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Preface

Mathematical finance was probably founded by Louis Bachelier in 1900 [19].
In his thesis and subsequent contributions, he constructed a stochastic model of
stock price processes, essentially inventing the random walk or Brownian motion.
But this was five years before Einstein investigated Brownian motion and long
before Kolmogorov refounded probability on sound mathematical grounds; some
basic probabilistic tools were missing. Bachelier’s contribution was considered
nonrigorous and, consequently, not recognized for its true pioneering value.

In contrast, few works in mathematical finance have enjoyed the fame and had the
impact of Fischer Black and Myron Scholes’ seminal paper [46]. In a bold move, it
took the subjective concept of risk aversion out of the rationale for pricing financial
derivatives, grounding such pricing on purely objective considerations.

“Objective,” though, does not mean that no arbitrariness remains. In line with
Bachelier, the Black–Scholes theory is based on an arbitrary choice of mathematical,
stochastic model for underlying stock prices, which we will call “Samuelson’s
model,” although some authors trace it back to earlier works.

Samuelson’s model is called a “geometric diffusion,” or “lognormal distribution.”
In that model, the price process S(t) is assumed to obey the following Itô stochastic
equation:

dS
S

= μdt +σdB , (0.1)

where μ and σ are known, deterministic parameters, or time functions, called “drift”
and “volatility,” respectively, and B(·) is a standard Brownian motion (or Wiener
process).

Following these prestigious forerunners, most of the literature in mathematical
finance relies on Samuelson’s model, although notable exceptions have existed ever
since, for example, [56, 57, 77, 87, 109, 117, 122, 124, 133].

The aim of this volume is to report several accomplishments using another
class of models that we call, after [132], interval models. In these models, if
n stocks are considered, it is assumed that a compact convex set of R

n is

v
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known that always contains the vector of relative stock price velocities (in a
continuous-time setting) or one-step relative price changes (in a discrete-time
setting). In the scalar case, corresponding to the classic Black–Scholes problem,
and in discrete time, this means that we know two constants d < 1 and u > 1 – the
notations used here are in reference to [57] – such that for a given δ t > 0 and for all
possible price trajectories

S(t + δ t) ∈ [dS(t),uS(t)] ,

a line segment. In contrast, Cox et al. [57] assume that

S(t + δ t) ∈ {dS(t),uS(t)} ,

the end points of a line segment, of course, a huge difference in terms of realism, and
also of mathematics, even if in some cases we recover some of their results. More
generally, in higher-dimensional problems, whether discrete or continuous time, this
results in a tube of possible trajectories, or a so-called trajectory tube model.

These interval models were introduced independently, and almost simultane-
ously, by the authors of this volume. We only cite here some earlier papers as a
matter of historical record. A common feature of these works is that, far remote from
the mainstream finance literature, they suffered long delays between the date when
they were written and their eventual publication, usually not in finance journals.
Beyond Roorda et al. [132] already cited, whose preprint dates back to 2000, we
mention here a 1998 paper by Vassili Kolokoltsov [95] and a paper from 2003 that
only appeared in 2007 [86], a thesis supervised by Jean-Pierre Aubin defended in
2000 [128] – but a published version [17] had to wait till 2005 – and a conference
paper by Pierre Bernhard, also in 2000 [37], an earlier form of which [35] did not
appear in print until 2003.

If probabilities are the lingua franca of classic mathematical finance, it could be
said that, although probabilities are certainly not ruled out, the most pervasive tool
of the theories developed in this volume is some form of dynamic game theory. Most
developments to be reported here belong to the realm of robust control, i.e., minimax
approaches to decision making in the presence of uncertainty. These take several
forms: the discrete Isaacs equation, Isaacs and Breakwell’s geometric analysis of
extremal fields, Aubin’s viability approach, Crandall and Lions’ viscosity solutions
as extended to differential games by Evans and Souganidis, Bardi, and others,
Frankowska’s nonsmooth analysis approach to viscosity solutions, and geometric
properties of risk-neutral probability laws and positively complete sets.

As a consequence, we will not attempt to give here a general introduction to
dynamic game theory, as different parts of the book use different approaches. We
will, however, strive to make each part self-contained. Nor will we try to unify the
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notation, although some of these works deal with closely related topics. As a matter
of fact, the developments we report here have evolved, relatively independently,
over more than a decade. As a result, they have developed independent, consistent
notation systems. Merging them at this late stage would have been close to impos-
sible. We will provide a concise “dictionary” between the notations of Parts II–V.

Part I is simply an introduction that aims to review, for the sake of reference,
two of the most classic results of dynamic portfolio management: Merton’s optimal
portfolio and Black and Scholes’ pricing theory, each with a flavor more typical
of this volume than classic textbooks. The Cox–Ross–Rubinstein model will be
presented in detail in Part II, together with the interval model.

Parts II and III mostly deal with the classic problem of hedging one option with
an underlying asset. Part II tackles the problem of incompleteness of the interval
model, introducing the fair price interval, and an original problem of maximizing
the best-case profit with a bound on worst-case loss. Part III only deals with the
seller’s price – the upper bound of the fair price interval – but adding transaction
costs, continuous and discrete trading schemes, and the convergence of the latter
to the former, for both plain vanilla and digital options. Both parts deal in some
respect with the robustness of the interval model to errors in the estimation of
price volatility. Both use a detailed mathematical analysis of the problems at hand:
portfolio optimization under a robust risk constraint in Part II, classic option pricing
in Part III, to provide a “fast algorithm” that solves with two recursions on functions
of one variable a problem whose natural dynamic programming algorithm would
deal with one function of two variables.

It is known that in the approach of Cox, Ross, and Rubinstein, the risk-neutral
probability associated with the option pricing problem spontaneously appears in
a rather implicit fashion. Part V elucidates the deep links between the minimax
approach and risk-neutral probability and exploits this relationship to solve the
problem of pricing so-called rainbow options and credit derivatives such as credit
default swaps.

Part V uses the tools of viability theory and, more specifically, the guaranteed
capture basin algorithm to solve the pricing problem for complex options. A
remarkable fact is that, as opposed to the fast algorithm of Part III, which is
specifically tailored to the problem of pricing a classic option, the algorithm used
here is general enough that, with some variations, it solves this large set of problems.

There obviously is no claim of unconditional superiority of one model over
others or of our theories over the classic ones. Yet, we claim that these theories
do bring new insight into the problems investigated. On the one hand, they are less
isolated now than they used to be in the early 2000s, as a large body of literature
has appeared since then applying robust control methods to various fields including
finance, a strong hint that each may have a niche where it is better suited than more
entrenched approaches. On the other hand, and more importantly, we share the belief
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that uniform thinking is not amicable to good science. In some sense, two different
– sensible – approaches to the same problem are more than twice as good as one, as
they may enlighten each other, be it by their similarities or by their contradictions.

France Jean-Pierre Aubin
France Pierre Bernhard
The Netherlands Jacob C. Engwerda
United Kingdom Vassili Kolokoltsov
The Netherlands Berend Roorda
The Netherlands J.M. Schumacher
France Patrick Saint-Pierre



Notation Dictionary

II III IV V Part number

T T T T Exercise time
X K K K Exercise price
F M f U Terminal payment
0 C±,c± β δ Transaction cost rates

S0 = RS0(T ) S0 Riskless bond price
j∈{1, . . . ,J} Asset (upper) index

Continuous time

Constants

μ0 r0 Riskless return rate
τ−+μ0 r� Min risky asset return
τ++μ0 r� Max risky asset return

Time functions

t ∈ [0,T ] t ∈ [0,T ] t ∈ [0,T ] t ∈ [0,T ] Current time
R =S0/S0(T ) End-time discount rate

S S = Ru S S Risky asset price
τ +μ0 r Risky asset return rate
XS = Rv E Portfolio exposure
v = ϕ�(t,u) E=E♥(t,W ) Optimal hedging strategy
Y p0 Number of bonds in portfolio
X p Number of shares of risky stock
Rw W Portfolio worth
RW W♥ Optimal portfolio worth

(Control) Impulses (Triggered)

tk tn Impulse times
ξk ψ(x)− x Impulse amplitudes

Discrete time

Constants

h h τ ρ Time step
n K n N Total number of steps

eμ0h ρ = 1+ rτ 1+ρr0 One-step riskless ratio
d 1+ τ−h d j 1+ρrd Min one-step S ratio
u 1+ τ+h u j 1+ρru Max one-step S ratio

Time functions

t j = jh tk = kh m tn = nρ Current time
Sj Sk = Rkuk S j

m Sn Risky asset price
v 1+ τk ξ j 1+ rn

ρ One-step S ratio

γ j Xk γ j
m Risky shares in portfolio

γ j = gj(Sj) vk = ϕk(uk) Hedging strategy
Rkwk Xm W n Portfolio worth
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Part I
Revisiting Two Classic Results in Dynamic

Portfolio Management

Author: Pierre Bernhard
INRIA Sophia Antipolis-Méditerranée,
France

The material presented in this part was developed for a course in portfolio
management while the author was a professor at École Polytech’Nice, a department
of the University of Nice Sophia Antipolis.

In this two-chapter part, we revisit the two most classic results in the theory of
dynamic portfolio management: the Merton optimal portfolio in Chap. 1 and the
famous Black and Scholes option pricing theory in Chap. 2.

In both cases we recall the classic result, to be used also as a reference for the
remainder of the volume, but with nonclassic developments in the spirit of this
volume attached to them. The “Merton” optimal portfolio problem is investigated
with two different models: the classic one and a uniform-interval model. The Black
and Scholes option pricing theory is dealt with in a robust control – or game theoretic
– probability-free approach. A third very classic result is the discrete-time theory of
Cox, Ross, and Rubinstein. It will be presented in the next part and fully revisited
in Part IV.

Notation

• at : For any vector or matrix a, a transposed.

Universal constants

• R: The real line.
• N: The set of natural (positive) integers.
• K= {0,1, . . . ,K − 1}.
• 1l: A vector of any dimension with all entries equal to 1.



2 I. Two Classic Results

Main variables and parameters

• T : Horizon of finite horizon problems [Time]
• h: Time step of discrete trading theory [Time]
• Si(t), i = 1, . . . ,n: Market price of risky asset i (without index if only one risky

asset is present) [Currency]
• S0(t): Price of riskless asset [Currency]
• R(t) = S0(t)/S0(T ): End-time value coefficient [Dimensionless]
• ui(t) = Si(t)/R(t): Normalized market price of asset i [Currency]
• μi: Drift coefficient in model for Si [Time−1 (continuous), dimensionless (dis-

crete)]
• μ0: Expected return of riskless asset [Time−1 or dimensionless]
• λi = μi − μ0 Excess expected return of asset i over riskless asset [Time−1

(continuous) or dimensionless (discrete)]
• σi: A line of coefficients defining the variability of Si around its expected value

[Time−1/2 (continuous), dimensionless (discrete)]
• σ : Matrix whose lines are the σi [Time−1/2 (continuous), dimensionless (dis-

crete)]
• Σ =σσ t : Covariancelike matrix [Time−1 (continuous), dimensionless (discrete)]
• Xi(t): Number of shares of asset i in portfolio [Dimensionless]
• W (t): Portfolio worth [Currency]
• w(t) =W (t)/R(t): Portfolio normalized worth. [Currency]
• ϕi = XiSi/W = Xiui/w: Fraction of portfolio invested in asset i [Dimensionless]
• C(t): Rate of portfolio consumption [Currency×Time−1] (continuous) or step-

wise consumption [Currency] (discrete)
• c(t) =C(t)/R(t)
• χ(t) = C(t)/W (t) = c(t)/w(t): Relative rate of withdrawal of funds from

portfolio for consumption [Time−1 (continuous), dimensionless (discrete)]
• Π : Coefficient of bequest utility function [Currency]
• π : Coefficient of running utility function [Currency×time−1 (continuous), cur-

rency (discrete)]
• P: Coefficient of Bellman function [Currency]
• γ ∈ (0,1): Exponent of c and w in utility functions [Dimensionless]
• α (α1−γ in discrete theory): Maximum (normalized in continuous theory) return

rate of a portfolio [Dimensionless]
• δ : Discount rate for infinite horizon problem [Time−1 or dimensionless]
• β = δ −μ0 (continuous) or δ h/(1−γ) (discrete): Normalized discount rate [Time−1

or dimensionless]



Chapter 1
Merton’s Optimal Dynamic Portfolio Revisited

1.1 Merton’s Optimal Portfolio Problem

The problem considered here is that of managing a dynamic portfolio over a period
of time [0,T ] – or over [0,+∞); we shall consider this infinite horizon case in a
separate subsection – in a market where several assets are available, with differing
and varying returns. The portfolio manager is allowed to sell parts of his portfolio
to obtain an immediate utility. He is also interested in having sufficient wealth at
the end of the period considered. In this section, we deal with the classic continuous
trading formulation of [118].

1.1.1 Problem and Notation

1.1.1.1 The Market

We consider a market with n risky assets and one riskless asset. The riskless asset
will always be referred to by the index 0, the risky assets by indices 1 to n. Let Si(t)
be the market price of asset i, i = 0,1, . . . ,n. We need a model of the market. We
extend the model (0.1) to n assets in the following way: we assume that each risky
asset obeys the Itô equation

dSi

Si
= μidt +σidb. (1.1)

Here, μi are known constants and σi are lines of coefficients, all of the same length
�≤ n. (But to make things simple, we may take �= n.) Accordingly, b is a standard
Brownian motion of dimension � (or n), i.e., a vector whose entries are independent
standard Brownian motions. We let σ be a matrix whose line number i is σi, and

Σ := σσ t . (1.2)

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 1,
© Springer Science+Business Media New York 2013

3



4 1 Merton’s Optimal Dynamic Portfolio Revisited

The riskless asset satisfies
dS0

S0
= μ0dt.

In the finite horizon case, we shall rather use the dimensionless end-time value
coefficient

R(t) = S0(t)/S0(T ) = eμ0(t−T ).

We shall assume that a reasonable portfolio does not contain assets whose expected
return μi is less than the riskless return μ0 since they would bring no value or risk
alleviation. We shall call

μi − μ0 = λi

the excess of expected return over the riskless rate. And we shall use the ratios

ui(t) =
Si(t)
R(t)

,

which, in view of (1.1), satisfy the Itô equation

dui

ui
= λidt +σidb. (1.3)

1.1.1.2 The Portfolio

A portfolio shall be defined by n + 1 functions Xi(t), i = 0,1, . . . ,n, giving the
number of shares of each asset in the portfolio at time t. As a model simplification,
we consider that the Xi are not restricted to being integers. They shall take their
values in R. Thus we also allow the portfolio to be “short” in some assets. Its worth
is therefore

W (t) =
n

∑
i=0

Xi(t)Si(t).

We shall instead use

w(t) =
W (t)
R(t)

= X0(t)S0(T )+
n

∑
i=1

Xi(t)ui(t).

Transactions will be variations dXi of the number of shares. Together with the
variations in market prices, they produce variations in the worth of the portfolio:

dW =
n

∑
i=0

(SidXi +XidSi) or dw = S0(T )dX0 +
n

∑
i=1

(uidXi +Xidui).

We allow such transactions to yield some excess cash, which the manager may
want to use for immediate consumption. Let, therefore,Cdt = cRdt be the cash taken
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from the portfolio by the transactions dXi. (If we wanted to allow discontinuous Xi,
we could let dXi be finite and C(·) contain a Dirac impulsion. But we will not need
to do this because the solution we shall find has continuous Xi.) This is obtained
through transactions satisfying dW +Cdt = 0, or, dividing through by R,

S0(T )dX0 +
n

∑
i=1

uidXi+ cdt = 0.

Hence, we find that

dw =
n

∑
i=1

Xidui − cdt,

or, using (1.3),

dw =
n

∑
i=1

Xiui(λidt +σidb)− cdt.

It is customary to simplify this expression using the fractions ϕi and χ of the
portfolio defined as

ϕi =
XiSi

W
=

Xiui

w
, χ =

C
W

=
c
w
.

Since we allow short positions for the portfolio, ϕ is unconstrained in R
n.

Consumption, on the other hand, is assumed to be nonnegative; hence so must χ be.
We also use the vector notation λ ∈ R

n
+ and ϕ ∈ Δn (the simplex of Rn) for the

n-vectors of the λi and ϕi, i ≥ 1. We finally obtain

dw =
[
(ϕtλ − χ)dt+ϕtσdb

]
w. (1.4)

1.1.1.3 Utility

The utility derived by the manager, which he wants to maximize, is supposed to be
the sum of a running utility (which we may, of course, write directly in terms of c
instead of C; it is just a matter of lowering the discount rate by μ0)

∫ T

0
U(t,c(t))dt

and a bequest utility B(w(T )). Hence, he seeks to maximize

J = E

[
B(w(T ))+

∫ T

0
U(t,c(t))dt

]
. (1.5)

The utility functions U and B should be chosen to be increasing concave to model
risk aversion and satiation effects. It turns out that a decision that will lead to a
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simple solution of the optimization problem can be made by choosing them to be
the same fractional powers of c and w, respectively. Let p(·) be a given nonnegative
function and Π a given nonnegative constant. Let us thus choose γ ∈ (0,1) and

U(t,c) = p(t)1−γcγ = p(t)1−γ χγwγ , B(w) = Π 1−γwγ . (1.6)

We may, for instance, wish to have the future running utility of consumption in the
form π1−γCγ exp[δ (T − t)], i.e., discounted by a factor δ = μ0 +β . In that case, we
just take

p(t) = πeβ̃(T−t), β̃ = μ0 +
β

1− γ
. (1.7)

We are finally led to investigate a simple stochastic control problem of optimizing
(1.5) (1.6) under the scalar dynamics (1.4).

1.1.2 Solution

We investigate first the finite horizon problem.

1.1.2.1 Finite Horizon

We apply a standard dynamic programming technique. The Bellman equation for
the Value function V (t,w) is, making use of the notation (1.2),

∀(t,w) ∈ [0,T ]×R,

∂V
∂ t

+ max
ϕ∈Rn,χ∈R+

[
∂V
∂w

(ϕtλ − χ)w+
w2

2
ϕtΣϕ

∂ 2V
∂w2 +U(t,χw)

]
= 0,

∀w ∈ R, V (T,w) = B(w). (1.8)

We replace U and B with (1.6) and look for a solution of the form

V (t,w) = P(t)1−γwγ .

The simplifying fact is that now all individual terms in the equation have a
coefficientwγ , so that we may divide through by it, obtaining an ordinary differential
equation for P(t):

∀(t,w) ∈ [0,T ]×R, (1− γ)P(t)−γ Ṗ(t)+ max
ϕ∈Rn,χ∈R+

[
γP(t)1−γ(ϕtλ − χ)

+
1
2

ϕtΣϕγ(γ − 1)P(t)1−γ + p(t)1−γχγ
]
= 0,

P(T ) = Π .
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Moreover, the maximizations in ϕ on the one hand and in χ on the other
hand separate and yields further simplifications, giving with extremely simple
calculations the optimal ϕ� and χ� as

ϕ�(t) =
1

1− γ
Σ−1λ , χ�(t) =

p(t)
P(t)

. (1.9)

And, finally, the equation for P(t) is

Ṗ+
γ

2(1− γ)2 λ tΣ−1λ P+ p = 0. (1.10)

Let, therefore,

α :=
γ

2(1− γ)2 λ tΣ−1λ , (1.11)

to get

P(t) = eα(T−t)Π +

∫ T

t
eα(s−t)p(s)ds. (1.12)

Notice also that if p(·) is differentiable, then κ = 1/χ� can be directly obtained
as the solution of a linear differential equation:

κ̇ +

(
ṗ
p
+α
)

κ + 1 = 0, κ(T ) =
Π
π
. (1.13)

Many comments are in order. More complete discussions of this classic result
can be found in textbooks. We will make a minimum number of remarks.

Remark 1.1. 1. Formula (1.9) for ϕ� yields a constant composition of the portfolio.
Withdrawals for consumption should be made proportionally.

2. This formula is reminiscent of the corresponding formula in Markowitz’s theory
of static portfolio optimization (where S is a covariance matrix). See [110].

3. A “small” covariance matrix S tends to produce a “large” ϕ∗, leaving a smaller
share ϕ�

0 = (1−∑n
i=1 ϕ�

i ) for the riskless asset. Specifically, if
〈
1l,Σ−1λ

〉≥ 1−γ ,
then the prescription is to borrow cash to invest in risky assets.

4. χ�, though not constant, is also exceedingly simple, given by (1.9), (1.11), (1.12)
or by χ� = 1/κ and (1.13) if p is differentiable.

5. It readily follows from (1.10) that P(·) is always decreasing, so that P(t)≥ Π for
all t. Hence if Π > 0, then χ�(t)≤ p(t)/Π .

6. If p(t) is chosen according to (1.7), then ṗ/p = −β̃ is constant, and χ� is
obtained via (1.13) as a closed form. Let β ′ = β̃ − α . We shall see in the
next subsection that it is desirable that it be positive. Then one obtains χ� =
[(Π/π − 1/β ′)exp[−β ′(T − t)] + 1/β ′]−1. Noticeably, if β ′ > π/Π , then this
ensures that π/Π < χ� < β ′.
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7. A “large” Π and a small p make for a smaller χ�. If one cares about the bequest
to the next period, he should be parsimonious. In contrast, if Π = 0, then in the
end, as t → T , χ�(t)→ ∞. The entire portfolio is sold for consumption.

1.1.2.2 Infinite Horizon

The concern for long-run wealth, represented by the bequest function, may be
addressed by a utility performance index of the form

J = Eπ1−γ
∫ ∞

0
e−(β+μ0)tCγ dt.

(The coefficient π1−γ is there for the sake of preserving the dimension of J as a
currency amount.)

To deal with that case, in the portfolio model of Sect. 1.1.1.2, we set T = 0. And
we write the new criterion using β̃ as in (1.7):

J = Eπ1−γ
∫ ∞

0
e−(1−γ)β̃t cγ dt.

Equation (1.8) is now replaced by its stationary form:

(1− γ)β̃V = max
ϕ∈Rn,χ∈R+

[
∂V
∂w

(ϕtλ − χ)w+
w2

2
ϕtΣϕ

∂ 2V
∂w2 +π1−γχγwγ

]
.

Calculations completely similar to those of the previous paragraph show that the
optimum exists if and only if β̃ > α . (Otherwise, the portfolio may yield an infinite
utility.) We find P = π/(β̃ −α), so that we finally get

ϕ� =
1

1− γ
Σ−1λ , χ� = β̃ −α. (1.14)

Similar remarks can be made as above. We leave them to the reader.

1.1.3 Logarithmic Utility Functions

Other forms of the utility functions lead to closed-form solutions. Such an instance
is U(C) = −exp(−γC), γ > 0. Yet it is considered less realistic in terms of
representing the risk aversion of the portfolio manager. We refer to [118] for further
discussion. We propose here a different extension.

Adding to the criterion to be maximized a number independent of the controls ϕ
and χ clearly does not change the choice of optimal controls. The same holds if we
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multiply the criterion by a positive constant. Thus the criterion

J̃γ = E

[
Π 1−γ w

γ (T )− 1
γ

+

∫ T

0
p1−γ(t)

wγ (t)− 1
γ

dt

]

leads to the same optimal controls as the original one. However, this new criterion
presents the added feature that, as γ → 0, it has a limit

J̃0 = E

[
Π lnw(T )+

∫ T

0
p(t) lnw(t)dt

]
.

We therefore expect that the same formulas for ϕ� and χ�, but with γ = 0, should
hold for the criterion J̃0 with logarithmic utility functions. This is indeed correct.
However, the Value function is less simple. It is nevertheless a simple exercise to
check that the following Value function Ṽ , with

P(t) = Π +

∫ T

t
p(s)ds,

satisfies the Bellman equation with the same formulas ϕ� = Σ−1λ , χ� = p/P.
The Value function is

Ṽ (t,w) = P(t) lnw+
λ tΣ−1λ

2

[
(T − t)Π +

∫ T

t
(s− t)p(s)ds

]

+
∫ T

t
p(s)

(
ln

p(s)
P(s)

− 1

)
ds.

1.2 A Discrete-Time Model

We follow essentially the same path as in the continuous trading problem, but with a
discrete-time model, generalizing somewhat Samuelson’s solution [135]. But it will
be convenient to postpone somewhat the description of the market model.

1.2.1 Problem and Notation

1.2.1.1 Dynamics and Portfolio Model

Market

We want to allow discrete transactions, with a fixed time step h between transactions,
an integer submultiple of T . We set T = Kh and K := {0,1, . . . ,K − 1}. Let,
therefore, tk = kh, k ∈K be the trading instants.

As previously, the index 0 denotes a riskless asset for which
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S0(tk) = exp(μ0(k−K)h)S0(T ) = R(tk)S0(T ).

For i = 1, . . . ,n, let, as previously, ui(tk) = Si(tk)/R(tk), and let

τi(t) =
ui(t + h)−ui(t)

ui(t)

be the relative price increment of asset i in one time step,1 so that we have

ui(tk+1) = (1+ τi(tk))ui(tk).

The n-vector of τi is as usual denoted by τ .

Portfolio

Our portfolio is, as in the continuous trading theory, composed of Xi shares of asset
number i, i = 0,1, . . . ,n. Its worth is again

W (tk) =
n

∑
i=0

Xi(tk)Si(tk).

We prefer to use

w(tk) =
W (tk)
R(tk)

=
n

∑
i=0

Xi(tk)ui(tk).

We allow the portfolio manager to change the Xi at each time tk. Hence, we
must distinguish values before and after the transactions. We let Xi(tk), W (tk),
and w(tk) denote the values before the transactions of time tk and, when needed,
Xi(t

+
k ), W (t+k ), and w(t+k ) be their values after the transactions of time tk [with

Xi(t
+
k ) = Xi(tk+1)]. One exception to this rule is that ϕi(tk) will denote the fractions

after the transactions. The transactions of time tk may decrease the worth of the
portfolio by an amount C(tk) = R(tk)c(tk) available for immediate consumption.
Hence

n

∑
i=0

(Xi(t
+
k )−Xi(tk))ui(tk)+ c(tk) = 0

and
W (t+k ) =W (tk)−C(tk), w(t+k ) = w(tk)− c(tk).

Let

1We choose to consider τi as dimensionless, but this is an increment per time step, so that it might
be considered the inverse of a time. Avoiding that ambiguity complicates the notation.
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ϕi(tk) =
Xi(t+k )Si(tk)

W (t+k )
=

Xi(t+k )ui(tk)

w(t+k )
and χ(tk) =

C(tk)
W (tk)

=
c(tk)
w(tk)

be the decision variables of the manager. As previously, ϕ may lie anywhere in R
n,

while now, χ is constrained to be nonnegative and no more than one.
One easily obtains the dynamics of the portfolio as

w(tk+1) = [1+ϕt(tk)τ(tk)][1− χ(tk)]w(tk). (1.15)

1.2.1.2 Utility

We assume that the portfolio manager wants to maximize a weighted sum of the
expected utility of future consumption and of the expected utility of the portfolio
worth at final time T = tK = Kh; hence a performance index of the form

J = E

[

B(w(T ))+
K−1

∑
k=0

U(tk,c(tk))

]

. (1.16)

And as in the continuous trading theory, we shall specialize the analysis to fractional
power utility functions. Let Π be a given nonnegative constant and {pk}k∈K a given
sequence of nonnegative numbers. We set

U(tk,c) = p1−γ
k cγ = p1−γ

k χγwγ , B(w) = Π 1−γwγ . (1.17)

In formula (1.16), pK is not used. It will be convenient to define it as

pK = Π . (1.18)

We shall consider the logarithmic utility in Sect. 1.2.2.3.

1.2.2 Solution

1.2.2.1 Finite Horizon

We have to optimize criterion (1.16), (1.17) with the dynamics (1.15). We do this
via dynamic programming. Bellman’s equation reads

∀(k,w) ∈K×R+,V (tk,w)

= max
ϕ∈Rn,χ∈[0,1]

{
EV
(

tk+1,(1+ϕtτ(tk))(1− χ)w
)
+ p1−γ

k χγwγ
}
, (1.19)

with the terminal condition
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∀w ∈R+, V (T,w) = Π 1−γwγ . (1.20)

Assume that, for some number Pk+1,

V (tk+1,w) = P1−γ
k+1 w

γ ,

which is true for k = K − 1 with PK = Π . Then (1.19) yields

V (tk,w) = max
ϕ∈Rn,χ∈[0,1]

{
EP1−γ

k+1

(
[1+ϕtτ(tk)](1− χ)

)γ
+ p1−γ

k χγ
}
wγ ,

hence V (tk,w) = P1−γ
k wγ , with

P1−γ
k = max

ϕ∈Rn,χ∈[0,1]

{
EP1−γ

k+1

(
[1+ϕtτ(tk)](1− χ)

)γ
+ p1−γ

k χγ
}
.

This recurrence formula for Pk may be simplified as follows. Notice first that it can
be written as

P1−γ
k = max

χ∈[0,1]

{
P1−γ

k+1 max
ϕ∈Rn

E[1+ϕtτ(tk)]γ (1− χ)γ + p1−γ
k χγ

}
.

In the preceding equation, on the right-hand side, the market parameters enter only
the term

L(ϕ) := E[1+ϕtτ(tk)]γ . (1.21)

Let α be defined as

α1−γ := max
ϕ∈Rn

L(ϕ). (1.22)

This is a characteristic of the market. With this notation, the recursion for Pk

becomes

P1−γ
k = max

χ∈[0,1]
[P1−γ

k+1 α1−γ (1− χ)γ + p1−γ
k χγ ].

We now use the following “little lemma.”

Lemma 1.2. Let p, q, and r be positive numbers, and γ ∈ (0,1). Then

max
x∈[0,r]

{p1−γxγ + q1−γ(r− x)γ}= (p+ q)1−γrγ ,

it is obtained for

x =
p

p+ q
r, 1− x =

q
p+ q

r.
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Proof. It suffices to equate the derivative with respect to x to zero,

γ p1−γxγ−1 − γq1−γ(r− x)γ−1 = 0,

to get

r− x
x

=
q
p
,

hence x = rp/(p+ q), which lies in (0,r), and place this back in the quantity to
maximize. We check the second derivative:

γ(γ − 1)[p1−γxγ−2 + q1−γ(r− x)γ−2]

is negative for all x ∈ [0,1] since γ − 1 < 0. 
�
As a consequence, we find that

Pk = αPk+1 + pk, PK = Π = pK ;

hence, recalling (1.18) and (1.20),

Pk =
K

∑
�=k

α(�−k)p�.

