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ABSTRACT

This paper presents our real-time disk scheduler called the �L scheduler, which optimizes unscheduled best-

e�ort disk requests by giving priority to best-e�ort disk requests while meeting real-time request deadlines. Our

scheduler tries to execute real-time disk requests as much as possible in the background. Only when real-time

request deadlines are endangered, our scheduler gives priority to real-time disk requests. The �L disk scheduler

is part of our mixed-media �le system called Clockwise.

An essential part of our work are extensive and detailed raw disk performance measurements. These raw

performance measurements are used by the �L disk scheduler for its real-time schedulability analysis and to

decide whether scheduling a best-e�ort request before a real-time request violates real-time constraints.

Further, the raw performance measurements are used by a Clockwise o�-line simulator where a number of

di�erent disk schedulers are compared. We compare the �L scheduler with a prioritizing Latest Start Time
(LST) scheduler and non-prioritizing EDF scheduler. The �L scheduler is comparable to LST in achieving low

latencies for best-e�ort requests under light to moderate real-time loads and better in achieving low latencies

for best-e�ort requests for extreme real-time loads. The simulator is calibrated to an actual Clockwise.

Clockwise runs on a 200 MHz Pentium-Pro based PC with PCI bus, multiple SCSI controllers and disks

on Linux 2.2.x and the Nemesis kernel. Clockwise's performance is dictated by the hardware: all available

bandwidth can be committed to real-time streams, provided hardware overloads do not occur.

1991 ACM Computing Classi�cation System: Input/Output devices (B.4.2), Performance analysis and design aids
(B.4.4), Performance of systems (C.4), File system management (D.4.3), Organization and Design (D.4.7),
Performance (D.4.8)
Keywords and Phrases: Real-time storage systems, best-effort workload, real-time scheduling

1. INTRODUCTION

Future file systems will store a mixed-media data set: a mixture of data accessed by real-time applications
and those that only require delivery or storage of data – so called best-effort applications. Examples of such
systems are web servers with digital audio and video and ordinary web pages, multi-media databases, and
ordinary workstations that are used forVCR functionality andMP-3 playback while they are also used for
ordinary text-processing tasks.

Scheduling disk activity for a mixed workload is a challenging problem. While the basic issues of scheduling
real-time traffic have been addressed, this has usually been at the expense of best-effort traffic – which is an
important component of a mixed workload. We have found that giving priority to best-effort requests over
real-time requests in such a way that real-time requests do not miss their deadlines, significantly improves the
latency of the best-effort requests compared to non-prioritizing scheduling techniques. We argue that when
slack time is available in the schedule –i.e., there is time betweenanyend of real-time request invocation and
its deadline – best-effort requests need to runbeforethe real-time requests.
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We have developed a disk scheduler called the�L disk scheduler that uses schedule slack time to prioritize
best-effort requests while guaranteeing real-time deadlines. This disk scheduler pre-calculates the amount
of schedule slack time and based on this slack time the scheduler decides if executing a best-effort request
before a real-time request violates real-time constraints. If not, the best-effort request is given priority. Our
disk scheduler is a non-preemptive disk scheduler because disks cannot be preempted once they have started
executing a disk request. We have integrated the�L disk scheduler in the Clockwise file system.

Real-time applications demand that data is stored or retrieved in a timely manner: data is produced or
consumed at a specific determined rate and the file server must keep up with it. Video and audio data are
obvious and common examples: anMPEG-2 video stream can be compressed so that it requires a continuous
data stream of 8,Mb/s. When 1,MB buffers are used by anMPEG player, the storage system must provide an
MPEG-2 buffer every second.

Best-effort applications are applications that have no timing requirements; however, particularly on (syn-
chronous) read and write operations, applications usually block until the data is delivered. Reducing the latency
of best-effort file operations, therefore, has an immediate and obvious effect on overall system performance.
If, for example, a LinuxEXT2 file system is scheduled concurrently with a number of real-time video and/or
audio data streams, then a scheduler that gives priority to best-effort disk requests without causing real-time
deadline misses, gives a better performance compared to a scheduler that does not prioritize such best-effort
disk requests. Our�L disk scheduler prioritizes best-effort disk requests when real-time deadlines are not
jeopardized.

To build a mixed-media file system, with support for real-time and best-effort data requests, the file server’s
disks must be scheduled with real-time guarantees. If real-time behavior is not guaranteed, applications can
never rely on the on-time availability of data. Given that one of the target applications is audio and video
recording and playback, client caching and write buffering may lessen the real-time scheduling requirements.
However, we argue for true real-time service to minimize the amount of buffering that is required in the client
and the server and to reduce start-up latency.

Real-time disk scheduling is a particularly interesting problem for real-time file servers, because disk opera-
tions are not pre-emptable while most real-time scheduling techniques rely on the pre-emptability of a resource.
Once a disk request has started, it cannot be interrupted to service a higher-priority request first and continue
later. Although it is possible in theory to break off a disk request, do another request and restart the original
request, our experience indicates that mostSCSIcontrollers do not react kindly to such treatment and require a
total shutdown and restart before they will do useful work again.

Real-time streams are characterized by the interval between read and write transfers,i.e. theirperiodT , and
the duration of a stream request, theservice time, C. Givenn streams with periodsT1; : : : ; Tn and service
timesC1; : : : ; Cn, theutilization imposed by these streams on the system is expressed asU =

Pn

i=1 Ci=Ti.
Jeffayet al. [12] already proved that when a collection ofn streams, sorted in order of ascendingTi, is

non-preemptively schedulable then the following two conditions are fulfilled:

U � 1 (1.1)

8i; 1 < i � n;8L; T1 < L < Ti;L � Ci +
i�1X

j=1

b
L� 1

Tj
cCj (1.2)

The first condition merely states that the aggregate load may not exceed the available capacity. This condition
is identical to Liu and Layland’s preemptiveEDF scheduling test [16]. The second says that for every interval
of lengthL starting one unit of time after the start of taski, there must be capacity to run taski itself (minus
the one time unit) and all tasks with periods less thanL the required number of times.

