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Abstract

We consider the problem of collecting waste from sensor equipped underground containers.
These sensors enable the use of a dynamic collection policy. The problem, which is known
as a reverse inventory routing problem, involves decisions regarding routing and container selec-
tion. In more dense networks, the latter becomes more important. To cope with uncertainty in
deposit volumes and with fluctuations due to daily and seasonal effects, we need an anticipatory
policy that balances the workload over time. We propose a relatively simple heuristic consisting
of several tunable parameters depending on the day of the week. We tune the parameters of this
policy using optimal learning techniques combined with simulation. We illustrate our approach
using a real life problem instance of a waste collection company, located in The Netherlands, and
perform experiments on several other instances. For our case study, we show that costs savings
up to 40% are possible by optimizing the parameters.

Keywords: Inventory routing, Simulation optimization, Optimal learning, Transportation,
Waste collection;

1. Introduction

During the last decades, there has been a growing interest in Vendor Managed Inventory
(VMI). In VMI, the replenishment decisions are being made by a supplier based on various
inventory and supply chain policies [1]. The combined decision on when to replenish the cus-
tomers’ inventories, how much product to deliver, and in which way to route the vehicles that
execute the delivery, is also known as the inventory routing problem (IRP). Answering all these
questions simultaneously is a challenging task, considering that the decisions taken at a certain
moment in time for a given planning horizon influence the decisions made later within or beyond
this horizon [2]. By now, various methodologies have been developed to cope with this challenge
and to achieve higher service levels for customers, while simultaneously lowering the costs for
the suppliers.

A common aspect in all solution methodologies for achieving these planning objectives is
the requirement for suppliers to have full and accurate information about current and future
customers’ inventories and demand [3]. This information is vital for the decisions to be sound
during the entire planning horizon. However, the inherent variability in the demand (and thus
the inventories) makes it difficult to have a precise prediction, and hence creates an additional
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layer of complexity to the already difficult IRP. The problem becomes even tougher if we are
dealing with companies serving a large numbers of customers. This typically occurs in urban
areas, where customers are located closely to each other. Examples include vending machine
replenishment [4], supermarket replenishment [5], and municipal waste collection [6]. The latter
is also the topic of this paper.

A particular application of the IRP with a large number of customers, variability in the de-
mand, and a long planning horizon, is the waste collection problem (WCP). In the special case in
which the waste collection company plans the emptying of containers dynamically (as opposed
to static or periodic scheduling and routing) and bases this planning on the amount of waste in-
side the containers (which can be known through the uses of sensors in each container), the WCP
becomes a special case of the IRP. Strictly speaking, a WCP is a reverse IRP, because the purpose
of visiting a “customer” is collecting rather than delivering something. However, the decisions
dealt with are similar in both problems: which customer to visit and how to route the vehicles.
Solution methodologies for IRPs also work for WCPs as long as they support decisions for un-
certain demand (waste deposits) and a large number of customers (waste containers), which are
usual settings for a WCP. In addition, a sound solution methodology for a WCP should be able
to cope with a long planning horizon, since a short-term approach will postpone container visits
to the next period as explained by Campbell et al. [7].

In this paper, we focus on a waste collection company, located in The Netherlands, with many
customers within a relative small geographical area. These two characteristics make it possible
to empty many containers during one day, especially when the waste deposits are frequent or
large enough to fill the containers fast. In our study, a vehicle is typically able to visit more
than ten and up to a hundred containers per day. We consider information about the current fill
levels of containers to be available at any point in time. Furthermore, we consider that end-
customer demand (waste deposits) are stochastic. This makes it difficult to design robust plans
for all possible demand realizations. To solve the problem for a long planning horizon, a way
of “learning” from historical demand (inventory levels) must be incorporated such that better
predictions can be done for the future.

Taking into account the size of the container network, the stochastic nature of waste deposits,
and the need to use a long planning horizon, on top of the interrelatedness of the multiple deci-
sions, it is clear that not all solution approaches for the IRP are suitable. Modeling the planning
decisions and solving the model for real-life problem settings and instances are challenging tasks.
Exact solutions, such as mathematical programming, are not suitable to solve larger problem
instances [8, 9]. Additionally, mathematical programming models usually assume determinis-
tic demands. Stochastic modeling approaches, such as Stochastic Dynamic Programming and
Markov Decision Processes, also become computationally intractable due to large state spaces
and high-dimensional value functions that cannot be solved analytically [10]. For these reasons,
different types of heuristic approaches have been proposed in the literature. In their review of
various heuristics for the IRP, Abdelmaguid et al. [11] show that these heuristics involve parame-
ters or settings that influence their performance. Even if ways of determining the parameters are
given, they usually do not incorporate any form of coping with uncertainty; variability in demand
realizations may thus diminish their performance.

In this paper, our main goal is to develop a fast and parametrized heuristic for solving the
IRP for waste collection, together with a methodology to determine the best parameter settings
for our heuristic. Since the performance and the quality of a particular heuristic heavily depends
on choosing the right values of its parameters, we propose the use of techniques from optimal
learning [12]. This paper makes the following contributions: (i) we propose a practical and sim-
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ple heuristic for solving the IRP with many customers, (ii) we show how simulation optimization
can be used for tuning the parameters of our heuristic in the best way for a given problem set-
ting, and (iii) we provide insight into the dependency of the parameters of our heuristic with
respect to several network characteristics (e.g., density of the container network, fluctuation in
waste deposits, etc.). We illustrate our approach using a case study at the waste collection com-
pany “Twente Milieu”. This company has implemented the dynamic collection policy, where
underground waste containers are scheduled to be emptied based on sensor information on the
fill levels of these containers.

The paper is organized as follows. In Section 2, we briefly present the key points addressed
in the scientific literature about the problem under consideration. In Section 3, we describe our
model and present the assumptions of the IRP for waste collection. Following this, we explain
our parametrized heuristic approach for solving the problem in Section 4. In Section 5, we
describe the way an optimal learning algorithm can be applied to this problem and specifically
to our heuristic. We present the experimental design and the insights of this study in Section 6.
We end with conclusions in Section 7.

2. Literature

The problem we consider in this paper involves planning decisions in two logistical areas:
transportation management and inventory control. Although each of them has often been studied
separately, their decisions are interrelated and they share a common objective as can be seen in
Figure 1. The integration of these two areas is known as the Inventory Routing Problem (IRP). In
an IRP, three questions have to be answered: (i) when to visit a customer, (ii) how much product
to deliver during the visit, and (iii) how to route the vehicles [7]. In this section, we present
a brief review about the characteristics of diverse IRPs. Furthermore, we compare the benefits
and drawbacks of different solution approaches when considering an IRP with many customers.
Finally, we briefly discuss the IRP studies that have been done in the waste collection industry
and describe how our study differs from existing studies.

Inventory	
management

Transportation
management

When to 
replenish 
which 

customer?

Satisfy 
customer 

demand and 
minimize 
costs

How much to 
replenish?

How to route 
the vehicles?

Figure 1: Decisions in an IRP and their relations

The IRP combines two problems classes: the Vehicle Routing Problem (VRP) and Vendor
Managed Inventory (VMI). Some IRPs are considered as extensions of the VRP [13]. As the
name states, the problem settings that govern a VRP are exclusively related to vehicles. Hence,
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the objective is to minimize the duration and costs of the routes the vehicles travel [14]. In a
VRP, a company limits itself to receiving customer orders and finding the best way to satisfy and
deliver them. On the other hand, in an IRP, the customer orders are determined by the company,
usually guided by some service level agreement. This case of customer stocks being replenished
without an explicit customer order is known as VMI. VMI decisions focus on determining the
size and time of replenishment. The combination of VMI and VRP decisions makes the IRP a
challenging problem.