We also obtain that the optimal consumption ratio χ� is

χ�(tk) =
pk

Pk
.

The optimal ϕ�, as well as the precise value of α , depends on the probability law we
adopt in the market model. We shall consider that question hereafter, but we may
nevertheless make some remarks similar to those for the continuous-time theory.

Remark 1.3. 1. ϕ�, maximizing L(ϕ), is constant, depending only on the market
model.

2. α is a measure of the efficiency of the market. The Pk are increasing in α . Hence
χ� is decreasing in α . As α goes to 0, χ∗ goes to 1.

3. If Π is large and the pk, k < K, are small, then χ∗ is small. In contrast, if Π = 0,
then χ�(tK−1) = 1. The entire portfolio is sold for consumption in the last step.

1.2.2.2 Infinite Horizon

We investigate now the formulation in an infinite horizon, which is another way of
addressing the long-run worth of the portfolio. Therefore, let a discount constant δ
be given, and let the performance index be

J = E

∞

∑
k=0

δ−khc(tk)
γ = E

∞

∑
k=0

δ−khχ(tk)γw(tk)
γ .
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(Again, a coefficient p1−γ , to parallel the finite horizon case, is useless since it would
only multiply the performance index by a positive constant.) We use a normalized
discount factor β defined by

δ h = β 1−γ .

The dynamic programming equation now reads

β 1−γV (w) = max
ϕ∈Rnχ∈[0,1]

E

{
V
(
(1+ϕtτ)(1− χ)w

)
+ χγwγ

}
.

Again, we look for a solution of the form V (w) = P1−γwγ . Hence

β 1−γP1−γ = max
χ∈[0,1]

{
P1−γ

[
max
ϕ∈Rn

E(1+ϕtτ)
]γ

(1− χ)γ + χγ
}
,

or, using the same notation (1.22) as previously,

β 1−γP1−γ = max
χ∈[0,1]

{P1−γα1−γ(1− χ)γ + χγ}.

We use the same “little lemma” to conclude that a solution exists provided that
β > α as

P =
1

β −α
, χ� =

β −α
β

.

The determination of ϕ∗ and α presents the same difficulties as in the finite horizon
case.

1.2.2.3 Logarithmic Utility Function

As in the continuous-time case, we expect to be able to replace the utility functions
in powers γ < 1 by logarithms and obtain the limit as γ → 0 of the preceding
formulas as the solution.

Indeed, we leave it to the reader to check that if we set U(tk,c) = pk lnC and
B(w) = pK lnw, then the value function takes the form V (tk,w) =Pk lnw+qk, where

Pk =
K

∑
i=k

pk.

The optimal portfolio composition ϕ� is obtained by solving maxϕ∈Rn E ln(ϕtτ),
but it is not necessary to actually compute this maximum to obtain the optimal
consumption ratio χ�, which is given by the same formula χ� = pk/Pk as previously.
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1.2.3 Market Models

The critical step in calculating the optimal portfolio composition is to carry out
maxϕ L(ϕ), where, for the fractional power utilities, L(ϕ) = E[(1 + ϕtτ)γ ]. The
expectation, relative to the random variable τ , depends on the market model.

1.2.3.1 Uniform Interval Market Model

We introduce now a typical interval market model, called uniform because we use
a uniform distribution for ω . Notice that in the following parts, there will be no
a priori probability associated to similar models.

We assume that we have an empirical measure of Eτ = λ and of the covariance
E(τ − λ )(τ − λ )t . For convenience, we call this covariance (1/3)Σ , where Σ is
necessarily nonnegative definite. Let σ be a square root of Σ . The choice of square
root is left to the modeler, but we furthermore request that, for all i,

n

∑
j=1

|σi j| ≤ 1+λi.

And we use as our uniform interval model

τ = λ +σω ,

where the coordinates of ω are independent random variables uniformly distributed
over [−1,1]. In such a model, the vector τ lies in the parallelotope λ +σC , where
C is the hypercube [−1,1]n.

In that model, it is possible to give a closed-form formula for L (1.21):

L(ϕ) =
1
2n

∫

C
(1+ϕt(λ +σω))γ dω .

We need the following notation: σ tϕ = ψ . Let Ĉ be the set of vertices of C , i.e., all
vectors (denoted by ω̂) whose coordinates are either −1 or 1. To make the formula
readable, we let

ς(ω̂) =
n

∏
i=0

ω̂i,

where ς(ω̂) is +1 if the number of positive coordinates of ω̂ is even, and −1 if it is
odd. Repeated use of Fubini’s theorem lets one integrate explicitly to obtain

L(ϕ) =
1

2n ∏n
i=1(γ + i)ψi

∑
ω̂∈Ĉ

ς(ω̂)[1+ϕt(λ +σω̂)]γ+n.
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Of course, this is not simple enough to let one calculate explicitly the optimizing
ϕ�. But one can compute the gradient of L with respect to ϕ for use in a numerical
procedure. Denote by ( 1

ψ ) a vector whose coordinates are 1/ψi. One finds

∇ϕ L(ϕ) =
1

2n ∏n
i=1(γ + i)ψi

∑
ω̂∈Ĉ

(λ +σω̂)ς(ω̂)
(
1+ϕt(λ +σω̂)

)γ+n−1

−σ
(

1
ψ

)
L(ϕ).

This expression is not very appealing. One can, however, check somewhat its
consistency with the continuous-time case or Markovitz’s mean-variance analysis
in the case where there is only one risky asset, an academic example and a bridge
to subsequent parts where the portfolio will often consist of one risky asset and a
riskless bond. See in particular Chap. 5. Note that in any meaningful application, λ 2

will be very small as compared to Σ , a fact we use to get approximations of the exact
formulas. We leave as an exercise to the reader to check that if γ = 1/2, one finds

ϕ� = 2
λ

λ 2 +Σ
� 1

1− γ
Σ−1λ ,

the same formula as (1.14) obtained in the continuous-time theory. Moreover, if
γ = 1/3, then one finds

ϕ� =
σ2 + 3λ 2−σ

√
σ2 − 3λ 2

λ (λ 2 +σ2)
� (3/2)λ

σ2 =
1

1− γ
Σ−1λ ,

i.e., the same formula as for the approximation.

1.2.3.2 An Empirical Market Model

To stress the large choice open to the modelization, and in keeping with the
philosophy of avoiding to infer a probability law reflecting information beyond
that actually available, we propose here a market model that seems to add as
little information as conceivably possible to the available information on past price
histories.

Assume that at time tk, a sequence of past prices of length � is known, from
which we derive the sequence {τ(tk− j)}, j = 1, . . . , �. Choose a single parameter:
a forget factor a, such that a� is small. Use as probability law for τ a law whose
(finite) support is just that set of past τ(k− j), each with a probability decreasing by
a factor a as we go one step backward, i.e., proportional to a j:

P(τk = τk− j) =
1− a
1− a�

a j−1.

This provides a very frugal probability law. The drawback is that no analytical
help is available to perform the computation of L(ϕ) and to minimize it, and
computations must be carried out entirely numerically at each time step.



Chapter 2
Option Pricing: Classic Results

2.1 Introduction

Several authors have proposed a nonstochastic version of the famous Black–Scholes
theory.

McEneaney [112] may have been the first to replace the stochastic framework
with a robust control approach. He derives the so-called stop-loss strategy for
bounded variation trajectories, as we do here. He also recovers the Black–Scholes
theory, but this is done at the price of artificially modifying the portfolio model with
no other justification than recovering the Itô calculus and the Black–Scholes partial
differential equation (PDE).

Cox, Ross, and Rubinstein [57] introduced a nonstochastic approach to the
theory of option pricing in a discrete-time setting. We will discuss their approach as
compared to the “interval market model” in the next chapter. Their discrete model
clearly involves no claim of being realistic for any finite time step. Its only objective
is to converge, as the time step vanishes, to a continuous random walk, to recover
either the Black–Scholes theory or another one with possible price jumps, depending
on how the market model behaves in that limiting process. This approach has been
generalized and extended by Kolokoltsov [95,97], as will be explained in Part IV of
the book.

The crucial point, usually attributed to Robert Merton, in the Black–Scholes
theory of option pricing [46] is that of finding a portfolio together with a self-
financed trading strategy that “replicates” (ensures the same return as) the option
to be priced. Hence, if no “arbitrage” (riskless profitable trading) is to exist in that
market, the price of the option should be equal to that of the replicating portfolio.

What is requested is that the portfolio and strategy constructed replicate the
option, i.e., yield the same payment to the owner for all possible outcomes of the
underlying stock’s value. As has been stressed by several authors, this statement is
not in terms of probabilities, and therefore the precise (probabilistic) model adopted

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 2,
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for a stock’s price should be irrelevant. As a matter of fact, it is known that if one
adopts the classic Samuelson model,

dS
S

= μdt +σdB, (2.1)

with B(t) a Wiener process, then the famous Black–Scholes equation and formula
do not contain μ . Explaining this fact has been a concern of many an article or
textbook. In our formulation, μ just does not appear in the problem statement. We
will further argue that the volatility σ appears only as a characteristic of the set of
allowable histories S(·), not as a probabilistic entity.

We first show an elementary theory that emphasizes this point and let us discuss
a zero-volatility, yet stochastic – in the sense that S(·) is a priori unknown and can
thus be thought of as stochastic or, in Aubin’s words, tychastic: see part V – model.
This model leads to the naive “stop-loss” strategy, which lacks robustness against
transaction costs. This naive theory is useful to set the stage for further discussion.

As in subsequent chapters, we adopt a control theoretic viewpoint where the
value of a portfolio is seen as a dynamic system, influenced by two exogenous
inputs: the underlying stock’s price and the trading strategy of the owner. From
this viewpoint, it is only natural to reinterpret the goal of replication as one of
controllability in the presence of disturbances. Now, a recent trend in control theory
is to deal with uncertain disturbances with little modeling but to try to ensure a
desired outcome against all possible disturbance histories within a prescribed set
of possible such histories. Often called the “robust control” approach, it leads to
a problem in dynamic games. This is the path we will follow here and, more
prominently, in the rest of the book.

In this chapter, we aim to recover the Black–Scholes formula. Hence our model,
although not stochastic, cannot be very different from Samuelson’s model. Indeed,
in contrast to a stochastic model, it formulates fewer hypotheses on the price process
since it implies nothing about repeated experiments – no such thing as a law of large
numbers. But this is of little help since we are in a domain where experiments cannot
be repeated. (This in itself can be seen as an epistemological obstruction to any valid
probabilistic model.)

The reader should be warned that, to keep this short chapter as simple as possible,
several choices of notation are inconsistent with those in subsequent chapters using
the “interval model,” in contrast to this chapter.

2.2 Problem Formulation

The time variable, always denoted t, ranges over a continuous time interval [0,T ]
of the real line. A given stock is assumed to have a time-dependent, unpredictable,
market price S(t) at time t. What we will consider the model of this process, or
market model, will be the set Ω of assumed possible time functions S(·).
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There also exists in that economy a riskless bond, the value of one unit of which
at time t is R(t), characterized by R(T ) = 1 and its rate μ0. Thus

R(t) = eμ0(t−T )

is a current value factor.
We are interested in replicating a security whose value at time T is a given

function M of S(T ). As is well known, in the case of a classic “vanilla call” of
exercise price (or “strike”) K ,

M(s) = max{s−K ,0}=: [s−K ]+,

and in the case of a put,

M(s) = [K − s]+.

In these cases, M is convex and has a finite growth rate at infinity, properties
discussed subsequently in more detail.

We will consider a portfolio composed of X shares of the stock and Y riskless
bonds. Its value at time t is thus

w(t) = X(t)S(t)+Y(t)R(t).

We will consider trading strategies of the form

X(t) = ϕ(t,S(t)) (2.2)

and discuss the choice of the function, or strategy, ϕ . Whether it is feasible to
instantly and continuously implement such a strategy is debatable, but it is a
standard assumption of the classic Black–Scholes theory. On the other hand, we
stress that we will always restrict the functions S(·) to a set Ω of continuous
functions so that it is mathematically unambiguous.

Trading in the riskless bonds will always be decided, beyond the initial time,
by the requirement that the portfolio must be self-financed. In the absence of
transaction costs, as assumed in this chapter as in the Black–Scholes theory, this
means that the amount of shares bought at time t, dX(t), at price S(t) should exactly
balance the amount of trading in the bond, dY (t), at price R(t). Therefore, we should
have the following portfolio model:

S(t)dX(t)+R(t)dY(t) = 0. (2.3)

As a result, inherent in our calculations will be that

dw(t) = X(t)dS(t)+Y(t)dR(t),
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or, using the fact that dR(t) = μ0R(t)dt and Y (t)R(t) = w(t)−X(t)S(t),

dw(t) = X(t)dS(t)+ μ0(w(t)−X(t)S(t))dt. (2.4)

The use we will make of that differential form will be made clear later.

2.3 Stop-Loss Strategy

In this section, we assume that the set Ω of possible market price histories S(·) is that
of continuous bounded-variation positive functions. One possible instance would be
a stochastic process driven by (2.1), with a stochastic drift μ and zero volatility σ .
In spite of its zero volatility, this can be a very unpredictable stochastic process, of
very high frequency, depending upon the stochastic process μ . But we will not need
that interpretation.

We want to find a function W (t,s) and a trading strategy ϕ(t,s) such that the use
of (2.2) will lead to w(t) =W (t,S(t)) for all t ∈ [0,T ], and this for all S(·) ∈ Ω . If
this is possible, and if W is of the class C1, then we must have

dW(t) =
∂W
∂ s

(t,S(t))dS(t)+
∂W
∂ t

(t,S(t))dt = dw(t), (2.5)

where dw(t) is to be taken in (2.4) and the differential calculus is to be taken in the
sense of Stieltjes. We have a way to make this hold for every S(·) ∈ Ω by equating
the terms in dS through the choice

X(t) =
∂W
∂ s

(t,S(t)), (2.6)

and further equating the remaining terms in dt yields

μ0(w(t)−X(t)S(t)) =
∂W
∂ t

(t,S(t)).

Using the previous equality again, we see that this will be satisfied if, ∀(t,s),

∂W
∂ t

(t,s)− μ0W (t,s)+ μ0s
∂W
∂ s

(t,s) = 0. (2.7)

If this partial differential equation has a solution that furthermore satisfies

∀s ∈R
+, W (T,s) = M(s), (2.8)
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then a portfolio of total value W (0,S(0)) at time 0, driven by the strategy thus
computed, indeed replicates the security considered. An equilibrium price for the
option in that model is thus W (0,S(0)).

The unique solution of the PDE (2.7), (2.8) is the (discounted) parity value:

W (t,s) = eμ0(t−T )M(eμ0(T−t)s). (2.9)

In the case of a call, say, the associated naive hedging strategy is just X = 0 if
the call is “out of the money”: S(t)< exp(μ0(t −T)K ), and X = 1 otherwise. The
solution is symmetrical for a put. This stop-loss strategy is easily seen to be indeed
self-financed and replicating the option.

Its undesirable feature shows up if the price of the underlying stock oscillates
close to the discounted value of the exercise price. Then the owner is perpetually in
doubt as to whether the price will rise, in which case he must buy a share, or fall, in
which case he must not. Any friction, such as transaction costs, ruins that strategy.
We argue that the weakness of that model, which would yield an essentially free
insurance mechanism, is in the fact that we ignored transaction costs in the portfolio
model, not in the choice of Ω , which may be more realistic than the more classic
next choice.

2.4 Black–Scholes Theory

2.4.1 Black–Scholes Equation

Assume now that the set Ω of allowable price processes still contains continuous
positive functions, but now of unbounded total variation, and all of a given quadratic
relative variation. That is, a positive number σ is given, and for any t ∈ [0,T ] and for
any infinite family of divisions indexed by N ∈N, 0 = t0 < t1 < · · ·< tN = t, with a
diameter – the largest interval tk+1 − tk – that goes to zero as N goes to infinity, we
require that

lim
N→∞

N

∑
k=1

(
S(tk+1)− S(tk)

S(tk)

)2

= σ2t.

Almost all trajectories generated by (2.1) have that property. But the drift has no
effect on the set of possible trajectories and, hence, does not appear here.

For this class of functions, we have the following lemma (see the next section).

Lemma 2.1. Let V (t,s) :R×R→R be twice continuously differentiable. Let S(·)∈
Ω , and assume that (∂V/∂ s)(t,S(t)) = 0 for all t ∈ [0,T ]. Then ∀t ∈ [0,T ],

V (t,S(t)) =V (0,S(0))+
∫ t

0

(
∂V
∂ t

(τ,S(τ))+
σ2

2
S(τ)2 ∂ 2V

∂ s2 (τ,S(τ))
)

dτ.
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We apply the lemma to V (t,s) = W (t,s)− X(t)s − Y (t)R(t), trying to keep
V (t,S(t)) equal to zero. First, ensure that (∂V/∂ s)(t,S(t)) = 0 through the choice
(2.6). Using our portfolio model (2.3) and again Y Ṙ = μ0(w−XS), we ensure that
V (t,S(t)) remains constant along any trajectory if,

∀(t,s) ∈ [0,T ]×R
+,

∂W
∂ t

− μ0W + μ0s
∂W
∂ s

+
σ2

2
s2 ∂ 2W

∂ s2 = 0,

and that this constant is zero through the boundary condition (2.8).
Not surprisingly, this is exactly the Black–Scholes equation. We recall, for the

sake of completeness, its famous semiexplicit solution:

W (t,s) = sN ( f (T − t,s))−K eμ0(t−T )N (g(T − t,s)), (2.10)

where

N (x) =
1√
2π

∫ x

−∞
e−

ξ 2

2 dξ

is the normal Gaussian distribution and

f (τ,s) =
1

σ
√

τ

(
ln

s
K

+

(
μ0 +

σ2

2

)
τ
)
, (2.11)

g(τ,s) =
1

σ
√

τ

(
ln

s
K

+

(
μ0 − σ2

2

)
τ
)
. (2.12)

It is a simple matter to check that it indeed converges to (2.9) as σ → 0 and that the
corresponding hedging strategy also converges to the stop-loss strategy.

Let us also note that formula (2.6) now yields

X(t) = N
(

f (T − t,S(t))
)
.

This is so because, as shown by direct calculation,

sN ′( f (T − t,s)) = K e−μ0(T−t)N ′(g(T − t,s)). (2.13)

2.4.2 Proof of Lemma

We prove here a lemma of deterministic Itô calculus, which yields Lemma 2.1 upon
placing b(t,S) = S2(∂ 2V/∂ s2)(t,S). This is a direct proof of a particular case of
Föllmer’s lemma [73].

Lemma 2.2. Let σ(·) be a measurable real function and z(·) a continuous real
function, both defined over the interval [0,T ], such that for any t ∈ [0,T ] and any
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sequence of divisions indexed by N, 0 = t0 < t1 < t2 < · · ·< tN = t with a diameter
h going to 0 as N → ∞, it holds that

lim
N→∞

N−1

∑
k=0

(z(tk+1)− z(tk))
2 =

∫ t

0
σ2(τ)dτ. (2.14)

Let f (t,x) be a function from [0,T ]×R to R twice continuously differentiable. And
assume that, for all t ∈ [0,T ],

∂ f
∂x

(t,z(t)) = 0.

Then, for all t ∈ [0,T ],

f (t,z(t)) = f (0,z(0))+
∫ t

0

(
∂ f
∂ t

(τ,z(τ))+
σ(τ)2

2
∂ 2 f
∂x2 (τ,z(τ))

)
dτ.

Proof. Consider a division 0 = t0 < t1 < t2 < · · ·< tN = t. Using a Taylor expansion
to second order with exact rest, we have

f (tk+1,z(tk+1))− f (tk,z(tk)) =

(
∂ f
∂ t

(tk,z(tk))

)
(tk+1 − tk)

+

(
∂ f
∂x

(tk,z(tk))

)
(z(tk+1)− z(tk))+

1
2

∂ 2 f
∂ t2 (tk+1 − tk)

2

+
∂ 2 f
∂ t∂x

(tk+1 − tk)(z(tk+1)− z(tk))+
1
2

∂ 2 f
∂x2 (z(tk+1)− z(tk))

2,

where all second partial derivatives are evaluated at a point (t ′k,z
′
k) on the line

segment [(tk,z(tk)) (tk+1,z(tk+1))].
By assumption, the second term on the right-hand side is equal to zero. We sum

these expressions for k = 0 to N−1. The left-hand side is just f (t,z(t))− f (0,z(0)).
We want to investigate the limit of the four remaining sums on the right-hand side.

The first sum is elementary: since t �→ (∂ f/∂ t)(t,z(t)) is continuous, we obtain
the following proposition.

Proposition 2.3.

lim
N→∞

N−1

∑
k=0

(
∂ f
∂ t

(tk,z(tk))

)
(tk+1 − tk) =

∫ t

0

∂ f
∂ t

(τ,z(τ))dτ.

Let us examine the quadratic terms. Again, it is a trivial matter to check that
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Proposition 2.4.

lim
N→∞

N−1

∑
k=0

(
∂ 2 f
∂ t2 (t

′
k,z

′
k)

)
(tk+1 − tk)

2 = 0.

Let us show

Proposition 2.5.

lim
N→∞

N−1

∑
k=0

(
∂ 2 f
∂ t∂x

(t ′k,z
′
k)

)
(tk+1 − tk)(z(tk+1)− z(tk)) = 0.

Proof. This is hardly more complicated than the previous fact, but we will deal
carefully with terms involving z(·). We know that that function is continuous
over [0, t] and, hence, uniformly so. Therefore, for any positive ε there exists a
sufficiently small h such that if the diameter of the division is less than h, then
|z(tk+1)− z(tk)|≤ε for all k. Moreover, z(t) remains within a compact, and thus so
do all z′k. Hence, f being of class C2, its second derivative evaluated in (t ′k,z

′
k) is

bounded by a number C. Therefore, for a small enough diameter, the absolute value
of the preceding sum is less than

N−1

∑
k=0

Cε(tk+1 − tk) =Cεt,

and hence we obtain the result claimed. 
�
We now want to prove the following proposition.

Proposition 2.6.

lim
N−1

∑
k=0

(
∂ 2 f
∂x2 (t

′
k,z

′
k)

)
(z(tk+1)− z(tk))

2 =

∫ t

0
σ(τ)2 ∂ 2 f

∂x2 (τ,z(τ))dτ.

To that end, we show two intermediary facts.

Fact 1

For any continuous real function a(·), we have that, for tk ≤ t ′k ≤ tk+1,

lim
N−1

∑
k=0

a(t ′k)(z(tk+1)− z(tk))
2 =

∫ t

0
a(τ)σ(τ)2 dτ.

Proof. Notice that the result trivially follows from assumption (2.14) whenever the
function a is piecewise constant. As a matter of fact, in the limit as h → 0, only
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a finite number of intervals [z(tk),z(tk + 1)] contain a discontinuity of a, and their
weight in the sum vanishes. For all the other ones, just piece together the intervals
where a is constant. There the differences are multiplied by a constant number.

Now, both the finite sums of the left-hand side and the integral are continuous
with respect to a(·) for uniform convergence. [The finite sums are linear in a(·).
Check the continuity at zero.] And since a is continuous over [0,T ], it is uniformly
continuous and can be approximated arbitrarily well, in the distance of the uniform
convergence, by a piecewise continuous function. The result follows.

Fact 2

For any continuous function b(t,z) we have for tk ≤ t ′k ≤ t ′k+1 and z(tk)≤ z′k ≤ z(tk+1)

lim
N−1

∑
k=0

b(t ′k,z
′
k)(z(tk+1)− z(tk))

2 =

∫ t

0
σ(τ)2b(τ,z(τ))dτ.

Proof. First, replace z′k by z(t ′k) as the second argument of b on the left-hand side.
Then just let a(t) = b(t,z(t)) in Fact 1 above, and the limit follows. Now, as
h → 0, and because b and z are continuous, b(t ′k,z

′
k)− b(t ′k,z(t

′
k)) converges to zero

uniformly in k. [They both approach b(tk,z(tk)) uniformly.] The result follows.
Set b = ∂ 2 f/∂x2 in Fact 4.2 above to obtain Proposition 2.6.

The four preceding propositions together yield the lemma. 
�

2.5 Digital Options

We consider now a “cash or nothing” digital option, i.e., one whose terminal
payment is M(S(T )) with

M(s) =

{
0 if s < K ,

D if s ≥ K ,
(2.15)

and D is a given amount, part of the contract.1 Since the theory for vanilla options
yields a perfect replication, this payment may be approximated with that obtained
by holding n call options at a strike K −D/n and short selling n such options at a
strike K . In that case, the terminal payment function is as shown in the graph of
Fig. 2.1, approximating the step function (2.15). Let us write Eq. (2.10) with (2.11),

1We could have, without loss of generality, taken D = 1 and then considered D such options. We
resisted this simplification to avoid losing the dimensionality: like K , D is an amount in some
currency.
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S

M
D

− D
n

Fig. 2.1 Approximating a step payment with n long calls and n short calls

(2.12) as W (K ; t,s). Accordingly, the above combined option leads to a premium
of W d

n (K ;0,S(0)), with

W d
n (K ;s, t) = nW (K −D/n;t,s)− nW(K ; t,s).

Its limit, as n → ∞, is clearly

W d(K ;t,s) =−D
∂W (K ; t,s)

∂K
.

Hence, we derive from the Black–Scholes theory for vanilla options the following
formula for a digital call [using again relation (2.13)]:

W d(K ;t,s) = De−μ0(T−t)N (g(T − t,s)). (2.16)
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Trading strategies designed to reduce risk (i.e., hedging strategies) are a widely
studied topic of research in finance. Usually this design is based on stochastic
models for the underlying assets. In this part, we introduce in a discrete-time setting
the deterministic modeling framework that will be used, in various forms including
continuous time versions, in this volume.

After a short introduction on hedging we introduce the basic underlying concept
of this framework, namely, the interval model. The interval model assumes that
prices at the next time instant can fluctuate between an upper and lower bound,
which are given.

We discuss the pricing of derivatives in interval models and optimal hedging
under robust-control constraints. Numerical algorithms are provided to calculate the
corresponding hedging strategies.

The first chapter of this part, Chap. 3, is introductory and contains well-known
material that can be found, for instance, in Hull [88] and Neftci [121]. The second



28 II. Hedging in Interval Models

chapter, Chap. 4, discusses pricing in interval models, and the third chapter, Chap. 5,
deals with optimal hedging under robust-control constraints. Most of the material
presented in Chap. 4 has appeared in a paper published in 2005 in Kybernetika
[132]; the material presented in Chap. 5 has not been published before. The work of
Berend Roorda on the topics discussed here was mainly done while he was at Tilburg
University, supported by a grant from the Netherlands Organization for Scientific
Research (NOW) through MaGW/ESR Project 510-01-0025.

Notation

Universal constants

• R: Set of real numbers
• R

+: Set of nonnegative real numbers

Main variables and parameters

• B
u,d : Binomial tree model with proportional jump factors u and d

• BCg: Best-case costs under strategy g
• BC∗(S0,V ): Best-case costs under RCC limit V on worst-case cost
• co I: Smallest convex subset containing subset I
• E j[S]: Expectation of S conditional on the information available at time t j

• F(.): Payoff function of option
• f j(S j): Option price at time t j if the price of the asset at time t j is S j

• FPI(M, F , S): Fair price interval
• G: Set of admissible hedging strategies
• G

V : Set of admissible hedging strategies under RCC limit V
• gi(S0, . . . ,Si): Amount of underlying asset held at time t j

• Hj: Realized hedge costs
• I

u,d : Interval model with maximal and minimal growth factor over each time step
u and d, respectively

• Ig(M,F,S): Cost range of strategy g
• LPR( f ,V ): Loss-profit ratio with option premium f and RCC limit V
• M: Model, i.e., sequence of N + 1 numbers in R

+

• N(μ ,σ2): Normal distribution with expectation μ and variance σ2

• Φ(d): Cumulative standard normal distribution evaluated at d
• Qg(F,S ): Total cost of hedging and closure
• RCC: Robust-cost constraint
• S: Asset price path {S0, . . . ,SN}
• S j: Price of asset at time t j

• σ : Volatility (standard deviation) of stock price
• T : Expiration time
• VaR: Value-at-Risk condition
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• WCg: Worst-case costs under strategy g
• X : Strike price
• xT: Transpose of vector x
• [Z]+: Maximum of values Z and 0



Chapter 3
Introduction

3.1 Why Hedge?

In many markets, companies face risks that are imposed from outside. For instance,
a company producing toys and selling them abroad is faced with a currency risk.
To protect the company from bankruptcy caused by this kind of risk, the company
might look for trading strategies that reduce this risk. A trading strategy that is
designed to reduce risk is called a hedging strategy. To reduce risk, hedgers can
trade futures, forward, and option contracts. Both futures and forward contracts are
agreements to buy or sell an asset at a future time T for a certain price (the so-called
strike price). Thus both parties commit themselves to some action at time T . The
difference between both contracts is that forward contracts are agreements between
private institutions/persons, whereas futures contracts are contracts that are traded
on an exchange. An option contract gives the holder the right to buy/sell an asset
by a certain date T for a certain price. An option that gives the holder the right to
buy an asset is called a call option, and one that gives the holder the right to sell an
asset is called a put option. Unlike with futures and forward contracts, holders of an
option are not obligated to exercise their right. For instance, with a call option, say
the right to buy some raw material at time T for a price of 2, if it turns out that at
time T the actual price of the material is 1, then a company holding this option will
not exercise its right to buy the material for a price of 2.

Forward contracts are designed to neutralize risk by fixing the price that the
hedger will pay or receive for the underlying asset. Option contracts provide
insurance. With an option a company can protect itself against, for example,
unfavorable price swings while benefiting from favorable ones. As in the preceding
example, the company holding the call option insures itself that it will not have to
pay more than 2 for its raw material at time T , and it can buy the raw material for
the actual price at time T if it is smaller than 2.