They further showed that, if a collection of tasks is schedulable, then it is always non-preemptively schedu-
lable using a deadline-dynamic scheduling algorithm (e.g. EDF scheduling). Thus, provided a collection of
real-time tasks remains within its specification (i.e., no taski needs to run more frequently thanTi or uses more
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thanCi resources when it runs) and, provided tests 1.1 and 1.2 are passed, anEDF scheduler does not cause
requests to miss their deadlines.

What makes the application of these rules tricky is that the rules do not take (unscheduled) best-effort traffic
into account. The scheduling theory that is presented in this paper addresses this problem: how to schedule
best-effort requests in slack time with a non-preemptively scheduled disk.

The usage of slack time to execute best-effort jobs in a real-time system has been used in other solutions
as well. Buttazzo [6] and Lehoczky [13] describe the concept of real-time servers. The sole purpose of these
servers is to run periodically and to execute pending a-periodic requests. In fact, Lehoczky’s slack-time stealing
algorithm is a method to execute a-periodic tasks in a fixed-priority preemptive environment as quickly as is
possible. TheEarliest Deadline Late(EDL) [7] algorithm can be considered a deadline-dynamic version of the
slack-time stealing algorithm. Our approach is similar, except that we consider non-preemptively scheduled
resources (e.g.a disk).

Another approach is to schedule a mixed load through a round-based disk scheduler, such as is done in the
Tiger system [3, 4]. In a round-based disk scheduler each task is serviced every round. However, we feel that
round-based disk schedulers are too inflexible for our purposes. If a task misses its round, it needs to wait a
full round period before it is serviced again. A deadline-dynamic scheduler, instead, makes sure that a request
can be released and serviced before its deadline if the actual task period is larger or equal than the period with
which a task is admitted. This means that with this type of scheduling, one does not need to wait a full round
before a task can be serviced again and is therefore more flexible.

Also, the use of a deadline-dynamic disk scheduler is not new. The Symphony file system [20] is a mixed-
media file system that is capable of storing continuous-media and best-effort data on the same set of disks.
Symphony’s disk scheduler Cello [21] is a two level disk scheduler, where the main class-independent scheduler
employs aFirst Come First Serve(FCFS) scheduling policy and a number of class dependent disk schedulers
schedule requests according to the application’s needs. Several class schedulers exist, which order requests for
best-effort traffic, optimize for periodic/aperiodic traffic and for throughput intensive applications.

Requests move from the class dependent queues to the class-independent queue in several ways. The periodic
and aperiodic requests move to the class independent queue in a just-in-time manner: requests are first ordered
in scan-EDF order [17] in the periodic/aperiodic request queues and are then moved to the class independent
queue at their latest start time.

The class dependent best-effort scheduler in Symphony uses a slack-time stealing policy to find the ear-
liest execution time for the best-effort request. This scheduler inserts the best-effort request into the class-
independent queue whenever it finds slack time in the class independent queue. Slack time is identified when
the disk idles or when a real-time request can be postponed for the duration of the best-effort request without
missing a deadline.

Executing Symphony’sJust In Time(JIT) scheduler to schedule a mixed load may lead to deadline misses.
Consider, for example, that Symphony schedules a real-time task with a periodT of 200 ms and in every period
the task needs to read 1MB worth of data from a Quantum Atlas-II disk. This operation takes approximately
120 ms in the outer zone. If at timet = 0 a best-effort job is started with a service time of> 80 ms and att = 1
the real-time job enters the system, the real-time job misses a deadline. The situation worsens, of course, when
there are more real-time tasks in the system.

Another approach is taken by theUser-Safe Disk(USD) [2, 1]. USD partitions the available disk bandwidth
in a number of data streams that use the disk. Each stream requests a certainQuality of Service(QoS) from
the disk, which, when the request succeeds, ‘hands’ the disk bandwidth to the stream. The novelty ofUSD’s
approach is that each application is given a guaranteed data stream to or from a disk with which it can do
whatever it wants. When multiple streams useUSD concurrently,USD schedules the requests through anEDF

scheduler [2, 1, 10].
However, sinceUSD’s schedulability test does not consider the case that disk requests cannot be preempted

– it only uses (1.1) as a schedulability test –USD cannot guarantee that it meets request deadlines. However,
this was never a design goal ofUSD, nor is it considered to be a problem [10]. InsteadUSD relies on read-ahead
and write-behind techniques to deal with an occasional deadline miss.

There exist many other disk scheduling systems, but these do not have direct relevance to the problem we
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are describing in this paper. For an overview of these other systems, see Chapter 2 of Bosch [5].
In this paper we start by describing Clockwise, our mixed-media file system. The�L disk scheduling

technique has been integrated into this file system. Next, we describe the�L scheduler in detail and we
present an overview of the measurements we have performed. For an in-depth description of our approach, see
Bosch [5].

2. CLOCKWISE

For our real-time disk scheduling work, we use Clockwise as storage platform. Clockwise is a storage system
that is used for the storage and retrieval of real-time continuous-media data and best-effort conventional file-
system data. The real-time continuous-media part of the service is used to implement the digital equivalent of
a homeVCR for a group of people, the best-effort part is primarily used to store conventionalUNIX (e.g.Linux
EXT2) file systems.

Clockwise was first designed and implemented on the Nemesis operating system, a continuous-media ker-
nel [15, 23, 14] that is developed as part of the Pegasus project.1 Nemesis is conceived from the outset as a
platform for experimenting with continuous-media storage, scheduling and achieving high throughput on com-
modity hardware. Nemesis is a vertically orientedSingle Address Space Operating System(SASOS), which
goes at great length to account resource usage to the domain (i.e. a Nemesis process) that causes the usage.
Nemesis schedules resources explicitly [18, 2] to guarantee QoS to continuous-media applications that run on
a Nemesis machine.