To cope with uncertainty in customer inventories, IRPs are usually solved dynamically (as
opposed to static single time solving) within a given planning horizon. However, these frequent
decisions have the effect that previous decisions influence current and future ones, as explained
by Baita et al. [2]. Therefore, the length of the planning horizon has an impact on the way the
problem should be conceptualized and tackled. For a thorough categorization of the charac-
teristics of dynamic routing and inventory problems, we refer to Baita et al. [2] and Kleywegt
et al. [15]. Here, we elaborate on only two of these characteristics: the planning horizon and the
uncertainties in demand.

The planning period of IRP studies vary from a single period to an infinite horizon. Never-
theless, most researchers agree that the interrelatedness of decisions through time has an impact
on the long-term planning objective. Since early studies of IRPs, authors have developed ways
of measuring the long-term effect when using single period models. For example, Dror and
Ball [16] solve a series of single period problems, model the long-term effect through the use
of penalties, incentives, and expected changes in costs, and optimize the output of the single
period problems in accordance to the long-term objectives. Chien et al. [17] also tackle the IRP
long-term decision effects with single period problems, with the difference that they pass inven-
tory and cost information from one period to the next one, and therefore make decisions taking
into account information from other periods. The problem has also been studied the other way
around: a long-horizon solution is developed first and then short-term plans are derived from
it. For example, Campbell and Savelsbergh [18] develop a two phase rolling horizon approach.
First, a monthly plan is generated, which is then split into short-term problems for daily schedul-
ing. The plan is implemented only for the first few days of the planned month, after which a new
plan will be generated. A similar rolling horizon approach is developed by Jaillet et al. [19], who
build a two weeks schedule but only the first week is implemented. Just as these examples, most
of the solving approaches in the literature typically decompose the entire IRP into short term
problems and use some method to account for the long term objective.

The majority of models developed for multiple-period IRPs assume deterministic demand
as seen in Andersson et al. [20]. However, it is often desirable that a planning system is able
to cope with stochastic processes, especially when considering that the different realizations
of real-life demand might prevent the plan of being executed as desired [21]. According to
the classification scheme of Andersson et al. [20] and Coelho et al. [22], our problem can be
characterized as a Dynamic and Stochastic Inventory-Routing Problem (DSIRP), with a finite
horizon, one-to-many deliveries, multiple customer visits per route, order-up-to level inventory
policy, using back-ordering, with a fleet of multiple homogeneous trucks. In the DSIRP, customer
demand is known only in a probabilistic sense and revealed over time [22]. Frequently, stochastic
IRPs are modeled as a Markov decision processes [15, 23, 24]. However, this approach might
easily become computationally intractable due to the large state space. Iterative heuristics, linear
reformulations, and scenario trees are ways to deal with this. Another commonly proposed
methodology is simulation. For example, Cáceres-Cruz et al. [25] combine simulation with
heuristics to solve the single-period IRP with stochastic demands. Reiman et al. [26] and Schwarz
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et al. [27] combine simulation with traffic analysis and analytical models to develop policies that
assure that the IRP objectives are attained in the long term. Theoretically, these approaches work
well as long as the customers’ usage can be forecasted accurately enough. When customers’
usage evolves over time (which is usually the case), a sound planning methodology must be
flexible enough to adapt to the changes. As Moin and Salhi [13] conclude, further research on
how to capture the dynamic nature of the parameters involved in IRP models is needed.

Two recent studies on the DSIRP can be found in Bertazzi et al. [28] and Coelho et al. [29].
The authors provide various policies, implemented in a rolling horizon framework, with the
objective to minimize inventory, distribution, and shortage costs. Related to our research, Coelho
et al. [29] also study the impact of varying several system parameters, and solve relatively large
instances (up to 200 customers). For a comprehensive review of the IRP literature, we refer to
Andersson et al. [20] and Coelho et al. [22].

In comparison to the maturity of the IRP literature, the Waste Collection Problem (WCP)
literature is still in a developing stage. The large share of the transport costs in the total cost
of solid waste management systems is an incentive to study this problem [30, 31]. Karadimas
et al. [32] quantify the costs of the collection phase to be 60% to 80% of the total costs of waste
management in Greece. Some studies have deepened on the reasons for these costs, and have
shown that the fuel consumed by the vehicles in the waste collection process strongly depends on
the time of operation and the number of stops rather than the distance traveled [33]. Nevertheless,
WCP objectives are not only about economic perspectives, but are also motivated by the positive
environmental impact, in terms of CO2 emission and traffic congestion [8]. This impact is even
larger when applied to large and dense areas of fast population growth as reported by Vicentini
et al. [34] in their study in Shanghai. These reasons encourage further studies on improving the
efficiency of the planning and control in waste collection processes.

Most studies on waste collection processes have examined static problem formulations in
which information is known in advance. Due to the assumption of known information, many
authors have modeled the collection process as a variation of the vehicle routing problem (VRP)
[35, 36, 37]. Although characteristics such as time windows, large number of containers, large
demand (which is reflected in several visits to a disposal center during a day), and different types
of waste have been conceptualized through VRPs in a large extent, the dynamism and stochastic-
ity of the information for planning in WCPs have not [38]. Some authors propose the addition of
some procedures to the basic VRP in order to cope with the constantly changing information. For
example, Nuortio et al. [37] use a node routing approach through guided variable neighborhood
search to cope with the highly variable amount of waste in the containers. Others use geographic
information systems (GIS) and global positioning systems (GPS) to incorporate some aspects of
uncertainty in the routing information [32, 33, 34].

Heuristics are commonly used as solution approaches for the WCPs due to the heavy com-
putational demands of real-life instances. Usually, a combination of heuristics and optimization
techniques is used to improve the quality of the solutions. For example, Chang and Wei [35] use
a variant of the minimum spanning tree in combination with an integer programming model to
improve vehicle routing efficiency. Teixeira et al. [39] use a three-phase heuristic that aims to
create collection routes for every day of the planning horizon. Local search algorithms, such as
tabu search, have also been applied [40, 41]. Karadimas et al. [32] apply an Ant Colony System,
in which the ants (vehicles) search the area for optimal routes with respect to a known group of
containers. The strength of the pheromone trail these ants leave is in relation with the quality
of the solution value found. Therefore, good solutions are more likely to be followed by future
vehicles.
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There are some studies that explicitly consider the dynamism in terms of scheduling and
routing. Simonetto and Borenstein [42] study solid waste collection in Porto Alegre, Brazil, and
propose a dynamic planning methodology using simulation and heuristics. However, they con-
sider a short-term horizon operational planning problem. Johansson [38] studies dynamic waste
collection in the Swedish city Malmö. Analytical modeling and discrete-event simulation is used
to assess different planning policies utilizing real time information from the containers (through
level sensors and wireless communication technologies). Johansson [38] shows that dynamic
collection policies (that take into account fill level information) outperform static policies (fixed
routes and preset collection frequencies) in terms of distances traveled, labor hours, and costs.
This last research is closely related to ours.