Another distinction between futures/forward contracts and option contracts is
that it costs nothing to enter into a futures contract, whereas the holder of an option
contract has to pay a price for it up front.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 3,
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Notice that a contract always involves two parties – the one writing the
contract and the one buying the contract. An important point to make about the
smooth functioning of the futures, forwards, and options markets is that there is
a mechanism to guarantee that both parties of a contract will honor the contract.
That is, there are mechanisms (like daily settlements) in place so that if one of the
parties does not live up to the agreement, the other party will not have to resort
to costly lawsuits. Furthermore, the markets should be such that for each side of
a contract there is someone that is prepared to take the opposite position in the
contract. Usually this means that in futures markets two other types of traders take
positions too, i.e., speculators and arbitrageurs. Speculators are willing to take on
the risk of a contract. Arbitrageurs take offsetting positions in different markets to
lock in a profit without taking any risk.

Hedging is used to avoid unpleasant surprises in price movements. This can be
appropriate if one owns an asset and expects to sell it at some future time T (like a
farmer who grows grain) or if one has to buy a certain asset at time T and wants to
lock in a price now (like the company who needs raw material at time T ). Another
reason for hedging can be that one is planning to hold a portfolio for a long period of
time and would like to protect oneself against short-term market uncertainties. High
transaction costs of selling and buying the portfolio back later might be a reason to
use this strategy. In that case one can use stock index futures to hedge market risk.

However, in practice many risks are not hedged. One reason is that risk hedging
usually costs money. Another reason is that one should look at all the implications
of price changes for a company’s profitability. It may happen that different effects
of a price change on the profitability of a firm will offset each other. That is, the
company is already hedged internally for this price change.

Problems that may arise in hedging include the hedger’s not knowing the exact
date the asset will be bought or sold, a mismatch between the expiration date of the
contract and the date required by the hedger, a hedger’s ability to hedge only a proxy
of the asset on the market.

Also, situations exist where one would like to mitigate a risk that will arise far
into the future at time T but there exist no futures contracts to hedge this risk (like a
pension fund that makes commitments to pay pensions in the distant future). A usual
approach to tackling such a situation is to roll the hedge forward by closing out
one futures contract and taking the same position in a futures contract with a later
delivery date and repeating this procedure until one arrives at time T .

As indicated previously, the main reason that hedging was introduced was to
reduce trading risk, that is, to shift (a part of) the risk to another trader who either
has greater expertise in dealing with that risk or who has the capability to shoulder
the risk. An important issue in the context of the latter case is that for large traders it
is in practice not always clear what the exact risk position is they have taken. Clearly
one should try to improve on this situation. One should avoid situations where large
traders cannot meet their commitments. How to improve on this is an ongoing
discussion. One line of thinking is to formulate more explicit rules traders must
follow. Within this context one should keep in mind that optimal trading strategies
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often occur at the boundaries of what is allowed. So these rules should anticipate
such behavior.

3.2 A Simplistic Hedging Scheme: The Stop-Loss Strategy

A well-known simple hedging strategy is the so-called stop-loss strategy. To
illustrate the basic idea, consider a hedger who has written a call option with a
strike price of X to buy one unit of a stock. To hedge his position, the simplest
procedure the hedger could follow is to buy one unit of the stock when its price
rises above X and to sell this unit again when its price drops below X . In this way
the hedger makes sure that at the expiration time T of the option he will be in a
position where he owns the stock if the stock price is greater than X . Figure 3.1
illustrates the selling and buying procedure.

Note that basically four different situations can occur. Denoting the stock price at
time t by S(t), (1) S(0) and S(T ) are less than X ; (2) S(0) and S(T ) are greater than
X ; (3) S(0) > X and S(T ) < X ; or (4) S(0) < X and S(T ) > X . Denoting [K]+ =
max{K,0}, it follows directly that the total revenues from hedging and closure under
these four different scenarios are as follows:

(1) −[S(T)−X ]+ = 0,
(2) −S(0)+ S(T)− [S(T)−X ]+ = X − S(0),
(3) −S(0)+X − [S(T)−X ]+ = X − S(0),
(4) −X + S(T)− [S(T)−X ]+ = 0,

respectively. Notice that in cases (1) and (4), S(0) < X . Therefore, we can rewrite
the total revenues from hedging and closure in compact form as −[S(0)−X ]+. We
state this result formally in a theorem.

S (t)

tt1

buy

t2

sell

t3

buy

T

X

Fig. 3.1 Stop-loss strategy
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Theorem 3.1. The total costs of hedging and closure for a call option using a stop-
loss strategy is Qstop−loss(S0) = [S(0)−X ]+. �
Or, stated differently, the total cost of hedging and closure equals the intrinsic value
of the option.

However, notice that we ignored transaction costs associated with buying and
selling the stock under this strategy. Furthermore, if we assume that trading takes
place continuously in time, then an important issue is that the hedger cannot know
whether, when the stock price equals X , it will then rise above or fall below X . These
issues imply that in practice this hedging scheme usually does not work as well as
one might have hoped. For a further discussion on this issue we refer the reader to,
for example, [88].

3.3 Risk-Free Hedging in the Binomial Tree Model

In this section we recall the well-known binomial tree model that was analyzed by
Cox et al. [57] to price options under the assumption that there exist no arbitrage
opportunities.1 For a more extensive treatment of this subject, we refer the reader
to, for example, Hull [88, Chap. 12].

Consider a market with a single underlying asset. Assume a discrete-time setting
where time points are indicated by t j, j = 0,1,2, . . .. The price of the asset at time
t j will be denoted by S j. An asset price path is a sequence

S = {S0, . . . ,SN},
where the initial price S0 is fixed throughout and tN represents the time horizon,
which is also assumed to be fixed. The binomial tree model Bu,d consists of all
price paths that just allow one specific upward and downward price movement at
any point in time:

B
u,d := {S | S j+1 ∈ {d jS j,u jS j} for j = 0,1, . . . ,N − 1}.

Here u j and d j are the proportional jump factors at time t j. We depict this in Fig. 3.2.
Now consider an initial portfolio of a trader who sold one option contract at time

t0 to buy the asset at price X at time tN (i.e., he went short one European2 call
option with a strike price of X) and who owns a fraction Δ0 of the asset. Within this
binomial model framework one can easily price this option over time and design a
trading strategy on the asset such that the final value of this portfolio, where Δ0 is
chosen in a specific way that will become clear later on, is independent of the price
path of the asset. That is, if at any point in time we adapt the fraction of the asset
in our portfolio according to this, so-called delta hedging, trading strategy, then the
(net present) value of the portfolio will remain the same. Thus this trading strategy

1That is, it is not possible to earn a profit on securities that are mispriced relative to each other.
2A European style option contract can be exercised only at the option’s expiration date.
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tells us at any point in time how many units of the stock we should hold for each
option contract in order to create a portfolio whose value does not change over time.
Such a risk-free portfolio can be set up because the price of the asset and option
contract have the same underlying source of uncertainty: the change in asset prices.

To determine this option contract’s price and a strategy to trade it over time,
we proceed as follows. Let f j(S j) denote the value (price) of the option contract at
time t j if the price of the asset at time t j is S j. Assume that our portfolio consists at
time t j of Δ j shares of the asset and the option contract. Then, since the trader has
the obligation to pay the buyer of the option contract the value of the contract at tN ,
the value of his portfolio at time t j+1 is

Δ ju jS j − f j+1(u jS j) if S j+1 = u jS j and Δ jd jS j − f j+1(d jS j) if S j+1 = d jS j,

if the stock price moves up/down, respectively.
Thus the portfolio has the same value in both scenarios if Δ ju jS j − f j+1(u jS j) =

Δ jd jS j − f j+1(d jS j), that is, if we choose Δ j as follows:

Δ j =
1
S j

f j+1(u jS j)− f j+1(d jS j)

u j − d j
. (3.1)

Stated differently, if we choose Δ j as the ratio of the change in the price of the stock
option contract to the change in the price of the underlying stock [cf. (3.1)], then
the portfolio is risk free and must therefore earn the risk-free3 interest rate r j. Thus,
denoting the time elapsed between t j+1 and t j by Δ t j, we obtain the present value of
the portfolio at time t j as

(Δ ju jS j − f j+1(u jS j))e
−r jΔ t j .

On the other hand, we know that this value equals Δ jS j − f j(S j). So we get

(Δ juS j − f j+1(u jS j))e−r jΔ t j = Δ jS j − f j(S j).

Sj

Sj+1= ujSj

Sj+1= djSj

Fig. 3.2 Asset price movements in binomial tree

3Usually this is the interest rate at which banks will lend to each other.
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Substitution of Δ j from (3.1) then yields the following backward recursion formula
for the option price f j:

f j(S j) =
f j+1(u jS j)(1− d je−r jΔ t j )+ f j+1(d jS j)(u je−r jΔ t j − 1)

u j − d j

= q j f j+1(u jS j)+ (e−r jΔ t j − q j) f j+1(d jS j), with (3.2)

fN(SN) = [SN −X ]+. (3.3)

Here q j :=
1−d je

−r jΔt j

u j−d j
.

From this recursion formula for the price (3.2) we can now also derive directly the
following recursion formula for the corresponding delta-hedging trading strategy:

Δ j(S j) = λ jΔ j+1(u jS j)+ (1−λ j)Δ j+1(d jS j), with (3.4)

ΔN−1(SN−1) =
[uN−1SN−1 −X ]+− [dN−1SN−1 −X ]+

(uN−1 − dN−1)SN−1
. (3.5)

Here λ j = u jq j.
We will just show the correctness of (3.4). That (3.5) is correct is easily verified.
Substitution of (3.2) into (3.1) gives

Δ j(S j) =
1
S j

f j+1(u jS j)− f j+1(d jS j)

u j − d j

=
1

S j(u j − d j)

{
q j f j+2(u

2
j S j)+ (e−r jΔ t j − q j) f j+2(u jd jS j)

−q j f j+2(u jd jS j)− (e−r jΔ t j − q j) f j+2(d
2
j S j)
}

=
q j

S j(u j − d j)

{
f j+2(u

2
jS j)− f j+2(u jd jS j)

}

+
e−r jΔ t j − q j

S j(u j − d j)

{
f j+2(u jd jS j)− f j+2(d

2
j S j)
}

=
u jq j

(u jS j)(u j − d j)

{
f j+2(u j(u jS j))− f j+2(d j(u jS j))

}
+

d j(e−r jΔ t j − q j)

(d jS j)(u j − d j)
{

f j+2(u j(d jS j))− f j+2(d j(d jS j))
}

= λ jΔ j+1(u jS j)+ (1−λ j)Δ j+1(d jS j).

Remark 3.2. (1) Notice that for all j, 0 ≤ Δ j ≤ 1.
(2) The same procedure can also be used to value an option to sell an asset at a

certain price at time tN (European put option) and to determine a trading strategy
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Fig. 3.3 Put option valuation in binomial tree

such that the net present value of a portfolio consisting of the option and a
number of shares does not change over time.

(3) The presented formulas can be used also to value so-called American style
option contracts, i.e., option contracts that can be exercised at any point t j

in time. Working backward in time, the value of such an option at time t j is
the maximum of the value given by (3.2) at t j and the payoff from exercise at t j.
We illustrate this in Example 3.3 below. �

Example 3.3. Since European and American call options (with no dividend
payments for the stock) yield the same price, we will consider in this example
the valuation of a put option contract in a two-step binomial model. The initial
price of the corresponding stock is 190 euros and the strike price is 200 euros. We
assume that each time step is 3 months long and the risk-free annual interest rate
is 12%. In the first time step the price may go up by a factor u0 =

20
19 and down by

a factor d0 =
18
19 . In the second time step the potential growth factor is u1 = 1.1 and

the potential decline factor is d1 = 0.98. This leads to the stock prices illustrated in
Fig. 3.3. The upper number at each node indicates the stock price.

The payoff from the European put option is at time tN given by [X − SN ]
+.

At time t j, j < N its value is determined by the backward recursion (3.2), where
q1 = 0.408, q0 = 0.766, and r jΔ j = 0.03. At each node of the tree the lower number
indicates the option price. In Fig. 3.3a the price of the European style option is
indicated. Figure 3.3b shows how prices are affected if early exercise of the option
is allowed. �
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3.4 Relationship with the Continuous-Time
Black–Scholes–Merton Model

The binomial model is often used numerically to value options and other derivatives.
This is motivated from the well-known Black–Scholes (or Black–Scholes–Merton
or Samuelson) model (see [46]). In their seminal paper, Black and Scholes assumed
that the relative return on a stock (with no dividend payments) in a short period of
time was normally distributed. Assuming that μ is the expected return on the stock
and σ is the standard deviation (volatility) of the stock price S, the expected return
over the time interval [t0, t0 +Δ t] is then μΔ t, whereas the standard deviation of the
return over this time interval is σ

√
Δ t. That is,

ΔS
S

∼ N(μΔ t,σ2Δ t), (3.6)

where ΔS is the change in the stock price S from t = t0 to t = t0 +Δ t, μ is the
expected return on the stock, and σ is the standard deviation of the stock price.

Following Merton’s approach (e.g., [118]) this can be motivated as follows.
Assuming that the expectation mentioned below exists, consider the random variable

ΔWj = (S j − S j−1)−E j−1[S j − S j−1].

Here, E j−1[S] is the expectation of S conditional on the information that is available
at time t j−1.

Thus ΔWj is the part in S j − S j−1 that cannot be predicted given the available
information at time t j−1. Moreover, we assume that ΔWj can be observed at time
t j, that is, E j[ΔWj] = ΔWj, and that the ΔWj are uncorrelated across time. ΔWj is
called the innovation term of the stock price because

S j = S j−1 +E j−1[S j − S j−1]+ΔWj.

Now let Vj = E0[(ΔWj)
2] denote the variance of ΔWj and V = E0[(∑N

j=1 ΔWj)
2] the

variance of the cumulative errors. Since the ΔWj are uncorrelated across time, it
follows that

V =
N

∑
j=1

Vj.

In finance the next three assumptions on Vk and V are widely accepted.

Assumption 3.4. Consider a fixed time interval [t0, t0 +T ], where stock prices are
observed at N equidistant points in time t j, j = 0, . . . ,N. Then there exist three
positive constants ci > 0, i = 1,2,3, that are independent of the number of points N
such that:

1. V ≥ c1 > 0, that is, increasing the number of observations of stock prices will not
completely eliminate risk. There always remains uncertainty about stock prices.
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2. V ≤ c2 < ∞, that is, if more observations of stock prices, and therefore more
trading, occurs, then the pricing system will not become unstable.

3.
Vj

max{Vj , j=1,...,N} ≥ c3, j = 1, . . . ,N, that is, market uncertainty is not concentrated

in some special periods. Whenever markets are open, there is at least some
volatility. �

Merton [118] used these three assumptions to prove that the innovation term ΔWj

has a variance that is proportional to the length of the time interval Δ t that has
elapsed between t j and t j−1 (see also [121] for a proof of the next result).

Theorem 3.5. Under Assumption 3.4 there exist finite constants σ j that are inde-
pendent of Δ t such that Vj = σ2

j Δ t. The σ j depend on the available information at
time t j−1. �
The next step to motivate (3.6) is to give an approximation for the conditional
expectation of the change in stock prices E j−1[S j − S j−1]. Notice that this expec-
tation depends both on the available information at time t j−1, which we will denote
by I j, and on the length of the time interval Δ t. Assuming that this is a smooth
function f (I j−1,Δ t) we can use Taylor’s theorem to approximate this expectation as
follows:

E j−1[S j − S j−1] = f (I j−1,0)+
∂ f (I j−1,Δ t)

∂Δ t
Δ t + h((Δ t)2),

where h(.) contains the higher-order terms in Δ t. Now, if Δ t = 0, then time will
not pass and the predicted change in stock prices will be zero, i.e., f (I j−1,0) = 0.
Therefore, neglecting the higher-order terms in Δ t we have that

E j−1[S j − S j−1]≈ ∂ f (I j−1,Δ t)
∂Δ t

Δ t. (3.7)

Therefore, assuming additionally that the increments have a normal distribution,4

we arrive at (3.6).
Assumption (3.6) implies that the stock price S(t) has a lognormal distribution.

That is, given the price of the stock at time t = 0 is S0, the distribution of the natural
logarithm of the stock at time t is

ln(S(t))∼ N(ln(S0)+

(
μ − σ2

2

)
t,σ2t).

Thus the expectation and variance of S(t) are

E[S(t)] = S0eμt and σ2[S(t)] = S2
0e2μt(eσ2t−1), respectively.

4Together with the previous assumptions made on Wj this implies that Wj is a Brownian motion.
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Furthermore, we conclude with 95% confidence that

ln(S0)+

(
μ − σ2

2

)
t − z α

2
σ
√

t < ln(S(t))< ln(S0)+

(
μ − σ2

2

)
t + z α

2
σ
√

t,

where z α
2
≈ 1.96 is the number that satisfies Φ(z α

2
) = α

2 = 0.975. Here Φ(d) is the

cumulative standard normal distribution evaluated at d.5 This implies that

S0 ∗ d := e
ln(S0)+(μ− σ2

2 )t−z α
2

σ
√

t
< S(t)< e

ln(S0)+(μ− σ2
2 )t+z α

2
σ
√

t
=: S0 ∗u.

Thus, there is a 95% probability that the stock price will lie between S0d and S0u.
These numbers u and d give, then, some educated guesses for the corresponding
numbers in the interval model we will discuss in Sect. 3.5.2.

In practice when the binomial model is used to value derivatives, and conse-
quently Δ t is small, one often uses u = 1

d = eσ
√

Δ t . This choice has the advantage
that the tree recombines at the nodes, that is, an up movement followed by a down
movement leads to the same stock prices as a down movement followed by an up
movement. Furthermore, since ud = 1, one can easily calculate the price at any
node. Notice that within the foregoing context with z α

2
= 1, this choice implies that

there is a 16% probability that the stock price will be lower, a 16% probability that
it will be higher, and a 68% probability that it will be between these upper and lower
bounds.

Black, Scholes, and Merton also derived pricing formulas for European calls
and puts under the assumption that stock prices change continuously under the
assumption of (3.6). They showed that the corresponding unique arbitrage-free
prices for call and put options are

f0(S0) = Φ(d1)S0 − e−r(tN−t0)Φ(d2)X and

f0(S0) = e−r(tN−t0)Φ(−d2)X − S0Φ(−d1), (3.8)

respectively, where d1 =
ln(

S0
X )+(r+ σ2

2 )(tN−t0)
σ
√

tN−t0
, d2 = d1 −σ

√
tN − t0.

Example 3.6. Consider the pricing of a European call option when both the stock
and strike prices are 50 euros, the risk-free interest rate is 10% per year, the volatility
is 40% per year, and the contract ends in 3 months. Then, with r = 0.1, σ = 0.4,
tN − t0 = 3/12, and S0 = X = 50, the price of this call option is, according to (3.8),
f0 = 4.58. In Fig. 3.4 we illustrate the pricing of this option using (3.2), (3.3) in a
corresponding binomial tree with N = 3, which implies Δ t = 1/12 and u = 1

d =

eσ
√

Δ t = 1.1224. The price that results in this case is f0 = 4.77. If we take a smaller
grid N = 6, implying Δ = 1/24 and u= 1

d = eσ
√

Δ t = 1.1224, a price of 4.42 results.

5Or, the probability that a variable with a standard normal distribution will be less than d.
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Fig. 3.4 Call option valuation in binomial tree

It can be shown in general that by increasing the number of grid points N, the price
in the binomial model will converge to the continuous-time-model price (3.8). �

3.5 Risk Assessment Models

3.5.1 Current Models

Since the publication of the Black–Scholes formula [46], the theory of option
pricing has gone through extensive developments in both theory and applications.
Today it is the basis of a multibillion-dollar industry that covers not only stock
options but also contracts written on interest rates, exchange rates, and so on. The
theory has implications not only for the pricing of derivatives, but also for the
way in which the risks associated with these contracts can be hedged by taking
market positions in related assets. In fact the two sides of the theory are linked
together inextricably since the theoretical price of an option is usually based on
model assumptions that imply that all risk can be eliminated by suitable hedging. In
daily financial practice, hedging is a theme that is at least as important as pricing;
indeed, probably greater losses have been caused by misconstrued hedging schemes
than by incorrect pricing.

Given the size of the derivatives markets, it is imperative that the risks associated
with derivative contracts be properly quantified. The idealized model assumptions
that usually form the basis of hedging constructions are clearly not enough to
create a reliable assessment of risk. Value-at-Risk (VaR) was introduced by Morgan
[119] as a way of measuring the sensitivity of the value of a portfolio to typical
changes in asset prices. Although the VaR concept has been criticized on theoretical
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grounds (see, for instance, Artzner et al. [2]), it has become a standard that is
used by regulatory authorities worldwide. For portfolios with a strong emphasis
on derivative contracts, the normality assumptions underlying the VaR methodology
may not be suitable, and additional ways of measuring risk are called for to generate
a more complete picture.

Often, stress testing is recommended, in particular by practitioners, as a method
that should supplement other measures to create a full picture of portfolio risk
(see, for instance, Basel Committee [24], Laubsch [107], and Greenspan [78]).
The method evaluates the performance of given strategies under fairly extreme
scenarios. In particular, in situations where worst-case scenarios are not easily
identified, stress testing on the basis of a limited number of selected scenarios may
be somewhat arbitrary, however. It would be more systematic, although also more
computationally demanding, to carry out a comprehensive worst-case search among
all scenarios that satisfy certain limits.

Major concerns associated with worst-case analysis are firstly, as already men-
tioned, the computational cost and, secondly, the dependence of the results on the
restrictions placed on scenarios. The latter problem cannot be avoided in any worst-
case setting; in the absence of restrictions on scenarios, the analysis would not lead
to meaningful results. To some extent, the second problem may be obviated (at the
cost of increased computational complexity) by looking at the results as a function
of the imposed constraints. Among an array of risk management tools that are likely
to be used jointly in practice, worst-case analysis may be valued as a method that is
easily understood also by nonexperts.

In the standard Black–Scholes model, there is one parameter that is not directly
observable, volatility. When the value of this parameter is inferred from actual
option prices, quite a bit of variation is seen both over time and across various
option types. It is therefore natural that uncertainty modeling in the context of option
pricing and hedging has concentrated on the volatility parameter. In particular, the
so-called uncertain volatility model has been considered by a number of authors
[18, 108, 146]. In this model, volatility is assumed to range between certain given
bounds, and prices and hedges are computed corresponding to a worst-case scenario.

The uncertain volatility model as proposed in the cited references assumes
continuous trading, which is of course an idealization. In the following sections,
we consider a discrete-time version that we call the interval model. In this model,
the relative price changes of basic assets from one point in time to the next are
bounded below and above, but no further assumptions concerning price movements
are made.

3.5.2 Interval Model

Interval models naturally arise in the context of markets where uncertainty instead
of risk plays a dominant role, that is, if the uncertainty cannot be quantified in, e.g.,
a probability distribution. For instance if one would like to launch a completely
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new product for which there as yet no market, it is almost impossible to assess
the involved risk of price changes. Also, in actuarial science well-known variables
that are uncertain are, for example, life expectancy, evolution of wages, and interest
rates. Further, in general, model risk cannot always be quantified in a stochastic
framework. Therefore, we will approach price uncertainty here differently. We will
assume that tomorrow’s prices can fluctuate between some upper and lower bounds,
which are given. For the rest we do not have a clue as to which price in this interval
will be realized.

Formally, an interval model is a model of the form

I
u,d := {S | S j+1 ∈ [dS j,uS j] for j = 0,1,2, . . .}, (3.9)

where u and d are given parameters satisfying d < 1 < u. The following figure
illustrates a typical step in the price path of an interval model.

S j ��
������ S j+1 = vs j, d ≤ v ≤ u

dS j

uS j

The model parameters u and d denote respectively the maximal and minimal growth
factor over each time step.

An important issue is how these models relate to the binomial tree model and the
continuous-time Black–Scholes–Merton model considered in Sect. 3.3.

The interval model may be compared to the standard binomial tree model with
parameters u and d [57]:

B
u,d := {S | S j+1 ∈ {dS j,uS j} for j = 0,1,2, . . .}.

The binomial tree model just allows one specific upward and downward price
movement. It provides boundary paths for the interval model I

u,d . As already
mentioned in Sect. 3.3, binomial models are motivated mainly by the fact that they
can be used to approximate continuous-time models by letting the time step tend
to zero. In contrast, the interval model may be taken seriously on its own, even for
time steps that are not small.

Compared to the continuous-time modeling framework of Black, Scholes, and
Merton, we recall from Sect. 3.4 that the continuous time models postulate a
lognormal distribution for future prices. That is, with t0 = 0,

ln

(
S(t)
S0

)
∼ N

(
t

(
μ − σ2

2

)
,σ

√
t

)
.
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The stepwise comparison with interval models is straightforward. For a given price
S0 at time t0 = 0, the statement on the next price S1 at time t1 is

ln

(
S1

S0

)
∈ [ln(d), ln(u)] (3.10)

according to the interval model, while the continuous-time model postulates

ln

(
S1

S0

)
∼ N

(
μ − σ2

2
,σ
)
. (3.11)

The first statement is nondeterministic, though it may be interpreted in a stochastic
sense, with σ -field { /0, [ln(d), ln(u)]} and their complements in R, and probability
one assigned to the interval. Under Assumption (3.11), the statement (3.10) is true
with probability Φ(

ln(u)−μ
σ − σ 2

2 )−Φ(
ln(d)−μ

σ − σ 2

2 ). In particular, under the extra
symmetry condition ud = 1, u and d are fixed by specifying a confidence level for
that probability. It is harder to compare the models globally over several time steps.



Chapter 4
Fair Price Intervals

4.1 Fair Price Interval of an Option: The General
Discrete-Time Case

Consider again the discrete-time setting where time points are indicated by t j, j =
0,1,2, . . . . We consider in this section a market with a single underlying asset. There
are no conceptual difficulties, however, in extending the analysis to a situation with
multiple assets. To simplify formulas, we assume zero interest rates; this assumption
is not essential.

Our basic framework is nonprobabilistic. Let S denote the asset price path

S = {S0,S1,S2, . . . ,SN}, (4.1)

where tN represents the time horizon, which will be fixed in the subsequent
discussion. A model M is a collection of such sequences of real numbers,

M⊂ (R+)N+1; (4.2)

no probability structure is imposed at the outset. A European derivative maturing at
time tN is specified by a payoff function F(·); the value of the derivative at time tN
for a path {S0, . . . ,SN} is F(SN). We will consider models in which asset prices are
always positive, and so we can look at the payoff function as a function from (0,∞)
to R. We note that if such a function is convex, it is also continuous.

We consider a portfolio consisting of one option owed (short position) and a
quantity γ of the underlying asset held (long position). Positions are closed at the
expiry of the derivative. A strategy is a collection of strategy functions

{g0(S0),g1(S0,S1), . . . ,gN−1(S0, . . . ,SN−1)}

that at each time t j determine the quantity of the underlying asset to be held.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 4,
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Note that strategies do not require knowledge of the future, that is, they are
nonanticipating by definition. A specific subclass of strategies we will consider
are the so-called path-independent strategies. Path-independent strategies take only
the current price of the underlying into account and can therefore be characterized
by strategy functions g j(S j), or, stated differently, the trader’s information structure
is of the closed-loop perfect state pattern when strategies in general are used,
whereas in the case of path-independent strategies a trader just has feedback perfect
state information on the price process.
As an example we recall from previous sections the following two strategies:

• The (left-continuous) stop-loss strategy: g j(S j) = 0 if S j ≤ X , and g j(S j) = 1 if
S j > X , where X is the strike price, which may be used to hedge, e.g., a short
European call option;

• The delta strategy [see (3.4), (3.5), where F(.) is the payoff function for a
European call option] with parameters F(·), u, and d, which is given by strategy
functions Δ j that are defined recursively by

ΔN−1(SN−1) =
F(uSN−1)−F(dSN−1)

(u− d)SN−1
, (4.3)

Δ j(S j) = λ Δ j+1(uS j)+ (1−λ )Δ j+1(dS j), (4.4)

where λ := u(1−d)
u−d , which may be used to construct a risk-free portfolio

consisting of a short European call option and a fraction Δ of the asset.

A strategy g is said to be continuous if the strategy functions are continuous
functions of their arguments. The delta strategy is continuous; the stop-loss strategy
is not.

To a given hedging strategy g := {g0(S0), . . . ,gN−1(S0, . . . ,SN−1)} and a given
price path S := {S0, . . . ,SN} we associate the total cost of hedging and closure
defined by

Qg(F,S ) := F(SN)−ΣN−1
j=0 g j(S0, . . . ,S j)(S j+1 − S j). (4.5)

The first term represents the cost of closure of a short position in the derivative at
the time of expiry, and the second term (appearing with a minus sign) represents
the gains from trading in the underlying according to the hedging strategy. For a
given model M and a given initial price S of the underlying asset, the cost range of
a strategy g is defined as the set of all possible total costs for paths in the model that
start at the given initial price:

Ig(M,F,S) := {Qg(F,S ) | S = (S0, . . . ,SN) ∈M, S0 = S}. (4.6)

Given some initial value S for the underlying asset, a price f for a European
derivative with payoff function F is said to be a fair price within the model M if for
all strategies g there are paths S1 and S2 in M such that

Qg(F,S1) ≤ f ≤ Qg(F,S2). (4.7)
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For any given subset I of R, let co I denote the smallest convex subset of R

containing I. Then the preceding definition of a fair price may also be expressed as

f ∈ ∩g co Ig(M,F,S), (4.8)

where the intersection takes place over all strategies. The right-hand side in (4.8)
is an interval, which could reduce to a single point. Since this intersection of the
cost intervals associated to all strategies can also be interpreted as the set of option
premiums that are consistent with arbitrage pricing, we refer to it as the fair price
interval FPI(M, F , S) corresponding to the model M, the payoff function F(·), and
the initial price S. From the definition it follows that

if M1 ⊂M2, then FPI(M1, F, S)⊂ FPI(M2, F, S). (4.9)

Intervals of fair prices are discussed by Pliska [127, Sect. 1.5] in a single-period
setting and also appear in a stochastic continuous-time context; see, for instance, El
Karoui and Quenez [71].