We also implemented a Linux version of our system, but Linux lacks the real-time capabilities of Nemesis.
Accurate disk service times are required to schedule a disk in a real-time manner. Since both Clockwise and
the disk driver are scheduled by theCPU, it is important to know how muchCPU scheduling influences service
times. For Nemesis we know these timings, for Linux we do not. However, we run the scheduling tasks under
theSCHED FIFO real-time scheduling regime with the hope thatCPU scheduling overhead is minimal. We are
planning a properCPU scheduling regime for Linux based on the Nemesis way of scheduling.

Both the Nemesis and Linux version of Clockwise are structured similarly. Figure 1 shows an overview
of Clockwise. Clockwise is a layer between the operating system kernel and the kernel’s device drivers. All
I/O needs to pass through Clockwise, which on its turns schedules the requests with our�L scheduler on
the real disk drivers. In the Figure, Clockwise schedules twoSCSI strings, each with two disks. The Linux
version of Clockwise is implemented as a pseudo disk device driver, and Linux does not notice at all that it
is not communicating with a real disk driver. Lastly, Clockwise provides an external interface to set real-time
scheduling parameters.

Clockwise itself consists of two major parts: storage space maintenance in data structures called dynamic
partitions and the�L disk scheduler. This section describes dynamic partitions, disk scheduling is described
in Section 3.

2.1 Dynamic partitions
The key data structure in Clockwise is adynamic partition. A dynamic partition is an ordered list ofblocksthat
are possibly stored on more than a single disk. The block size is definable, but we have always used blocks of
one megabyte2; this size is chosen to achieve a reasonable balance between the time it takes toseekto a block
(�10 %) and the time it takes toreador write it (�90 %). Dynamic partitions aredynamicbecause they can
grow or shrink dynamically and the structure of dynamic partitions can be altered after a dynamic partition has
been created. Dynamic partitions are similar to partition organization of Loge [9], Logical Disk [8], Veritas’
Volume Manager [22], or CrosStor’s subdivisions [11].

From a user perspective a dynamic partition behaves like a standard raw disk partition. It is implemented by
a (possibly long) list of disk sectors. Internally, however, logically consecutive disk blocks can be located at
different parts of one or more disks. The advantage of this approach is that without having to change existing

1The Pegasus Project is a project, initially of the Universities of Twente and Cambridge, now also of the University of Glasgow, the
Swedish Institute of Computer Science, and Cytrix/APM Ltd., supported by the European Union’s ESPRIT Programme throughBRA

project 6586 (1992 – 1995) andLTR project 21917 (1996 – 1999).
2Note that dynamic partitions can be accessed with any block size, but the disk block size is fixed.
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Figure 1:Clockwise structure.

applications, such applications can use multiple disks simultaneously or a dynamic partition can be reorganized
later for performance reasons.

We have elected to use a dynamic partition to hold a single media file or a best-effortfile system. This allows
an audio or video file to be read from, or written to disk efficiently, and it prevents wasting space for best-effort
files. An extra advantage of mapping a best-effort file system to a dynamic partition is that it allows us to use
existing file-system code.

Since dynamic partitions can grow and shrink in size, one does not have to be careful in requesting a dynamic
partition when a new media file is recorded. A dynamic partition that is too large can be shrunk after the media
file has been recorded. When a recording application finds out that is has not reserved enough disk space for a
new media file, it can enlarge the dynamic partition during recording as long as the newly allocated blocks are
located on the same zone and disk as the already allocated blocks.

2.2 Clockwise applications
When a dynamic partition is opened, aresource reservationcan be made. Clockwise schedules operations
according to the reservations they belong to. Opening a dynamic partition fails when the aforementioned
admission test indicates that there are insufficient resources to grant the required reservation – admitting the new
stream would violate guarantees to already admitted streams. Best-effort opens do not require a reservation.
Clockwise presents anAPI that allows the applications to create a dynamic partition, to read/write data from
one (synchronously or a-synchronously), to set the size (making the dynamic partition grow or shrink), or to
reorganize the layout of the dynamic partition on the set of disks. Read and write operations with reservations
are scheduled in real time, the other operations are always carried out on a best-effort basis.

Currently two applications make extensive use of Clockwise:UNIX file systems and continuous-media ap-
plications. TheUNIX file systems are simply formatted in dynamic partitions. Before aUNIX file system can be
formatted, one allocates an empty dynamic partition on one more disks depending on the required bandwidth
and a newUNIX file system is simply formatted in a dynamic partition through utilities likemkfs(8).

Media applications usually read and write dynamic partitions with a standard block of a megabyte at a time,
but they do not have to. For compressed audio with a bandwidth of 10 KB/s or so, using megabyte blocks
would be wasteful of memory. Clockwise supports best-effort and real-time operations on all block sizes that
are a multiple of the disk’s sector size. Since dynamic partitions can be addressed a-synchronously, a process
with a single thread of control (such as is the case under mostUNIX implementations) can be used to implement
double buffering.
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3. THE �L SCHEDULER

Disk requests are scheduled by Clockwise through the�L scheduler. This scheduler consists of two parts: Jef-
fay et al.’s nonpreemptive resource scheduler and a number of extensions that allow the prioritized scheduling
of best-effort requests.

3.1 Real-time request scheduling
Clockwise applications can request periodic service by specifying a set of QoS parameters. For Clockwise
the QoS parameters are user bandwidth, block size, dynamic partition range and time span. The bandwidth
parameter corresponds to the expected or actual stream bandwidth and the block size parameter depends on
the application itself (i.e., it depends on the size of the user application’s buffer). The dynamic partition range
describes which part of the dynamic partition needs to be scheduled with real-time guarantees and the time
span describes when in time the requests need to be scheduled. The latter parameters are important to deal with
dynamic partitions that are distributed to multiple disks. Consider a dynamic partition that is stored on diskj
andk. The firstn blocks are on diskj and diskk holds the remainingm blocks. An application can request
real-time bandwidth on diskj for the duration ofn blocks, and request bandwidth in advance for diskk to
playback then’th to the(n+m)’th block.