Much of the effort in the literature for waste collection and inventory routing problems has
been spent on finding the best routes, throughout a given planning horizon with a given set of
customers [43]. Also, sophisticated algorithms have been developed to handle the uncertainty in
routing. However, less attention has been paid to managing the uncertainty in the selection of
containers to be emptied. In the IRP for waste collection in a dense area with many customers
and relatively small travel distances, selecting the right containers to empty might have a higher
impact on the objective than the routing decisions. The focus of our work is the development
of a fast and parameterized heuristic for solving the short term problem dynamically, taking into
account the long term impact. In addition, we propose the use of optimal learning to (i) find the
best configuration for the heuristic’s parameters and (ii) learn the relation of the parameters to
different problem settings.

3. Problem description

In the remainder of this paper, we focus on the waste collection problem, where ‘inventories’
are emptied instead of being replenished, although our insights apply to the general IRP with
many customers as well. In our waste collection problem, the company has to plan when to
empty the containers and how to route the vehicles, such that the collection costs are minimized
and customer satisfaction is maximized (tidiness of the environment). In this section, we provide
a formal problem description and state our assumptions. To draw the parallel with common IRP
formulations, we first present a time-discretized deterministic version of our problem. Next, we
explain the stochastic and dynamic nature of our problem. Our parameterized heuristic to solve
the stochastic and dynamic IRP is described in Section 4.

We have a set C of containers that receive waste deposits and must be emptied during a
planning horizon T . These containers can be emptied at discrete points in time t ∈ T , with
t discretized to days. For each day t, d(t) gives us the day of the week d, with d ∈ D and
D = {Monday, ..., S unday}. For each day of the week d, we have a maximum working time
bd. We assume the time bd has been corrected to account for activities such as lunch breaks and
fueling. Setting bd = 0 means that day of the week d is not a working day. For the entire container
network, information on the amount of waste vi,t a container i holds at a time t is available. Also,
the deposit volumes ui,t for all containers i ∈ C and days t ∈ T are known. For the deterministic
version of the problem, we assume that the deposits ui,t on day t take place after any collection.
As long as container i is not emptied, the volume of waste in this container at later points in time
can be calculated sequentially using vi,t+1 = vi,t + ui,t.

Every container i has a maximum waste-holding capacity of wi. However, when a container
is full, we consider “overflow” or extra waste in that container to be possible. This means that
vi,t can be greater than wi when, e.g., new waste deposits have to be placed next to container
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i because the container is full. We denote the amount of overflow of container i at time t by
zi,t, which is defined as the difference between the waste vi,t collected from a container and its
capacity wi, i.e., zi,t = max{vi,t − wi, 0}.

To empty the containers and clean the overflow waste, a fleet M of homogeneous vehicles
can be used, each having a waste holding capacity of g. The collected waste within the truck
is compressed. However, to keep notation simple, we here express the capacity g in terms of
uncompressed waste. All vehicles depart from a given parking area and return empty to the same
parking area at the end of a working day. To empty a vehicle, the vehicle must visit a waste
disposal center. To keep the notation simple, we use i and j as index for all locations, i.e., for
the containers as well as for the parking area and waste disposal center. In case we specifically
want to refer to the latter two locations, we use p to indicate the parking area and q to denote the
waste disposal center. The travel times si, j between locations i and j and the handling times hi

for each location i are assumed to be known and deterministic for all vehicles. Handling times
hi can consists of loading waste into a vehicle (i ∈ C), or unloading waste at the disposal center
(i = p), or parking (i = q).

For our problem, we take three types of costs into consideration: transportation, handling, and
penalty costs. Transportation costs cs

i, j between locations i and j can be calculated by cs
i, j = αt si, j,

where αt is a cost factor per unit of traveling time. Similarly, handling costs ch
i for every location

i can be computed by ch
i = αhhi where αh is a cost factor per unit of handling time. The penalty

cost cp
i,t for the overflow waste of container i at time t is defined as cp

i,t = αpzi,t, where αp is a cost
factor per unit of volume of overflow waste and per time unit. A similar penalty formulation can
be found in Chien et al. [17] and Kleywegt et al. [15]. These penalty costs are time dependent
since the overflow waste increases if a container is not emptied in a timely manner. Note that
cp

i,t = 0 when vi,t ≤ wi. The penalty costs can be considered as costs for “backlogging” in a
normal IRP formulation.

We define a route r ∈ R to be the ordered group of locations that a vehicle visits during a
day. A route starts and ends at the parking location, has at least one container to empty, has at
least one visit to the waste disposal center, and the last visit to the waste disposal center should
take place right before going back to the parking location. Hence, a proper route is of the form
r = {p, i1, i2, . . . , q, ik, ik+1, . . . , q, p}. After a number of collections in a route r ∈ R, a vehicle
might get full and therefore must visit the waste disposal center in order to continue visiting more
containers. We define a sub-route rs ⊆ r as the set of locations that a vehicle visits after departing
from either the parking area or the waste disposal center until the next visit to the waste disposal
center.

For the time-discretized deterministic version of the problem, we assume decisions are only
made at the beginning of each day. We define Xi,r,t as a binary decision variable equal to 1 if
container i is emptied in route r at day t and 0 otherwise. We let Yi, j,r,t be a binary decision
variable that is equal to one if location j is visited immediately after location i in route r at day t
and zero otherwise. These decisions have to be made with the objective to minimize the sum of
all costs over the entire planning horizon t ∈ T . Our objective function is now given by

min
∑
t∈T

∑
r∈R

∑
i∈C

ch
i Xi,r,t +

∑
r∈R

∑
i∈C

cp
i,t +

∑
r∈R

∑
i∈C

∑
j∈C

ct
i, jYi, j,r,t


The objective formulation is similar to that of Chien et al. [17] and Abdelmaguid et al. [11]

with the exception that we do not have inventory (i.e., waste) holding costs. This objective
function is subject to all typical IRP constraints, such as vehicle capacity constraints, routing
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constraints, and sub-tour elimination constraints. Here, we only mention the constraints that are
different for our problem.

• Waste definition of the containers: These constraints update the estimated volume of waste
in a container and any overflow. Although they are similar to the inventory constraints, the
difference with our problem is that we allow “backorders” or overflow waste and that there
is no “partial delivering”, which means the container is completely emptied if visited.

vi,t+1 =
(
1 − Xi,r,t

)
vi,t + ui,t ∀i ∈ C, t ∈ T

zi,t = max{vi,t − wi, 0} ∀i ∈ C, t ∈ T

• Capacity of vehicles: These constraints ensure that in each sub-route rs, which is part of a
route r, the capacity g of each vehicle is not exceeded:∑

i∈rs

vi,tXi,r,t ≤ g ∀rs ∈ r ∧ r ∈ R, t ∈ T

• Working time: These constraints ensure that the entire route r is done within the maximum
working time (bd) for a vehicle and crew on working day d = d(t):∑

i∈r

∑
j∈C

(
si, j + hi

)
Yi, j,r,t ≤ bd(t) ∀r ∈ R, t ∈ T

Finally, our objective function is restricted by routing constraints that guarantee that a vehi-
cle’s route is feasible (i.e., one visit to the disposal center per sub-route, a route starts and ends
in the parking lot, no sub-tours) and that all decisions variables have a binary domain. These
constraints are the same as in other problem formulations, such as those of Archetti et al. [44],
Bard and Nananukul [45], and Savelsbergh and Song [46]. Although our problem shares many
similarities with most IRP formulations, there are some specific characteristics of our problem:

1. There are no time windows for emptying the containers, but there is a starting and ending
time for the working day, with a maximum working time bd per day of the week d.