Remark 4.1. In the preceding definition, a price f can be fair even if there exists a
strategy that generates costs that are equal to f along some (but not all) paths and
that are less than f along all other paths. It should be noted, though, that in our
nonprobabilistic setting, no positive statement is made concerning the probability
that a path with costs less than f will occur. We believe that, among the various
possible definitions of the notion of a “fair price,” the one proposed above must be
chosen if one wants to capture both the usual Cox–Ross–Rubinstein price in the
binomial model and the monotonicity property (4.9). �

4.2 Fair Price Intervals in Interval Models

In this section we first show, in Sect. 4.2.1, that the fair price interval in interval
models is given by an interval. In Sect. 4.2.2 we show what strategies yield the
upper and lower bounds in this interval. This is illustrated with an example. Our
last subsection connects these results with the stochastic literature and provides a
characterization of this interval in terms of martingale measures.

4.2.1 Fair Price Interval

Our first result of this section states that if asset prices behave according to an
interval model, then the cost range of any strategy is an interval I. That is, if x,y ∈ I
and x ≤ z ≤ y, then z ∈ I. So if two numbers belong to I then so does every number
between them. Stated differently, an interval consists of a convex set in R that may
be closed, open, or half-open or may consist of a single point.
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Assuming just the continuity of the payoff function of the European derivative,
Proposition 4.2 below shows that for any hedging strategy used in an interval model
the set of all possible total costs is an interval. A proof can be found in the appendix.

Proposition 4.2. Consider an interval model Iu,d . For any strategy g with respect
to a European derivative with continuous payoff function F(·) and for any initial
price S0, the cost range Ig(Iu,d ,F,S0) is an interval. If, moreover, the strategy g is
continuous, then this cost range interval is closed. �
Example 4.3. An example of a cost interval that is not closed is provided by the
stop-loss strategy (Sect. 4.1) in the case of a two-period model with u= 1.1, d = 0.8,
and S0 = 100, applied to a short position in a European call option with exercise
price X = 80.

Clearly, γ0 = 1. Furthermore, γ1 = 1 for all prices except S1 = 80, where γ1 = 0.
In the latter case where γ0 = 1 and γ1 = 0, the total costs of hedging and closure are

Qg(F,100,80,S2) := [S2 − 80]+− (80− 100)∈ [28,20].

If γ0 = 1 and γ1 = 1, then the total costs of hedging and closure are

Qg(F,S ) := [S2 − 80]+− (S1 − 100)− (S2− S1) = [S2 − 80]++ 100− S2.

Therefore, in the case S1 ∈ (80,110], Qg(F,100,S1,S2) = 100− S2, if S2 < 80, and
Qg(F,100,S1,S2) = 20, if S2 ≥ 80. Notice that the interval of all obtainable prices
S2 smaller than 80 that are compatible with γi = 1 is the open interval (64,80).
Consequently, Qg(F,100,S1,S2) ∈ (20,36) in this case. Combining these results we
then get that the cost range Istop−loss(I1.1,0.8, [S2−80]+,100) is the half-open interval
[20,36). �
A direct consequence of Proposition 4.2 is that the set of fair prices is also an
interval. We state this result formally in the next corollary.

Corollary 4.4. Consider a European derivative with continuous payoff function F.
Then the fair price interval FPI(Iu,d, F, S0) is an interval. �
In the next subsection we show that the fair price interval is in fact a compact interval
if one additionally assumes that the payoff function F is convex.

4.2.2 Characterization of the Fair Price Interval in Terms
of Strategies

Below, we will be interested in two particular strategies. The first is the standard
binomial delta strategy for the binomial tree with the same parameters as the given
interval model. We call this the extreme delta strategy because it corresponds to
paths that at each time step exhibit the largest possible jump that is allowed by the
interval model in either the upward or the downward direction. Before introducing
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f(x)

Fig. 4.1 Tangent lines corresponding to subderivatives at x0

the second strategy, we first recall the notion of subderivative. Consider the convex
function f at x0 in Fig. 4.1. Clearly, f is not differentiable at x0. However, many
lines go through (x0, f (x0)) and are in an open neighborhood of x0 everywhere either
touching or below the graph of f . The slope of such a line is called a subderivative.
The set of all subderivatives is called the subdifferential ∂ f (x0) of f at x0. This
concept can be generalized for functions from R

n to R. That is, for a given convex
function F : Rn �→ R, the subdifferential ∂F(x) of F at x ∈ R

n is defined as the set
of all vectors γ ∈R

n such that F(y)≥ F(x)+ γT(y−x) for all y. The subdifferential
is always a nonempty convex compact set. The elements of ∂F(x) are called in
this case the subgradients of F at x. We call a subgradient strategy for a European
derivative with convex payoff F any strategy g such that g(S j) ∈ ∂F(S j). The stop-
loss strategy, for instance, is a subgradient strategy for the European call option.

The special role played by the extreme delta and the subgradient strategies is
indicated in the theorem below. In the theorem, we place ourselves in the position
of an institution that holds a short position in a certain derivative and that is looking
for a hedging strategy. We will identify strategies that minimize worst-case costs
and strategies that maximize best-case costs. The first are, of course, simple to
interpret; the latter strategies are more easily viewed as the opposites of strategies
that maximize worst-case gain for a party holding a long position in the derivative.
The theorem states that, in a situation described by an interval model, an institution
holding a short position in a European option with a convex payoff can minimize
its downward risk by hedging as if maximal volatility were going to occur. On the
other hand, an institution holding a long position will minimize its downward risk
by hedging as if minimal (actually zero) volatility were going to occur. Part I of the
theorem below can also be found in Kolokoltsov [95]. The theorem is visualized in
Fig. 4.2.

Theorem 4.5. Consider a frictionless market in which the price paths of an under-
lying asset follow an interval model with parameters u and d, where d < 1 < u;
the initial value S0 of the underlying is given. Let F(·) be the payoff function of
a European derivative, and assume that F is convex. We consider portfolios that
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Istop−loss
fmin

Ig

Idelta

fmax
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g

FPI

Fig. 4.2 Fair price interval. This figure illustrates the cost range of three strategies: the stop-loss,
the delta, and another arbitrary strategy g. The fair price interval (FPI) is obtained as the intersection
of the cost range intervals of the stop-loss and delta strategy. The cost range of strategy g always
includes the FPI

consist of (1) a given short position in the option and (2) a position in the underlying
asset that is determined at each time point by a trading strategy.

1. Lowest worst-case costs are generated by the extreme delta-hedging strategy.
The corresponding costs, which we denote by fmax, are given by the Cox–Ross–
Rubinstein price of the derivative in the binomial tree model with the same
parameters as the interval model. Worst-case costs are achieved for paths in
this tree model.

2. Highest best-case costs are generated by any subgradient strategy. The corre-
sponding costs are equal to fmin := F(S0) and are realized along the constant
path.

3. The FPI for the derivative is [ fmin, fmax]. �
In the case of a call option, the stop-loss strategy is best in the worst-case sense for
a party holding a long position, and the corresponding worst-case paths are those in
which the strike level is not crossed. More generally, it can be easily verified that
if we have a piecewise linear payoff function, then the worst-case paths for a party
holding a long position in the derivative and following a subgradient hedge strategy
are those in which the successive values of the underlying are confined to one of the
regions where the payoff function behaves linearly.

Remark 4.6. Notice that on the trivial range of prices that can no longer cross the
exercise level,

SN− j ≤ X
u j or SN− j ≥ X

d j ,

delta hedging coincides with the stop-loss strategy. Consequently, if this occurs, the
FPI for the derivative reduces to one point. Or, stated differently, the price of the
derivative is under those conditions uniquely determined. �
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Fig. 4.3 Cost range stop-loss strategy in one-step interval model

4.2.3 Example

For a simple illustration of the foregoing results, consider a call option in a one-step
interval model. In such a model the choice of a strategy comes down to the choice
of a real number that indicates the position to be taken in the underlying at time 0.
The total cost of hedging and closure is in this case

Qg = [S1 −X ]+− g0(S0)(S1 − S0). (4.10)

For the stop-loss trading strategy this yields

Qstop−loss =

{
[S1 −X ]+ if X ≥ S0

[S1 −X ]+− (S1 − S0) if X < S0.

Thus the cost range of the stop-loss strategy for the one-step interval model is

Istop−loss =

{
[uS0 −X ,0] if X ≥ S0

[S0 −X ,(1− d)S0] if X < S0.

In Fig. 4.3 we illustrate the cost range for the stop-loss strategy as a function of the
initial value S0. For two specific choices of S0 we mark this interval “I.” Notice the
discontinuity of the cost range at S0 = X .

Similarly, we obtain from (4.10) that the total cost of hedging and closing using
the extreme delta trading strategy is

Qdelta = [S1 −X ]+− [uS0 −X ]+− [dS0 −X ]+

(u− d)S0
(S1 − S0).
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Fig. 4.4 Cost range delta strategy in one-step interval model

Under the assumption that the strike price X will also be situated somewhere in the
interval [dS0,uS0], we have that [uS0 −X ]+ = uS0 −X and [dS0 −X ]+ = 0. Thus

Qdelta = [S1−X ]+− (uS0−X)
(u−d)S0

(S1 −S0). With S1 ∈ [dS0,uS0], we have that for a fixed

X , Qdelta attains its maximum value for S1 = uS0 and its minimum value for S1 = X .
Consequently, the cost range of the extreme delta strategy for the one-step interval
model is

Idelta =

[
(uS0 −X)(S0 −X)

(u− d)S0
,

1− d
u− d

(uS0 −X)

]
.

In Fig. 4.4 we illustrate the cost range for the extreme delta strategy as a function of
the initial value S0. Again, for two specific choices of S0, this interval is marked “I”
in the graph.
Finally, both graphs are merged in Fig. 4.5. Recall from Theorem 4.5 that for the
call option the boundary points of the FPI are given by the intersection of both cost
ranges. So for any S0 the upper bound fmax of the FPI is given by (uS0−X)(S0−X)

(u−d)S0
and

the lower bound of this interval fmin equals [S0 −X ]+. From Fig. 4.5 this FPI can
be read off for each value of S0 as the intersection of the cost intervals of the two
strategies. We specify for two values of S0 this FPI as “I” in the graph.

4.2.4 Characterization of Fair Price Interval in Terms
of Martingale Measures

We now introduce martingale measures. We consider price paths of a fixed length
N +1 with a given initial value S0, and so the measures that we will consider can be
thought of as probability measures on the vector space RN . Any such measure Q will
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Fig. 4.5 Fair price intervals in one-step models

be called a martingale measure for the model M with initial value S0 if it assigns
probability 1 to the paths in the model M with initial value S0 and if the martingale
property holds, that is, EQ(S j+k | S j,S j−1, . . . ,S0) = S j for all j and k ≥ 0. The set
of all martingale measures for a model M with initial condition S will be denoted by
Q(M,S). The most important property of martingale measures that we will need is
the fact that the expected gain from any trading strategy under a martingale measure
is zero. From this it follows immediately [see (4.5) and (4.6)] that, for any hedging
strategy g applied to a European derivative with payoff function F , we have

EQF ∈ co Ig(M,F,S)

for any martingale measure Q ∈ Q(M,S). Consequently, we can write

{EQF | Q ∈ Q(M,S)} ⊂ ∩g co Ig(M,F,S),

where the intersection is taken over all strategies.
It is clear that interval models allow many martingale measures. For instance,

for an interval model with parameters u and d, all martingale measures associated
to binomial tree models with parameters u′ and d′ satisfying d ≤ d′ < 1 < u′ ≤ u
are also martingale measures for the interval model. We have already shown that
if the payoff function F is convex, then the FPI is closed in interval models.
In the following theorem, we show that all fair prices in that case are generated
by martingale measures, and we indicate the measures that generate the extreme
points of the FPI.

Theorem 4.7. Let an interval model Iu,d and an initial asset value S0 be given, and
let Q denote the set of all martingale measures that can be placed on the collection
of paths in I

u,d that start at S0. Consider a European derivative with convex payoff
F(·), and denote the fair price interval for the derivative by [ fmin, fmax].
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1. We have

{EQ[F(SN)] | Q ∈ Q} = [ fmin, fmax].

2. The minimal option price fmin is the expected value of the derivative under the
martingale measure that assigns a probability of one to the constant path S j = S0

for all j.
3. The maximal option price fmax is the expected value of the derivative under the

martingale measure that assigns a probability of one to the collection of paths in
the submodel Bu,d (the binomial tree model with parameters u and d). �

For general incomplete markets in a single-period setting, the relation between
martingale measures and FPIs is given by Pliska [127, Sect. 1.5]. There may be
many martingale measures along with the one mentioned in item 2 of Theorem 4.7
that generate the minimal price; for instance, if the option is a call option, then any
martingale measure under which there is zero probability of crossing the strike level
will generate this price. On the other hand, the maximal price is generated uniquely
by the measure indicated in item 3, except in the (trivial) case in which the payoff
function F(·) is linear; for instance, if the option is a call option, the measure is
unique until the asset price in a path becomes too high or low for crossing the
exercise level.

All intermediate prices are generated by many different martingale measures,
and, unlike the extreme prices, they obviously allow for “equivalent martingale
measures,” in the sense that every set of paths in the interval model with positive
(Lebesgue) measure is assigned a positive probability.

4.3 Computation of the Fair Price Interval
for Path-Independent Strategies

Assuming that we just consider path-independent strategies, the computation of
the FPI for a European derivative with a continuous payoff function amounts to
determining the best- and worst-case costs over all price paths in a given interval
model, and algorithms can be designed according to the principles of dynamic
programming. We briefly sketch the standard idea.

Let θ j denote a state variable at time t j that summarizes all information over the
strict past t0, . . . , t j−1 that is relevant to a given strategy g. Replacing past prices by
θ j in the argument of the strategy functions g j we obtain the state space system

θ j+1 = f j(θ j,S j), θ0 fixed,

γ j = g j(θ j ,S j), (4.11)

where f j is a state evolution function and γ j is the hedge position at t j according
to strategy g. Now determine, for every time instant, the value functions V max and
V min that assign to a state (θ j ,S j) the worst-case and best-case costs respectively
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over all paths starting in S j at t j that satisfy the restrictions of the given interval
model. Starting at expiry with boundary conditions

V min(N,SN ,θN) =V max(N,SN ,θN) := F(SN)

we are led to a backward recursive optimization

V min( j,S j ,θ j) := min
v∈[d,u]

V min( j+ 1,vS j, f j(S j,θ j))− g j(S j,θ j)(v− 1)S j

and

V max( j,S j,θ j) := max
v∈[d,u]

V max( j+ 1,vS j, f j(S j,θ j))− g j(S j,θ j)(v− 1)S j,

respectively. For discontinuous strategies the preceding minima and maxima need
not exist; taking infima and suprema instead, we actually compute the closure of the
cost interval.

The complexity of the algorithm depends on the number of state variables in the
hedge strategy and the number of underlyings. The number of required operations
is quadratic in NK, where N is the number of time steps and K is the number of
grid points in the state space of the θ and S variables. For regular grids, K depends
exponentially on the dimension of θ and S. Variations of the preceding algorithm
such as using a forward rather than a backward recursion do not fundamentally
affect this complexity. We will restrict our discussion here to path-independent
hedging strategies for options on a single underlying.

Algorithm 4.8 (Cost Intervals).

Data: Initial asset price S0, an interval model for assets I
u,d , a continuous payoff

function F(SN), and a strategy g in state space form (4.11).

Step 1: Initialization

Define for SN ∈ [dNS0,u
NS0], and arbitrary values of θN ,

V min(N,SN ,θN) =V max(N,SN ,θN) := F(SN).

Step 2: Backward recursion

Determine for j = N − 1, . . . ,0, S j ∈ [d jS0,u
jS0], and a suitable domain for θ j ,

V min( j,S j,θ j) := min
v∈[d,u]

V min( j+ 1,vS j, f (S j,θ j))− g j(S j,θ j)(v− 1)S j (4.12)

and

V max( j,S j ,θ j) := max
v∈[d,u]

V max( j+ 1,vS j, f (S j,θ j))− g j(S j,θ j)(v− 1)S j, (4.13)
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respectively. Define vmin
j (S j,θ j) and vmax

j (S j,θ j) as respectively the minimum and
maximum location for v.

Step 3: Cost interval and extreme cost paths

Define
I := [V min(0,S0,θ0),V

max(0,S0,θ0)], (4.14)

and for j = 0, . . . ,N − 1,

Smin
j+1 = vmin

j (S j,θ j)S j; Smax
j+1 = vmax

j (S j,θ j)S j; Smin
0 = Smax

0 = S0. (4.15)

Result: I is the cost interval Ig(Iu,d ,F,S); best-case costs are attained for Smin and
worst-case costs for Smax. �
Alternatively, the cost intervals may be computed by the following path filter that
selects best- and worst-case paths forward in time.

Algorithm 4.9 (Path Filter).

Data: Initial asset price S0, an interval model for assets I
u,d , a path-independent

continuous strategy g j(S j), and a continuous payoff function F(SN).

Step 1: Initialization

Define

Hmin(0,S0) = Hmax(0,S0) := 0,

Hmin(1,S1) = Hmax(1,S1) := −g0(S0)(S1 − S0).

Step 2: Forward recursion

Determine for j = 1, . . . ,N − 1,

Hmin( j+ 1,S j+1) := min
S j∈Ij

Hmin( j,S j)− g j(S j)(S j+1 − S j), (4.16)

with S j+1 ∈ [d j+1S0,u
j+1S0], I j := [d jS0,u

jS0]∩ [
S j+1
u ,

S j+1
d ]. Define Hmax similarly,

with min replaced by max.

Step 3: Best- and worst-case price paths:

Determine

Smin
N := argminSN∈[dNS0,uNS0]

Hmin(N,SN)+F(SN), (4.17)

Smin
j := argminS j∈Ij

Hmin( j,Smin
j )− g j(S j)(S

min
j+1 − S j)., (4.18)

and Smax similarly, with min replaced by max.
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Step 4: Cost interval

Define

I := [Hmin(N,Smin
N )+F(Smin

N ),Hmax(N,Smax
N )+F(Smax

N )]. (4.19)

Result: I is the cost interval Ig(Iu,d ,F,S); best-case costs are attained for Smin and
worst-case costs for Smax. �
The main difference between both procedures is in the intermediate results. In the
forward algorithm (with empty state variable θ j removed), [V min( j,S j),V max( j,S j)]
is the “updated” cost interval, with S j considered as “initial” price at t j, while in the
backward algorithm [Hmin( j,S j),Hmax( j,S j)] denotes the interval of realized hedge
costs with ( j,S j) considered as end condition. Notice that for all time instants t j, it
holds that I = [Hmin( j,S j)+V min( j,S j),Hmax( j,S j)+V max( j,S j)], so cost intervals
can also be computed by a mixture of both algorithms.

The difference in time direction may also become relevant in extending the
procedures to early-exercise possibilities and path dependency (in strategies or
options), although we do not consider these types of strategies and options here.

A general advantage of working backward in time is that early-exercise possi-
bilities in options can be accounted for in a straightforward way. In particular, in
complete markets the unique arbitrage-free option price is available at each time t j,
and it is obvious when early exercise is profitable. Interval models, however, are not
complete, and at each time t j only an interval of costs is available, and rules for early
exercise should be based on additional considerations. On the other hand, forward
procedures are more easily adapted for handling path dependency, which can then
be represented by adding extra state variables.

4.4 Worst-Case Analysis

In this section we compare the results obtained from an interval model with those
obtained from a simpler model (the standard binomial model) in a number of test
cases.

4.4.1 Introduction

The derivative that we consider is a European call option. One may, of course, in
principle envisage many hedging strategies, but we will restrict ourselves to delta
strategies derived from binomial tree models. Specifically, we denote by Δ σ the
standard hedge for the binomial tree model with parameters uσ and dσ , where for
each given number σ > 0 the parameters uσ and dσ are chosen such that dσ = 1/uσ
and the price of the option in the tree model with parameters uσ and dσ is equal to
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the price in the continuous-time Black–Scholes model with volatility parameter σ .
In this way we have a one-parameter family of strategies that we will test.

The tests will be carried out in an interval model. As always when carrying out a
worst-case analysis, one must specify the range of situations that will be considered;
for an interval model this comes down to the choice of the parameters u and d. The
results of the test will depend on this choice; the choice is, however, to some extent
arbitrary. One way out is to carry out tests for a range of parameter values. In view
of the moderate computational demands associated to path-independent hedging
of derivatives on single assets, we will in fact proceed in this manner. We will
consider interval models with parameters uτ and dτ that are determined by the single
parameter τ in the same way as previously. These interval models will be denoted
by I

τ , and the tree models with the same parameters will be denoted by B
τ .

As the nominal situation we consider a binary tree B
σ , a corresponding delta-

hedging strategy Δ σ , and the resulting option price fσ .
Now suppose the volatility may drop below σ and need not be constant over

time. This is accounted for by considering, in addition to the binary tree paths in
B

σ , also interior paths in the interval model Iσ , which may have smaller jumps at
any moment. The outcome of costs for these interior paths need not be equal to fσ ,
and the question arises as to how large this difference can be.

First, reconsider the one-step model. Recall from Sect. 4.2.3 that with u= uσ and
d = 1

uσ
the cost range of the delta strategy in a one-step interval model is given by

IΔ σ
=

[
(uσ S0 −X)(S0 −X)

(uσ − 1
uσ

)S0
,

1− 1
uσ

uσ − 1
uσ

(uσ S0 −X)

]

.

Costs may fall to this lower bound in “quiet” interior paths, with not all jumps at the
limits. This fall is zero for S0 ≤ X

uσ
and S0 ≥ X

d = uσ X and has a maximum value

of (u−1)(1−d)
u−d for S0 = X (Fig. 4.4). The best-case costs are even smaller than the

minimum of the corresponding FPI, and the difference is greatest for S0 =
X√
u

for

out-of-the-money options and S0 =
X√

d
for in-the-money options (Fig. 4.5).

A second analytic result, valid for any number of steps, concerns the worst-case
costs: they remain equal to fσ as a consequence of Theorem 4.5. Thus a (temporary)
decrease in volatility leads to a decrease in costs.

Next consider the case that overhedging occurs, that is, actual volatility is below
the volatility for which the delta strategy is designed. Or, more formally, actual
prices are in I

τ with τ < σ . Let the corresponding cost range interval of the delta
strategy be

IΔ σ
=: [ flow , fhigh]. (4.20)

Then we notice that

fσ ≤ fhigh < fτ ,
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as Iτ ⊂ I
σ , while fτ is the minimum worst-case costs in I

τ .
In fact, the worst-case path in I

τ is the one that has constant maximum volatility τ .
This is shown in the next proposition, whose proof can be found in the appendix.

Proposition 4.10. The worst-case price path in I
τ under overhedging Δ σ , with σ >

τ , is in B
τ . �

This implies that, in the case of overhedging, there is no extra loss in interval models
as compared to the binary trees. In fact, the analysis could take place entirely on the
level of binary trees by considering worst-case costs of delta hedging based on a too
high volatility.

Next consider the case of underhedging, that is, if the hedge strategy underesti-
mates the volatility of assets. Thus we analyze the performance of the delta-hedging
strategy Δ σ , assuming that the actual price paths are in I

τ , with τ > σ . Denoting the
cost range interval IΔ σ

again by (4.20) we have

fσ < fτ < fhigh,

as Δ τ is the unique strategy with minimal worst-case costs in I
τ .

In contrast to overhedged options, worst-case paths in I
τ under Δ σ need not have

the maximum constant volatility. Stated differently, it turns out that the paths with
the largest possible jumps are not always the ones that generate the worst costs.
Costs are maximal for paths that cross the exercise level as often as possible with
extreme jumps. In general, to cross the exercise level as often as possible, price
paths should not use the largest amplitude at all times. Therefore, the cost of hedging
predicted by interval models may be considerably higher than the cost derived from
using a binomial tree model. This is demonstrated in the following simple example.

4.4.2 A Nonextremal Path with Worst-Case Cost

Consider an at-the-money European call option with exercise price X = S0 = 100 in
a two-period model. Let uσ = 1.20 and uτ = 1.25. So we consider a situation where
the hedge strategy is based on σ = 0.16, whereas the actual volatility in the model
is τ = 0.19.

From (4.3), (4.4) it follows that the price of the option in the tree model Bσ is
fmax = 9.09, whereas in the tree model Bτ the price is fτ = 11.11. Recall from
Theorem 4.5 that the latter quantity also represents the maximal worst-case costs in
I

τ , which are achieved by the extreme delta hedge Δ τ . If, however, the strategy Δ σ

is applied in the model Iτ , then the worst-case costs are found to be fmax = 13.26.
The corresponding worst-case path is {S0,S1,S2}= {100,83.3,104.2}. Clearly this
is not an extreme path. If we limit paths to the tree Bτ and compute the costs for the
strategy Δ σ in this model, then we find the value fbin = [S2 −X ]+ −Δ0(S0)(S1 −
S0)− Δ1(S1)(S2 − S1) = 56.25− Δ0(100) ∗ 25 − Δ1(125) ∗ 31.25 along the path
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{100,125,156.25}. Using (4.3), (4.4) again, with u= 1.2 and d = 5
6 , one can easily

compute that Δ0(100) = λ = 6
11 and Δ0(125) = 1. This yields, then, fbin = 11.36.

Similarly, one can show that also along the path {100,125,100}, fbin attains this
value, whereas along the other paths a smaller value is attained. So the worst-case
costs in this model are fbin = 11.36, and there are two corresponding worst-case
paths, namely, {100,125,100} and {100,125,156.25}.

The conclusions from this example may be summarized as follows. The worst-
case costs for the strategy Δ σ in the interval model I

σ are equal to 9.09. A
worst-case analysis in the tree model Bτ suggests that this figure may increase
to 11.36 if the actual volatility turns out to be τ = 0.19 rather than σ = 0.16.
However, if the analysis is carried out in the interval model Iτ rather than in the
tree model Bτ , then it turns out that costs may actually increase up to 13.26. So
if the option is sold for 9.09 corresponding to the implied volatility σ = 0.16 but
the actual implied volatility parameter turns out to be τ = 0.19, then the potential
loss in an interval model with volatility parameter τ = 0.19 is almost twice as large
as the loss suggested by the corresponding binomial tree model. This illustrates
that replacing the assumption of constant volatility by limited volatility could
considerably increase the sensitivity of costs to underhedging.

Notice that the key value in the worst-case path is S1 = 83.3, corresponding to
a nonextreme first jump in I

τ . This is the highest asset price that maneuvers the
optimistic hedge Δ σ into an uncovered position, thereby preparing for large costs in
the second step.

4.4.3 Worst Cases in Interval Models Versus Tree Models

In a more extensive experiment, we consider the hedging of a European call option
in a ten-period model for several combinations of hedging strategies and interval
models. The following parameter values are used:

Initial price: S0 = 100,
Exercise price: X = 100,
Exercise time: T = 1,
Interest rate: r = 0,
Time step: h = 0.1, so N = 10.

Think of an option with exercise date 1 year away and adaptation of the hedge
portfolio every 5 weeks. As our main reference point we take σ∗ = τ∗ = 0.2, which
means an annual variance of asset prices of 20%. We compute the worst-case costs
of hedging strategies Δ σ in the actual models I

τ , with σ and τ ranging from 0.1
to 0.3 in steps of 0.05. Worst cases are determined as indicated in Sect. 4.3, where
the one-dimensional optimizations are implemented on a grid for the logarithms of
prices. The results are shown in Fig. 4.6.

Because all paths of an interval model with a given volatility parameter are also
contained in interval models with a larger volatility parameter, the worst-case costs
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Fig. 4.6 Worst-case costs for Δ σ in I
τ . In the left plot each line corresponds to worst-case costs

under a fixed strategy Δ σ for a range of interval models. In the right plot every line denotes the
worst-case costs in a fixed interval model Iτ for a range of hedging strategies Δ σ . The dotted lines
denote worst-case costs if Δ σ is used in the binomial trees B0.2 and B

0.3; on the left these are not
shown

corresponding to a fixed strategy must be nondecreasing as a function of τ; this is
seen in the left-hand plot. Both plots also show the optimality in a worst-case sense
of Δ σ within the model Iσ ; for σ∗ = 0.2 this is indicated by dashed lines. There
is a striking asymmetry between overhedging and underhedging: the loss due to
underhedging according to Δ 0.1 in the interval model I0.3 is much larger than the
loss due to overhedging according to Δ 0.3 in I

0.1. The dotted lines in the right-hand
plot again show that worst-case analysis in a binomial tree setting may produce
results that are a bit more optimistic than the results obtained from an interval
model, especially when the hedge strategy is based on a value of the volatility that is
considerably too low. If we compare, for instance, in the right-hand plot the worst-
case costs of Δ 0.1 in the interval model I0.3 with that of the binomial tree model
B

0.3, then we see a difference of approximately eight units, whereas this difference
in worst-case costs using Δ 0.1 is less than two units. So the risk associated with a too
low specification of volatility can be considerably higher when in the actual model
volatility is nonconstant than the risk implied by the delta strategy used in a higher,
but constant, volatility model. Further, this discrepancy seems to grow exponentially
the larger the misspecification of volatility is.
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Fig. 4.7 Worst-case paths for various initial prices. The upper plot contains worst-case paths in I
τ

under Δ σ for τ = 0.3 and σ = 0.1, with initial price ranging from 70 to 140. The lower plot shows
the worst-case paths in B

τ

The question may arise as to how nonextreme price fluctuations contribute to
extreme costs. To discover a pattern, we consider several worst-case paths for a
range of initial prices S0 and all other parameters kept constant. These are compared
with worst-case paths in the binomial tree model in Fig. 4.7. The graphs indicate that
in both models, costs are maximal for paths that cross the exercise level as often as
possible with extreme jumps. They differ, however, in the levels of the peaks in the
end regime. In the binomial model (with u = 1/d) all prices are of the form u jS0,
where j may be positive or negative, and hence the peak levels are at u jS0, where
j is the smallest integer such that u jS0 > X . Nonextreme jumps allow a change in
the level of peaks, and this extra freedom in interval models may increase the cost
substantially. The simulations suggest that worst-case costs are achieved for upward
peaks at X/uσ or downward peaks at X/dσ ; a formal statement in this direction
remains to be proven, however. The graphs clearly suggest that most of the freedom
allowed by interval models is used in the first few time steps. This in turn suggests
that a reduction in computational load of a worst-case search may be achieved by
using an interval model for the first few time steps (or even just for the first one) and
a binomial model thereafter.