Clockwise converts the requested bandwidthBi and block sizebi to a task periodTi and service timeCi.
The task periodTi is calculated as follows:Ti = bi=Bi. To determine the worst-case request service timeCi,
Clockwise needs to know the layout of data on disk before it can decide if a request is schedulable. Clockwise
determinesCi for an application by analyzing the layout of the dynamic partition for which real-time data
transfers are requested and by combining this information with the user block sizebi. The service time for a
transfer from a dynamic partition is built up from three components: the worst-case seek time, the worst-case
data service time and an extra rotational delay.

The worst-case seek and data service times are either pre-measured or determined by the physical param-
eters of a disk. Pre-measurements are performed separately from Clockwise: before a disk is integrated in
a Clockwise system, its I/O behavior and its influence on the performance of other disks is analyzed. Based
on this analysis, scheduling parameters are derived for Clockwise. Chapter 4 of Bosch [5] elaborates on the
pre-measurements.

We learned that pre-measurements are vital: it is often difficult to predict service times for a block size by
just analyzing the physical parameters of a disk. The Quantum Atlas-II , for example, can easily overload a Fast
SCSI-2 bus for which it is designed, and the Seagate Cheetah has a ‘funny’ track on the last head of each 16th
cylinder. Both peculiarities only show up through actual measurements.

When a multi-disk dynamic partition is used for real-time transfers, each participating disk needs to admit
a part of the new task. Clockwise determines the periodTi for each participating disk separately based on the
layout of the data inside the dynamic partition and the requested dynamic partition range. Next, it executes the
schedulability test for each of the disks. If any of the participating disks fails to admit its part of the new task,
Clockwise cannot guarantee schedulability according to the presented QoS parameters. It rejects the entire
real-time task.

Once Clockwise has admitted a real-time task on all participating disks, it guarantees to meet all task request
deadlines provided: (1) the actual service time is less than or equal to the pre-calculated (worst-case) service
timeCi and (2) the application’s actual request period is more than or equal to the requested periodTi. The first
condition mainly depends on the quality of the service-time prediction. Meeting the second condition means
that the application must notreleasean I/O request before the deadline of a previous request.

When a real-time application issues an I/O request, Clockwise assigns a release time and deadline to the
request. The release time is set to the time Clockwise expected the request, or the time at which the request
is released, whichever is later. When requests arrive too slowly (i.e., the application does not use all of its
allocated resources), idle time is introduced in the schedule. When requests arrive too quickly, release times
are assigned that are based on the expected release time and such requests are scheduled to be executed in the
future. The deadline of a request is calculated through the assigned release time and the task’s periodTi for the
disk servicing the request.

Clockwise schedules the released requests through anEDF scheduler. A released request is inserted in an
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EDF ordered queue and Clockwise extracts the first request from the queue that has been released. Requests
that are not yet released (i.e., have future release times) can only be serviced on a best-effort basis.

3.2 Slack-time scheduling
Best-effort requests are requests that have no release time and deadline associated with them and tasks that
generate best-effort requests are not considered by Clockwise’s schedulability analysis. Real-time requests that
are scheduled to be executed in the future are also considered best-effort requests. Best-effort requests are
scheduled by Clockwise in so-calledschedule slack time: either idle time or before real-time requests when
there are guaranteed not to miss a deadline by the insertion.

The Clockwise�L scheduler pre-calculates the minimum schedule slack-time from Jeffay’s non-preemptive
schedulability test. This slack time, called�L, is the minimum time between the end of any executed real-
time request and its deadline. Since this�L is availableafter each request, it can also be appliedbeforeeach
real-time request. Best-effort requests are executed before real-time requests if they need less than the available
slack time,�L.
�L is defined as follows:

Definition 1. Assume a task set�1 : : : �n is sorted in non-decreasing order by period.�L, the slack time of
each real-time request, is defined by:

M(L) = L�
Pn

j=1b
L
Tj
cCj

�Lm = minT1�L�Tn M

Q(i; L) = L� (Ci +
Pi�1

j=1b
L�1
Tj
cCj)

�Lq = min1<i�n;T1�L�Tn Q
�L = min(�Lm;�Lq)

Theorem 1 establishes that each real-time task invocation completes at least�L before its deadline. The
proof is based on the schedulability proof of Jeffayet al.:

Theorem 1. If a task set is schedulable by a nonpreemptiveEDF scheduler,i.e. it satisfies (1.1) and (1.2), then
each request completes at least�L before its deadline.

The proof to this theorem follows directly from Theorem (4.3) of Jeffayet al. It is established by deriving
upper bounds to the load for any distanceL.

There are two cases to consider:
To determine the slack time of a set of requests that are executed in deadline order,i.e., no low priority

request precedes a high-priority request,3 the first case of the definition for�L is considered:�Lm. The
maximum demand for a periodL is when all tasks release a request simultaneously:

Pn

j=1bL=TjcCj . The
executed load at some instance ofLi = Ti; T1 � Ti � Tn consists of requests from tasks�1 : : : �i. Since
requests are executed in deadline order, the last request that is executed is a request from task�i. Hence, the
slack time for the request from�i atLi is given byM(Li). Other values forLi do not have to be considered to
determine the slack time for a request from�i: larger values forLi lead to higher slack times and when smaller
values forLi are considered, requests from�i do not contribute to the load inM(Li). Since all possible values
L are considered separately forM(L), all requests from tasks�i; 1 � i � n are considered. Since�Lm is the
minimum of allM(L), �Lm is the minimum slack time when requests are executed in deadline order.