2. The capacity of containers can be exceeded with overflow waste. When emptying a con-
tainer, it should be emptied entirely including the overflow waste. In IRP terminology, this
corresponds to allowing backlogging demand without partial deliveries.

3. Typically, a large number of containers has to be emptied on a working day (e.g., more
than 100 containers per vehicle per day).

4. There are different “depots”, i.e., at least one parking location and one waste disposal
center.

Furthermore, because waste deposits are not known up front exactly, we need to take stochas-
ticity into account and to be able to plan dynamically. Deposit rates as well as deposit volumes are
stochastic, and they might fluctuate due to changes in the environment (e.g., holidays, seasonal
effects, and weather conditions). This uncertainty has an impact on the planning. For example,
containers might get full faster during a working day than expected, such that we have to go
earlier to the waste disposal center. Hence, we also need to allow for re-routing (re-planning)
during the working days.
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To cope with uncertainty in waste deposits, we replace the quantities vi,t, ui,t, zi,t, with esti-
mates v̂i,t, ûi,t, ẑi,t. An estimate of the penalty cost per container is defined by ĉp

i,t = αpẑi,t. To cope
with uncertainty in the waste volumes, we replace the capacity g by a target capacity ḡ, which
generally will be lower to buffer against uncertainty.

To allow decisions to be taken at different points in time, we use a continuous time formula-
tion. A decision moment can occur (i) during the initial planning (morning) of a working day or
(ii) during replanning situations triggered by some events during the day. These replanning situa-
tions may occur, e.g., after each collection, when there is a deviation with respect to the expected
and realized collected volume, when some time for visiting the containers is not met, etc. This
continuous time formulation has an impact on the way calculate the penalty costs. Every day, at
midnight, we calculate the penalties similarly as mentioned before: cp

i,t = αpzi,t. However, when
emptying a container during the working day, say at 10am, we only charge the corresponding
fraction of penalties, i.e., 10/24αp per volume of overflow.

Different ways of solving the waste collection problem have been proposed in the literature
as previously described in Section 2. However, large scale and complex instances as the one in
consideration prevent the practical application of most of the exact methods due to computational
limitations. In order to handle these characteristics in a timely manner, and to allow re-routing
(re-planning) during a working day, a fast planning heuristic should be used. Moreover, a long
planning horizon should be considered since a short term approach will postpone collections to
the next period as explained by Campbell and Savelsbergh [18]. We propose a heuristic that uses
a set of tunable parameters (i) to cope with the variability of the waste estimations v̂i,t, ûi,t, and
ẑi,t, and (ii) to generate a solution fast enough. We present this heuristic approach in the next
section. In Section 5, we describe how optimal learning techniques can be used to optimize the
tunable parameters.

4. Heuristic approach

As mentioned in Section 3, we use a heuristic approach to deal with the dynamic and stochas-
tic nature of the problem and to be able to handle large problem instances. Although in this day-
to-day planning, decisions are made for the immediate (short-term) time horizon, a consideration
for the long-term performance must be done as well. The heuristic we propose uses a set of ad-
justable parameters, which regulate the immediate decisions, but have a direct impact on the cost
function for the long planning horizon. The heuristic itself is used for an operational planning of
the containers to empty based only on immediate handling and traveling costs. However, to an-
alyze the long term performance (which includes penalty costs) in this operational planning, we
propose the use of simulation optimization (Section 5). In this section, we explain our heuristic
approach for the day-to-day planning.

First, we make a distinction between the different containers. We define a “MustGo” as a
container that has to be planned into a route and has to be emptied during the current planning
day. In addition, we define a “MayGo” as a container that might be planned into an existing
route of MustGo’s if it is convenient to do so. Finally, we define a “NoGo” as a container that
should not be planned to be emptied during the current planning day. This distinction is similar
to that presented in Dror et al. [47] and Bard et al. [48]. At any decision moment, we use a
parameterized heuristic that first categorizes the containers and initializes some parameters, then
prepares routes according to the initialized values and categorization, and finally plans the routes
to empty the different containers, as can be seen in Figure 2. We now describe each of these steps
in more detail.
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Decision moment

1. Initialize values

2. Prepare routes

3. Plan MustGo’s

4. Plan MayGo’s

Execute plan

Figure 2: Heuristic steps

Step 1: Initialize values
With respect to the selection of containers, at any point in time t, we define f̂i,t to be the

expected number of days left before container i becomes full. It can be estimated as follows:

f̂i,t = t′ −
z(t, t′)

ûi,t′
,

where t′ represents the number of whole days from day t until the container reaches overflow
z(t, t′) for the first time. These quantities are given by

t′ = inf
s′

{
z(t, s′) ≤ 0

}
,

z(t, s′) =

t+s′∑
s=t

ûi,s −
(
hi − v̂i,t

)
.

Using f̂i,t, we can categorize container i into a “MustGo”, a “MayGo”, or a “NoGo” container.
We denote the set of MustGo containers as Cm and the set of MayGo containers as Cn. To define
these sets, we introduce the adjustable parameters Fm

d and Fn
d for every day d of the week, with

d ∈ D = {1, 2, . . . , 7}, where d = 1 represents Monday. These two parameters represent a
threshold on the number of working days on which container i must be full in order to consider
it a MustGo ( f̂i,t ≤ Fm

d ) or a MayGo (Fm
d < f̂i,t ≤ Fm

d + Fn
d) container. As an example, suppose

we have a five day work week (Monday to Friday). On a Thursday morning with Fm
4 = 1,

Cm contains all the containers that are expected to be full before Friday morning. On a Friday
morning, with Fm

5 = 1, Cm contains all the containers that are expected to be full before Monday
morning. Besides the fluctuations in deposits over the days of the week, the length of the working
week also give rise to use day dependent parameter settings.

With respect to routing, we define r̄t to be a lower bound on the number of sub-routes rs to
use from time t till the end of the current working day, and compute it as follows:

r̄t =

⌈∑
i∈Cm v̂i,t

ḡ

⌉
For every vehicle m ∈ M, a route r is initialized as long as the vehicle is needed. Hence,

at time t we define the number of routes as |R| = min (|M|, |Cm|, r̄t). Since the decision moment
could have been triggered by two cases (as mentioned in the beginning of this section), we have
the following two cases for initializing all routes r ∈ R:

1. If the route is empty (r = ∅), usually the case when the decision moment is at the beginning
of the day, then we let r = {p, q, p}, where locations p and q denote the parking area and
the disposal center respectively.
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2. If the route r is not empty, which is the case when re-planning occurs during the day, we
empty it in a non-preemptive way. By non-preemptive we mean that the current visit of
a vehicle (when the re-planning occurs) is not removed from the routes. In order for the
initial routes to remain feasible, this current visit to a container will be followed by a visit
to the waste disposal center and a return trip to the parking area.

With the set of containers Cm and Cn, and the initialized set of routes R, we proceed to the
next steps in our heuristic.

Step 2: Prepare routes

For this step, we use a common classification of customers in the VRP construction heuris-
tics: the seed customers. Seed customers are customers that have a special characteristic (e.g.,
longest distance from depot, largest demand, etc.) and are the nucleus around which the routes
are constructed [49]. We define Cs to be the ordered set of seed containers that will be used to
plan a route, such that one seed container is used per route (i.e., |Cs| = |R|). Note that, even
though a route can consist of more than one sub-route rs, we use one seed per route r ∈ R, which
we assign to the first sub-route rs.

