
CODE: Description Language for Wireless
Collaborating Objects

#Raluca Marin-Perianu, Hans Scholten, Paul Havinga

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede

{r.s.marinperianu, j.scholten, p.j.m.havinga}@ewi.utwente.nl

Abstract

This paper introduces CODE, a Description Language for
Wireless Collaborating Objects (WCO), with the specific aim
of enabling service management in smart environments. WCO
extend the traditional model of wireless sensor networks by
transferring additional intelligence and responsibility from
the gateway level to the network. WCO are able to offer
complex services based on cooperation among sensor nodes.
CODE provides the vocabulary for describing the complex
services offered by WCO. It enables description of services
offered by groups, on-demand services, service interface and
sub-services. The proposed methodology is based on XML,
widely used for structured information exchange and
collaboration. CODE can be directly implemented on the
network gateway, while a lightweight binary version is stored
and exchanged among sensor nodes. Experimental results
show the feasibility and flexibility of using CODE as a basis
for service management in WCO.

1. INTRODUCTION

Wireless Sensor Networks is an emerging technology that has
led to extensive studies concerning the new challenges that
researchers and programmers have to overcome: energy
efficiency, scarce computing and storage resources, unreliable
communication, harsh environments, etc. Therefore, most of
the initiatives have focused on tackling these difficulties
rather than providing rich functionality within complex world
scenarios. Consequently, usual applications utilize sensor
nodes for monitoring or tracking purposes within a static
pattern: collect data, perform some in-network processing
(optional) and forward results to a central system. Wireless
Collaborating Objects (WCO) is a paradigm that extends the
traditional model of wireless sensor networks by transferring
intelligence and responsibility to sensor nodes. Nevertheless,
a single sensor node is limited in terms of hardware
performance and energy available. In these conditions, the
overall performance of the network can only be improved
through cooperation among sensors.

The vision of WCO is that nodes self-organize into
dynamic groups and offer services based on the capabilities of
each member. Groups are formed either as a result of a
system configuration or simply “on-demand”, as a result of a
service request. The latter case is more dynamic, as groups

are formed based on context information and are dissolved
when the service is accomplished.

Another idea of WCO is the dynamic nature of service
deployment in the network. New services can be composed
from existing ones, while other services can be deleted from
the network. The service discovery protocol has to be adapted
to such a highly dynamic environment and to enable service
composition through a flexible vocabulary.

In this paper we propose CODE, a service description
language as a means of describing collaborating objects and
the services they offer. It can be used to support methods and
tools to achieve service management in WCO. In particular,
CODE allows for extensible descriptions of service interface,
sub-services, service requirements, consuming entities and
service attributes. The contributions of our work are as
follows:

1. We identify the basic components of service
management for WCO.

2. We propose CODE, a generic and extensible method
for describing dynamic entities and services in
WCO.

3. We show that the binary version of CODE is feasible
to be stored and processed on sensor nodes.

The rest of this paper is organized as follows: Section 2
presents a scenario that motivates out approach for service
management for WCO. Section 3 describes the basic
components of service management and the role of the
service description language. Section 4 covers the description
of services and groups in WCO. Section 5 demonstrates the
feasibility of binary CODE to work on sensor nodes. Section
6 discusses related work and Section 7 presents a summary
and future work.

2. MOTIVATING SCENARIO

We present an example that illustrates most of the concepts of
service management for WCO. The scenario concerns the
process of transporting goods from providers to consumers.
The products are placed shelves which are part of rolling
carts. Each cart is equipped with a wireless sensor node,
called a micronode. The nodes on the carts communicate with
each other wirelessly, creating an ad-hoc network. They
function on a battery, so energy saving is a major issue.
Sensors called piconodes are placed on each shelf of the cart
for monitoring the environmental conditions, which are

essential when the transport involves delicate and perishable
goods (such as flowers).

In this scenario we focus on the expedition floor, which
is a place used by the transport company to regulate the
shipment process. A large grid is painted on the expedition
floor and each cell of the grid is associated with a certain
shop. Loaded carts arrive to the expedition floor and are
placed depending on the shop they are assigned to. The carts
belonging to one shop are grouped together and occupy a part
of, one or more adjacent grid cells, depending on the number
of carts.