The second case is when a low-priority request precedes higher-priority requests. This case is considered
separately by Jeffayet al. in case 2 of the proof to their Theorem (4.3) and is covered by the second part of the
definition for�L: �Lq . The proof to Jeffay’s Theorem (4.3) is based on deriving upper bounds to the load in
any intervalL given that the start time of the low-priority request precedes one or more high-priority requests
by one instance. It is proven that the upper bounds to the load in distanceL are a sufficient measure for the
schedulability of the task set.

3Remember that underEDF, the task with the earliest deadline has the highest priority.
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Assume a request from task�i; 1 < i � n is invoked att = �1 and att = 0 requests from all tasks with
shorter periods thanTi are released. The request from task�i cannot be preempted. All requests from tasks
�k; Tk < Ti that are released att = 0 are invokedafter the request from�i finishes. Hence, because ofEDF

scheduling, the minimum slack time after the execution of a request from task�k to its deadline is represented
byLk� (Ci+

Pk

j=1b(Lk�1)=TjcCj) andLk = Tk+1, i.e.,Q(i; Lk). Since the tasks are scheduled through
EDF, the request from task�k, having the largest period, is also the last request that is executed.

Any of the tasks�k that can be hindered by the servicing of a request from�i out of order has a periodTk
that is at least one instance shorter than the period ofTi. All tasks�i except for task�1 are considered for out
of order scheduling.4 The minimum ofQ(i; Lk) represents the minimum slack time after the invocation of a
request from task�k when preceded by any other request from task�i; Ti < Tk. Since�Lq iterates overall
tasksi and distancesL in Q(i; L), �Lq represents the minimum time to a request deadline when any other
request is scheduled out of order.

Since�L is defined as the minimum of all possible slack times of the two cases, each task request finishes
at least�L before its deadline.

To apply the�L scheduling technique, each disk in Clockwise maintains two parameters per disk: the
slack time�L and the remaining slack time�Lr. Whenever the remaining slack time�Lr is larger than
the expected service time of a best-effort request, the best-effort request is given precedence over real-time
requests. Only when none of the best-effort requests can be scheduled in slack time, real-time requests are
considered for execution. These real-time requests are, when activated, executed in a long burst of requests.
When the real-time queue is empty again, or when only real-time requests are queued that are scheduled to be
executed in the future,�Lr is replenished with�L.

While developing the�L technique, we learned that knowing the slack time�L is fundamental in schedul-
ing a mixed real-time and best-effort load non-preemptively. If a non-preemptive deadline-dynamic scheduler
does not use the�L (or equivalent) technique, arbitrary real-time deadlines can be missed.

3.3 Best-effort scheduling
It is not difficult to think of a task set that leads to a value for�L of 0 (i.e., there is no slack time in the schedule).
In this case it is impossible to schedule best-effort requests and such requests starve until one of the real-time
tasks leave the system. Even when the system is idle,i.e. no real-time task has released a request, Clockwise
cannot schedule best-effort requests, because the moment a best-effort request is started, a worst-case load may
be released by the real-time tasks.

Best-effort requests can be scheduled by a simple periodic real-time server [7] to avoid starvation. This
real-time server behaves much like a container for the best-effort requests: scheduled best-effort requests are
assigned a release time and deadline in relation to the QoS guarantees that are given to the periodic server.
When a periodic real-time server is started, it is given a slice and a period, much like the QoS guarantees that
are given to tasks throughUSD [2, 1].

3.4 Complexity issues
To understand the complexity issues of our scheduler it is important to differentiate between three phases: mode
changes, request insertion and the request dispatcher. A mode change happens when a task enters or leaves the
system.

The mode change admission test is a computational expensive operation: Condition (1.2) is of complexity
O(n3). Condition (1.1) is simpler and is of complexityO(n). Fortunately, the conditions only need to be
evaluated whenever a new job enters or leaves the system. When a jobs leaves the system, condition (1.2)
needs to be re-evaluated to calculate a new value for�L. Also, it is not expected that more than 20 real-time
streams are served per disk. This means that even though the algorithm is of complexityO(n3), it does not a
long time to determine the schedulability of the task set.5

To insert a real-time request into the request queue, Clockwise first assigns a deadline and a release time
to the request. Next, the request is inserted in the real-time queue, which is ordered on deadline. Since the

4Requests from task�1 cannot be scheduled out of order.
5Also note that one only needs to evaluate the scheduling points, rather than all instances ofL.
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entire queue may need to be traversed, this operation is of complexityO(n). Insertion of best-effort tasks is of
complexityO(1): jobs are simply appended to the queue.

The dispatcher is of complexityO(1). The scheduler only needs compare the expected service time of a
best-effort request (if there is one) against the remaining slack time�Lr.

4. PERFORMANCE

To understand the performance implications of a mixed-media load that is scheduled on a set of disks, we car-
ried out a set of performance experiments on both a simulator and a real Clockwise. The aim of the performance
experiments was to compare the latency for best-effort requests when a mixed-media load is scheduled by three
different deadline-dynamic real-time disk schedulers. We compared our�L scheduler to a scheduler that is
loosely based on the Symphony disk scheduler (theLST scheduler) [20, 21],6 and anEDF scheduler that does
not prioritize best-effort I/O requests. TheLST scheduler calculates a latest-start time for a released request and
schedules a best-effort request before a real-time request if it finishes at or before the real-time request.

We expected that using theLST scheduler would lead to the lowest best-effort latencies at the expense of an
occasional deadline miss. We expected theEDF scheduler to yield the worst best-effort latencies. In reality,
however, there was more nuance: for light to moderate real-time loads, theLST and�L scheduler produced
comparable performance results, with a slight advantage for theLST scheduler. For high to extreme real-
time loads, the�L scheduler yielded (much) better results compared to the other schedulers. Standard non-
prioritizing EDF yielded the worst results, with the exception of extreme real-time loads: in this caseEDF

produced better results than theLST scheduler. The reason for the badLST results for extreme real-time loads
is primarily because of its inefficient disk arm behavior. We never experienced a real-time deadline miss
because of the small best-effort request sizes. In the remainder of this chapter we elaborate on the experiments.