A similar effect is apparent when the exercise level X is varied, with initial prices
kept fixed. This is illustrated in Fig. 4.8, in which worst-case costs in interval models
and binomial trees are compared for various exercise prices X . There is considerable
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Fig. 4.8 Worst-case costs for various exercise levels. The solid line corresponds to worst-case
costs in I

0.3 under Δ 0.1, with X ranging from 70 to 140 (by unit steps). The dashed line represents
worst-case costs in B

0.3

variation in the size of the underestimation of worst-case costs by binomial models
as compared to interval models. Again the irregular pattern for the binomial tree
is explained by the fact that worst-case paths are restrained to fixed grid points
u jS0. In particular, it seems that for strike prices X above the initial price S0 the
underestimation by binomial models can be more profound.



Chapter 5
Optimal Hedging Under Robust-Cost
Constraints

5.1 Introduction

In this chapter we analyze hedging of a short position in a European call option by
an optimal strategy in the underlying asset under a robust cost constraint (RCC),
that is, under the restriction that the worst-case costs do not exceed a certain a priori
given upper bound. This relates to a Value-at-Risk (VaR) condition, which is usually
defined for stochastic models as the maximum costs for a specified confidence level.
As compared to VaR, an RCC denotes a level of worst-case costs that cannot be
exceeded within a given interval model.

More specifically, the asset is modeled by an interval model Iu,d in N equal time
steps from current time to expiry, cf. (3.9). Recall from Proposition 4.2 that a short
position in the option, kept under a hedge strategy g, yields an outcome of costs in
an interval Ig. For discontinuous strategies this interval Ig is not necessarily closed,
and therefore best- and worst-case costs are defined as the infimum and supremum
of costs:

BCg := inf Ig = inf
S∈Iu,d

Qg(S).

WCg := sup Ig = sup
S∈Iu,d

Qg(S).

We refer to −BCg also as the maximum profit under g.
The RCC condition simply limits the worst-case costs WCg. In this section we

analyze the impact of such a restriction for the set of admissible hedging strategies
and provide an algorithm to solve this constrained optimization problem. To that
end we first introduce some notation.

The set of all strategies with price paths S in some interval model is denoted
by G. Thus

G := {g = (g0, . . . ,gN−1) | g j : (S0, . . . ,S j)→ γ j ∈ R}.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 5,
© Springer Science+Business Media New York 2013
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Let V denote the RCC limit; then the set of all admissible strategies under this
RCC limit is defined by

G
V := {g ∈G| WCg ≤V}.

Furthermore, by Δ j we will denote the delta-hedging strategy [see (3.4), (3.5)]

Δ j(S j) = λ Δ j+1(uS j)+ (1−λ )Δ j+1(dS j),with

ΔN−1(SN−1) =
[uSN−1 −X ]+− [dSN−1 −X ]+

(u− d)SN−1
,

where λ = u(1−d)
u−d , and by f j(S j) we will denote the corresponding Cox–Ross–

Rubinstein option premium [see (3.2), (3.3)]

fN(SN) = [SN −X ]+,

f j(S j) = q f j+1(uS j)+ (1− q) f j+1(d jS j), (5.1)

where q := 1−d
u−d .

5.2 Effect of Cost Constraints on Admissible Strategies

Since delta hedging yields the lowest upper bound of costs among all strategies in
G (Theorem 4.5), we have the next result.

Proposition 5.1. If V < f0(S0), then G
V is empty. If V ≥ f0(S0), then the delta-

hedging strategy belongs to G
V . �

So the arbitrage-free Cox–Ross–Rubinstein price of the optionC in the binomial tree
model Bu,d is the smallest RCC limit that is achievable for a hedged short position
in the call option C with underlying asset S ∈ I

u,d .
As may be expected, for RCC beyond this minimal level, the space of admissible

strategies is centered around the delta-hedging strategy. To formulate the precise
result, we introduce the following concepts. For a given strategy, Hj denotes the
realized hedge costs at t j:

Hj :=−Σ j−1
k=0 γk(Sk+1 − Sk). (5.2)

In view of the previous result we also define the current latitude

V̄j(S j,Hj) :=V −Hj − f j(S j), (5.3)
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which is the excess of the RCC limit V over the past hedge costs Hj plus the
minimal future worst-case costs (given by the Cox–Ross–Rubinstein price) f j(S j),
or, equivalently, the current wealth offset to the total minimal cost-to-go f j(S j).

The next theorem shows that V̄ indeed determines the extent to which admissible
strategies may differ from delta hedging.

Theorem 5.2. The set GV of strategies admissible under the RCC level V ≥ f0(S0)
for S ∈ I

u,d is given by

{g ∈G|γmin
j (S j,Hj)≤ g j(S0, . . . ,S j)≤ γmax

j (S j,Hj)}, (5.4)

with

γmin
j (S j,Hj) := Δ j(S j)− V̄j(S j,Hj)

(u− 1)S j
,

γmax
j (S j,Hj) := Δ j(S j)+

V̄j(S j,Hj)

(1− d)S j
,

with V̄ defined by (5.3) and Hj the realized hedge costs (5.2). �
See the appendix for a proof.

Summarizing, the consequence of including a restriction on the worst-case costs
is that the set of admissible strategies is restricted to an interval around delta
hedging, with fixed proportional centering determined by u and d and time-varying
interval length determined by realized hedge costs.

5.3 Calculating Maximum Profit Under a Cost Constraint

In this section we present a numerical algorithm to maximize profits under a limit
for worst-case costs in a given interval model for the asset. Or, stated differently,
with an RCC limit V on worst-case costs, we look for a strategy g that provides
the highest lower bound for best-case costs. We will denote this lower bound for
best-case costs by

BC∗(S0,V ) := inf
{g∈GV ,S∈Iu,d}

Qg(S), (5.5)

with Qg(S) as defined in (4.5).
Thus BC∗(S0,V ) is a lower bound for best-case costs (and hence an upper bound

on maximum profit) under the RCC level V and with asset prices in I
u,d with initial

price S0. Notice that by choosing g equal to the stop-loss strategy, we in fact obtain
just the opposite of what we want, i.e., a maximum profit that is outperformed by
any other admissible strategy under optimal conditions.

To determine solutions, we first analyze the recursive structure of this minimiza-
tion (5.5). It amounts to the dynamic programming problem
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Minimize J := ΣN−1
j=0 F( j,x j ,u j,v j)+G(xN)

with x j+1 = h( j,x j ,u j,v j)

for (u j,v j) ∈ D( j,x j),

with the following definitions of the variables:

x j :=

[
S j

Hj

]
,

u j := γ j ,

v j := S j+1/S j ,

with the domain D( j,x j) the rectangle specified by the conditions

u j ∈ Γj(S j,Hj) := [γmin
j (S j,Hj),γmax

j (S j,Hj)],

v j ∈ [d,u],

with γmin
j and γmax

j defined as in Theorem 5.2, and with the state recursion and cost
function given by

[
S j+1

Hj+1

]
=

[
v jS j

Hj −u j(v j − 1)S j

]
;

[
S0

H0

]
=

[
S0

0

]
;

J =−∑N−1
j=0 u j(v j − 1)S j +[SN −X ]+.

Notice the path dependence of the criterion, which becomes apparent in the
occurrence of the realized hedge costs in the state. Equivalently, the criterion is path
dependent through “current wealth” V −Hj, where the RCC limit V is interpreted
as the initial wealth.

The corresponding value function consists of the best-case costs conditioned on
the current asset price and past hedge costs:

BCN(SN ,HN) := [SN −X ]++HN ,

BC j(S j,Hj) := min
{γ j∈Γj ,S j+1∈[dS j ,uS j ]}

(
BC j+1(S j+1,Hj − γ j(S j+1 − S j)

)
, (5.6)

with the domain for BC j taken as

{(S j,Hj)|S j > 0,Hj ≥V − f j(S j)} (5.7)

to avoid minimization over an empty domain. Not coincidentally, this definition of
domain is consistent with the recursion in (5.6) because Γj is determined just to
guarantee that V̄j =V −Hj − f j(S j) remains nonnegative.
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Thus BC j denotes the best-case costs, given that at t j the asset price is S j and that
past hedge costs accumulated to Hj or, equivalently, that x j = (S j,Hj).

Before we go into computations, we show that the optimization problem has a
solution. A proof of the next result can be found again in the appendix.

Proposition 5.3. There exists an optimal strategy g∗ and a best-case price path S∗
such that Qg∗(S∗) = BC∗(S0,V ). �

As it seems too complicated to obtain closed-form solutions, we develop a nu-
merical procedure that exploits some specific features of the dynamic programming
problem, enabling a relatively simple forward recursion for a “frontier function” in
one variable, with known initial conditions. Note that this approach differs from the
standard numerical solution of the dynamic programming problem, which would
amount to a backward recursion for a function in two variables, conditioned on
unknown final values of asset prices SN and realized hedge costs HN . The following
method hence avoids the use of a rather large grid matrix of sample points.

First a frontier function of minimal realized hedge costs is determined as a
function of asset prices, then the best-case asset price path is determined by
backward recursion, and finally the optimal strategy is reconstructed.

Algorithm 5.4 (Maximum profit under RCC).

Data: Initial asset price S0, an interval model for assets Iu,d , excercise price X and
time T of a European call option, and an RCC limit on worst-case total costs at
expiry, WCg ≤V .

Step 1: Determine the “frontier function” of minimal realized hedge costs
H∗( j,S j) by

H∗(0,S0) := 0, (5.8)

H∗(1,S1) := −γ�0(S1 − S0) for S1 ∈ [dS0,uS0], (5.9)

H∗( j+ 1,S j+1) := min
S j∈Ij

[H∗( j,S j)− (S j+1 − S j)γ�j (S j,H
∗( j,S j))], (5.10)

with S j ∈ [d jS0,u
jS0], I j := [d jS0,u

jS0]∩ [
S j+1
u ,

S j+1
d ] and γ�j defined by

γ�j :=

{
γmax

j (S j,H∗( j,S j)) for S j+1 > S j,

γmin
j (S j,H∗( j,S j)) for S j+1 ≤ S j.

(5.11)

Step 2: Determine the optimal price path S∗ recursively by

S∗N := argminSN∈[dNS0,uN S0]
[H∗(N,SN)+ [SN −X ]+], (5.12)

S∗j := argminS j∈Ij
[H∗( j,S∗j )− γ�j(S

∗
j+1 − S j)], (5.13)

with γ�j defined as in (5.11) with S j+1 replaced by S∗j+1.
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Step 3: Determine the optimal strategy g∗ by

g∗j(S0, . . . ,S j) =

{
γmax

j (S j,Hj) if S∗j+1 > S∗j ,
γmin

j (S j,Hj) if S∗j+1 ≤ S∗j .
(5.14)

Result: The strategy g∗ yields the maximum profit −BCg under the restriction that
worst-case costs WCg are at most V and asset prices are in accordance with the
interval model Iu,d . These best-case costs are achieved for the price path S∗ under
strategy g∗. �
Remark 5.5. From (5.14) we see that the optimal hedge depends on the realized
hedge costs in the past and that at each time step all gained reserves beyond the
RCC limit are put at risk. This is a typical feature of the modeling we have used so
far. If one is unhappy with these kinds of strategies because they are too risky, one
should take this into account explicitly in the modeling. At this moment there is no
incentive in the modeling to avoid this kind of behavior. We will return to this issue
later on. �

That Algorithm 5.4 indeed achieves the advertised result is shown in the
appendix. Before illustrating the algorithm with an example, we give a brief
explanation. Initial hedge costs are set to zero in (5.8), and (5.9) simply denotes
the realized hedge costs under optimal hedging γ�0 as a function of the current price
S1 after the first step. For the second time step, H∗(2,S2) denotes optimal realized
hedge costs, which now not only involve optimization over hedge position γ1 but
also over all paths in I

u,d starting at S0 and ending at a fixed value S2. The interval
I1 specifies all possible values for the asset price at t1 for such paths. It is important
to note that the algorithm postpones optimization over current prices, so hedge costs
H∗( j,S j) are conditionally optimal, assuming an arbitrary fixed price level S j at time
t j. Optimal price paths are then determined by a backward recursion (5.13) starting
at an easy-to-evaluate final condition (5.12).

Example 5.6. We consider an at-the-money European call option with exercise
price X = 1. We assume that the underlying asset follows a price path in the interval
model Iu,d , with u = 5/4 and d = 4/5, N = 4 time steps, and initial asset price
S0 = 1. Sampling of asset prices is done with a logarithmically regular grid, with 51
points on [d,u]. A further decrease of this mesh hardly affects the outcome of the
algorithm.

The unique Cox–Ross–Rubinstein arbitrage-free option price in the correspond-
ing binomial tree B

u,d is given by f0(S0) = 0.1660, cf. (5.1). With the aid of the
algorithm we computed that maximum profit, under strategies that guarantee this
limit, are given by 1/9 and are achieved for the price path

S∗ = (S∗0,S
∗
1,S

∗
2,S

∗
3,S

∗
4) = (1,1,1,5/4,25/16). (5.15)
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Fig. 5.1 Optimal costs under RCC restrained strategies. Both plots contain the graphs of the
optimal current latitude V̄ ∗( j, s) := V −H∗( j, s)− f j(s) with s ∈ [d j,u j], for j = 1, . . . ,4. In the
upper plot the RCC limit is chosen equal to the lowest achievable cost limit, i.e., V = f0(S0) =
0.1666, while in the lower plot this is increased by 5% to V = 0.1743. Thus V̄ ∗( j, s) denotes the
maximum current latitude compatible with a price S j = s under strategies that are admissible under
these RCC limits. In the upper plot V̄ ∗ is zero at the boundary points d j and u j because these are
only achievable by a sequence of extreme jumps in prices, which keeps the latitude at the zero level,
by definition of delta hedging. The fact that V̄ ∗(1, s) = 0 for all s ∈ [d,u] is somewhat coincidental
because this would not be the case for exercise prices unequal to 1

The same analysis is repeated with a slighly higher RCC limit 1.05 f0(S0) =
0.1743. Maximum profit turns out to be 0.1531 and is achieved for the price path

S∗ = (S∗0,S
∗
1,S

∗
2,S

∗
3,S

∗
4) = (1,0.9564,1,5/4,25/16). (5.16)

To give an impression of the outcome of the optimal realized hedge cost functions
H∗( j,s) for j = 1,2,3,4 [cf. (5.9) and (5.10)], we have plotted the corresponding
optimal current latitude V̄ ∗( j,s) = V −H∗( j,s)− f ( j,s), both for the tight RCC
limit V = f0(S0) and for V = 1.05 f0(S0), in Fig. 5.1. This has the following
interpretation. If at time t j the asset price is given by S j = s, then the realized hedge
costs Hj, defined by (5.2), are under optimal circumstances equal to H∗( j,s), i.e.,
under optimal admissible hedging and for the best price path in I

u,d from S0 to
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S j = s. Hence V̄ ∗( j,s) denotes the maximum current latitude compatible with a price
S j = s. In particular, V̄ ∗(4,S4)=V −H∗(4,S4)− f (4,S4). By (5.12), the last price S∗4
of the optimal price path minimizes H∗(4,S4)+ f (4,S4). Thus the optimal price S∗4
is obtained from the plot as that price at which the j = 4 curve attains its maximum
value. If V = 0.1666, then we see that this optimal price S∗4 is approximately 1.56,
whereas for V = 0.1743 the price S∗4 is slightly smaller. Furthermore, the maximum
profit, −BC∗(S0,V ) = −H∗(4,S∗4)− f (4,S∗4), is obtained from this curve as the
difference between the maximum value of the curve and V . Thus, for V = 0.1666
the maximum profit is approximately 0.28− 0.1666≈ 0.1104 and for V = 0.1743
it is approximately 0.325− 0.1743≈ 0.1507.

If the RCC limit is fixed at its smallest value, f0(S0), then the initial hedge
position is fixed because it must be equal to the delta hedge 0.5830. For the
increased RCC limit the interval of admissible initial hedge positions is given by
[0.5369,0.6863]. In Fig. 5.2 we show the range of admissible strategies for time
instants t1, t2, and t3 under RCC limits V = f0(S0) and V = 1.05 f0(S0). This gives
an idea of how far hedge positions may deviate from delta hedging under best-case
circumstances. �

5.4 Extensions

We have described how a worst-case cost restriction can be translated to strategy
limits and shown how to determine maximum profits under such a constraint. In this
section we discuss extensions of this result with respect to the choice of the RCC
limit and variants of the cost criterion.

First we pursue the pure interval calculus a little further in Sect. 5.4.1. It is shown
how cost limits can be chosen on the basis of the maximum loss/profit ratio and how
an option premium can be based on this criterion.

These criteria, which are based solely on interval limits for asset prices, have
some degenerate features as a performance measure for investments, especially if
the number of time steps is large. Under the RCC restriction, the downside risk is
limited, by construction, but (as was already mentioned in Remark 5.5) in each step
hedge volumes are driven to the maximum amount, and consequently all the gained
reserves beyond the RCC limit are put at risk at each step. In particular, for a long
sequence of time steps this seems odd, and it may be more desirable to secure profit,
at least partially.

Therefore, in Sect. 5.4.2 we also analyze how to minimize expected costs
under additional stochastic assumptions within interval models. This relates to a
fairly general result that depends only on the expected growth factor, E(S j+1/S j).
However, despite the different nature of the criterion, we will see that the optimal
hedge volumes turn out to be maximal again at each step.
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Fig. 5.2 RCC-admissible strategies. The plots on the left-hand side correspond to the tight RCC
limit V = f0(S0) = 0.1666, on the right-hand side to V = 1.05 f0(S0) = 0.1743. The dashed lines
indicate hedge positions according to delta hedging, as a function of prices S j at time t j, with j = 1
in the upper plots, j = 2 in the center, and j = 3 in the lower plots. The solid lines denote the
graphs of γmax

j and γmin
j , as a function of S j , and with realized hedge costs H∗( j,S j), which are the

optimal hedge costs compatible with asset price S j at t j , cf. (5.11). Whenever the corresponding
current latitude is zero (Fig. 5.1), the strategy must coincide with delta hedging. The prices S∗1, S∗2,
and S∗3 in the best-case price paths (5.15) (left plots) and (5.16) (right plots) are indicated by an

asterisk and hence mark the actual outcome γ�j of the strategy for this path

5.4.1 Loss/Profit Ratio

In Sect. 5.3 we described an algorithm for solving the minimization problem (5.5).
The solution consists of an optimal strategy and the construction of a corresponding
price path at which profits are maximized. It is not hard to verify that worst-case
costs under this strategy reach the prescribed RCC limit V , so that in fact the entire
cost interval of the strategy (4.6) is known:

Ig∗ = [BC∗(S0,V ),V ] (5.17)

for g∗ a solution of (5.5).
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The question arises as to how to compare these intervals for different values of V
if the RCC limit is a design variable rather than an externally imposed value. More
generally, the question is how to evaluate cost intervals of strategies. By definition,
the option premium is not included in the cost intervals, and incorporating it as an
additional factor we arrive at the question of how to compare the interval of results

[a− f ,b− f ] and [c− f ,d− f ]

with [a,b] and [c,d] cost intervals of two strategies and f the (yet-to-be-determined)
option premium.

There is an infinite number of ways to evaluate uncertain costs. In this section we
confine ourselves to the somewhat academic assumption that nothing is known about
costs besides the limits of the interval. In this way we illustrate the consequences
of the interval models without any additional assumptions on the asset pricing
process. Notice that in this context the strategies that achieve the maximum profit
for fixed worst-case costs, as constructed previously, relate to an “effective frontier”
of portfolios because, from the pure “interval perspective,” these dominate all
strategies with the same worst-case costs and smaller profits. The only design
parameters left, then, are the value of the cost limit and the option premium if it
is not considered as given.

As a consequence of the absence of arbitrage, we must consider only those
intervals that contain zero because entirely positive or negative cost ranges relate
to the existence of strategies that yield certain profit. Recall from Theorem 4.5 that
the precise bounds for arbitrage-free option premiums are the intrinsic value of the
option, [S0 − X ]+ (lower bound), and the Cox–Ross–Rubinstein price f0(S0) for
maximum volatility (upper bound). The loss/profit ratio (LPR) of such an interval
[a− f ,b− f ] is defined as b− f

f−a . There is a simple argument for considering this ratio
as the main criterion. Suppose there are strategies that lead to cost intervals [a,b] and
[c,d], so that the net results with option premium f are respectively [a− f ,b− f ]
and [c− f ,d − f ]. If we allow for portfolio rescaling, we may scale the second one

by a factor a− f
c− f , which gives [a− f , (a− f )(d− f )

c− f ]. Comparing this with [a− f ,b− f ] is
now simply a matter of comparing the right bounds, and their ordering is precisely
determined by the LPR of the intervals. Observe that the cost interval with the
smallest ratio is preferable in the absence of additional information.

From (5.17) it now follows that for a given (arbitrage-free) option premium f
and an achievable RCC limit V [hence not below the Cox–Ross–Rubinstein price
f0(S0)], the optimal LPR criterion is given by

LPR∗( f ,V ) :=
V − f

f −BC∗(S0,V )
.

Here BC∗(S0,V ) is given by (5.14), and it is interesting to see how this ratio depends
on V and f . In particular, one might address the question of how to minimize this
ratio over V for a fixed f . Notice that for the maximum arbitrage-free premium,
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Fig. 5.3 Best-case costs as a function of RCC limit. The lower curve shows best-case costs
BC∗(S0,V ) as a function of RCC limit V , with S0 = 1; cf. (5.5). The upper line in the plot equals
V . The minimally achievable RCC limit is 0.1666, which equals the Cox–Ross–Rubinstein option
premium

f = f0(S0), the RCC that minimizes this LPR∗(V ) ratio is V = f0(S0) because then
the ratio is zero. Moreover, it is easily verified that for a fixed RCC limit V , LPR∗( f )
is a decreasing function. So its minimum value is attained at f = f0(S0).

In the following example we consider this dependency of the optimal LPR on its
RCC limit V and option prices f in more detail.

Example 5.7. We proceed with Example 5.6. Figure 5.3 illustrates the dependence
of best-case costs BC∗(S0,V ) on cost limit V by applying the algorithm to several
values of V . It seems that BC∗(S0,V ) depends piecewise linearly on this RCC limit
V . There seems to be a change in the slope of the best-case costs around V = 0.18.

In Fig. 5.4 the LPRs are shown for a range of arbitrage-free option premiums.
The fair price interval is in this case given by [0,0.1666]. We plotted the optimal
LPR for different choices of the option price from this fair price interval. It turns
out that there are two ranges of option premiums for which LPR∗(V ) has a different
minimum location. For option prices sufficiently close to the minimal RCC bound
f0(S0), the minimal LPR∗(V ) is attained at V = f0(S0). For option prices below a
certain threshold, LPR∗(V ) has an infimum at V = ∞. Thus, by relaxing in those
cases the RCC constraint, we improve the LPR∗. �
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Fig. 5.4 Optimal loss/profit ratio for several option prices. The curves denote the LPR∗ for several
option prices. The lowest one corresponds to the Cox–Ross–Rubinstein price f0(S0) = 0.1666;
hence it is zero at V = f0(S0). The other curves (bottom to top) correspond to option premiums of,
respectively, 0.95, 0.93, 0.5, and 0 times f0(S0). Prices outside this range are not arbitrage free. For
factors from 0.93 to 1, the minimum is at the left, so the minimum LPR∗ is achieved for the lowest
achievable cost bound V = f0(S0), while for lower premiums the optimum switches to infinity

5.4.2 Maximum Expected Profit Under a Cost Constraint

In this section we take a step from the purely indeterministic features, as represented
by interval models, to the probabilistic properties of prices. We assume that, in
addition to the limits that an interval model induces for the growth factor of prices,
its expected value is also given. Thus we assume that in each step

E j[S j+1/S j] = 1+ e( j,S j), (5.18)

where E j[·] denotes the expectations conditioned on past prices up to and including
t j, and e is a real-valued function denoting the expected growth rate at t j for
current price level S j. Notice that under a risk-neutral probability measure and prices
relative to a tradable asset, there are theoretical arguments for setting e = 0, making
the measure a martingale. With e expressing “real” expectations, the value of e is
typically positive and depends on the market price of risk.

It turns out that minimizing the expected costs under RCC still corresponds to
hedging at the strategy limits imposed by the cost constraint.
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Proposition 5.8 (Minimizing expected cost under RCC). Assume that asset
prices follow paths in I

u,d and have an expected growth rate of 1+e( j,S j) for price
S j at time t j. The strategy that minimizes the expected value of costs (4.5) under a
cost constraint V ,

g∗ := argming∈GV E[Qg(S)],

is given by

g∗j(S0, . . . ,S j) =

{
γmax

j (S j,Hj) if e( j,S j)> 0,
γmin

j (S j,Hj) if e( j,S j)< 0,

where γmin
j and γmax

j are the RCC strategy bounds as defined in Theorem 5.2. �
The proof of this result can be found in the appendix. This result shows that the
expected-cost criterion does not restrain us from strategies that are at the cost limit
at each step.

5.5 Summary

In retrospect, we showed that in interval models the price of an option is in general
not uniquely determined. A fair price for an option with a convex payoff may be
any price in a compact interval. The lower bound of this interval is determined
by the smallest price that can occur in the interval model using, for example, a
stop-loss strategy, and the upper bound is determined by the largest price that
can occur in the interval model using a delta-hedging strategy. In a simulation
study, we showed that in a discrete-time setting with uncertain volatility the use
of binomial tree models may severely underestimate the involved cost of hedging.
This applies particularly when the hedging strategy underestimates the volatility of
prices. Finally, we considered the question of how to find a hedging strategy for
a call option that maximizes potential profits under the restriction that costs must
not exceed an a priori given bound. We derived a numerical algorithm to calculate
such a strategy under the assumption that this cost bound is not too strict. This
strategy has the property that gained reserves beyond this cost bound are put at risk
at every step. This outcome is on the one hand quite rational given our modeling
framework. On the other hand, the strategy does not seem to be in line with the
basic idea behind hedging, which is to reduce risk. Clearly, the strategy satisfies
the strict requirement of not crossing the cost bound. Profit maximization, however,
might not be the correct specification of the hedger’s objective. To find hedging
strategies that are perhaps more in line with the idea of risk reduction, one could
look for different objective specifications or restrict the set of admissible strategies
to an a priori defined class. Together with the issue of seeing how this theory works
in practice, these are challenging subjects for future research.



Chapter 6
Appendix: Proofs

Proof of Proposition 4.2.

The proof proceeds by induction with respect to the number of periods N.
For N = 1 the cost of a strategy is given by F(S1)− γ0(S1 − S0) for some real

number γ0 = g0(S0), so it depends continuously on S1. Since S1 is restricted to an
interval and since continuous functions map intervals to intervals, Ig must be an
interval.

Next, assume that the proposition is true for models with fewer than N steps,
and consider the total cost range Ig in an N-step model for some fixed strategy g.
First consider the costs of price paths {S0, . . . ,SN} with SN = SN−1. It follows from
the induction hypothesis that the cost range of strategy g over these paths forms an
interval, say, I′. Take p ∈ Ig and let {S0, . . . ,SN−1,SN} be the corresponding path.
Consider the paths {S0, . . . ,SN−1,αSN + (1−α)SN−1} for 0 ≤ α ≤ 1. Since the
corresponding costs depend continuously on α , they form an interval that contains
p and that also contains at least one point of I′. Therefore, the set Ig may be written
as a union of intervals that all have at least one point in common with the interval
I′, and so Ig is itself an interval.

If a strategy is continuous, then the cost function associated to it is continuous
in the price paths. Because the set Iu,d ⊂ R

N+1 is compact, the cost function then
achieves both its maximum and its minimum value on I

u,d . �
The proof of Theorem 4.5 requires the following two technical lemmas.

Lemma 6.1. Let u and d be such that d < 1 < u. If h : (0,∞) �→ R is convex, then
the function h̃(x) defined for x > 0 by

h̃(x) = min
γ∈R

max
dx≤y≤ux

[h(y)− γ(y− x)] (6.1)

is convex as well.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 6,
© Springer Science+Business Media New York 2013
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Proof. Since h(y)−γ(y−x) is convex as a function of y, the maximum in (6.1) must
be taken at the boundary of the interval [dx,ux], so

h̃(x) = min
γ

max[h(dx)+ γ(1− d)x,h(ux)− γ(u−1)x].

Since the first argument in the “max” operator is increasing in γ and the second is
decreasing, the minimum is achieved when both are equal, that is to say, when γ is
given by

γ =
h(ux)− h(dx)

(u− d)x
.

Therefore, we have the following explicit expression for h̃ in terms of h:

h̃(x) =
1− d
u− d

h(ux)+
u− 1
u− d

h(dx).

Since the property of convexity is preserved under scaling and under positive
linear combinations, it is seen from the preceding expression that the function h̃
is convex. �
Lemma 6.2. Let h(·) be a convex function, and let u and d be such that d < 1 < u.
Then we have

max
γ∈R

min
dx≤y≤ux

[h(y)− γ(y− x)] = h(x).

Proof. We obviously have

min
dx≤y≤ux

[h(y)− γ(y− x)] ≤ h(x)

for all γ since the value on the right-hand side is achieved on the left-hand side for
y = x. So to complete the proof it suffices to show that there exists γ such that

h(y) ≥ h(x)+ γ(y− x)

for all y. Clearly, any subgradient of h at x has this property. �

Proof of Theorem 4.5.

1. The value function for the problem of minimizing worst-case costs is given by

V (S, j) = minmax
S j=S

[

F(SN)−
N−1

∑
k= j

γk(Sk+1 − Sk)

]

,
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where the minimum is taken over all strategies and the maximum is taken over all
paths in the given interval model that satisfy S j = S. The value function satisfies
the recursion

V (S, j− 1) = min
γ

max
dS≤S′≤uS

[V (S′, j)− γ(S′ − S)],

and of course we have

V (S,N) = F(S).