A fixed infrastructure of sensor nodes is placed regularly
in the grid on the expedition floor. These nodes are referred to
as beacons and will enable the localization process. They
have enough energy, as they are connected to the mains.
Beacons will also act as communication gateways between
the cart nodes and a central coordinator, called Central
System (CS), which is a computer in charge of coordinating
all actions within the expedition floor.

CS informs the beacons on the assignment of carts to
cells, on the environmental conditions that have to be
observed and on the deadlines for carts gathering. The
beacons actively calculate positions of the carts and verify
correct gathering, environment conditions and deadlines. The
events and results of the monitoring process are transmitted
back to CS.

Figure 1 illustrates the process. The filled carts are placed
on the expedition floor on certain grid cells, which are
delimited by beacon nodes. Groups of carts placed within
adjacent cells are transported together in the same trailer.

A. Group functionality
As the fixed infrastructure attached to the expedition floor is
power supplied, it is desirable that it should take over much of
the computation and monitoring services present in the
network. The set of beacons which form the fixed
infrastructure organize into groups for providing the
following services:

1. Localization service, for the carts placed on the
expedition floor.

2. Shop monitoring service, for the Central System.

The second service is provided by groups of beacons formed
as a result of a configuration message from CS, which assigns
the shops and carts to be monitored and decides who are the
members of the groups. The first service is offered on-
demand and is provided by dynamically formed groups.

Fig. 2. Localization service.

The cart sends a broadcast message asking for localization service.
Beacons that hear the broadcast organize into a group and deliver the

service to the cart.

Fig. 1: Process diagram.

Carts gather on allocated grid rectangles within the expedition floor.

B. On-demand services
Services can be offered on-demand as a result of a service
discovery message. Figure 2 shows an example of how
beacons dynamically organize into a group that deliver a
localization service for a nearby cart. On the left hand side of
the picture, one cart broadcasts a service discovery message.
Beacons that receive the broadcast organize into a group that
is able to deliver the localization service, based on the
information owned by each member. On the right hand side
of the picture, the beacons that become members of the group
are highlighted.

C. Service composition
The monitoring service performed by the group of beacons
assigned to a shop is composed of a set of sub-services,
concerning monitoring of carts gathering, monitoring of
environmental conditions and verification of deadlines.
Monitoring of carts gathering uses the location information
service offered by each cart belonging to the shop being
monitored. Carts, in their turn, use the localization service
offered by groups of beacons from the neighbourhood. The
monitoring of environmental conditions service uses the
humidity, light and temperature services, which further rely
on the environmental services offered by each cart. Figure 3
shows an example of service composition for monitoring the
carts on the expedition floor. It can be noticed that taking
advantage of the existing services, complex ones can be built
and consequently, the level of functionality increases.

3. SERVICE MANAGEMENT

The above scenario points out the new concept of service
management for WCO. Services are offered not only by
single devices, but also by groups. Service offer is not fixed,
but it changes depending on the context. Simple services can
be combined resulting in more complex ones, and this process

can be repeated. The outcome is a whole hierarchy of
services.

We call service management the framework of service
manipulation in WCO. It consists of the following modules:

1. Service deployment. Services are deployed on the
network nodes in WCO.

2. Service composition. Complex services are
constructed from the existing ones.

3. Service discovery. Discovery is the action of finding
a service provider for a requested service.

4. Service policy. Service policy controls the access
rights of the service consumer to the requested
service.

5. Service usage. Service usage is the process of
making use of the available service.

All the components of service management are directly
dependant on an additional ingredient: Service description.

Deployment is assisted through description of service
requirements. Services can be mapped on specific nodes of
the network, or on entities which fulfil certain characteristics.
The service requirements specify the desired features of
service providers. Following the scenario explained in section
2, the temperature service is deployed only on carts outfitted
with a piconode that measures temperature.