The performance experiments consisted of two parts: off-line, trace-driven simulations and on-line measure-
ments in a true Clockwise. The off-line experiments allowed us to learn of the long term behavior of a system
that is scheduled by the�L scheduler. The on-line experiments helped us validate the simulation results in a
real system.

The off-line performance experiments are performed in a Clockwise simulator. This simulator implements
dynamic partitions and uses the Clockwise schedulability test and scheduler to schedule simulated I/O requests.
The back-end consists of a software model of three parallel Quantum Atlas-II disks, which are connected by
separateSCSI-II buses to a host machine. The simulated hardware behaves much like the real hardware. The
simulated disks simulates heads, tracks, sectors, rotational speed and head positions. TheSCSI part simulates
data transfers over theSCSIbus.

Our simulator does not simulate the Quantum Atlas-II ’s disk cache. Clockwise cannot cope with disk caches
anyway because these caches obfuscate the actual disk behavior – when Clockwise boots, it disables the read
and write caches on the disks. Consider for example, a write to a disk with a disk cache enabled. The disk
signals that the operation has completed as soon as the data has arrived in the disk cache. The disk flushes its
cache whenever the disk is idle or the disk cache is required for another operation. Since Clockwise has its own
idea of when the disk is idle and knows how long an operation requires, these flush operations may influence
the service times of future disk requests and, hence, may lead to deadlines misses. Also, given that we read and
write blocks of 1MB each for high bandwidth applications, the disk cache is of limited use anyway because of
its small size: the advantages of disk read-ahead for one stream is nullified by the transfer of other streams. As
an optimization, Clockwise can enable the disk caches when there is no real-time traffic available in the system.

For the performance experiments, a real-time load was synthesized based on Motion-JPEGvideo streams
andCD-quality audio streams. In particular, two types of Motion-JPEGcompressed video streams were used
with average bandwidth requirements of 817KB/s and 245KB/s. The audio stream used 172KB/s. Each audio
and video stream was modeled by a separate application inside the simulator that injected I/O requests into the
simulator whenever a request was due. The modeled continuous-media applications operated independently of
each other. For each run of the experiments either an 817KB/s video stream or a 245KB/s video stream was
added to the real-time task set. In all cases, each video stream was accompanied by aCD-quality audio stream.

6Notice the wordloosely: we havenot compared our system with Symphony!
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As Jeffayet al. already pointed out that ‘It is possible to conceive of bothschedulabletask sets that have a
processor utilization of 1.0, andunschedulabletask sets that have arbitrarily small processor utilization’ [12].
Especially when short period tasks are combined with tasks that require a long service time, the schedulability
of a resource that is scheduled non-preemptively quickly deteriorates. To prevent this from happening in the
experiments, continuous-media application block sizes were chosen that lead to request periods that are the
same order of magnitude for all applications (� 1 second).

4.1 Block assignments and�L
Three different continuous-media file-block allocations were simulated: ‘rotation’, ‘random’ and ‘memory
optimized’. In the ‘rotation’ assignment, continuous-media file blocks were distributed to all three disks (i.e.
striped) such that if blockn was assigned to diskd, blockn + 1 was assigned to disk(d + 1) mod 3. The
continuous-media data itself was stored on the fastest disk zones. The ‘random’ assignment also distributed file
blocks to all disks, but did not store blocks consecutively. Instead blocks were assigned to random locations to
measure the influence of seeks on the overall performance.

We included the ‘memory optimized’ experiment to measure the effect of a different type of block allocation
on the scheduling results. The ‘memory optimized’ file-block assignment only used a single disk per dynamic
partition for storing the continuous-media file blocks.7 To distribute the continuous-media real-time load ap-
proximately evenly across all disks, the 817KB/s video stream was duplicated on two disks. The other dynamic
partitions were stored on a single disk.

The user block sizes were fixed at 1MB for the 817KB/s video stream, the other video stream and audio
stream used 256KB block sizes. Figure 2 shows the relation between the available minimum slack time�L
(on any of the disks) and the used block size and file-block allocation policy.

Each disk in the ‘rotation’ file-block assignment only required service approximately every 3 seconds, so
when only a single stream is played, the minimum slack time is slightly less than this 3 seconds. The ‘mem-
ory optimized’ assignment required a disk to service a request every second, which means that the�L slack
time is considerably less than in the ‘rotation’ experiment. The ‘memory optimized (large buffers)’ experiment
shows the�L slack-time implications when twice as large buffers were used in the ‘memory optimized’ exper-
iment: since the period of a task doubled to approximately 2 seconds, the schedulability improved of the disks
improved and the available�L slack time doubled.

The figure shows that the three parallel Quantum Atlas-II disks can service between 15.6MB/s and 21MB/s
without missing deadlines depending on the used application block size and the file-block allocation. The
maximum measured sequential performance of the three parallel Quantum Atlas-II disks is approximately
25.3MB/s [5], so when scheduling parameters are chosen right, a fairly large fraction of the available bandwidth
can be used to service real-time I/O requests.

4.2 Best-effort load
To measure the best-effort latencies in our environment, earlier recorded disk traces were used to generate a
best-effort load on our simulator. The traces consists of a disk load from real systems atHP Laboratories and
UC Berkeley. The traces were recorded between April and May 1992. For our experiments, we used the disk
traces fromHP. In particular, we used the traces from the machineCELLO since this was the busiest machine.