It follows from Lemma 6.1 that the functions V (·, j) are convex for all j.
Therefore, the strategy that minimizes the maximum costs is the same as the
minmax strategy for the binomial tree model with parameters u and d, and the
corresponding worst-case paths are the paths of this tree model.

2. The proof is mutatis mutandis the same as above; use Lemma 6.2 rather than
Lemma 6.1.

3. This is by definition a consequence of items 1 and 2. �

Proof of Theorem 4.7.

Items 2 and 3 are clear from Theorem 4.5. One part of item 1 follows easily from
the characterization of the consistent price interval as the intersection of all cost
intervals. Indeed, if Q is a martingale measure, then EQF(SN) is in the cost interval
Ig for any strategy g since the expected result from any trading strategy under
the martingale measure is zero. Thus EQF(SN) is in the intersection of all cost
intervals. To show that every such premium can be obtained as an expected value
under some martingale measure, let Qα denote the martingale measure associated
to the binomial tree B

u,d with parameters uα := 1 +α(u− 1) and dα := 1/uα .
For 0 ≤ α ≤ 1 the measure Qα is also a martingale measure on I

u,d . The expected
option value fα := EQα F(SN) is continuous in α; moreover, fα = fmin for α = 0
and fα = fmax for α = 1. Hence every price f ∈ [ fmin, fmax] occurs as an expected
option value under some martingale measure. �

Proof of Proposition 4.10.

For N = 1 it is obvious that worst cases are at the boundary of S1 = [dS0,uS0] with
u= uτ and d = 1

u and that these worst-case costs are convex in the initial price.
Similar to the proof of Theorem 4.5, it can be proved by induction that worst

cases have extreme jumps and remain convex in the initial price for any number of
time steps. �
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Proof of Results Algorithm 4.9.

We prove that Hmin( j,S j) and Hmax( j,S j) are respectively the minimal and maximal

current hedge costs Σ j−1
k=0 − gk(Sk)(Sk+1 − Sk) over all paths in I

u,d that start in S0

and end in S j. This is obvious for j = 0 and j = 1. For j > 1, observe that I j denotes
the range of all prices at S j that are compatible with given end points S0 and S j+1 in
I
u,d . From the continuity of the strategy it follows that the minimum (4.16) and the

maximum in the definition of Hmax are well defined and indeed denote respectively
the minimal and maximal current hedge costs. In particular, Hmin(N,SN) and
Hmax(N,SN) denote respectively the minimal and maximal realized hedge costs over
all paths in I

u,d that end in SN . Once Smin
N and Smax

N are determined in (4.17) and its
maximum analog, the correctness of (4.19) is obvious. The backward recursions for
Smin and Smax simply reconstruct the paths corresponding to the interval bounds. �
To prove Theorem 5.2, we need the next two lemmas.

Lemma 6.3. A strategy is compatible with the restriction on worst-case costs V if
and only if along all paths the current latitude is always nonnegative, i.e.,

g ∈G
V iff V̄j(S j,Hj)≥ 0 ∀ S ∈ I

u,d , j = 0, . . . ,N − 1.

Proof. As soon as V̄j drops below zero for some j and some price path, there is a
worst-case path in the tree B

u,d that brings total costs above level V . Conversely,
the condition is sufficient for g to be in G

V , as then for all price paths S ∈ I
u,d ,

V̄N =V −HN − V̄N(SN ,HN) =V −Qg(S)≥ 0. �
Lemma 6.4. For all S j ∈ R

+, for all 0 ≤ j ≤ N,

1. f j(S j) is convex in S j;
2. On S j+1 ∈ [dS j,uS j], f j+1(S j+1)−Δ j(S j+1 − S j) has equal boundary maxima

f j(S j). �

Proof of Theorem 5.2.

First notice that, as V ≥ f0(S0), GV is nonempty and contains delta hedging.
Now suppose we apply a strategy g j(S j,Hj) at t j, i.e., we choose the portfolio

C− γ jS at t j, with γ j the outcome of g j, given the past price path (which determines,
in turn, the realized hedge costs Hj). Then at t j+1, Hj+1 = Hj − γ j(S j+1 − S j),
with S j+1 ∈ [dS j,uS j], and V̄j+1 = V − f j+1(S j+1)− Hj+1. From Lemma 6.3 it
follows that g j is admissible if and only if V̄j+1 > 0 for all S j+1 ∈ [dS j,uS j].
So the strategy position γ j is admissible if and only if for all S j+1 ∈ [dS j,uS j],
V − Hj − f j+1(S j+1) + γ j(S j+1 − S j) ≥ 0. Substituting γ j =: Δ j + γ̄ j this gives
V − Hj − f j+1(S j+1) + (S j+1 − S j)Δ j − (S j+1 − S j)γ̄ ≥ 0. With Lemma 6.4 we
obtain that the left-hand side of this inequality is a concave function in S j+1, with
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boundary values V − f j(S j)− Hj − γ̄(d − 1)S j on the left (for S j+1 = dS j) and
V − f j(S j)− Hj − γ̄(u− 1)S j on the right (for S j+1 = uS j). As d − 1 < 0 and
u− 1 > 0, this induces an upper and lower bound for γ̄ , from which the strategy
bounds follow. �

Proof of Proposition 5.3.

The existence of g∗ and S∗ is equivalent to the existence of subsequent solutions of
the minimizations in the definition of BC j. First we write out BCN−1:

BCN−1(SN−1,HN−1)

:= min
{γN−1∈ΓN−1,SN∈[dSN−1,uSN−1]}

[SN −X ]+−HN−1 − γN−1(SN − SN−1),

with ΓN−1 = [γmin
N−1,γmax

N−1]

=

[
ΔN−1(SN−1)−V − fN−1(SN−1)−HN−1

(u− 1)SN−1
,ΔN−1(SN−1)

+
V− fN−1(SN−1)−HN−1

(1− d)SN−1

]
.

For each SN−1,HN−1 this involves minimization of a continuous function over a
compact domain, so BCN−1 is well defined. Further, this domain of optimization is
itself a continuous function of S j and Hj, so BCN−1 is continuous itself on the entire
domain given in (5.7).

The existence of solutions for j = N − 2, . . . ,0 now follows from an obvious
inductive argument. �
To prove the correctness of the statements made in the results of Algorithm 5.4 we
need the next lemma.

Lemma 6.5.
For each price path S ∈ I

u,d,

min
g∈GV

Qg(S) = Qg�(S) (6.2)

with the (noncausal “strategy”) g� defined by γ�,

g�j(S0, . . . ,S j,S j+1) := γ�j .

Proof. We have

BC j(S j,Hj) = min
S j+1∈[dS j ,uS j ]

(
min
γ j∈Γj

BC j+1(S j+1,Hj − γ j(S j+1 − S j))

)
.
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The inner minimization has solutions at the boundary of Γj [see (6.4) below for a
motivation]. More precisely, the minimum is at the left bound if S j+1 < S j and at
the right bound if S j+1 > S j. Finally, notice that if S j+1 = S j, the value of γ j affects
neither the hedge costs over the jth time step nor future cost constraint implications,
so its value may be chosen arbitrarily in Γj. In particular, then, γ� can be taken,
arbitrarily, at the left boundary of Γj, without affecting optimality.

This implies that the right-hand side in (6.2) is a lower bound for the left-hand
side: price jumps cannot be amplified by larger factors with the right sign under the
RCC restriction V .

Equality does not follow immediately, as g� is not a strategy, due to the fact that
it anticipates whether an increase or decrease will follow the current asset price.
To derive equality, observe that for each fixed price path S′ there is a (by definition
causal) strategy g ∈G

V that coincides with g� for that particular price path, namely,

g j(S0, . . . ,S j+1) = γ j =

{
γmax

j if S′j+1 > S′j
γmin

j if S′j+1 ≤ S′j
. (6.3)

Then g(S′)−g�(S′), and hence the outcome of costs are the same: Qg(S′) = Qg�(S′).
By taking S′ a best-case price path (which exists according to Proposition 5.3), a
causal strategy is obtained with the same best-case costs as g�. �

Proof of Correctness of Algorithm 5.4.

First we note a specific feature of the dynamic programming problem that underlies
the first step:

BC j(S j,Hj)≤ BC j(S j,Hj + h) ∀ h ≥ 0.

In fact, it even holds that the difference in realized hedge costs h can be maintained
until the final time because any strategy that is admissible under the RCC with initial
state (S j,Hj + h) at t j is also admissible from a state with lower accrued hedge
costs, so

BC j(S j,Hj + h)≥ BC j(S j,Hj)+ h ∀ h ≥ 0. (6.4)

From Lemma 6.5 we have now that due to this monotonicity in hedge costs we can
reduce the double optimization over paths and strategies to a single one over price
paths. This eliminates optimization over strategies in the best-case criterion (5.5).

A further reduction in computational complexity is achieved by selecting optimal
paths among all those that recombine in the same price. In view of the previous
results, this is simply a matter of comparing the realized “hedge” costs under g� in
each step.

Let Iu,d( j,s) denote the price paths in I
u,d with price s at time t j, and let H∗( j,s)

denote the minimally achievable realized hedge costs for those paths under limit V
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on worst-case costs. Then the optimal realized hedge costs at t j for given asset price
S j are given by

I
u,d( j,s) := {S ∈ I

u,d |S j = s}, (6.5)

H∗( j,s) := min
{g∈GV ,S∈Iu,d( j,s)}

−Σ j−1
k=0 γk(Sk+1 − Sk), (6.6)

with γk = gk(S0, . . . ,Sk) the outcome of the strategy for a given price path S.
Now (5.8) is trivial because hedge costs are zero before hedging starts.

The formula for H∗(1,S1) follows from

H∗(1,S1) = min
γmin≤γ0≤γmax

−γ0(S1 − S0)

because Iu,d(1,s) consists of at most one path. This minimum is achieved for γ0 = γ�0
[see (5.11)], from which (5.9) follows.

To prove (5.10), observe that (6.6) can be rewritten as

H∗( j+ 1,S j+1) = min
{γ j∈Γj ,s∈I j ,S∈Iu,d( j,s)}

−γ j(S j+1 − s)+H∗( j,s)). (6.7)

For each fixed value s for S j it is optimal to take γ j = γ�j , according to Theorem 5.2,

and then (5.10) follows from the fact that the domain for s is indeed given by I j.
Hence H∗(N,SN) denotes the minimal hedge costs that are compatible with final

price SN for strategies that are admissible by the RCC restriction. Thus S∗N does
indeed occur in a best-case price path. Further, S∗0, . . . ,S

∗
N−1 is the price path to

S∗N that realizes the minimal hedge costs H∗(N,SN) if g∗ is applied. Thus indeed
BC∗(S0,V ) = Qg∗(S∗). �

Proof of Proposition 5.8.

Define the value function Jj for j = 0, . . . ,N by

JN := [SN −X ]++HN ,

Jj−1(S j−1,Hj−1) := min
γ j−1∈Γj−1

E j[Jj(S j,Hj−1 − γ j−1(S j − S j−1))].

Then Jj denotes the expected costs at t j under an optimal strategy as a function of the
current asset price S j and realized hedge costs Hj. So J is indeed a value function,
and in particular, J0 denotes the expected costs under optimal hedging.

To show that g∗ is indeed a solution, we first derive that

Jj(S j,Hj) = β jHj + h j(S j), (6.8)

with β j ∈ R
+, and h j a function of S j that is independent of Hj. This is obviously

true for j = N, with βN = 1 and hN(SN) = [SN −X ]+ =: fN(SN). Now take (6.8)
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as induction hypothesis; then for j − 1 we have, with the assumption e = e( j −
1,S j−1) > 0 and omitting the function arguments S j−1 and S j in order to avoid
confusion with multiplication,

Jj−1(S j−1,Hj−1) := min
γ j−1∈Γj−1

E j[Jj(S j,Hj−1 − γ j−1(S j − S j−1))]

= min
γ j−1∈Γj−1

E j[β j(Hj−1 − γ j−1(S j − S j−1))+ h j]

= β jHj−1 − max
γ j−1∈Γj−1

γ j−1β jeS j−1 +E j[h j]

= β jHj−1 − γmax
j−1 β jeS j−1 +E j[h j]

= β jHj−1 −β j

(
Δ j−1 +

V − f j−1 −Hj−1

(1− d)S j−1
eS j−1

)
+E j[h j]

= β jHj−1 −β j
e

1− d
(Δ j−1(1− d)S j−1+V − f j−1 −Hj−1)+E j[h j].

Now, with function arguments included, delta hedging has the property

(1− d)S j−1Δ j−1(S j−1)− f j−1(S j−1) =− f j(dS j−1).

Substituting the left-hand side in the last formula for Jj−1, we obtain

Jj−1(S j−1,Hj−1) = β j

(
1+

e
1− d

)
Hj−1 +E j[h j(S j)]+β j

e
1− d

( f j(dS j−1)−V).

Now take β j−1 := β j(1+ e
1−d ) and h j−1(S j−1) := E j[h j(S j)]+β j

e
1−d ( f j(dS j−1)−

V ); then Jj−1(S j−1,Hj−1) = β j−1Hj−1 + h j−1(S j−1) with h j−1 being indeed inde-
pendent of Hj−1. Hence, by induction, (6.8) must be valid for all j.

For negative e( j−1,S j−1) the computations are analogous, with γmax replaced by
γmin. The derivation of the formula immediately reveals that g∗ is indeed optimal.�
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Robust-Control Approach to Option

Pricing

Author: Pierre Bernhard
INRIA-Sophia Antipolis-Méditerranée,
France

Most of the material presented henceforth, except for Sect. 8.3.1, was obtained while
the author was a professor at École Polytech’Nice, a department of the University
of Nice-Sophia Antipolis, and Director of I3S, a joint laboratory of the university
and CNRS.

In this part, we develop the full theory of European option hedging in the interval
market model with transaction costs, equating “hedging” with worst-case design,
yielding a “seller’s price” (since the market model is incomplete). The theory
is comprehensive concerning vanilla options, including continuous and discrete
trading and the convergence of the latter to the former, as well as providing a
fast algorithm. We also develop the more difficult case of digital options. In that
case, the full theory still relies on two unproven, though numerically substantiated,
conjectures.

The uniqueness theorem of Sect. 8.3.1 owes much to Naı̈ma El Farouq of
Blaise Pascal University, Clermont-Ferrand, France, and to Guy Barles of François
Rabelais University, Tours, France. The analysis of digital options is a joint work
with Stéphane Thiery, now with ENSAM-Lille, France. Chapter 10, which relies
heavily on our joint publication [39], is essentially an English translation of part of
the corresponding chapter of his unpublished French dissertation [142].

Discussions with the coauthors of this volume, and particularly with Jean-Pierre
Aubin, have been instrumental in developing the ideas embodied in the theory
presented here in its entirety for the first time.
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Notation

• at : For any vector or matrix a: a transposed

Universal constants

• R: The real line
• N: The set of natural (positive) integers
• 1l: A vector of any dimension with all entries equal to 1

Constants

• T : Exercise time [time]
• K : Exercise price [currency]
• D: Exercise digital payoff [currency]
• μ0: Riskless interest rate [time−1]
• τ− < 0, τ+ > 0: Extreme relative rates of change of the underlying stock’s price

[time−1]
• τ� = max{−τ−,τ+} [time−1]
• h: Time step for the discrete trading problem [time]
• K ∈N: Kh = T [dimensionless integer]
• K= {0,1, . . . ,K − 1}
• τ−h = eτ−h − 1, τ+h = eτ+h − 1 [dimensionless]
• C−, C+: Rate of proportional transaction cost for a sale, a buy, of underlying

stock [dimensionless]
• c− ∈ [C−,0], c+ ∈ [0,C+]: Same as C− and C+ for closure costs [dimensionless]
• τε ,Cε ,cε See “special convention” below

Variables (with time)

• t ∈ [0,T ]: Time
• tk = kh: Trading time instants in discrete trading
• R(t) = eμ0(t−T ): An end-time value coefficient [dimensionless]
• S(t): Underlying stock’s market price [currency]
• X(t): Number of underlying stocks in the hedging portfolio [dimensionless]
• Y (t): Number of riskless bonds in the hedging portfolio, = the normalized worth

of the riskless part of the portfolio [currency]
• u(t) = S(t)/R(t): Normalized underlying stock’s price [currency]
• v(t) = X(t)S(t)/R(t): Normalized worth of underlying stock in the hedging

portfolio, or exposure [currency]
• w(t) = v(t)+Y(t): Normalized portfolio worth [currency]

• V =

(
v

w

)
, x =

(
u

v

)
, y =

⎛

⎝
t
u

v

⎞

⎠ , z =

⎛

⎜
⎜
⎝

t
u

v

w

⎞

⎟
⎟
⎠

• τ(t) = u̇(t)/u(t) ∈ [τ−,τ+]: Relative rate of change of u(t) [time−1]
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• (uk,vk,wk) = (u(tk),v(tk),w(tk))
• τk = (uk+1 −uk)/uk: One-step relative rate of change of u
• ξ (t): Seller’s control, rate of sale or buy of underlying stock [a distribution]
• ξc: Continuous component of ξ (·) [currency×time−1]
• ξk: Intensity of Dirac impulse in ξ (·) at time tk (jump in v at time tk) [currency]

Functions

• M(u,v): Terminal payment of seller (bank) to option holder [currency]
• N(u,v): Terminal payment augmented by closing costs [currency]
• W (t,u,v): Optimal hedging portfolio worth (Value of the minimax game prob-

lem) [currency]
• W h

k (u,v): Value of the discrete time minimax game at time tk = kh [currency]
• W h(t,u,v): A carefully chosen interpolation of the sequence {Wh

k } [currency]

Sets

• U : Set of admissible underlying stock’s price trajectories u(·)
• Ω : Set of admissible relative rate of change histories ω = τ(·)
• Uh: Set of sequences = sampled elements ofU
• Ωh: Set of admissible sequences {τk}k∈K (discrete trading)
• Ξ : Set of admissible seller’s controls
• Φ: Set of admissible seller’s strategies (nonanticipative mappings U → Ξ )

Auxiliary quantities

• νt = (n p q r ) =−( ∂W
∂ t

∂W
∂u

∂W
∂v 1 ): Semipermeable normal

• σ = pu+(1+q)v: Switch function whose opposite sign η = sign(−σ) dictates
the optimum τ as τ� = τη

• q−(t,u), q+(t,u) (jointly qε(t,u)): Two slopes appearing in representation
formula, with different (closed-form) formulas in vanilla and digital cases
[dimensionless]

• Qε = (qε 1 ), ε ∈ {−,+}: [Dimensionless line vector]

• Q =

(
Q+

Q−

)
=

(
q+ 1
q− 1

)
: [Dimensionless 2× 2 matrix]

• v̌(t,u), w̌(t,u): Two functions, jointly solution of fundamental PDE, appearing
in the representation formula [currency]

• V̌ (t,u): [2-vector]

V̌ (t,u) =

(
v̌(t,u)
w̌(t,u)

)
[currency]

• T (t,u): [2× 2 matrix]

T =
1

q+− q−

(
τ+q+− τ−q− τ+− τ−

−(τ+− τ−)q+q− τ−q+− τ+q−

)
. [time−1]
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• S : [2× 2 constant matrix]

S =

(
1 0
1 0

)
: [dimensionless]

• tε : Last time when qε =Cε and when the seller would use an impulse of sign ε
• tm = min{t−, t+}, tM = max{t−, t+} [time]

Manifolds in (t,u,v,w) space (geometric theory)

3D hypersurfaces

• {τε}, ε ∈ {−,+}: Regular semipermeable manifold with τ = τε

• {K }: Singular semipermeable manifold (digital)
• {ιε}, ε ∈ {−,+}: Jump semipermeable manifold of sign ε

2D manifolds

• B: “Basic” manifold V̌ = 0
• C : (Digital call) “Constant” manifold V̌ = (0 D )t

• D : Dispersal manifold, {τ−}∩{τ+} (vanilla) or {τ−}∩{K } (digital)
• E , E ε : Envelope junction of a jump manifold of sign ε with a regular (vanilla

and digital) or singular (digital) semipermeable manifold
• F : Focal manifold, junction of two jump manifolds

Special convention

• Zε 〈expression〉, for Z ∈ {τ,C,c,q,Q}, = Zsign(expression)× (expression)



Chapter 7
Continuous and Discrete-Time Option Pricing
and Interval Market Model

7.1 Introduction

Recently, there has been a large body of literature on robust control optimization,
with applications to various fields including mathematical finance. See, e.g., [27,
41, 42]. Most aim to exploit the power of modern computer tools to solve complex
problems whose stochastic formulation is essentially out of reach. Instances of such
works will appear in the later parts of this volume. In contrast, we concentrate in
this part on the simplest problems – one underlying asset and the less sophisticated
interval model – and strive to push the analytic investigation as far as possible.
In some sense, being very pretentious, this may be seen as a counterpart, in the
robust control option pricing literature, of the Black–Scholes theory in the stochastic
literature, the representation theorem playing the role of the Black–Scholes closed-
form pricing formula.

The role of probabilities in finance is further discussed in other parts of the
book. But special mention must be made of the outstanding book by Shafer and
Vovk [136]. They start from the same analysis of hedging as we do in terms of a
game against “nature,” very much in the spirit of the present book. But where we
conclude that we can do without probability theory, they claim that this is probability
theory. Or rather they claim that this can be an alternative to Kolmogorov’s measure-
theoretical foundation of probability theory, and they proceed to recover many
results, such as asymptotic and ergodic theorems, from this new viewpoint. Our
seller’s price is their “upper expectation” – of which they claim, as do we implicitly,
that it is the price likely to be found on the market. Yet, they are more interested
in recovering classical probabilities and elaborating on the classic Black–Scholes
theory than in providing alternative models and tackling the problems of transaction
costs and discrete trading that we consider. But the relationship of that theory to our
model deserves further consideration.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 7,
© Springer Science+Business Media New York 2013
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7.1.1 A New Theory of Option Pricing?

In a series of papers [34, 38–40, 70, 143], we introduced a robust control approach
to option pricing and, more specifically, to the design of a hedging portfolio and
management strategy using the interval model for the market and a robust control
approach to hedging. An overview of the theory available at that time appeared in
[35], and the most complete account to date is in [142]. But no complete account is
available in print yet.

This theory arose from a failed attempt to extend to the discrete trading case
the probability-free robust control approach of Chap. 2 with no assumption on
the sequence of market prices of the underlying stock. It soon became clear that
unbounded admissible price increments made the buy-and-hold strategy the only
hedging strategy. Incidentally, this is also what precludes a satisfactory discrete
trading strategy with Samuelson’s model. Hence the need for the interval model
henceforth, which we also extended to the continuous trading scheme.

We feel that the assumptions of this model – that we know a bound on the
possible one-step relative price increments or on the relative price rate of change
in the continuous trading case – while not very satisfactory, imply much less
knowledge on future prices than the assumption made in the classic Black–Scholes
theory – that the process is a geometric diffusion, a process with unbounded
variation and thus not graphically representable, and, moreover, that we know its
exact volatility. This is indeed an extremely rich set of assumptions on the future
price history. For instance, it implies that its total squared relative variation will be
exactly σ2t, which fact we used in Chap. 2 to derive the Black–Scholes equation.

Admittedly, much work has been done to relax this too precise description using
variable volatilities, in particular stochastic volatilities. This adds more probabilities
to the model and, in so doing, in some sense more – or at least not less – information
on this unknown future. There have also been attempts at an “interval” description
of volatility; see, e.g., [18]. But then the worst case is systematically the highest
possible value.

The interval model certainly assumes less a priori knowledge on future price
histories. It can turn out to be violated, of course – and we will examine in Chap. 10
why this is not too much of a concern – but this will be easy to monitor, contrary
to the Samuelson model, which will undoubtedly always prove to be violated one
way or another one; even if the price history turns out to be almost as irregular as a
geometric diffusion, its “volatility” will never exactly match the volatility assumed,
this being difficult to monitor in real time.

A more detailed comparison of the interval model with Samuelson’s model
was provided in the previous part. The clear conclusion, though, is that the new
theory is not a priori unnatural. Is it rich enough to be useful? Its main claims to
being so are, on the one hand, that it allows for constructing a consistent theory
of hedging portfolios with either a continuous- or discrete-time trading paradigm,
the former being the limit of the latter for vanishing time steps, with one and the
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same (continuous-time) market model,1 and, on the other hand, accommodating
transaction costs and closing costs in a natural way, even if large, with a nontrivial
hedging portfolio. Indeed, our theory naturally accommodates transaction costs to
such an extent that, without them, in the continuous-time theory – incidentally,
this is just as unrealistic a model as the total absence of transaction costs – our
hedging strategy degenerates into a stop-loss strategy. Thus this model allows one to
circumvent the classic impossibility [138], at the cost of being incomplete, obliging
us to resort to super replication and a seller’s price. (This was analyzed in more
detail in the previous part.)

Let us add that our “fast algorithm” makes computing a safe approximation of the
optimal hedging strategy and of the associated premium almost as fast as computing
the Black–Scholes optimal strategy and premium, to the point where the power of
modern personal computers hides any difference in computing time.

Perhaps we could claim as positive points the ease with which we can deal with
American options – a single line of code to add in our “standard algorithm” – and
the possibility of accommodating a time delay in the information available to the
discrete trader. See Sect. 7.3 below.

Yet, this is not, by far, as mature a theory as Black–Scholes, of course. Among
other shortcomings at this time, we do not yet have detailed and comparative
validation data. A first investigation in that direction is reported in Chap. 10. And,
in contrast with the theory developed in Part II, but essentially in accordance with
the rest of this book, we have only investigated the seller’s price of our model – the
maximum point of Part II’s fair price interval – i.e., the price that the seller must
charge to make sure to always hedge his costs, that is, as long as the market does not
violate the the model’s hypotheses. Undoubtedly, much work remains to be done
and much practice accumulated before it can challenge the established theory, if
ever.

7.1.2 Related Contributions

As mentioned in Chap. 2, McEneaney may have been the first to replace the
stochastic framework with a robust control approach. See the introduction there.

The previous part dealt in detail with the approach of Cox et al. [57] where prob-
abilities seem to come in as an implicit byproduct of a binary tree approximation of
the geometric diffusion. This will be more extensively commented in Part IV of the
book, where Kolokoltsov, following earlier work of his, generalizes that approach.

1Notice that the quite remarkable Cox–Ross–Rubinstein model does not claim any realism with a
finite step size and only aims to recover the Black–Scholes theory in the limit as the step size goes
to zero, in a fashion that cannot be interpreted as the sampling of a fixed continuous-time market
model.
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We took the phrase “interval model” from Roorda et al. [131,132] and from their
work presented in the previous part.

Yet the contribution the closest to ours, as far as we know, is that of Aubin
et al., as initiated by the Ph.D. dissertation of Dominique Pujal [128] and further
developed in [17] and using computer tools. This will be presented in Part V of
this volume. They have a more general model, as shown by their dealing with
complex options, on which they bring to bear the powerful mathematical machinery
of viability theory. In the continuous case with transaction costs, they essentially
ignore jumps in the portfolio – which is of no consequence in deriving a discrete-
time algorithm. More importantly, our algorithmic approaches differ: while our “fast
algorithm” is specifically tailored for the problem of hedging a European claim, they
use a very general “guaranteed capture basin” algorithm, which is less efficient for
simple European options but can be extended to a large class of complex options.

Similar thoughts were developed by Olsder [123], although this is only a prelim-
inary analysis, as acknowledged by the author. Barles and Soner [23] developed a
different approach to option pricing that lets them deal with transaction costs, but
then the premium they arrive at depends on the rest of the trader’s portfolio.

More recently, systematic investigations into the use of robust control in lieu of
stochastic control have led authors to consider the option pricing problem. See, e.g.,
[41] and the references therein.

7.2 Modeling

We develop here the fundamental model of our problem, both in terms of market
model and portfolio model, and therefore how the game theoretic approach comes
in instead of the more traditional stochastic approach.

7.2.1 Contingent Claims

We offer a rather general presentation of European and American contingent claims,
or “derivatives”; a more precise description of the most basic ones will be given in
the next chapter. Contingent claims are contracts sold by a seller to a buyer. The
object of the theory is to determine the “optimum” price, or premium, that the seller
should charge for that contract.

In a European contingent claim, a “seller” sells to a “buyer” a contract per which
the latter may, at a given exercise time T , exert a right to buy or sell a given
commodity at a predetermined price, or receive a certain amount of money. The
crucial point is that the exact transaction to be exerted or not may bear a cost
to the seller, which depends on the state of the market at exercise time, usually
the market price S(T ) of an “underlying stock” prescribed by the contract. We let
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M(S(T )) be the cost to the seller, excluding closing transaction costs, which we will
cover later on.

In an American contingent claim, the buyer may choose when to opt to exercise
his right, anywhere between the initial time and T . We will show in Sect. 7.3 how to
deal with that case. The added difficulty with respect to a European option is much
less severe than in the stochastic theory. Yet we have not yet fully fleshed it out. (The
computer code implementing our “standard algorithm” solves that case easily.)

7.2.2 Market

7.2.2.1 Riskless Interest Rate

We assume a fixed, known, riskless interest rate μ0 characteristic of the given
economy. In a classic fashion, all monetary values will be expressed in end-time
value computed at that fixed riskless rate, so that, without loss of generality, the
riskless rate will be taken as (seemingly) zero. (It reappears in the theory of
American options; see Sect. 7.3) For this to happen, let

R(t) := eμ0(t−T ) (7.1)

be our end-value discounting coefficient.
The market contains a riskless bond, an asset with return rate μ0, i.e., whose

monetary value at time t is S0(t) = R(t)S0(T ).2

Concerning the risky underlying asset, we share with the other parts of the book,
particulary Part II, the view that a market model is a set of possible underlying stock
price trajectories [0,T ] → R

+: t �→ S(t). As stated previously, we will use, instead
of S(t), its normalized price (its end-time value at rate μ0), i.e.,

u(t) =
S(t)
R(t)

. (7.2)

7.2.2.2 Continuous Trading

Let U be the set of possible normalized price trajectories. Our model is defined by
two real numbers τ− < 0 and τ+ > 0, and U is the set of all absolutely continuous
functions u(·) such that for any two time instants t1 ≤ t2

eτ−(t2−t1) ≤ u(t2)
u(t1)

≤ eτ+(t2−t1). (7.3)

2S0(T ) could, without loss of generality, be taken as equal to one. We avoid that convention to keep
track of the dimension of the variables. Y is dimensionless, and S0(T ) is a currency value.
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(Notice that the use of u(t2)/u(t1) instead of S(t2)/S(t1) only translates the interval
[τ−,τ+] by μ0.)