Service description enables composition through the
definition of service interface. Interfaces dictate how the
service can be accessed and controlled. A new service can be
created by using the exposed interfaces of services already
present in the network. It will have a set of sub-services and
its own interface.

In order to enable discovery, it is necessary to describe
the service through its name, type and other attributes. The
service request message contains a partial description which
is sent out to the network by the requesting entity. Nodes have
to match the oncoming description with the one stored in the
local memory to decide whether the service can be provided.

Service policy specifies which are the entities in the
system that can access the service, more precisely the service
consumers. They can be just enumerated, or they can be

identified based on certain characteristics specified within the
service description.

Fig. 3. Composition of services.
Each complex service is composed of a number of sub-services.

Finally, the usage of the service is done through the
exposed service interface, defined in the service description.

4. SERVICE DESCRIPTION

Our notation for service description is based on XML, which
provides a set of guidelines and conventions for structuring
and representing data. It is generic and easily extensible and it
is widely popular with W3C [11] as a means for structured
information exchange and collaboration. By using XML as a
building block for our description language, it is possible to
take advantage of various publicly available open-source
tools designed to work with XML.

CODE implements an XML schema which defines the
elements that can appear in the description document. The
key features of the schema are:

1. Attributes are not defined, in order to impose strict
ordering of elements. This facilitates implementing
efficient algorithms for tree traversal of descriptions.

2. The schema allows partial descriptions of elements.
In this way, only important aspects can be expressed
while keeping the size of the description to
minimum.

3. CODE allows every entity and service in the system
to have application-specific attributes.

4. Entities can be identified based on context
information (e.g. neighbours).

5. The schema can operate with variables that denote
entities in the system and take values according to
the context.

There are two components that can be described using
CODE: (1) services and (2) entities. An entity is a device or a
group of devices. An entity can play the role of service
provider and service consumer.

A device is described in terms of hardware, software,
dynamics (fixed or mobile), location, groups that it is member
of, connected entities (context information such as
neighbours) and services it offers. A special type of device is
the sensor, capable of measuring environmental conditions.
Sensors are characterised by the type of measurements they
perform and by the quality of service (range, resolution,
accuracy). Groups are described by the number of members,
the entity which is the initiator of group, the group members,
the leader and the offered services.

Services are divided in two categories: monitoring and
non-monitoring. Non-monitoring services are similar to an
instantaneous function performed by the service provider,
such as the average temperature measured by a group of
nodes. They usually return a value as a result of a
measurement or computation. Monitoring services perform
timely supervision of a phenomenon, they are controlled
through commands and issue events.

CODE defines the interface of a service, composed of
inputs, outputs, commands and events. Moreover, it
characterizes the service consumers, the sub-services, the

requirements for competent service providers and the
attributes of the service.

The following subsections focus on the challenges
addressed by service management in WCO, in particular the
description of dynamic groups, on-demand services, service
interface and sub-services.

A. Groups
Groups can be dynamically formed depending on the context.
Context is defined by specifying a certain attribute, such as
location, neighbouring devices or another parameter defined
by the application.

Taking as example the scenario described in the previous
section, beacons being in range of a cart form a group and
provide a localization service to the cart. The cart for which
the service is provided is known only at the moment it sends a
service request. The cart is called the initiator of the group
and its identity is not specified at the moment of service
deployment. Instead, a variable is used to identify the cart, as
shown in the following example:

<Group>

<Initiator>
<Device>

<RefId>var_cart</RefId>
<Type>Cart</Type>

</Device>
</Initiator>
<MemberList>

<Device>
<Type>Beacon</Type>
<ConnectedEntity>

<ConnectedTo>
<Device>

<RefId>var_cart</RefId>
</Device>

 </ConnectedTo>
<Type>InRangeOf</Type>

</ConnectedEntity>
 </Device>
</MemberList>
<OffersService>

<Name>Localization</Name>
</OffersService>

</Group>

The description of the group contains the field Initiator,
which designates the cart requesting for localization service.
Devices which are members of the group are the Beacons,
with the restriction that they are inRangeOf the cart. The
group offers the service named Localization. In the
initialization phase, the variable denoting the cart is replaced
with the appropriate cart ID.