The seed containers are selected from the set of MustGo containers Cm, such that Cs ⊆ Cm. In
our heuristic, seed containers are chosen based on the largest minimum distance from the parking
location and the other seed containers. These seed containers serve the functions of (i) spreading
the vehicles over the network, (ii) realizing insertion of containers close as well as far from the
parking location into the schedules, and (iii) balancing the workload per route to anticipate the
insertion of MayGo containers.

Step 3: Plan MustGo’s

In this step, the remaining unplanned MustGo containers have to be planned, as long as
capacity and time restrictions allow for this. For assigning a container k ∈ Cm that is not a seed
container, i.e., k < Cs, we use a cheapest insertion heuristic.

The MustGo containers can be assigned to any route r and hence to any vehicle. To do
so, an insertion cost cinsert

k,i, j,rs of container k between the visits of locations i, j per sub-route rs is
calculated. This insertion cost depends on the additional time required to visit the container at a
certain point in a vehicle’s route, and it is calculated by

cinsert
k,i, j,rs = ct

i,k + ct
k, j − ct

i, j + ch
k , ∀r ∈ R ∧ {i, j} ∈ rs|rs ⊆ r. (1)

Besides the traveling and handling times, we also take into consideration the capacity of a
vehicle in each sub-route rs when deciding where to insert a container. If the additional volume
of waste that comes from container k exceeds the target capacity ḡ of the vehicle executing sub-
route rs, then additional visits to the waste disposal center are planned within that sub-route (thus
creating a new sub-route rs ⊆ r in that vehicle’s route). The insertion costs (1) are updated with
the time required for these additional disposal visits accordingly. After the insertion costs for all
possible positions in every route have been calculated, the best position to insert a container k
is chosen according to the cheapest insertion heuristic [18]. Note that this step could easily be
improved using more advanced construction and improvement heuristics. However, since our
focus is on parameter tuning, we keep things simple here.
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Step 4: Plan MayGo’s

After all MustGo containers have been scheduled, there might be vehicles that can still load
more waste from other containers. In order to improve the capacity utilization of these vehicles,
we add MayGo containers to their routes.

With respect to the insertion of MayGo’s, a container k ∈ Cn is merged into a vehicle’s route
r according to the cheapest insertion heuristic. However, a different cost definition from the
previous step is used this time, since we might or might not add a container k to an existing
route. In the IRP literature, a common way of defining costs for a potential customer is by using
the ratio of additional required traveling and handling time (which in step 3 of our heuristic was
defined as insertion cost cinsert

k,i, j,rs ) and the estimated volume required by this customer [50]. We
define this cost ratio as

cratio
k,r,t =

mini, j∈rs |rs⊆r cinsert
k,i, j,rs

v̂k,t
, ∀k ∈ Cn, r ∈ R. (2)

However, in this way of defining costs, the more distant a container’s location is, the more
unlikely it is that this container will be considered for insertion into a route. To handle this
situation, we use a relative improvement criterion denoted as ∆ratio

k,r,t . We compare the resulting
ratio of (2) with a historical smoothed average of this cost ratio c̃ratio

k and define the relative
improvement criterion as

∆ratio
k,r,t =

cratio
k,r,t

c̃ratio
k

, ∀k ∈ Cn, r ∈ R. (3)

This improvement criterion is defined for the minimum additional time in every route, and
for all routes r ∈ R. A large positive value of ∆ratio

k,r,t represents a good opportunity that we
should take. Nevertheless, the smaller the ratio cratio

k,r,t , the more attractive it becomes to consider
container k for insertion, since the additional time it takes to visit the container is relatively small
compared to the volume of waste we collect.
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Figure 3: Smoothed ratios for three containers
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To illustrate the situation with the cost ratios mentioned above, consider Figure 3. This figure
shows the smoothed ratios c̃ratio

k for three different containers. Container 3 (C3) is a remotely
located container, container 1 (C1) is located closely to the parking area and waste disposal
center, and container 2 (C2) is somewhere in between. The ratio of C1, is the lowest of the three
because, as seen from (2), it requires less time for a visit. If we only would use the ratio as it
is, we will always favor C1 in comparison to C3. Containers at remote locations would never be
selected even if it would be better to include them now than in a new route another day. This is
the reasoning behind the relative improvement criterion ∆ratio

k,r,t defined in (3).
Although adding MayGo containers increases vehicle utilization, it might also lead to un-

necessarily long routes (since the set of MayGo containers is not defined by location) or that
unnecessary work is carried out on a working day (since visits could be postponed to subsequent
days for more efficient collections). Evidently, this efficiency depends on how the MayGo set
Cn is defined. A good value for Fn

d , the parameter that makes the distinction between a MustGo
and a MayGo container, has a positive influence on both waste-capacity and routing efficiency.
Adding too many containers (e.g., until all vehicle capacities are met) can also contribute to the
aforementioned inefficiency. To have a control over this situation, we introduce a limit F l

d on the
amount of containers that can be emptied per working day. This limit is expressed as a fraction
of the total number of containers |C|. After F l

d × |C| containers (including MustGo’s) have been
planned on a day d, no more MayGo containers can be added to a vehicle’s route. Another option,
which we do not consider here, would be to add a bound to the cost ratio (2) or the improvement
criterion (3).

To summarize, we developed an easy to implement heuristic for the dynamic waste collec-
tion problem. The heuristic uses adjustable parameters {Fm

d , F
n
d , F

l
d} (∀d ∈ D) and historic cost

information c̃ratio
k , which incorporates knowledge about long-term performance to its immediate

decisions. To tune the parameters, we propose the use of optimal learning techniques. In Section
5, we briefly explain how optimal learning can be applied to our heuristic through the use of
discrete-event simulation.

5. Optimal learning

The heuristic proposed Section 4 is appealing from a practical point of view because of its
easy interpretation. From a network of containers, we empty those that are expected to be full
within a certain number of days, and visit them in an efficient route. We might also empty addi-
tional containers that are more convenient to empty now than later. We fill the routes with these
MayGo containers until a predefined limit on the number of containers is reached. The heuristic
optimizes the collection process given its parameter settings and considering only the handling
and traveling costs. The performance of the heuristic and the value of the overall objective func-
tion (as presented in Section 3) heavily depends on the chosen input parameters. In this section,
we describe the use of optimal learning techniques to choose the best input parameters.

In an optimal learning problem, we efficiently collect information through measurements to
improve future decision making. The problem arises in both offline and online settings. In an
offline setting, we have a measurement budget for finding the best possible decision, after which
we implement the best one. In an online setting, every decision is implemented and we have
to live with their costs, but we want to learn as we go. Optimal learning is an issue primarily
in applications where observations or measurements are expensive [51]. Online learning for
our waste collection problem would mean that the company uses the planning approach, with
given parameter settings, during some period of time and observes the resulting performance to
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improve future decision making. These real life experiments form expensive measurements for
the company. Here, we focus on offline learning, where the expensive measurements come in the
form of a time consuming simulation run (experimenting through computer simulation). This
problem is also known as simulation optimization, and can be defined as the process of finding
the best parameter settings among all possibilities without explicitly evaluating each possibility.
The objective of simulation optimization is to minimize the resources spent while maximizing
the information obtained in a simulation experiment [52].