The notation τε will be used to handle both τ+ and τ− at one time. Hence, in
that notation, it is understood that ε ∈ {−,+}, sometimes identified to {−1,+1}.
Moreover, as with any other symbol with a superscript ε (Cε , cε , qε , Qε ), the
notation

τε〈expression〉
will always mean that τε is to be replaced by τ− if expression < 0 and by τ+ if
expression > 0. Finally, we will let

τ� = max{−τ−,τ+}.
In the continuous trading theory, we will use the equivalent characterization

u̇= τu, τ ∈ [τ−,τ+]. (7.4)

In that formulation, τ(·) is a measurable function that plays the role of the “control”
of the market. We will let Ω denote the set of measurable functions from [0,T ]
to [τ−,τ+]. It is equivalent to specifying a u(·) ∈ U or a (u(0),τ(·))∈R

+ ×Ω .
This is an a priori unknown time function. The concept of nonanticipative strategies
embodies that fact.

7.2.2.3 Discrete Trading

In the discrete trading theory, we will call h= T/K our time step, K being an integer.
Hypothesis (7.3) translates into3

u(t + h) ∈ [ehτ−u(t),ehτ+u(t)].

For convenience, we let

u(t + h) = (1+ τ(t))u(t), τ(t) ∈ [τ−h ,τ+h ], (7.5)

with

τε
h = ehτε − 1, ε ∈ {−,+}. (7.6)

Alternatively, we will write, for any integer k, u(kh) = uk, so that (7.5) also reads

uk+1 = (1+ τk)uk, τk ∈ [τ−h ,τ+h ], (7.7)

3As opposed to u(t +h) ∈ {ehτ−u(t),ehτ+u(t)} in the Cox–Ross–Rubinstein theory.
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and we let Uh denote the set of admissible sequences {uk}. Note that they are exact
sampled functions of U , not Euler approximations of some kind. We also let Ωh

denote the set of admissible sequences {τk}.
The case where h goes to zero will be of interest also. But, contrary to the

classic limit process in the Cox–Ross–Rubinstein theory, we retain the underlying
continuous-time model, hence here τ+ and τ−, fixed. Then τε

h goes to zero as hτε .

7.2.3 Portfolio

At the initial time, when the contract is sold, the seller forms a hedging portfolio
made of X(0) shares of the underlying stock, valued at the market price S(0), for a
normalized end value of v(0) = X(0)u(0) = X(0)S(0)/R(0), and Y (0) normalized
riskless bonds. The total value of his initial portfolio is thus, in normalized units,
w(0) = v(0) +Y (0)S0(T ). He then manages this portfolio in a way that will be
discussed hereafter, so that v(t) and w(t) will vary over time.

Notice that, as usual, we allow X(t), and therefore v(t), or Y (t) to be negative if
the seller decides to “short” his portfolio to get cash or, conversely, to borrow cash
to build a “long” portfolio.

Assumption 7.1. We will assume that the underlying stock, as well as the bonds,
are infinitely divisible, so that X(t), v(t), Y (t), and w(t) may all be considered real
variables.

7.2.3.1 Buying and Selling

Continuous Trading

The seller will want to buy or sell (parts of) shares of the underlying stock.

Assumption 7.2. We assume that the market is always liquid and can provide or
absorb the amount the seller wants to trade, at a price independent of that amount.

Remark 7.3. The assumption of an always liquid market could prove to be unreal-
istic if the seller was to attempt very large transactions. It will be important to notice
that the optimal portfolio management strategies we will find do not imply such
large transactions. Otherwise, it could be necessary to restrict their amount, or v(t).

We let ξ (t) be the buying rate [a sale if ξ (t) < 0], which is the trader’s control.
Therefore, we have, in continuous time,

v̇ = τv+ ξ . (7.8)

However, there is no reason why one should restrict the buying/selling rate, so that
there is no bound on ξ . To avoid mathematical ill-posedness, we explicitly admit an
“infinite” buying/selling rate in the form of instantaneous purchase or sale of a finite
amount of stock at time instants chosen by the trader together with the amount. Thus
the control of the trader also involves the choice of finitely many time instants tk and
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trading amounts ξk, and the model must be augmented with

v(t+k ) = v(t−k )+ ξk, (7.9)

meaning that v(·) has a jump discontinuity of size ξk at time tk. Equivalently, we may
retain formula (7.8) but allow for impulses ξkδ (t − tk) in ξ (·). We will therefore let
ξ (·)∈ Ξ , the set of distributions defined over [0,T ] that are the sum of a measurable
function ξc(·) ∈ M ([0,T ],R) and a finite number of weighted translated Dirac
impulses ξkδ (t − tk):

ξ (·) ∈ Ξ = {M ([0,T ],R)+finite sums of weighted translated Dirac impulses}.
(7.10)

To avoid any ambiguity, whenever needed, we will call ξc the “continuous trading”
(or measurable) part of ξ and let

ξ (t) = ξc(t)+∑
k

ξkδ (t − tk). (7.11)

Thus, the portfolio model can be written either as (7.8), (7.11) or as (7.9), (7.12):

v̇(t) = τ(t)v(t)+ ξc(t), v(tk) = v(t+k ) if t ∈ (tk, tk+1). (7.12)

We emphasize that, in the continuous theory, the tk are the choice of the seller,
together with the ξk and ξc(·). We only require that they be isolated, hence in finite
number over [0,T ].

Discrete Trading

The discrete trading case can be seen as a sequence of jumps at prescribed time
instants tk = kh, k ∈ K = {0,1, . . . ,K−1} ⊂ N, and h ∈ R

+ a prescribed time step,
such that Kh = T . Writing uk,vk,wk for u(kh),v(kh),w(kh), this leads to

vk+1 = (1+ τk)(vk + ξk). (7.13)

7.2.3.2 Transaction Costs

We assume that there are transaction costs, proportional to the transaction amount.
But we allow for different proportionality coefficients for a purchase or sale of
underlying stock. Hence let C+ be the cost coefficient for a purchase and −C−
for a sale, so that the cost of a transaction of amount ξ is Cε 〈ξ 〉 (with ε = sign(ξ )
according to our standing convention). We have chosen C− negative, so that the
formula always gives a positive cost, as it should.

Assumption 7.4. We will only consider cases where |Cε |< 1, ε =−,+.

Our portfolio will always be assumed to be self-financed, i.e., the sale of one the
commodities, underlying stock or riskless bonds, must exactly cover the purchase
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of the other one and the transaction costs. It is a simple matter to see that the worth
w of the portfolio then obeys

ẇ = τv−Cε〈ξ 〉 , (7.14)

i.e., at jump instants,

w(t+k ) = w(t−k )−Cε〈ξk〉 , (7.15)

and between two jumps

ẇ = τv−Cε〈ξc〉 , w(tk) = w(t+k ) if t ∈ (tk, tk+1). (7.16)

This is equivalent to

w(t) = w(0)+
∫ t

0
(τ(s)v(s)−Cε 〈ξ (s)〉)ds, (7.17)

= w(0)+
∫ t

0
(τ(s)v(s)−Cε 〈ξc(s)〉)ds− ∑

k|tk<t

Cε〈ξk〉 .

In the discrete trading case, this simplifies to

wk+1 = wk + τk(vk + ξk)−Cε〈ξk〉 , (7.18)

leading to

wn = w0 +
n−1

∑
k=0

[τk(vk + ξk)−Cε〈ξk〉]. (7.19)

A dynamic portfolio will be a pair of time functions (v(·),w(·)), whether time
is continuous or discrete, also denoted ({vk},{wk})k∈K in the latter case, satisfying
the preceding equations.

7.2.4 Hedging

7.2.4.1 Strategies

The initial portfolio is to be created at time 0. As a consequence, the seller’s price
is obtained by taking v(0−) = 0. Then, formally, admissible hedging strategies will
be functions ϕ : U → Ξ that enjoy the property of being nonanticipative:

∀(u1(·),u2(·)) ∈ U ×U , [u1|(0,t) = u2|(0,t)]⇒ [ϕ(u1(·))|[0,t] = ϕ(u2(·))|[0,t]].
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(It is understood here that the restriction of δ (t − tk) to a closed interval not
containing tk is 0, and its restriction to a closed interval containing tk is an impulse.)
This definition, classic in the dynamic game literature, embodies the fact that future
prices, or price fluctuations, are not known by the seller. Therefore, nonanticipative
strategies play the role that adapted strategies play in the stochastic framework.

In practice, we will find optimal hedging strategies composed of a jump at the
initial time, followed by a state feedback law ξ (t) = φ(t,u(t),v(t)) containing
jumps when the state (t,u,v) crosses certain boundaries.

In discrete time, the situation is much simpler. We need only a nonanticipative
strategy ϕ : Uh → R

T giving ξk = ϕk(u0,u1, . . . ,uk). Again, we will find it in the
form of a state feedback ξk = φk(uk,vk). And yet these are only nonanticipative
laws, the equivalent of stochastic adapted strategies. We will see in Sect. 7.3 how
to handle strictly nonanticipative strategies, the equivalent of stochastic predictable
strategies. (But this piece of theory has yet to be investigated in full detail.)

We will call Φ the set of admissible continuous trading strategies and Φh the set
of admissible discrete trading strategies.

7.2.4.2 Terminal Costs

At exercise time T , the seller must honor his contract with the buyer and then close
his position. This terminal sale or purchase incurs transaction costs as well. But we
allow for a different rate for this terminal transaction. This is possibly to represent
a compensation effect that lowers the price of the transaction, and also to let us deal
easily with the case where there are no closure costs, by setting the rate to zero. Let,
therefore, c− ∈ [C−,0] and c+ ∈ [0,C+] be the terminal transaction costs, similar to
C− and C+ in the running phase of the contract.

Notice that as a consequence of hypothesis 7.4, |cε |< 1, ε =−,+.
Hence, the seller will face a terminal payment equal to

N(u(T ),v(T )) = M(u(T ))+ closure transaction costs.

The detailed expressions for these payments depend on the particular contracts and
will be given in due time.

7.2.4.3 Hedging Portfolio

An initial portfolio (v(0),w(0)) and an admissible trading strategy ϕ , together
with a price history u(·), generate a dynamic portfolio. We establish the following
definition.

Definition 7.5. An initial portfolio (v(0) = 0,w(0) = w0) and a trading strategy ϕ
constitute a hedge at u0 if for any u(·) ∈ U such that u(0) = u0 (or, equivalently,
for any admissible τ(·) ∈ Ω ) the dynamic portfolio thus generated satisfies
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w(T )≥ N(u(T ),v(T )). (7.20)

Continuous Trading

Now, we may use (7.17) at time T to rewrite this as

∀τ(·) ∈ Ω , N(u(T ),v(T ))+
∫ T

0

(
−τ(t)v(t)+Cε〈ξ (t)〉

)
dt −w0 ≤ 0.

This in turn is clearly equivalent to

w0 ≥ sup
τ(·)∈Ω

[
N(u(T ),v(T ))+

∫ T

0

(
−τ(t)v(t)+Cε〈ξ (t)〉

)
dt

]
.

To ensure that no arbitrage possibility exists, we establish the following definition.

Definition 7.6. A seller’s price of an option at u0 is the worth of the cheapest
hedging portfolio at u0.

The seller’s price (or premium) at u0 is therefore

P(u0) = inf
ϕ∈Φ

sup
τ(·)∈Ω

[
N(u(T ),v(T ))+

∫ T

0

(
−τ(t)v(t)+Cε〈ξ (t)〉

)
dt

]
, (7.21)

where it is understood that u(0) = u0 and v(0) = 0 and that ξ (·) = ϕ(u0,τ(·)).

Discrete Trading

In the case of discrete trading, we obtain, as the seller’s price at u0,

P(u0) = inf
ϕ∈Φ

sup
{τk}∈Ωh

[

N(uK ,vK)+
K−1

∑
k=0

(
−τk(vk + ξk)+Cε〈ξk〉

)
]

. (7.22)

7.2.5 Conclusion: A Minimax Dynamic Game

7.2.5.1 Value Function

In conclusion, and in keeping with the standard approach of robust control theory,
in that framework, Merton’s principle of pricing a contingent claim according to
the value of a hedging portfolio leads to dynamic minimax games, (7.21) or (7.22)
depending on whether we allow continuous or discrete transactions. To investigate
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them with the classic tools of dynamic game theory, we define the Value functions
associated with these games.

Continuous Time

The continuous-time criterion is thus

J(t0,u(t0),v(t0);ϕ ,τ(·)) = N(u(T ),v(T ))+
∫ T

t0

(
−τ(t)v(t)+Cε〈ξ (t)〉

)
dt,

where it is understood that the functions (u(·),v(·)) are generated by the dynamics
(7.4), (7.8) from u(t0) and v(t0), with ξ (t) = ϕ(τ(·))(t) = ξc(t) +∑k ξkδ (t − tk).
And we will use the Value function of that game:

W (t,u,v) = inf
ϕ∈Φ

sup
τ(·)∈Ω

J(t,u,v;ϕ ,τ(·)).

Discrete Time

In the discrete-time problem, we have in the same fashion

J(�,u�,v�;{τk},ϕ) = N(uK ,vK)+
K−1

∑
k=�

(
−τk(vk + ξk)+Cε〈ξk〉

)
,

where it is understood that the sequences {uk} and {vk} are generated from u� and
v� by the dynamics (7.7), (7.13) and {ξk}= ϕ({τk}), and

W h
� (u,v) = inf

ϕ∈Φ
sup

{τk}∈Ωh

J(�,u,v;ϕ ,{τk}).

Interpolation

This forms a sequence of scalar functions of (u,v), not to be mistaken for
W h(t,u,v), an interpolation of the W h

� (u,v) obtained as follows. While W h
� (u,v)

is the minimax value obtained from the instant t = �h and the state (u,v) when the
minimizer is restricted to impulses at the discrete time instants tk = kh, W h(t,u,v)
is the minimax value obtained from any time t and the state (u,v) when the
minimizer is allowed to perform an impulse at time t, and then only impulses at
the discrete time instants tk = kh ≥ t. Clearly, W h(tk,u,v) =W h

k (u,v), and because
it will follow from standard theorems that t �→ W h(t,u,v) is continuous, we indeed
have a continuous interpolation of the sequence of functions {W h

k }k. The important
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point is that the interpolated function W h(t,u,v) is itself the Value function of an
“interpolated game”.

Pricing

According to formulas (7.21) and (7.22), the lowest premium that allows a seller to
hedge his risk, assuming hypothesis (7.3) is satisfied, is at time t (exercise time T is
assumed given) and the current underlying stock price S:

P(t,S) =W (t,eμ0(T−t)S,0), or P(t,S) =W h(t,eμ0(T−t)S,0), (7.23)

depending on whether trading is assumed continuous or discrete.

7.2.5.2 Notation Shorthand

We will in some instances use the following shorthand notation:

x =

(
u

v

)
, ẋ =

(
τu

τv+ ξ

)
=: f (x,τ,ξ ),

y =

(
t
x

)
=

⎛

⎝
t
u

v

⎞

⎠ , ẏ =

(
1

f (x,τ,ξ )

)
=

⎛

⎝
1

τu
τv+ ξ

⎞

⎠ =: g(y,τ,ξ ),

z =

(
y
w

)
=

⎛

⎜
⎜
⎝

t
u

v

w

⎞

⎟
⎟
⎠ , ż =

(
g(y,τ,ξ )

τv−Cε〈ξ 〉
)
=

⎛

⎜
⎜
⎝

1
τu

τv+ ξ
τv−Cε〈ξ 〉

⎞

⎟
⎟
⎠ =: h(z,τ,ξ ),

or its equivalent in the Joshua transform (see below) with controls (τ, ι).

7.3 Extensions

We allude here to two extensions of the preceding model. They remain to be
investigated in detail, but numerical procedures are readily available.
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7.3.1 American Options

In American options, the buyer is free to exercise his option at any time, but not
later than T . We will not provide a detailed analysis of this case. But we show here
a simple way to solve it numerically. The Isaacs equation for the discrete trading
problem for a European option is (Sect. 8.4.1)

∀(u,v) ∈ R+×R, W h
K(u,v) = N(u,v), and ∀k ∈K,∀(u,v) ∈R+×R,

W h
k (u,v) = inf

ξ∈R
max

τ∈[τ−h ,τ+h ]

[
W h

k+1

(
(1+ τ)u,(1+ τ)(v+ ξ )

)
− τ(v+ ξ )+Cε〈ξ 〉

]
.

We will split the minimax procedure as

W h
k+ 1

2
(u,v) = max

τ∈[τ−h ,τ+h ]
[W h

k+1

(
(1+ τ)u,(1+ τ)v

)
− τv],

W h
k (u,v) = inf

ξ∈R
[W h

k+ 1
2
(u,v+ ξ )−Cε〈ξ 〉].

For an American option, the minimax game of the preceding section is replaced by
a stopping time game. We need to recover the terminal value of an exercise at a time
te ∈ [0,T ] as

Ñ(te,u,v) = eμ0(T−te)N(eμ0(te−T )u,eμ0(te−T )v),

and the new game is

W (0,u(0),v(0))

= inf
ϕ∈Φ

sup
τ(·)∈Ω

max
te∈[0,T ]

{
Ñ(te,u(te),v(te))+

∫ te

0
[−τ(t)v(t)+Cε〈ξ (t)〉]dt

}

or its discrete trading equivalent:

W h
0 (u(0),v(0))

= inf
ϕ∈Φ

sup
{τk}∈Ωh

max
ke∈K

{

Ñke(u(ke),v(ke))+
ke−1

∑
k=0

[−τk(vk + ξk)+Cε〈ξk〉]
}

.

Its discrete Isaacs equation is

∀(u,v) ∈ R+×R, W h
K(u,v) = N(u,v),

∀k ∈K,∀(u,v) ∈ R+×R, W h
k (u,v) = inf

ξ∈R
max

{
{N(u,v),

max
τ∈[τ−h ,τ+h ]

[
W h

k+1

(
(1+ τ)u,(1+ τ)(v+ ξ )

)
− τ(v+ ξ )+Cε〈ξ 〉

]}
.
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We may separate the minimization and maximization as above. In the maximization,
we perform exactly the same operations as in the European case, and hence use
the same computer code, and add one line of code comparing the result of these
computations to Ñk(u,v) to decide which one to write into the memory for W h

k (u,v).
Both Ñ and W h

k+ 1
2

are convex in v, and therefore their maximum is also convex.

Hence the minimization procedure as described in Sect. 8.4.1 can be retained.

7.3.2 Delayed Information

The hypothesis that price information is available and used instantly may be
considered adequate if the frequency of trading is low, say once per day or less.
For high-frequency trading, it surely is not. In the discrete trading case, a delay of
one time step, requiring a strictly nonanticipative strategy, may be accommodated
without increasing the dimension of the state space as follows.

Let again a control be computed as ξk = φk(uk,vk) but be available only for use
at time k+ 1. The dynamics of v are modified as

vk+1 = τkvk + ξk.

The Isaacs equation is modified accordingly. We lose the possibility of splitting it
as was done previously. But the computation remains well within the capabilities of
any modern PC.



Chapter 8
Vanilla Options

8.1 Introduction and Main Results

We now introduce the European “vanilla” options that will be the subject of this
chapter, and we particularize the general framework to them to arrive at a rather
comprehensive theory.

8.1.1 Vanilla Options

8.1.1.1 Vanilla Call

We assume that a seller sells a European buy option or call to a buyer, giving him
the right to request the possibility of buying one share of the underlying stock at a
prescribed exercise price or strike K at the prescribed exercise time T .

It is assumed (but not necessary) that if at time T the current underlying stock’s
market price S(T ) is less than K , the buyer will not exercise his right but that he
will do so if, to the contrary, S(T ) is larger than K . Whether the buyer behaves that
way or not, the contract is equivalent to a contingent debt of the seller to be repaid
at time T , in the amount of at most M(S(T )) with

M(u) = max{0, u−K }. (8.1)

Henceforth, the case of a call will be our standard working framework.

8.1.1.2 Vanilla Put

If the seller sells a European sell option, or put, the buyer may sell him one share of
the underlying stock at exercise time at the prescribed price K , thus resulting in a
contingent debt of M(S(T )), with now

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 8,
© Springer Science+Business Media New York 2013
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M(u) = max{K −u, 0}. (8.2)

We will only allude to this case occasionally, as it is in many respects symmetric to
the call option, and essentially the same analysis applies.

8.1.2 Terminal Payment

8.1.2.1 Call (Closure in Kind)

If the buyer does not exercise his option to buy, then the terminal payment faced by
the seller is just the transaction costs related to his closing of his position: reselling
any underlying stock left in his portfolio (said to be “long”) or buying some if he
shorted the portfolio, that is, a payment cε〈−v(T )〉.

If the buyer does exercise his right, the seller must first bring the amount of
underlying stock in his portfolio to one unit, buying or selling some according to the
sign of v−u and bearing the associated terminal transaction costs cε〈u(T )− v(T)〉,
and then perform the promised transaction with the buyer, losing an extra M(u(T ))
(8.1) in that process.

Since we want the portfolio to hedge the risk whatever the decision of the buyer,
we set

N(u,v) = max{cε〈−v〉 , u−K + cε〈u− v〉}. (8.3)

It is useful to draw a graph of v �→ N(u,v) at fixed u (Fig. 8.1). The graph of the “no
exercise” part is independent of u, a simple V shape with the wedge at the origin, and
branch slopes of −c+ to the left and −c− to the right. The graph of the “exercise”
part is a V with the same slopes, its wedge at v = u, N(u,u) = u−K . The ordinate

v

N

v̌

w̌

u

Fig. 8.1 Graph of N(u,v) for (1+ c−)u−K < 0 < (1+ c+)u−K
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at the origin of the left part of the V is (1+c+)u−K , and that of its right-hand part
at (1+c−)u−K . Hence, the shape of the max depends on the signs of these last two
quantities. If (1+ c+)u−K ≤ 0, then the “no exercise” graph is always “above.”
If, on the contrary, (1+ c−)u−K ≥ 0, then the “exercise” graph is above the “no
exercise” one. In the intermediate case, (1+ c−)u−K < 0 < (1+ c+)u−K , as
shown in Fig. 8.1, the graph of the maximum is still a V shape with the same slopes,
but its wedge where −c−v = u−K + c+(u− v), i.e.,

v = v̌(T,u) :=
(1+ c+)u−K

c+− c−
, N = w̌(T,u) := u−K ,

as shown in Fig. 8.1.
We emphasize that shape by the use of the notation

N(u,v) = w̌(T,u)+ cε〈v̌(T,u)− v〉 , (8.4)

with v̌(T,u) and w̌(T,u) given in the table thereafter.

8.1.2.2 Put (Closure in Kind)

In the case of a sell option, a similar analysis leads to a terminal payment still called
N(u(T ),v(T )) with

N(u,v) = max{cε〈−v〉 , K −u+ cε〈−u− v〉}. (8.5)

It can be represented by formula (8.4), with the different formulas for v̌(T,u) and
w̌(T,u) as given in the table.

8.1.2.3 Closure in Cash

In the case of a closure in cash, the contract is that, if the buyer wants to exercise his
right, he will be paid M(u(T )) in cash by the buyer from the seller, who will then
just close out his position. The cost incurred by the seller is therefore the sum of his
loss M(u(T )) and the same closing cost cε〈−v(T )〉 as in the case where the option
is not exercised. The terminal payment he faces is therefore N(u(T ),v(T )), with

N(u,v) = M(u)+ cε〈−v〉 . (8.6)

This admits a representation similar to (8.4), as given by Table 8.2.
Concerning all of these cases, we state the following useful fact.

Proposition 8.1. The function N is jointly convex in (u,v).
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Table 8.1 v̌(T,u) and w̌(T,u) for a closure in kind

Call u≤ K
1+c+

K
1+c+ ≤ u≤ K

1+c−
K

1+c− ≤ u Put u≤ K
1+c+

K
1+c+ ≤ u≤ K

1+c−
K

1+c− ≤ u

v̌ 0 (1+c+)u−K
c+−c− u v̌ −u

K −(1+c−)u
c−−c+ 0

w̌ 0 −c−v̌(u) u−K w̌ K −u −c+v̌(u) 0

Table 8.2 v̌(T,u) and w̌(T,u) for closure in cash

Call u≤ K u≥ K Put u≤ K u≥ K

v̌(u) 0 u
1+c− v̌(u) − u

1+c+ 0
w̌(u) 0 u

1+c− −K w̌(u) K − u
1+c+ 0

N(u,v) = w̌(u)+ c−(v̌(u)−v) N(u,v) = w̌(u)+ c+(v̌(u)−v)

Proof. Let us take the case of a call with closure in kind. Note that cε〈−v〉 =
max{−c+v,−c−v} and u+ cε〈u− v〉= max{(1+ c+)u− c+v,(1+ c−)v− c−v}.
Hence, (8.3) can also be rewritten as

N(u,v) = max{−c+v,−c−v, (1+ c+)u−K − c+v, (1+ c−)u−K − c−v}.

Thus, N is the supremum of four affine functions and, hence, convex.
Similar arguments apply for the other three cases. 
�

8.1.3 Main Results

These are the main results proved in the sequel. They hold for calls or puts alike,
closure in kind or in cash, just choosing the correct (v̌, w̌) in Table 8.1 or Table 8.2,
which changes N according to formula (8.4), and changing q− and q+ for closure in
cash: see after Eq. (8.8). The premium to be determined is P(u) =W (0,u,0).

8.1.3.1 Differential Quasivariational Inequality

We introduce here the differential quasivariational inequality (DQVI) for the Value
function W (t,u,v):

∀(t,u,v) ∈ [0,T )×R+×R,

max

{
−∂W

∂ t
− τε

〈
∂W
∂u

u+

(
∂W
∂v

− 1

)
v

〉
,−
(

∂W
∂v

+C+

)
,

∂W
∂v

+C−
}
= 0,

∀(u,v) ∈R+×R, W (T,u,v) = N(u,v).

(8.7)
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Theorem 8.2. The Value function W is the only Lipschitz continuous viscosity
solution (VS) of the DQVI (8.7).

Furthermore, for vanilla options we have the following theorem.

Theorem 8.3. ∀t ∈ [0,T ], the function (u,v) �→W (t,u,v) is convex.

8.1.3.2 Representation Theorem

We need to introduce the following notation. Let, for a closure in kind,

q−(t) = max{(1+ c−)exp[τ−(T − t)]− 1,C−},
q+(t) = min{(1+ c+)exp[τ+(T − t)]− 1,C+}.

(8.8)

(For a closure in cash, both q+ and q− are constructed with c− for a call and c+ for
a put instead of cε as above). We will refer to both at the same time as qε with the
same convention as with Cε and cε . (As a matter of fact, here, ε = ± is usually the
sign of v̌− v. See below.) Note that if we define tε as

T − tε =
1
τε ln

(
1+Cε

1+ cε

)
, (8.9)

qε =Cε for t ≤ tε and increases (for q+) or decreases (for q−) toward cε as t → T .
For any realistic data, for a classic stock market, t+ and t− are very close to T , say,
1 day or less. (This will provide a simplified algorithm.)

Let also

S =

(
1 0
1 0

)
and T =

1
q+− q−

(
τ+q+− τ−q− τ+− τ−

−(τ+− τ−)q+q− τ−q+− τ+q−

)
. (8.10)

We introduce a pair of functions of two variables v̌(t,u) and w̌(t,u) collectively
called

V̌ (t,u) =

(
v̌(t,u)
w̌(t,u)

)
(8.11)

and defined by the final conditions of Table 8.1 or Table 8.2, depending on which
applies, and the following linear partial differential equation (PDE):

∂V̌
∂ t

+T

(
∂V̌
∂u

u−S V̌

)
= 0. (8.12)

Theorem 8.4. The Value function W is given by

W (t,u,v) = w̌(t,u)+ qε〈v̌(t,u)− v〉 , (8.13)
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where ( v̌ w̌ )t = V̌ is the unique solution of (8.12) initialized as in Table 8.1 (or
Table 8.2 depending on which one applies). The optimal hedging strategy is to
ensure v(t) = v̌(t,u(t)) if t < tε and not to trade if t ≥ tε , with ε = sign(v̌− v)
and tε as in (8.9).

8.1.3.3 Discrete Trading and Convergence Theorem

We tackle now the discrete trading scheme. In that case, the seller is restricted to
trading at predetermined time instants tk = kh, k ∈K= {0,1, . . . ,K−1}, for a given
step size h = T/K, with K a positive integer. Apart from that, the specification is the
same as in the previous case, with the same continuous-time market model and the
same hedging aim.

The mathematical problem to solve is therefore that of computing the infϕ supτ
in (7.22), under the dynamics (7.7), (7.13). Let W h

k (u,v) =W h(tk,u,v) be the Value
function of the minimax game. A direct application of Isaacs’ theory yields the
following theorem.

Theorem 8.5. The Value function W h
k (u,v) is the solution of the following Isaacs

equation:

W h
k (u,v) = min

ξ
max

τ∈[τ−,τ+]

[
W h

k+1((1+ τ)u,(1+ τ)(v+ ξ ))− τ(v+ ξ )+Cεξ
]
,

∀(u,v) ∈ R+×R, W h
K(u,v) = N(u,v),

(8.14)

or, equivalently, of the following “fractional-step” Isaacs equation:

W h
k+ 1

2
(u,v) = max

τ∈{τ−h ,τ+h }

[
W h

k+1 ((1+ τ)u,(1+ τ)v)− τv
]
,

W h
k (u,v) = min

ξ

[
W h

k+ 1
2
(u,v+ ξ )+Cεξ

]
,

∀(u,v) ∈ R+×R, W h
K(u,v) = N(u,v).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(8.15)

Equations (8.15), together with a fast way to compute the minξ (Sect. 8.4.1) provide
our standard algorithm, which is significantly faster than the direct implementation
of Isaacs Eq. (8.14). Notice that the range of the maximization in τ has been
restricted to the two end points of the interval, thanks to the following fact.