B. On-demand services
CODE allows a service to be configured for being offered on-
demand. The service requirements identify the potential
providers of the service. In case that the provider is a group
dynamically formed as a result of a service discovery request,
the requirements specify the group characteristics. Here is a
partial description of the localization service that uses the
group description as requirements for service provider:

<Service>
<Name>Localization</Name>
<Type>

<NonMonitoring>
<ServiceOffer>on-demand</ServiceOffer>

 </NonMonitoring>
</Type>
<Requirements>

[Group description…]
</Requirements>

</Service>

C. Service interface
The service interface is composed of the following entities:

• ParameterList - Service parameters can be:
- the input information, compulsory for

service initialization
- the output data, provided to the service

consumer at the end of service utilization
• EventList - Events are messages sent to the service

consumer to specify a state of the service. CODE
defines the following categories of events: error,
warning, alert, information and application defined.

• CommandList - Commands are control messages
issued by the service consumer. They can trigger a
previously defined event or can query the service for
a specific piece of information.

A simple interface for localization service defines an output
parameter, representing the calculated position of the cart:

<Interface>

<ParameterList>
<Parameter>

<Direction>out</Direction>
<Name>Position</Name>
<Type>integer</Type>

</Parameter>
</ParameterList>

</Interface>

D. Service policy
Service policy consists of a set of entities which have the
right to use the service. CODE allows specification of service
policy by defining the characteristics of service consumers.
Consumers do not need to be fully identified, rather they are
characterised by an attribute or by the context. For example, a
policy may state that entities which are allowed to access the
temperature service are those located maximum two hops
away from CartX.

<ServiceConsumer>

<ConnectedEntity>
<ConnectedTo>

<Device>
<Name>CartX</Name>

</Device>
</ConnectedTo>
<Type>hops</Type>
<Value>2</Value>

</ConnectedEntity>
</ServiceConsumer>

E. Sub-services
By means of interface definition, complex services can be
developed from the existing ones. CODE allows definition of
sub-services, which are a result of service composition. We
take as an example the monitoring of carts gathering service,
described in the transport scenario. Monitoring of carts uses
the location service offered by each cart which has to be
delivered to the specified shop.

<Service>

<Name>Monitoring of gathering</Name>
<Type>

 <Monitoring>
<Status>running</Status>

 </Monitoring>
</Type>
<SubServices>

<Service>
<Name>Localization</Name>
[other characteristics…]

</Service>
</SubServices>

</Service>

5. IMPLEMENTATION ON SENSOR NODES

CODE descriptions are based on XML, which provides
flexibility and richness but is quite expensive in terms of
memory usage and processing power needed for parsing. This
is the reason why the original XML descriptions are stored at
the gateway level, while on sensor nodes we have
implemented a binary XML version. The binary CODE
preserves XML flexibility and extensibility, while optimizing
for low storage, fast processing, as required by the hardware
limitations of sensor nodes. Firstly, we will present the
platform on which the tests have been performed. Secondly,
we will analyse the storage space needed for binary CODE
descriptions. Thirdly, we will show the processing time
needed for matching a service discovery message to the
service description stored on the node.

A. Platform
The implementation has been done on a hardware platform
developed by NEDAP for the Eyes project [7]. It consists of
MSP430f149 micro-controller from Texas Instruments that
operates at 4MHz. It has 60kB of program flash memory and
2kB of RAM. Other features include a radio transceiver and
an RS232 interface. The operating system used is DCOS
(Data Centric Operating System) [8], which occupies 5kB out
of the 60kB of flash memory.