The CELLO disk trace describes all disk requests for a set of 8 disks that were connected to the host file
server by aSCSI-2 bus and FiberLink connections. The disks contained aNFS file system, swap, news, source
directories, and private user directories. The file systems were used by a large group of computer scientists.
Throughout the entire trace period almost 30,000,000 I/O requests were executed, with an average of 0.67
request per second. More detailed information on the traces can be found in Wilkeset al. [24] and Ruemmler
et al. [19]. To limit the trace duration, we selected the busiest day from theCELLO trace. On June 1st, 1992, a
total of 801,007 requests were executed on the 8 disks, with a peak loads of almost 3,000 I/Os per minute.

Each disk from theCELLO trace was assigned a private dynamic partition that was laid out on all three disks
to distribute the best-effort load evenly across all (simulated) Quantum Atlas-II disks. The best-effort dynamic

7The experiment is called the ‘memory optimized’ experiment because it has less memory requirements compared to the other experi-
ments. Bosch [5] elaborates on memory usage and data layouts.
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Figure 2:Aggregate real-time load and�L.

partitions were assigned to the slower disk zones, since the I/O time of a request is dominated by the seek
and rotational delay rather than raw disk performance. Also, eachCELLO disk was implemented by a separate
simulator application. The best-effort applications first read a trace record from the trace file, wait until the
request is due and inject the I/O request at the correct time into the simulator. When the operation completes
the latency of the request is recorded in a statistics library. The best-effort application ran concurrently with
the real-time applications.

The three disk schedulers,EDF, LST and�L order the requests in the same manner. Real-time requests are
inserted in the real-time queue as is described in Section 3.4. TheLST scheduler calculates the latest start time
of a request by analyzing already queued real-time requests.

The three schedulers differ in the way requests are de-queued. The standardEDF scheduler gives precedence
to real-time requests. The standardEDF scheduler considers best-effort requests, only when there are no more
real-time requests available. TheLST scheduler schedules best-effort requests if the current time plus the
expected service time of the best-effort request is less than or equal to the latest start time of the first queued
real-time request. The�L scheduler considers best-effort requests if there is slack time available as noted by
�Lr. When�Lr is exhausted, only queued real-time requests are considered. As described before,�Lr is
replenished when the real-time queue is empty.

4.3 ‘Rotation’ and ‘random’
Figure 3 (top-left) shows the average best-effort request latency in relation to the real-time load for the three
schedulers with the ‘rotation’ block assignment. This figure shows the average best-effort latency for only
one of the eight availableCELLO disks, but is representative for all disks. The Y-axis represents the average
best-effort latency in milliseconds (on a logarithmic scale), the X-axis represents the aggregate real-time load.

The figure shows that when best-effort traffic is not prioritized (the standardEDF scheduler), best-effort
latencies quickly increase. Clearly, not giving priority to best-effort requests leads to long delays.

Both theLST and�L disk scheduler maintain low best-effort latencies for low to moderate real-time loads.
For both schedulers there is sufficient schedule slack-time available to service all of the best-effort traffic
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Figure 3: From left to right and top to bottom:CELLO disk 0 measured best-effort latencies vs. real-time load for the
‘rotation’, ‘random’, ‘memory optimized’, and ‘memory optimized (large buffers)’.
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before executing the real-time requests. The reason why theLST scheduler behaves slightly better than the
�L scheduler for moderate real-time loads is thatLST allows more best-effort requests to be scheduled before
real-time requests than�L. Since�L is theminimumof the available slack time, a real-time request may be
activated earlier by the�L scheduler than is indicated by the request’s latest start time. However, theLST disk
scheduler may start to miss deadlines beyond a moderate real-time load since it can start a best-effort request
when there is no slack time available.8 The�L scheduler is more conservative than theLST scheduler, but this
scheduler guarantees that it never misses real-time deadlines.

For high real-time loads, theLST disk scheduler performs worse than the�L scheduler and, to a lesser
extent, worse than the standardEDF scheduler. The reason for this is that theLST uses slack-time inefficiently.
In our version of theLST scheduler, the latest start time of a request is calculated by subtracting the worst-case
execution time for a request’s deadline or latest start time of the next request, whichever is earlier. In practice,
the actual service time is less than the worst-case service time. So, when a real-time request completes, a
small slack period remains until the next real-time request’s latest start time. This small slack period is just
enough to execute one or two best-effort requests. To execute such a best-effort request, the disk arm needs
to be repositioned on the disk area that holds the best-effort data, and when the request has been executed, the
arm needs to be repositioned on the real-time area. The seek time fraction of the total request’s service time is
substantial.

The�L scheduler executes real-time requests and best-effort requests in separate bursts. As long as�Lr
has not yet been exhausted, the�L scheduler keeps executing best-effort requests on the best-effort data areas.
When�Lr is exhausted, all of the queued real-time requests are executed in a single burst, simply because
�Lr is not replenished until all of the real-time requests are executed. Since the best-effort data areas are
clustered together for the experiment, the time to perform two long seek operations to the best-effort zones is
divided over a larger number of best-effort requests.

We performed an experiment with randomly placed dynamic partition blocks. Given that the�L scheduler
optimizes for best-effort requests that are located close to each other, a random block allocation must reduce
the best-effort performance differences between theLST scheduler and the�L scheduler.

Figure 3 (top-right) presents the best-effort latencies of all three schedulers versus the aggregate real-time
load. There are three important effects to be noticed. The maximum schedulable load is less than for the
‘rotation’ assignment, the best-effort latencies are in all cases worse than in the ‘rotation’ assignment and the
performance differences between theLST and�L scheduler are indeed less pronounced. The reason that the
maximum schedulable load is less is because a random block placement policy stores some of the continuous-
media file blocks on the inner (and slower) zones of the disk. Since Clockwise assumes worst-case execution
times for its schedulability test, it uses the service times from the inner zones rather than the outer zones;i.e.,
the disks can schedule fewer real-time tasks. The best-effort latencies are in any case worse than the ‘rotation’
assignment because the disk needs to seek more to find the best-effort data.