Mathematically, the problem comes down to finding alternative x out of a set of alternatives
X, such that the value f (x) of this alternative is minimized. The value f (x) follows from a
simulation run and therefore the outcome is subject to noise, i.e., measurement n of alternative
x will result in an observation yn+1

x = f (x) + ε, with ε being the measurement error. In our case,
alternative x defines a particular setting for the parameters Fm

d , F
n
d , F

l
d (∀d ∈ D). The “correct”

settings of these parameters may vary per day d of the week. Intrinsically, the right choice for
these parameters is influenced by the variability of the waste deposits. In the remainder of this
paper, we assume five working days per week, i.e., D = {1, 2, . . . , 5}. Now, alternative x can be
defined as a matrix of the following parameters

x =

F
m
1 Fm

2 · · · Fm
5

Fn
1 Fn

2 · · · Fn
5

F l
1 F l

2 · · · F l
5

 .
Recall (Section 4) that these parameters are defined as

Fm
d Threshold on the number of days on which a container is expected to be full in order to

consider it a MustGo during day d.

Fn
d Threshold on the number of days on which a container is expected to be full in order to

consider it a MayGo during day d.

F l
d Limit on the amount of containers that can be emptied during day d. This limit is expressed

as a fraction of the total number of containers |C|.

We use the following domains, based on preliminary experiments and expert opinion Fm
d ∈

[0, 4], Fn
d ∈ [0, 4], and F l

d ∈ [0, 1]. The objective of our learning problem is to minimize the
expected value of the objective function after performing N experiments

minx∈XEN [
f (x)

]
,

where X represents the feasible area given by the 15-dimensional domain formed by Fm
d , Fn

d , and
F l

d, for all d ∈ D.
Now, suppose we discretize the domain of each parameter into 10 distinct values. We then

have 1015 possible parameter configurations. Evaluating all of them, using a sufficient number
of replications for each parameter configuration and using a sufficiently long run length, would
not be feasible in reasonable time.

To solve the learning problem, a wide variety of methods are available, coming from the
fields of Ranking and Selection (R&S) and Bayesian global optimization (BGO), see Powell and
Ryzhov [12] for an overview. The choice for an efficient learning technique depends on vari-
ous problem characteristics, e.g., online or offline measurements, binary, discrete or continuous
parameters, high or low dimensional state space, etc. Because even the discretized version of
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our problem would result in a larger number of alternatives than we could measure, we require
policies that are able to generalize across the state space. In this paper, we use two policies that
are able to achieve this: the Sequential Kriging Optimization (SKO) from Huang et al. [53] and
the Hierarchical Knowledge Gradient (HKG) from Mes et al. [54].

The policies SKO and HKG take advantage of Bayes Theorem, which assumes we have a
prior belief (a prior predictive distribution) for the cost function f (x). Bayes rule is used to form
a sequence of posterior predictive distributions for f (x) based on this this prior and the succes-
sive measurements. Let µn

x and (σn
x)2 be the mean and variance of the predictive distribution after

n measurements. Both policies assume the true mean µx of f (x) conforms to a Gaussian pro-
cess, i.e., f (x) ∼ N

(
µn

x, (σ
n
x
)2). With every measurement n, with yn+1

x ∼ N (µx, σx), we update
our prior belief to a posterior belief. The measurement policy aims to choose the measure-
ments (x0, ..., xN) in such a way that the implementation decision xN+1 minimizes En

[
f (xN+1)

]
(in a minimization problem), where En denotes the conditional expectation given what we have
learned through the n measurements. For more information on BGO, we refer to Powell and
Frazier [51] and Frazier et al. [55].

SKO is an extension of the well known Efficient Global Optimization (EGO) policy [56] to
the case with noisy measurements. SKO works from a feasible region (set of alternatives) that
is continuous, connected, and compact. New alternatives to measure are based on a so-called
“expected improvement function”, which strikes a balance between exploitation and exploration.
This method works with input coming from a black-box system, meaning that it does not require
a closed-form formulation of the objective function. For the reasons above, we consider this
technique suitable for our problem. HKG is an extension of the knowledge-gradient policy for
correlated normal beliefs (KGCB) from Frazier et al. [55] and uses discretized state space ag-
gregation to achieve generalization. The advantage of HKG over SKO is that it is able to handle
problems with categorical attributes (e.g., number of working days), and to cope with complex
dependencies between the parameters [54]. However, the disadvantage of HKG is that it is only
applicable to problems with, say, up to several thousands alternatives. We compare HKG and
SKO with a pure exploration policy (random sampling), which we denote by EXPL.

In conclusion, optimal learning techniques can provide us with knowledge of the best input
parameters for our heuristic in the long run. In addition, through the use of simulation, we
analyze the variability in the waste deposits and record observations that give insight in heuristic’s
performance and its dependency on the chosen parameter values.

6. Numerical experiments

Through numerical experiments, we analyze the dependency of the parameters of our heuris-
tic with respect to several network characteristics. We use real-world information about a waste
collection company located in The Netherlands to create different test instances for these exper-
iments. In Section 6.1, we describe the settings considered for the experiments. In Section 6.2,
we present the numerical results and give insights into the sensitivity of our algorithm to the
parameter setting.

6.1. Experimental settings

Our experimental settings are based on a case study performed at the waste collection com-
pany “Twente Milieu”, located in The Netherlands. This case study is described in detail in Mes
[43], where a simulation study is carried out to study the benefits of a dynamic collection policy
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compared to the current static way of scheduling. After the study of Mes [43], the dynamic plan-
ning methodology has been implemented at the company and major savings have been reported.

To evaluate the impact of specific parameter settings, we use a similar simulation model as
described in Mes [43]. However, instead of using specific discrete-event simulation software,
we now implemented the model in Delphi, a general-purpose programming language. We re-
implemented the simulation model to (i) reduce computation time and (ii) connect the optimal
learning policies HKG and SKO (implemented in Matlab and Delphi) to the simulation. In
addition, to focus on the topic of parameter tuning, we consider a simplified collection problem
here. In contrast with Mes [43], we assume (i) deterministic deposit volumes (still stochastic
interarrival time between deposits), (ii) constant mean deposit rate and volume over the days in
the week, and (iii) accurate sensor information on the volume of waste inside the containers.
To provide general insights, we also consider variations to the real life setting, by varying the
network density (depending on the size of the network and the number of containers located in
it), the number of vehicles available to collect the waste, and how fast the containers fill up (rate
and volume of waste deposits). An overview of the different network settings is given in Table 1.

Table 1: Network settings
Name Size (min) #Cont. #Veh. Volume (liter)
NL-C100-V25 150x150 100 1 25
NL-C100-V35 150x150 100 1 35
NL-C500-V20 150x150 500 1 20
NL-C500-V25 150x150 500 1 25
NS-T1-V15 30x30 500 1 15
NS-T1-V25 30x30 500 1 25
NS-T2-V25 30x30 500 2 25
NS-T2-V50 30x30 500 2 50
NR-VN Real 378 2 41.23
NR-VL Real 378 2 61.85

We consider three types of networks: (i) a large virtual network in a square area of 150x150
minutes driving time, (ii) a small virtual network in a square area of 30x30 minutes driving time,
and (iii) the real network. For the virtual networks, we randomly place the customers within
the square area, and place the parking area and waste disposal center on one of the diagonals
at 1/3 and 2/3 of its length respectively. The large network instances correspond to regional
networks (e.g., a province from The Netherlands) and the small network instances correspond to
urban networks (e.g., a large city with suburbs). The size of the real network is comparable to
the 30x30 minute network. For the large virtual network, we consider instances with 100 and
500 customers. For each combination of network size and number of containers (large with 100
customers, large with 500 customers, small with 500 customers, and real with 378 customers),
we generate one instance with respect to the container locations.