B. Binary descriptions
The XML schema which defines CODE is used as the basis
for the binary encodings. We have used Java API for XML
Processing (JAXP) [9] for parsing the XML descriptions
through the Document Object Model (DOM) [10] interface.
The XML DOM views XML documents as a tree structure of
elements embedded within other elements. From this tree
structure we extract only the sub-tree containing the necessary
information, leaving out the text descriptions and comments.
The nodes in our tree can be element or text. Considering that

the XML schema contains 51 element types, we used one
byte for encoding, thus leaving space for further extensions.
We have pre-defined 5 types of text nodes: string, byte,
int_16, int_32 and float. We have chosen to encode also the
strings, as the storage space is very limited. The resulting tree
is further linearized, in depth first tree traversal order.
Considering that we have E number of element nodes and T
number of text nodes, the number of bytes M occupied by the
binary description is M = 2*E + x*T ,where x is a number
between 2 and 5 and it represents the average space occupied
by a text node, depending on its type. Table 1 shows the
results of compression for three of the services described in
Section 2. The monitoring of gathering service defines a
complex interface that allows the Central System to fully
control the service. It has 96 element nodes and 52 text nodes,
resulting in a binary description of only 296 bytes, which is
still small enough to be stored in RAM.

TABLE 1: IMPLEMENTATION RESULTS

Service
name

Size of
uncompressed

description

Size of
binary

description

Number
of tree
nodes
(E+T)

Matching
time of
binary

description
Localization

1.65 kB 114 B 57 7 ms

Temperature
monitoring

2.58 kB 202 B 101 9 ms

Monitoring
of gathering

3.52 kB 296 B 148 10 ms

C. Matching binary descriptions
In order to support service discovery, each node in the
network stores the descriptions of the services it offers.
Incoming service discovery messages are only partial
descriptions of the service and they have to be kept as small
as possible, for achieving fast transmission and small power
consumption. In order to decide whether the service request is
satisfied, we have implemented a matching algorithm
between the general description and the partial one. Taking
advantage of the fact that (1) the trees to be matched have the
same root, so matching of nodes is done at the same tree
level, (2) matching of branches goes until the level of leaves
and (3) the element nodes are placed in strict order, we have
implemented an non-recursive algorithm that traverses the
logical trees of the two binary descriptions. The tree
corresponding to the complete description is traversed in one
way, without returning, while the tree associated with the
partial description is traversed back and forth, depending on
the matching result. At each step of the traversal we keep the
current levels of the trees equal. The upper bound of the
algorithm complexity is O(N), where N = E+T is the total
number of nodes in the tree associated with the general
description. The lower bound of the algorithm is O(n), where
n is the total number of nodes in the tree associated with the
partial description.

The results of the experiments are shown in Table 1. The
implementation revealed an execution time of 7ms for
localization service, considering a general description with
N=57 (41 element nodes and 16 text nodes, which represent

the leaves of the tree) and a partial description with n=15 (12
element nodes and 3 text nodes). The implementation of the
matching algorithm occupies 1,5kB of flash memory.

6. RELATED WORK

The challenges that WCO bring into light change the
traditional vision of service discovery protocols [4-6]. These
protocols allow discovery of services in networks where the
only possible service providers are stand-alone devices. The
notion of on-demand services does not exist, as the service
offer does not depend on the context. Moreover, there is no
support for service composition.

Nevertheless, two description languages have been
proposed particularly focusing on sensor networks: SensorML
[1, 2] and TinyML [3]. SensorML provides an XML schema
for defining the geometric, dynamic, and observational
characteristics of a sensor in support of data discovery. It
supports the processing and analysis of the sensor
measurements, the geolocation of observed values and
provides performance characteristics. TinyML describes
sensor platforms, sensor fields (a collection of sensor nodes)
and virtual devices (a group of sensor nodes that perform a
certain task). Both SensorML and TinyML define the notion
sensor group, which is composed of multiple sensors that
operate together to provide a collective observation or related
group of observations. Unfortunately, these languages do not
describe services in a sensor network, they only concentrate
on defining the characteristics of devices. Moreover, XML
descriptions are placed on the external interface, not on the
sensor nodes. In-network processing of sensor descriptions is
not one of the goals of Sensor ML or TinyML.

