2 < ∞.

Lemma 5 Fix g ∈ G and x ∈ X and let

ȳnx =

[∑
m<n

βg,m,εx ŷm+1
x 1{xm=x}

]/[∑
m<n

βg,m,εx 1{xm=x}

]
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for all those n for which the denominator is strictly positive, and let ȳnx = 0 for those n for
which the denominator is zero. Then, supn |ȳnx | is finite almost surely.

Proof. Let αn =
[
βg,n,εx 1{xn=x}

] / [∑
m≤n β

g,m,ε
x 1{xm=x}

]
, so that

ȳn+1
x = (1− αn)ȳnx + αnŷn+1

x .

Also let Mn = (ȳnx − θx)2 +
∑∞

m=n 1{xm=x}λx(αm)2, and note that Lemma 4 together with
the upper bound (minx′ λx′)

−1 on βg,m,εx imply that M0 is finite. We will show that Mn is a
supermartingale with respect to the filtration generated by (ŷnx)∞n=1.

Consider En[Mn+1]. On the event {xn 6= x} (which is Fn measurable), we have Mn+1 = Mn

and En
[
Mn+1 −Mn

]
= 0. On the event {xn = x} we compute En

[
Mn+1 −Mn

]
by first

computing

Mn+1 −Mn = (ȳn+1
x − θx)2 − (ȳnx − θx)2 − λx(αn)2

= ((1− αn)ȳnx + αnŷn+1
x − θx)2 − (ȳnx − θx)2 − λx(αn)2

= −(αn)2(ȳnx − θx)2 + 2αn(1− αn)(ȳnx − θx)(ŷn+1
x − θx)

+(αn)2
[
(ŷn+1
x − θx)2 − λx

]
.

Then, the Fn measurability of αn and ȳnx , together with the facts that En
[
ŷn+1
x − θx

]
= 0

and En
[(
ŷn+1
x − θx

)2] = λx, imply

E
[
Mn+1 −Mn

]
= −(αn)2 (ȳnx − θx)2 ≤ 0.

Since Mn ≥ 0 and M0 <∞, the integrability of Mn follows. Thus, (Mn)n is a supermartin-
gale and has a finite limit almost surely. Then,

lim
n→∞

Mn = lim
n→∞

(ȳnx − θx)2 +
∞∑
m=n

1{xm=x}λx(αm)2 = lim
n→∞

(ȳnx − θx)2.

The almost sure existence of a finite limit for (ŷnx − θx)2 implies the almost sure existence
of a finite limit for |ŷnx − θx| as well. Finally, the fact that a sequence with a limit has a finite
supremum implies that supn |ȳnx | ≤ supn |ȳnx − θx|+ |θx| <∞ almost surely.

Lemma 6 For each x, x′, and g, the following quantities are almost surely finite: supn |µ
g,n
x |,

supn |anx′(x)|, and supn |bnx′ (x) |.

Proof. We begin by showing that supn |µ
g,n
x | is almost surely finite. We write µg,nx as

µg,nx =
βg,0x µg,0x +

∑
m<n β

g,m,ε
x 1{xm∈X g(x)}ŷ

m+1
xm

βg,0x +
∑

m<n β
g,m,ε
x 1{xm∈X g(x)}

= pn0µ
g,0
x +

∑
x′∈X g(x)

pnx′ ȳ
n
x′ ,

where the ȳnx′ are as defined in Lemma 5 and the pnx′ are defined for x′ ∈ X g(x) by

pn0 =
βg,0x

βg,0x +
∑

m<n β
g,m,ε
x 1{xm∈X g(x)}

, pnx′ =

∑
m<n β

g,m,ε
x 1{xm=x′}

βg,0x +
∑

m<n β
g,m,ε
x 1{xm∈X g(x)}

.
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Note that pn0 and each of the pnx′ are bounded uniformly between 0 and 1. We then have

sup
n
|µg,nx | ≤ sup

n

|µg,0x |+ ∑
x′∈X g(x)

|ȳnx′ |

 ≤ |µ0,g
x |+

∑
x′∈X g(x)

sup
n
|ȳnx′ |.

By Lemma 5, supn |ȳnx′ | is almost surely finite, and hence so is supn |µ
g,n
x |.