For the small virtual network, we consider instances with one and two trucks. For all virtual
network instances, we consider two levels for the volume of waste deposits. The larger settings
for waste volumes are chosen such that the vehicles are able to handle all demand, not necessarily
without penalties, and that there is no excessive overcapacity of collecting vehicles. With the
latter, we mean that it is not possible to handle all demand if we shorten the work week with
one day. The deposit rates (number of deposits per day) follow a Gamma distribution with a
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deterministic deposit volume per deposit as shown in Table 1. For the real network instance
NR-VN, the stated deposit volume of 41.24 liter is an average over all 367 containers, since
the deposit volumes differ per container, see Mes [43]. The deposit volume for the real network
instance with larger volumes (NR-VL) represents an increase in deposit volumes of 50% at every
container. For all virtual networks, the Gamma distributed deposit rates have a mean of 10
deposits per day and a variance of 80. For the real network, the deposit rates have a mean of 9.5
and a variance of 55.86.

In order for our optimal learning technique to choose the best settings for our heuristic in
terms of long-time performance, we use as key performance indicator the weighted cost per
volume of waste collected, which we denote by CL. The costs consist of traveling, handling,
and penalty costs. The penalty costs αp per day per liter of overflow are chosen such that they
represent an equal trade-off between traveling half the diameter of the network (back and forth)
and emptying a full container. We index the travel costs per minute to αt = 1 and set the handling
costs per minute to αh = 0.5. The handling time per container is 4 minutes and 15 minutes at the
waste disposal center. The capacities are wi = 4000,∀i ∈ C, g = 90, 000, and ḡ = 85, 000. We
have five working days of 7.5 hours (excluding breaks), starting from 7:30am. We initialize each
simulation run with uniformly filled containers between 0% and 75%. We use a warm-up period
of eight weeks, and a simulation run length of 24 weeks.

Our numerical analysis consists of three parts. First, we perform a number of simulation
experiments of the different networks, manually adjusting the parameters to gain insight into the
parameter sensitivity, where we use the same parameter settings for all working days d. For
each of these experiments, we use 100 replications. Second, we test the learning policies to gain
insight into the speed of convergence of these policies. For all policies, we consider the domains
as mentioned in Section 5. Third, we report the optimized parameter settings for each network
using the policy SKO with 5,000 measurements for each of the network settings. For all the
learning policies, we use 10 replications for each simulation experiment, i.e., one measurement
consists of 10 replications of a simulation experiment with given parameter settings.

For the policy HKG, used in the second part of our numerical analysis, we need (i) to define
the variance λ of the measurement error ε, (ii) to discretize the domain, and (iii) to define an
aggregation structure. First, we set λ = 0.1. Next, we discretize the parameters Fn

d and Fm
d in

intervals of length 0.5, resulting in 9 values for Fm
d and 11 values for Fn

d . For the parameter F l
d,

we include some prior knowledge. First, we know that, under ideal circumstances, about 30%
of the containers can be emptied within one working day using the two trucks, which means that
any setting of Fn

d > 0.3 has a similar effect. Second, when F l
d > 0, day d will be a working day

and at least some containers will be emptied. If that is the case, F l
d should not be set too low.

Therefore, we use the following domain: F l
d ∈ {0, 0.12, 0.14, . . . , 0.3, 1} with 11 different values.

For the aggregation structure of HKG, we introduce one additional parameter Fw ∈ {4, 5}, which
represents the number of working days, i.e., the number of days d for which F l

d > 0. We perform
aggregation on one state variable at a time, achieving an almost exponential decline in the size of
the state space. For all parameters, we use the same settings for all working days, except for the
number of working days d with F l

d = 0, which is determined by the factor Fw. An overview of
the aggregation structure is given in Table 2, where a ‘*’ corresponds to a state variable included
in the aggregation level and a ‘-’ indicates that it is aggregated out.

6.2. Numerical results
To gain insight into the effect of different parameter settings, we perform a number of exper-

iments. First, we study the effect of the MayGo parameter (Fn
d) on the costs CL, while fixing

17



Table 2: Aggregation structure
Level Fw

d F l
d Fn

d Fm
d Size of the state space

0 * * * * 6×11×11×9=6534
1 * * * - 6×11×11×1=726
2 * * - - 6×11×1×1=66
3 * - - - 6×1×1×1=6
4 - - - - 1×1×1×1=1

Fm
d = 1 and F l

d = 1. The results for the different networks can be found in Figure 4. Note
that we use the same parameter settings for all working days d. For the 150 min network, we
observe decreasing costs with increasing MayGo level. This decrease is even more apparent in
case of higher volumes. Higher volumes result in a larger share of the penalty costs in the total
costs; higher values for Fn

d reduce these penalty costs. The same observation also holds for the
30 min network. However, for the low volume cases (NS-T1-V15 and NS-T2-25), this decrease
is realized up to a value of Fn

d = 3. An even higher value for Fn
d , in combination with relatively

low deposit volumes, simply results in an unnecessary high number of emptyings per day.
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Figure 4: Illustration of parameter dependency for the 150 min (left) and 30 min (right) network

Next, we study various combinations of all parameters using the real network instance, see
Figure 5. Again, we observe an initial decrease in costs with increasing MayGo level. With
the normal deposit volumes (NR-VN) we eventually see an increase in costs, because we are
emptying more containers than necessary. In the right figure of Figure 5, we vary the MustGo
level Fm

d in combination with several other parameter settings. Here, N1 stands for Fn
d = 1, N∞

stands for Fn
d = ∞, L1 stands for F l

d = 1, L0.22 stands for F l
d = 0.22, and P4 stands for a four

times larger penalty factor αp. Clearly, a large MayGo level without a limit on the number of
jobs (N∞L1) results in high collection costs. The reason is that we have overcapacity in the real
network. Hence, a high MayGo level results in too many emptyings. When Fn

d = 1, we first see a
decrease in collection costs with increasing Fm

d . However, when Fm
d > 2 costs increase again due

to emptying more than necessary. Clearly, the settings with F l
d = 0.22 result in lower collection

costs. With N∞L0.22, it seems that the best value for Fm
d is zero. When more weight is put on

penalties (N∞L0.22P4), a value around Fm
d = 1.5 seems to perform best.

The results from Figure 4 and Figure 5 clearly demonstrate that the right choice of parameter
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Figure 5: Illustration of parameter dependency for the real network instance

settings heavily depends on the network characteristics. Generally, a high MayGo level is pre-
ferred as long as we are not emptying too much, which can be influenced by setting the limit F l

d
appropriately. The MustGo level should not be set too high, to allow flexibility in routing.

Next, we study the performance of HKG and SKO to determine the right parameters settings
for the real network instance (NR-VN). During test runs, it appears that SKO has problems fitting
a Gaussian process to the simulation outcomes because we are dealing with extreme values.
Setting the parameter F l

d too low results in huge penalties and setting the parameter Fm
d too high

results in high travel costs. With SKO, these extreme values play a role in fitting the Gaussian
process prior. As a result, we have a less reliable fit at the area of interest. Obviously, HKG
also loses measurements on these extreme values. However, their influence on the fit (via the
aggregation function) is limited since HKG automatically puts a low weight on them. Similar
conclusions on the effect of extreme values are drawn by Mes et al. [54]. To cope with this
problem, we use a lower bound in our simulation output, given by a policy with Fm

d = 0, Fn
d =

0, F l
d = 1 (∀d ∈ D). We compare HGK and SKO with pure exploration (EXPL). In addition, we

plot the performance of the optimized parameter settings (OPT), which we determine in the last
part of our numerical analysis. The results are shown in Figure 6.