7. CONCLUSIONS

This paper introduces CODE, a description language for
Wireless Collaborating Objects (WCO). WCO improve the
traditional model of wireless sensor networks by enabling
complex services to be offered either by single nodes or by
groups of collaborating nodes. The purpose of CODE is to
support service management for WCO, more specifically
service deployment, service composition, service discovery,
service policy and service usage. CODE is based on XML,
widely used for structured information exchange and
collaboration. The XML descriptions are stored at the
gateway level, while the sensor nodes store and process the
binary version. The binary CODE preserves XML flexibility
and extensibility, while optimizing for low storage, fast
processing, as required by the hardware limitations of sensor
nodes. We have showed that a binary description of service is
small enough to be stored on sensor nodes with 2kB of RAM.
Moreover, we have implemented an algorithm that matches a
partial description against the complete one, thus providing
the response to a service discovery message. The processing
time is the order of milliseconds, negligible in comparison
with the communication overhead.

Future work will include extending the matching
mechanism by allowing more complex validations, such as
range checking. This is clearly useful for practical situations,
for instance the case of requesting a localization service with
accuracy over a certain degree. We will also add functionality
to the manipulation of binary descriptions, such as updating
variables or changing fields which depend on context.
Additionally, we will explore architectural choices for
building efficient service discovery mechanisms on top of
CODE descriptions.

REFERENCES

[1] Sensor Model Language (SensorML), 2004.

http://vast.nsstc.uah.edu/SensorML/
[2] M. Botts (ed.) “Sensor Model Language (SensorML)

for In-situ and Remote Sensors”, OpenGIS
Interoperability Program Report, OGC 04-019r2,
Version 1.0.0 beta, Nov. 2004,
http://vast.nsstc.uah.edu/SensorML/SensorML_04-
019_1.0_beta.pdf

[3] Nathan Ota and William T.C. Kramer, “TinyML:
Meta-data for Wireless Networks”,
http://kingkong.me.berkeley.edu/~nota/research/Tiny
ML/project-paper-1.pdf

[4] UPnP Forum, “UPnP device architecture”, Version
1.0, June 2000, http://www.upnp.org/

[5] Sun Microsystems, “Jini architecture specification”
version 2.0, June 2003,
http://www.sun.com/software/jini/specs/jini2_0.pdf

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day,
“Service Location Protocol, Version 2,” IETF, RFC
2608, June 1999, http://www.rfc-
editor.org/rfc/rfc2608.txt.

[7] Energy-Efficient Sensor Networks (EYES),
http://www.eyes.eu.org/

[8] T.J. Hofmeijer, S.O. Dulman, P.G. Jansen and P.J.
Havinga, “DCOS, a Real-Time Light-Weight Data
Centric Operating System”, In ACST 2004.

[9] Sun Microsystems, Inc., Java API for XML
Processing (JAXP) 1.1 Public Review 2.
http://java.sun.com/aboutJava/communityprocess/revi
ew/jsr063/jaxp-pd2.pdf.

[10] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J.
Robie, M. Champion and S. Byrne (Eds). “Document
Object Model (DOM) Level 3 Core Specification”
Version 1.0, W3C Recommendation, Apr. 2004,
http://www.w3.org/TR/DOM-Level-3-Core/

[11] W3C World Wide Web Consortium,
http://www.w3.org/

	Abstract
	This paper introduces CODE, a Description Language for Wireless Collaborating Objects (WCO), with the specific aim of enabling service management in smart environments. WCO extend the traditional model of wireless sensor networks by transferring additional intelligence and responsibility from the gateway level to the network. WCO are able to offer complex services based on cooperation among sensor nodes. CODE provides the vocabulary for describing the complex services offered by WCO. It enables description of services offered by groups, on-demand services, service interface and sub-services. The proposed methodology is based on XML, widely used for structured information exchange and collaboration. CODE can be directly implemented on the network gateway, while a lightweight binary version is stored and exchanged among sensor nodes. Experimental results show the feasibility and flexibility of using CODE as a basis for service management in WCO.
	1. Introduction
	2. Motivating Scenario
	3. Service Management
	4. Service Description
	5. Implementation On Sensor Nodes
	6. Related Work
	7. Conclusions