We now turn our attention to anx′(x) and bnx′(x). Both anx′(x) and bnx′(x) are weighted linear
combinations of the terms µg,nx′ (note that µnx′ is itself a linear combination of such terms), where
the weights are uniformly bounded. This, together with the almost sure finiteness of supn |µ

g,n
x′ |

for each g, implies that both supn |anx′(x)| and supn |bnx′(x)| are almost surely finite.

Lemma 7 Let X ′ be the (random) set of alternatives measured infinitely often by a policy.
Then, for each x /∈ X ′ and x′ 6= x that we measure at least once, and for each g ∈ G (x′, x) for
some x′ 6= x, we have lim infn |δg,nx | 6= 0.

Proof. The bias δg,nx is given by µ0,n
x − µg,nx . Because x /∈ X ′, there exists some N < ∞ such

that µ0,n
x = µ0,N

x for all n ≥ N . Note that the estimate µ0,N
x is a linear combination of finitely

many normally distributed random variables, and is thus a continuous random variable.
Since x 6= x′ is measured at least once, no cluster point of the sequence (µg,nx )n∈N is perfectly

correlated with µ0,N
x . Since the probability of equality between a continuous random variable

and another random variable whose values are not perfectly correlated is 0, the probability that
µ0,N
x is equal to any cluster point of (µg,nx )n∈N is 0. This implies that lim infn |δg,nx | 6= 0 almost

surely.

Lemma 8 Let X ′ be the (random) set of alternatives measured infinitely often by a policy.
Then, for each x′, x ∈ X , the following statements hold almost surely,

• if x ∈ X ′ then limn b
n
x′(x) = 0 and limn b

n
x(x′) = 0.

• if x /∈ X ′ then lim infn bnx(x) > 0.

Proof. Let x′ and x be any pair of alternatives. First consider the case x ∈ X ′.
When x′ and x do not share any aggregation levels, the set G (x′, x) is empty and hence

bn+k
x′ (x) = bn+k

x (x′) = 0, from which limn→∞ b
n
x′(x) = 0 and limn→∞ b

n
x (x′) = 0 follows trivially.

When x′ and x share one or more aggregation levels g, the precisions
{
βg,nx = βg,nx′ , ∀g ∈ G (x′, x)

}
are updatedm0,n

x′ +m0,n
x =∞ times. As a consequence limn→∞ β

g,n
x = limn→∞ β

g,n
x′ =∞. Hence,

in this case as well, we have limn→∞ b
n
x′(x) = 0 and limn→∞ b

n
x (x′) = 0.

Now consider the case x /∈ X ′. We show that lim infn bnx(x) > 0. Alternative x has at least
one aggregation level, namely the disaggregate level g = 0, that is not shared with alternatives
in X ′. As a consequence,

bnx(x) ≥ w̄0,n
x (x)

(λx)−1

√(∑
g′∈G β

g′,n
x

)−1
+ λx

β0,n
x + (λx)−1

,
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which is finite because x /∈ X ′, i.e., β0,n
x ≤ βN1,0

x . In fact, if we started with a non-informative
prior, β0,n

x would be given by m0,n
x (λx)−1. Therefore, we can write

bnx(x) ≥ w̄0,n
x (x)

(λx)−1√λx
β0,N1
x + (λx)−1

,

where the weights are given by

w̄0,n
x (x) =

β0,n
x + (λx)−1

β0,n
x + (λx)−1 +

∑
g∈G\{0} ψ

g,n
x

,

with
ψg,nx =

(
(βg,nx + βg,n,εx )−1 + (δg,nx )2

)−1
.

We now show that lim supn ψ
g,n
x < ∞ for all g ∈ G \ {0} by considering two cases. Define

the set G′ to contain all g ∈ G for which there exists an x′ ∈ X ′ such that G (x′, x) is not
empty. This is the set of aggregation levels shared by x and an alternative measured infinitely

often. For each g ∈ G′ we have limn β
g,n
x = 0, which implies lim supn ψ

g,n
x = lim supn

(
δg
′,n
x

)−2
,

which is finite by Lemma 7. For each g /∈ G′ we know ψg,nx is constant for all n after the last
measurement within X g(x) and thus lim supn ψ

g,n
x is finite in this case as well.

Finally, lim supn ψ
g,n
x < ∞ and (λx)−1 > 0 together imply that lim infn w̄

0,n
x (x) > 0. This

shows lim infn bnx(x) > 0.
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