The optimal learning policies HKG and SKO require significantly less measurements to find
suitable parameter settings compared to pure exploration (EXPL). HKG convergences quickly
to reasonably good parameter settings. Besides the problem with extreme values, SKO also
experiences difficulties due to the dependencies between the parameter settings: there is a sub-
stitution effect in the parameters Fn

d and Fm
d , and a low level of F l

d makes the choice for the other
parameters irrelevant. Therefore, SKO requires more measurements to converge to reasonable
settings.

The main drawbacks of HKG are that (i) it requires discretization to a limited set of param-
eter value combinations (at most several thousands) and (ii) it requires some insight into the
problem to design an aggregation structure and to set the measurement variance λ. Due to the
limited number of parameter value combinations, HKG will not converge to the optimal param-
eters settings, as shown in Figure 6. The strengths and weaknesses of HKG and SKO give rise
to a combination of the two policies. We could use HKG to quickly identify the promising ar-
eas within the search space and then use SKO on these areas. Using HKG, it seems that 200
measurements is sufficient to come up with reasonable parameter settings. The time required for
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Figure 6: Convergence results using the real network instance

one measurement, consists of the time required by (i) the optimal learning policy (HKG or SKO)
and (ii) the 10 replications of the simulation. On average, this takes about 10 seconds (2.53 GHz
Intel Quad Core) in the experiments of Figure 6 using HKG and SKO. This means that it would
take slightly more than half an hour to perform the 200 measurements, which seems reasonably
fast for periodic, or even daily, adjustment of the parameter settings. Note that the time required
for the learning policies is negligible compared to the simulation time. Now, suppose that, due
to time limits, the company has a budget of 200 measurement. Then the savings in total costs of
using HKG instead of EXPL are 4.5%.

We conclude our numerical analysis by running SKO on each network instance, using 5,000
measurements. The results are shown in Table 3. The values for the MayGo are not shown in
Table 3 because we observed that in all cases, a high value for the MayGo works best (most
instances result in parameter settings with Fn

d > 4). Note that in most cases a value F l
d > 0.3

practically means no limit on the number of containers that can be emptied on one day, and the
settings for Fm

d have no effect on the performance when F l
d = 0 for the same day d. We draw the

following conclusions. First, in some of the ‘small volume’ instances, it is beneficial to reduce
the number of working days with 1 or 2 (F l

d = 0 for two days), preferably somewhere in the
middle of the week. In those cases, the MustGo level on the working days is set high to make
sure the most urgent containers are emptied first. In the other ‘small volume’ instances, the limit
F l

d is set relatively low for all working days. Remarkably, in most cases, the limit on Fridays (F l
5)

is set relatively low. The explanation is that on Fridays the size of Cm (set of MustGo containers)
is very large, because it includes all containers that are expected to be full before the end of the
weekend when Fm

d ≥ 1 (recall that the threshold Fm
d is defined in terms of working days). The

set Cn of MayGo containers practically includes all other containers. To prevent doing too much
and to focus on the must urgent containers, the limit F l

5 is set relatively low. In the real network
instance (NR-VN), the limits F l

d are set relatively low and closely matches the current way of
working of the waste collection company, that uses F l

d = 0.22 for all working days. Also the
MustGo levels Fm

d are set relatively low in the real network instance to allow flexibility in the
routing options. This flexibility in routing becomes more crucial when penalties are relatively
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low, which will be the case in networks with overcapacity (relative small volumes).

Table 3: Optimized parameter settings
CLopt CLori S av. F l

1 F l
2 F l

3 F l
4 F l

5 Fm
1 Fm

2 Fm
3 Fm

4 Fm
5

NL-C100-V25 0.70 0.92 24% 1.0 0.2 0.7 0.0 0.4 3.8 3.5 1.4 2.5 1.2
NL-C100-V35 0.80 1.35 40% 0.9 0.6 1.0 0.8 0.6 3.0 2.6 0.9 0.2 0.4
NL-C500-V20 0.40 0.57 30% 0.6 0.0 0.4 0.1 0.1 2.2 3.7 1.8 2.3 3.6
NL-C500-V25 0.39 0.55 29% 0.1 0.2 0.3 0.2 0.1 1.2 1.2 1.4 1.1 4.0
NS-T1-V15 0.11 0.15 23% 0.4 0.0 0.5 0.0 0.4 3.4 2.6 1.3 3.8 3.9
NS-T1-V25 0.11 0.13 18% 0.9 0.4 0.8 0.3 0.2 2.7 1.2 0.4 0.4 2.4
NS-T2-V25 0.10 0.13 22% 0.1 0.1 0.1 0.1 0.1 0.5 0.3 0.7 1.8 1.1
NS-T2-V50 0.11 0.13 17% 0.2 0.6 0.3 0.3 0.8 1.6 0.6 1.9 0.4 3.7
NR-VN 0.12 0.15 19% 0.2 0.1 0.2 0.2 0.2 0.8 0.8 0.9 0.3 0.7
NR-VL 0.14 0.16 16% 0.2 0.2 0.3 0.3 0.3 1.8 2.1 1.8 2.0 3.0

Besides the expected optimal parameter settings (after 5,000 measurements), Table 3 also
shows the average performance CLopt of using the optimal parameter settings, and the perfor-
mance CLori of using the default settings for our policy (all parameters equal to one). Both,
CLopt and CLori are based on 1000 replications. Even though the default parameter settings work
reasonably well in most network settings, the performance can be improved considerably (up to
40% cost reduction) by tuning the parameters appropriately. Note that when considering more
realistic networks, where we take into account personnel costs and daily fluctuations in deposits,
this tuning of day-dependent parameters becomes even more important.

7. Conclusions

We proposed a planning methodology for dynamic waste collection, taking into account the
long-term consequences of the decisions. In addition, we provided insight into the applicability
of our approach using a case study at a waste collection company. The methodology is applicable
to the general class of Inventory Routing Problems with many customers.

The proposed dynamic collection policy has been implemented at the waste collection com-
pany and major savings have been reported. Our heuristic is easy to implement in existing rout-
ing applications and is easy to work with. To cope with changing environments, our heuristic is
equipped with a set of tunable parameters. We have shown that the performance of the heuristic
heavily depends on the parameter settings. Even when the network of customers is physically
the same, a change in other characteristics, such as the number of vehicles available or mean
volume of waste deposited, requires different parameters. In practice this means that in case
of, e.g., the start of a holiday period or changing weather conditions, the parameters have to be
adjusted. Through numerical experiments, we have shown that by changing the parameters from
their default setting to an optimized setting, costs reductions up to 40% are possible.

To tune the parameters, we proposed two optimal learning techniques, namely HKG and
SKO. Based on the simulation outcomes, both policies sequentially decide which combination
of parameter values to simulate. Both policies are able to generalize observations across the state
space; in SKO this is achieved by fitting a Gaussian process through the observations and in
HKG by using a family of aggregation functions. This generalization makes it possible to find
reasonable parameter settings using a limited number of simulation runs. We have shown that
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in most cases a few hundred measurements would be sufficient to find near optimal parameter
settings, making the approach suitable for daily planning purposes.
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