Since locality of reference disappeared, the�L scheduler also needs to perform many seek operations,
thereby wasting precious slack time. The best-effort latencies of the�L scheduler were almost identical to
those of theLST scheduler, with the remark that theLST scheduler still performed better for moderate real-time
loads for the aforementioned reasons.

4.4 ‘Memory optimized’
The ‘memory optimized’ continuous-media file-block allocation experiment used audio and video files that
were stored on dynamic partitions on single disks. The 817KB/s and 172KB/s video and audio files were
duplicated to two disks (disk 0 and 1); the third disk contained the 245KB/s and another 172KB/s audio stream
(disk 2). For each run of the simulator a combined audio and video stream for either disk 0, 1 or 2 was added
to the task set. Given that the load on disk 0 and 1 is slightly higher than that of disk 2, these disks became
hot-spots. The reason for performing this particular experiment is to verify that the earlier results also hold for
non-striped data.

Figure 3 (bottom-left) shows the best-effort latencies against the aggregate real-time load for the ‘memory
8We did not experience such occurrences during our simulations. The best-effort requests we executed (UNIX disk I/O with requests of

4 KB each) were too small to cause deadline misses. Only when large best-effort requests were used, theLST scheduler missed deadlines.
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optimized’ performance experiment. It shows that fewer real-time streams were schedulable, as is also indicated
in Figure 2. The reasons for this are that the task periods had been reduced by two-thirds since only single
disks were used to service continuous-media files, and because disk 0 and 1 had a slightly higher load (�+7%)
compared to the ‘rotation’ assignment. This also implies that there was less slack time available on these disks
to service best-effort requests.

The second difference between the memory-optimized and rotating assignment is that the performance dif-
ferences between theLST scheduler and�L scheduler are less pronounced. This is because there is ample
slack time (simply because there is less real-time load) on the disks to schedule the best-effort requests. Only
the best-effort requests that were served by the disk 0 and 1 suffer because of the higher load of these disks:
their request latencies deteriorate.

The memory-optimized experiment was re-executed, but now with twice as large memory buffers to measure
the effects of larger values for�L. Instead of using a 1MB block size for the 817KB/s video stream, this video
stream was played with 2MB blocks, the 245KB/s and all of the audio streams were assigned 512KB blocks
instead of 256KB blocks. The effect of the larger buffers on�L is shown by the curve labelled ‘Memory
optimized (large buffers)’ in Figure 2. The precomputed slack time nearly doubled in most cases. Also, the
schedulability of the disks improved because of the longer periods.

Figure 3 (bottom-right) shows the best-effort latencies versus the aggregate real-time bandwidth in the
memory-optimized block assignment with large blocks. It shows that all scheduling effects are similar to
what happens in the earlier described ‘rotating’ and ‘memory optimized’ block assignment. For light to mod-
erate real-time loads,LST performs better, for extreme real-time loads the�L scheduler behaves much better.
When there is a high real-time load, there is little slack time available and when requests are scheduled by aLST

scheduler, lots of precious time is wasted on disk-seek operations. Also, the measured best-effort latencies in
the memory optimized assignment with large transfer buffers are lower than the measured best-effort latencies
when small transfer buffers are used.

4.5 On-line measurements
To learn of the performance of a system only through simulations is dangerous. Subtle implementation details
can influence final performance numbers, and wrong conclusions can be drawn from the simulations.

We performed a reality check by re-executing a part of the trace-driven off-line simulations on a real Clock-
wise. The Nemesis version of Clockwise was set up, to match the configuration that was used for the simu-
lations. The continuous-media dynamic partitions were laid out identically to the ‘rotation’ assignment. The
load from eachCELLO disk is generated by separate Nemesis applications that issues I/O requests at the correct
time to Clockwise. The continuous-media applications are implemented as applications that periodically issue
(large) I/O requests to Clockwise.

To limit experimentation time, we selected only the busiest part from the simulation trace with approximately
20 minutes of best-effort I/O requests. Throughout this 20 minute period, a total of 53,752 best-effort I/O
requests were executed onCELLO and the peak load was 207 I/Os per second. The reason for only analyzing
20 minutes is because one needs to wait in real-time for the results. Since we evaluated every scheduler with
40 runs (i.e. 40 different real-time loads), we evaluated a total of 40 hours of traces.

Figure 4 presents the performance differences between a real and a simulated Clockwise. In all cases the
performance of the real Clockwise only differs minimally from the simulated version, which implies that for
this particular combined load the earlier conclusions are valid. The performance differences are caused by
short-cuts that we took in the disk simulator. The reason why the figures do not resemble the measured latencies
as are shown in Figure 3 (top-left) is because we only compared the best-effort latencies for a short and busy
period from June 1st.

5. SUMMARY AND CONCLUDING REMARKS

We have presented Clockwise and�L scheduling. Clockwise is a QoS-aware logical volume manager, a data
structure that we have called a dynamic partition. The�L deadline-dynamic scheduler makes sure that all
real-time tasks that are admitted by Clockwise’s schedulability test, meet their request deadlines. Also, the�L
scheduler gives precedence to (unscheduled) best-effort requests when there is pre-computed schedule slack
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time available. It does this in such a manner that none of the real-time requests miss a deadline.
Clockwise’s performance has been measured in both a simulator and in a real system. It is shown that when

the best-effort latencies of three schedulers are compared (standardEDF, LST and�L), both theLST and�L
scheduler maintain reasonably low latencies for best-effort requests for light to moderate real-time loads (with a
slight advantage for theLST scheduler at the expense of not being able to guarantee deadlines. For extreme real-
time loads, however, using the�L scheduler leads to (much) lower best-effort latencies when compared to the
LST scheduler. This is because theLST scheduler wastes much slack time on seek operations. By showing that
the simulated performance matches the performance in an actual system, the simulation results are validated.

The Linux version of Clockwise is publicly available through our web-site.9
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