Theorem 8.6. The functions (u,v) �→W h
k (u,v) are convex.

We introduce a new Value function W h(t,u,v), which is the Value of the same
minimax dynamic game, but in this case the seller (minimizer here) is allowed to
make one jump transaction at the initial time – even between two time instants tk –
then only at time instants tk = kh, k ∈ K. It continuously interpolates the sequence
{W h

k (·, ·)}k∈K.
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Theorem 8.7. As the step size is subdivided and goes to zero (e.g., h = T/2d, d →
∞ ∈ N), for all t ∈ [0,T ], the function W h(t,u,v) decreases and converges to the
function W (t,u,v), uniformly on any compact in (u,v).

8.1.3.4 Fast Algorithm

If one samples the functions q− and q+ [see Eq. (8.8)] at the time instants tk = kh,
the resulting sequences qε

k := qε(tk) can also be generated by the recursion

qε
K = cε (8.16)

for a closure in kind or

qε
K = c− for a call and qε

K = c+ for a put

for a closure in cash, and

qε
k+ 1

2
= (1+ τε

h )q
ε
k+1 + τε

h ,

q+k = min{q+
k+ 1

2
,C+},

q−k = max{q−
k+ 1

2
,C−}.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8.17)

Let, for every integer �,

Qε
� = (qε

� 1) and V̌ h
� (u) =

(
v̌h
� (u)

w̌h
� (u)

)

. (8.18)

The following system, together with (8.17), defines our “fast algorithm”:

V̌ h
k (u) =

1
q+

k+ 1
2
−q−

k+ 1
2

(
1 −1

−q−
k+ 1

2
q+

k+ 1
2

)(
Q+

k+1V̌ h
k+1((1+ τ+h )u)

Q−
k+1V̌ h

k+1((1+ τ−h )u)

)

,

v̌h
K(u) = v̌(T,u), w̌h

K(u) = w̌(T,u),

(8.19)

as given by Tables 8.1 and 8.2 depending on which one applies. [It can be verified
that this is a consistent finite difference scheme for the PDE (8.12).] The following
result provides a fast way of computing the discrete trading premium, which,
according to the convergence Theorem 8.7, provides a safe approximation of the
continuous trading premium.
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Theorem 8.8. The value functions W h
k are given by (8.16), (8.17), (8.19), and

W h
k (u,v) = w̌h

k (u)+ qε
k

〈
v̌h

k (u)− v
〉
. (8.20)

The optimal hedging strategy is to ensure vk = v̌h
k (uk) if t < tε and do not trade if

t ≥ tε with tε as in (8.9) and ε = sign(v̌h
k (uk)− vk).

8.1.4 Joshua Transformation and the DQVI

We give here one of the two means that we will use to deal with our impulse-control
problem.

8.1.4.1 Impulse Control and QVI

We are confronted with a minimax problem where the minimizer may use impulses.
The natural way to deal with this, in the spirit of [32], would be to investigate the
corresponding quasivariational inequality (QVI)

min

{
∂W (t,u,v)

∂ t
+ min

ξc∈R
max

τ∈[τ−,τ+]

[
∂W (t,u,v)

∂u
τu+

∂W
∂v

(τv+ ξc)− τv
]
,

min
ξk∈R

{W (t,u,v+ ξk)−W(t,u,v)+Cε〈ξk〉}
}
= 0,

W (T,u,v) = N(u,v).

However, this QVI is of no use here because it is degenerate on two counts. The
least one is the absence of a second-order partial derivative, which the Itô term
would bring with a diffusion model, but the really serious problem stems from the
fact that the infimum of the costs of the jumps is zero. As a consequence, the second
term in the QVI is always nonpositive (since ξ = 0 makes it zero), and therefore the
first term can always be anything.

We therefore turn to other approaches. Two will be needed: the Joshua transfor-
mation and the geometric investigation of Sect. 8.2. To do so, we need the following
proposition.

Proposition 8.9. For each positive number a there exists a positive number b such
that, if |u(0)| and |v(0)| ≤ a, on trajectories approaching sufficiently closely the
infϕ∈Φ , and τ(·) approaching sufficiently closely the supτ , it holds that |v(t)| ≤ b
for all t ∈ [0,T ].

Proof. We noted in Sect. 7 that bounding the possible buys or short sales of an
underlying stock, i.e., variations in v, might realistically be a feature of the game.
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If this is not imposed a priori, then this proposition is technically a corollary of
the analysis of Sect. 8.2. This analysis does not rely on the current proposition and
shows it to be true. A large initial |v| always leads in the optimal strategy to an initial
jump toward lower values, and on optimal trajectories, |v| always stays between 0
and |u|.

As a matter of fact, it can easily be shown that for vanilla options, a strategy
leading to v(t) /∈ [0,u(t)], for a call, or v(t) /∈ [−u(t),0], for a put, is never rational.
(See [142].)

This may be understood before the complete mathematical analysis is performed.
Notice that |u(t)| ≤ aexp(τ�T ), so that the worst cost for ϕ = 0, say J�0 , is bounded.
Now, large excursions in v require that the minimizer use large values of ξ , either
in ξc or in large impulses ξk. These carry a cost for him. Among the possible time
functions τ(·) ∈ Ω are those that have τ(t) of the opposite sign of v right after the
large excursion, this without changing τ(·) before the large excursion in v and, thus,
without modifying ξ (·) = ϕ(τ(·)) up to that time (since ϕ is nonanticipative). Now
these τ(·) histories result in the large v itself “costing money” to the minimizer,
unless he incurs extra costs to undo at once what he has just done spending more
money, which, for very large excursions, is beyond J�0 . Hence such large excursions
in v cannot be part of a strategy approaching the infimum of the payoff. 
�

8.1.4.2 Joshua’s Transformation

The technique used here has surely been proposed independently several times for
other problems. The earlier reference to a similar approach of which we are aware
is [91, Chap. 10, vv. 12 and 13], hence its name.

Let our original game be called G . We introduce a new game, called J , as
follows: Its “time” variable, called artificial time, will be denoted by θ . Derivatives
with respect to θ are denoted by a “prime” accent. Its state variables are t, u, and v.
The minimizer’s controls are ξc ∈ R and ι ∈ {−1,0,1}=: B (ι for “impulse”.) We
also use the notation ῑ = 1−|ι|. The dynamics are

t ′ = ῑ ,

u′ = ῑ τu,

v′ = ῑ(τv+ ξc)+ ι.

(8.21)

Terminal (artificial) time is defined as

Θ = inf{θ | t(Θ) = T}. (8.22)

The payoff is

L = N(u(Θ),v(Θ))+

∫ Θ

0
[ῑ(−τv+Cε〈ξc〉)+ ι Cι ]dθ . (8.23)
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(C−1 and C1 are to be understood as C− and C+, respectively.C0 need not be defined
because it appears only multiplied by 0. We may think of it as being 0.) In words,
when there are no impulses, the dynamics and the integral payoff run as in game
G . Impulses of G are replaced by (artificial) time intervals during which the natural
time and classical dynamics stop, and v increases, or decreases, at rate 1. Hence the
lengths of such intervals define how much v has changed while natural time was
stopped, i.e., the size of the impulses.

Proposition 8.10. Games G and J have the same value.

Proof. To each trajectory of game G we can associate the corresponding trajectory
of game J generated as follows: as a rule, ι = 0, except that to each impulse of
magnitude ξk corresponds an artificial time interval of length |ξk| at the same natural
time tk with ι = sign(ξk). Clearly the payoffs J of G and L of the corresponding J
are equal.

The converse requires a small argument: there are trajectories of J that have
no natural counterpart in G . This is when the minimizer uses two or more adjacent
artificial time intervals with opposite, nonzero controls ι . This would correspond to
several successive impulses, of opposite signs, at the same time. However, we may
safely allow this feature in game J because it will never be used in an optimal
strategy since it would have the same effect as a single impulse of magnitude equal
to the algebraic sum of the succeeding impulses involved, but at a higher cost to the
minimizer. Thus such trajectories play no role in defining the value of game J . All
other trajectories of J have a counterpart in G , with the same payoff. 
�

8.1.4.3 Differential Quasivariational Inequality

Game J is a classic differential game, with no impulses. We may write its Isaacs
equation (with signs adapted to the classic definition of VS), writing W for its value
function since we know that it coincides with the value W of game G . We notice
that problem J is autonomous in artificial time, so that in that formulation, W is
independent of θ . Hence we get

∀(t,u,v) ∈ [0,T )×R+×R, 0

= max
ι∈B

max
ξc∈R

min
τ∈[τ−,τ+]

{
−ῑ
[

∂W
∂u

τu+
∂W
∂v

(τv+ ξc)− τv+Cε ξc

]
−ι
(

∂W
∂v

+Cι
)}

,

∀(u,v) ∈ R+×R, W (T,u,v) = N(u,v).

We write separately the three possible cases ι = −1, 1, and 0, making use of the
notation −∂W/∂v = q.
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Case ι =−1:

The term ι =−1 is

∂W
∂v

+C−.

It must be nonpositive, hence necessarily q ≥C−.

Case ι = 1:

In a similar fashion, the term ι = 1 is

−∂W
∂v

−C+,

which must be nonpositive, requiring q ≤C+.

Case ι = 0:

The term with ι = 0 is

max
ξc∈R

min
τ∈[τ−,τ+]

[
−∂W

∂u
τu− ∂W

∂v
(τv+ ξc)+ τv−Cεξc

]

=− max
τ∈[τ−,τ+]

τ
[

∂W
∂u

u+

(
∂W
∂v

− 1

)
v

]
− min

ξc∈R
(Cε 〈ξc〉− qξc).

It must be nonpositive. It is easy to see that

−min
ξc∈R

(Cε〈ξc〉− qξc) =

{
0 if C− ≤ q ≤C+,

∞ if q <C− or q >C+.

According to the first two cases, it will in any case be zero. Hence ξc disappears
from the equation, a notable fact. As for the max in τ , it is clearly reached at τ− if
the square bracket is negative and at τ+ if it is positive. We are left with the simpler
Isaacs Eq. (8.7), which we call the DQVI.

Furthermore, we need the following proposition.

Proposition 8.11. For any (u(0),v(0)) there is a bound on how large Θ may be
for nearly optimal strategies. Furthermore, all trajectories are transverse to the
terminal manifold t = T .

Proof. Note that Θ = T +∑k |ξk|. Let

W0(u,v) = sup
τ(·)∈Ω

J(0,u,v;0,τ(·)).



118 8 Vanilla Options

Also, for v(0) given, let b be the bound on |v(t)| according to Proposition 8.9. Then

∫ T

0
(−τv(t))dt >−bτ�T.

Hence, any strategy that causes

∫ T

0
Cε〈ξ (t)〉dt >W0(u,v)+ bτ�T

is worse than the strategy ϕ = 0 and, therefore, nonoptimal. It does not enter into
the evaluation of W (0,u,v). A fortiori, any strategy with ∑k ξk > W0(u,v)+ bτ�T
may be ignored.

Since t ′ can only be equal to zero or one, the only way in which a trajectory may
fail to be transverse to the manifold t = T is if an impulse occurs at t = T . But our
definition of Θ does not allow such a terminal impulse since as soon, in artificial
time, as t = T , the game ends.

There is no loss of optimality in that definition. As a matter of fact, if a jump in v
at t = T is necessary for the minimizer, it is taken care of in the terminal transaction
in N and done at a cost |cε | ≤ |Cε |. 
�

As a corollary of this proposition we get the following classic result (see,
e.g., [69]).

Theorem 8.12. The function W is a continuous VS of the DQVI (8.7).

At this stage, we are still left with the task of proving the uniqueness of that VS,
which, as far as we know, does not follow from known results. Notice also that W is
not bounded.

8.2 Geometric Approach

In an alternative way of dealing with impulses in ξ , or jumps in v, we turn to a four-
dimensional representation of the problem where jumps are ordinary trajectories,
just orthogonal to the time (and the u) axis, so that we do not need to distinguish ξc

from ξk, and we just use ξ ∈ R.
In effect, we investigate the DQVI via its characteristics, using the geometric

concept of semipermeable hypersurfaces. This analysis will let us identify the
singular surfaces in the candidate solution, all of which satisfy the fundamental PDE
(8.12), and some of their properties in order to verify later on that they do satisfy
the viscosity conditions.
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8.2.1 Geometric Formulation

8.2.1.1 Notation

To ease the investigation in (t,u,v,w) space, henceforth we will make use of the
shorthand notation of Sect. 7.2.5.2:

z =

⎛

⎜
⎜
⎝

t
u

v

w

⎞

⎟
⎟
⎠ ż = h(z,τ,ξ ) =

⎛

⎜
⎜
⎝

1
τu

τv+ ξ
τv−Cε〈ξ 〉

⎞

⎟
⎟
⎠ .

In the four-dimensional representation, we will call νt = (n p q r ) a normal
to a semipermeable hypersurface, or semipermeable normal, pointing toward the
increasing w. The variables n, p, q (and r, but it remains equal to one) are also
called adjoint variables or costate.

We will also need the notation

V =

(
v

w

)
, V̌ =

(
v̌

w̌

)
. (8.24)

8.2.1.2 The Game in (t,u,v,w) Space

We consider our game problem from Sect. 7.2.5 in (t,u,v,w) space. The goal (7.20)
is now a condition on the final state we want to reach:

{(t,u,v,w) | t = T, w−N(u,v)≥ 0}. (8.25)

We must therefore solve the following formulation of the game (Sect. 7.2.5):

sup
ϕ∈Φ

inf
τ(·)∈Ω

[w(T )−N(u(T ),v(T ))≥ 0. (8.26)

Following a classic interpretation (see [89]) we consider the problem as being
that of finding a hypersurface separating states z that can be driven to region (8.25)
from those that cannot. This manifold, a barrier in Isaacs’ parlance, is necessarily
semipermeable, meaning that if we let ν = (n p q r )t be a normal to this manifold
(where it is smooth) pointing toward larger w, it should hold that

max
ξ∈R

min
τ∈[τ−,τ+]

〈ν,h(z,ξ ,τ)〉 = 0. (8.27)

This is Isaacs’ second main equation. (See [89]).
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Focusing on trajectories in z space and manifolds traversed by them allows us to
consider jumps in v as ordinary trajectories orthogonal to the time axis (and also to
the u axis). It easily follows from the dynamics the following fact.

Proposition 8.13. The slopes in (v,w) space of jump trajectories are always −C−
for negative jumps and −C+ for positive ones.

The following fact will be useful:

Proposition 8.14. Let a smooth two-dimensional manifold, nowhere orthogonal to
the t axis, be given, and consider the hypersurface made of jump trajectories of fixed
sign reaching it. It is semipermeable.

Proof. These trajectories are in fact orthogonal to the (t,u) plane. Hence there is no
time for the ordinary dynamics to have an effect while traversing them and cause
the trajectory to drift away from the hypersurface.

A formal way to see that is as follows. We renormalize the dynamics by the norm
of ξ , say ρ , and let ρ go to infinity. Moreover, (8.27) is insensitive to the norm of
the vector ν , which can be changed arbitrarily. We thus renorm it, multiplying by
1/ρ to keep the dot product finite. Let, therefore, νt = (1/ρ)(n′ p′ q′ r′ ) and

h(t,u,v,w,ξ ,τ) =

⎛

⎜
⎜
⎝

1
τu
τv
τv

⎞

⎟
⎟
⎠+ρ

⎛

⎜
⎜
⎝

0
0
1

−Cε

⎞

⎟
⎟
⎠

〈
ξ
ρ

〉
,

so that

〈ν,h〉= 1
ρ
[n′+ τ(p′u+(q′+ r′)v)]+ (q′ − r′Cε)〈ξ/ρ〉 .

It follows from the previous proposition that on jump trajectories, we have
q− rCε = 0; hence here q′ − r′Cε = 0. Thus the limit of the above scalar product
as ρ → ∞ is zero. On the other hand, consider a positive jump manifold, i.e., with
q′ =C+, r′ = 1. A negative ξ gives 〈ν,h〉 → (C+−C−)ξ < 0, and thus ξ > 0 does
maximize it, and similarly mutatis mutandis for negative jump manifolds. 
�

Our problem has the special feature that the dynamics are independent of w.
Hence, increasing or decreasing the initial w increases or decreases by the same
amount the final one, without modifying u(T ) and v(T ). Hence, there is, for each
(t,u,v), a limiting w that lies on the separating hypersurface. More precisely, we
may rewrite the dynamics of w as [here ξ (·) contains the impulses]

w(T ) = w(t)+
∫ T

t
[−τ(s)v(s)+Cε 〈ξ (s)〉]ds,

so that, in view of formulation (8.26), the separating hypersurface is given by

sup
ϕ∈Φ

inf
τ(·)∈Ω

[
w(t)−N(u(T ),v(T ))−

∫ T

t
[−τ(s)v(s)+Cε 〈ξ (s)〉]ds

]
= 0,
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or, equivalently,

w−W (t,u,v) = 0.

And positions that can be hedged are of the form

(t,u,v,w) | w ≥W (t,u,v). (8.28)

The next proposition follows.

Proposition 8.15. The barrier of the four-dimensional game is the graph of the
function W.

As a consequence, we may identify ν in (8.27) as

νt = (n p q r ) =
(− ∂W

∂ t − ∂W
∂u − ∂W

∂v 1
)
.

(We have already used the notation q =−∂W/∂v.)

8.2.2 Primary Field and Dispersal Manifold D

8.2.2.1 Characteristic System

The Hamiltonian of the problem is

H = 〈ν,h(z,ξ ,τ)〉 = n+ τ[pu+(q+ 1)v]+ (q−Cε)ξ .

Hence, maxξ∈R minτ∈[τ−,τ+] H is obtained for τ = τ� and ξ = ξ � defined as

σ = pu+(1+ q)v,

τ� =

⎧
⎨

⎩

τ− if σ > 0,
arbitrary if σ = 0,
τ+ if σ < 0,

ξ � =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∞ if q <C−,
≤ 0 if q =C−,
0 if C− < q <C+,

≥ 0 if q =C+,

+∞ if q >C+.

(8.29)

This is consistent, of course, with the findings of the previous section, the meaning
of |ξ |= ∞ being that an impulse is optimal.

The characteristic system associated to Eq. (8.27) is, as long as there is no jump,

ṫ = 1, ṅ = 0,

u̇= τ�u, ṗ =−τ�p,

v̇ = τ�v+ ξ �
c , q̇ =−τ�(q+ 1),

ẇ = τ�v−Cε〈ξ �
c 〉 , ṙ = 0.

(8.30)
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Fig. 8.2 Partition of (u,v) plane at t = T according to N and its (opposite) gradient. The thick line
is the graph v = v̌(T,u)

Terminal Conditions

We integrate the characteristic system (8.30) backward from the boundary of the
target set, i.e., from all

(T,u(T ),v(T ),N (u(T ),v(T ))) ,

that is, a two-dimensional manifold parameterized by (u(T ),v(T )). Integration
down to t will yield the third parameter to create a three-dimensional semipermeable
surface.

As previously, we will stress the case of a call with payment in kind.
Notice that, according to Table 8.1, we should partition the plane (u,v) at time

T along the pecked line v = v̌(T,u). “Above” this line, i.e., for v ≥ v̌(T,u), one
has q := −∂N/∂v = c−, “below” this line, q = c+. A second dividing line is {u=
K /(1+ c+),v ≤ 0} followed by {K /(1+ c+) ≤ u ≤ K /(1+ c−),v = v̌(T,u)}
and, finally, {u = K /(1+ c−),v ≥ u}. To the “left” of that line (smaller u), we
have p := −∂N/∂u = 0. To the “right” of that line, we have p = −(1+ cε), with
ε = sign(v̌(T,u)− v) (Fig. 8.2).

The barrier of the four-dimensional game, the graph of the function W , will be
obtained by backward integration from the boundary of the target set [see (8.25)],
with due care for the singularities, according to the classic Isaacs–Breakwell theory
[33, 116].
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8.2.2.2 Sheets {τ−} and {τ+}

We may compute pu+ (1+ q)v at time T to find τ� according to (8.29). Using
the remark that 0 ≤ v̌(T,u) ≤ u, we find that τ� = τ− for v(T ) > v̌(T,u(T )) and
τ� = τ+ for v(T ) < v̌(T,u(T )). We therefore have two families of characteristic
curves, extremal trajectories, forming two hypersurfaces of dimension 3 in the four-
dimensional space. We will refer to them as the sheet {τ−} and the sheet {τ+}.

Given the assumption that |c−|< |C−| and c+ <C+, it follows, still according to
(8.29), that at the terminal time, ξ � = 0. Notice also that if we call σ = pu+(1+q)v
the switch function such that −τ�σ = τε 〈−σ〉, it follows from the characteristic
Eqs. (8.30) that σ̇ = 0. Hence τ� is constant along these curves. They are therefore,
according to (8.4), given by Table 8.1 and

u(t) = u(T )e−τε (T−t),

v(t) = v(T )e−τε (T−t),

w(t) = w̌(T,u(T ))+ cε〈v̌(T,u(T ))− v(T )〉+(v(t)− v(T)).
(8.31)

These calculations hold as long as C− ≤ q ≤C+. Hence we need to use

qε(t) = (1+ cε)eτε (T−t)− 1.

Accordingly, we define t− and t+ via qε =Cε , i.e., (8.9), together with

tm = min{t−, t−}, tM = max{t−, t+}. (8.32)

(In the case cε = Cε , tε = T , one may skip Sect. 8.2.2.5.) We recall the complete
definition (8.8) of the qε , ε ∈ {−,+}, or, alternatively,

qε =

{
(1+ cε)eτε (T−t)− 1 if t ≥ tε ,
Cε if t ≤ tε .

(8.33)

We will also use the notation

Qε = (qε 1 ). (8.34)

8.2.2.3 Primary Field: Trivial Regions

We consider here the two regions with “small” or “large” underlying prices, where
things are easy. We will need the following definitions.

Definition 8.16. Let

u�(t) :=
K

1+ c+
e−τ+(T−t), (8.35)
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ur(t) :=
K

1+ c−
e−τ−(T−t) (8.36)

for a call and u� = K e−τ−(T−t) and ur = K e−τ+(T−t) for a put.

Case u(T )< K /(1+ c−)

According to Table 8.1, if u(T )< K /(1+c−), then v̌(T,u(T )) = w̌(T,u(T )) = 0.
Also according to the preceding remark, σ(T ) = (1 + cε)v(T ) with ε =
−sign(v(T )). Trajectories ending with v(T ) < 0 would therefore have τ� = τ+
(they belong to the sheet {τ+}), a negative v(t), and u(t)≤ u�(t) (8.35).

A quick calculation integrating system (8.30) with τ = τ+ yields, for t ∈ [t+,T ],
using the notation (8.33),

w(t) =−q+(t)v(t).

On the other hand, trajectories with v(T )> 0 have v(t)> 0 and belong to the sheet
{τ−}. The same calculation as above yields, for t ∈ [t−,T ],

w(t) =−q−(t)v(t).

Finally, if v(T ) = 0, then v(t) = w(t) = 0 on both sheets [and σ(t) = 0, hence τ(t)
can be anything, generating the same manifold {τ−}∩{τ+}].

Remembering that this is the graph of W , we end up, for the region u(t)< u�(t),
t ≥ tM , with

W (t,u,v) = qε(t)〈−v〉 . (8.37)

We explain below that indeed, with the notation (8.33), this formula extends to
smaller t, the sheets {τε} being replaced before t = tε by jump manifolds, with
slope −Cε in the (v,w) plane.

We notice that in the region u ≤ u�, for all admissible τ(·) the underlying stock
price ends with u(T ) < K /(1+ c+). Below that price, while the buyer should
(rationally) not exercise his right to buy the underlying stock at a price K , should
he nevertheless do so, the seller may buy this stock at that time, at a unit cost of
(1+ c+)u (including transaction costs) and sell it back for K , still making a profit.
Hence there is no dilemma for the seller; the empty portfolio suffices to hedge the
risk.

The seller should therefore return to v = 0 instantly to protect himself against
the worst case τ(·): τ− if v > 0 (he has a long portfolio) or τ+ if v < 0 (a short
portfolio), except if we are so close to the terminal time that the benefit of the smaller
closure transaction costs overcomes the risk due to an unfavorable evolution of the
underlying stock’s price.
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Case u(T )> K /(1+ c+)

If u(T )>K /(1+c+), then Table 8.1 tells us that v̌(T,u(T )) = u(T ), w̌(T,u(T )) =
u(T )−K . Now σ(T ) = (1+ cε)(v(T )− u(T )). Hence trajectories ending with
v(T )> u(T ) have τ� = τ−. (They belong to the sheet {τ−}.) On these trajectories,
we have u(t)≥ ur(t) [see (8.36)].

Again, a quick calculation shows that, on these trajectories,

w(t) = (1+ q−(t))u(t)−K − q−(t)v(t).

On the other hand, trajectories ending with v(T ) < u(T ) belong to a sheet {τ+}.
The same calculation as above shows that

w(t) = (1+ q+(t))u(t)−K − q+(t)v(t).

These two surfaces intersect along u = v in w = u−K . The graph of W is given
by the max of the two, leading to

W (t,u,v) = u−K + qε〈u− v〉 . (8.38)

Again, we argue that this formula holds for smaller t, with jump manifolds replacing
the sheets {τ−} and {τ+}.

We notice that for u≥ ur, for all admissible τ(·) the underlying stock price ends
with u(T ) ≥ K /(1+ c−). Above that price, the buyer should (rationally) exercise
his right to buy the underlying stock at a price K . But should he nevertheless not do
so, if the seller has one unit of stock in hand that he wishes to sell back, he will still
get more than K after the closing costs have been taken into account. Therefore,
he may have borrowed up to an amount K and still hedge against any risk. There
is no dilemma for him.

The seller should therefore get to v = u (holding one unit of stock) as soon as
possible, except if we are so close to the terminal time that the advantage of closure
transaction costs overcomes the possible rise (if v < u) or drop (if v > u) in prices.

8.2.2.4 Primary Field: Region of Interest

Definition 8.17. We call a region of interest the region of (t,u) space, using the
notation (8.35), (8.36):

Λ = {(t,u) | u�(t)≤ u≤ ur(t)}. (8.39)

It is more easily represented in logarithmic coordinates for u or, better, in coordi-
nates (ln(u/K ), t) (Fig. 8.3).
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Λ

t

ln u(0; T)−ln(1+c−)−ln(1+c+)

u�
ur

Fig. 8.3 Region of interest in logarithmic coordinates

We now integrate the characteristic system (8.30) in this region. We still have
that the switch function σ is constant as long as these extremal controls hold. We
therefore have two semipermeable surfaces to investigate, depending on whether
σ > 0, yielding the sheet {τ−}, or σ < 0, yielding the sheet {τ+}.

Sheet {τ−}

If v̌(u(T )) ≤ v(T ) ≤ u(T ), then σ(T ) = (1 + c−)v(T ), which is positive since
v(T )≥ v̌(T )> 0. Hence τ� = τ−, the primary trajectories are given by

u(t) = u(T )e−τ−(T−t), p = 0,

v(t) = v(T )e−τ−(T−t), q = (1+ c−)eτ−(T−t)− 1,
w(t) = v(T )[e−τ−(T−t)− (1+ c−)], r = 1.

(8.40)

The sheet {τ−} satisfies the equation

w =−q−(t)v, or Q−V = 0. (8.41)

Sheet {τ+}

If 0≤ v(T ) lev̌(u(T )), then σ(T ) = (1+c+)(v(T )−u(T )), which is negative since
v(T )< v̌(u(T ))≤ u(T ). Hence, τ∗ = τ+, the primaries are given by

u(t) = u(T )e−τ+(T−t), p =−(1+ c+)eτ+(T−t),

v(t) = v(T )e−τ+(T−t), q = (1+ c+)eτ+(T−t)− 1,
w(t) = (1+ c+)[u(T )− v(T )]−K − v(T )e−τ+(T−t), r = 1.

(8.42)
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The sheet {τ+} satisfies the equation

w = (1+ q+(t))u− q+(t)v−K , or Q+V = Q+1lu−K . (8.43)

Time, State, and Costate

These formulas are correct as long as C− ≤ q ≤C+, i.e., for each sheet {τε}, from
time tε to T . We may furthermore derive the time component n of the semipermeable
normal using the Isaacs “Main equation 2”: 〈ν,h(τ�,ξ �)〉= 0, which yields

n = τε 〈−σ〉=−τ�σ . (8.44)

Singular Manifolds

The case v(T ) = 0 for the sheet {τ−} and v(T ) = u(T ) for the sheet {τ+} lead to
σ(t) = 0. Therefore, τ(·) is arbitrary along these trajectories. They correspond to an
empty portfolio and just traverse the border of the sheet {τ−} at v = 0, in the first
case, and to the “buy and hold” portfolio, traversing the border of the sheet {τ+}
at u = v, in the second case. Geometrically, they do not add anything to these two
three-dimensional sheets.

8.2.2.5 Dispersal Manifold D

We want to investigate the intersection D = {τ−}∩{τ+}. It is a two-dimensional
dispersal manifold. This intersection can exist only in the time range [tM,T ]
[Eq. (8.32)], and in the region of interest Λ [see (8.39)], where both sheets have
v ∈ [0,u].

A simple calculation using (8.41) and (8.43) shows that it can be characterized
as v = v̌(t,u), w = w̌(t,u), with

v̌(t,u) =
(1+ q+(t))u−K

q+(t)− q−(t)
, w̌(t,u) =−q−(t)v̌(t,u). (8.45)

Notice that these expressions do coincide at t = T with v̌(T,u) and w̌(T,u) as in
Table 8.1. Furthermore, we stress the following fact.

Proposition 8.18. For (t,u)∈Λ as defined in (8.39), and for v̌ defined as in (8.45),
it holds that 0 ≤ v̌(t,u)≤ u.

Proof. It suffices to notice that

v̌(t,u) =
(1+ c+)eτ+(T−t)

q+− q−

[
u− K

(1+ c+)
e−τ+(T−t)

]
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to see that v̌(t,u)≥ 0, and that

v̌(t,u)−u=
(1+ q−)u−K

q+− q−
=

(1+ c−)e−τ−(T−t)

q+− q−

[
u− K

1+ c+
e−τ−(T−t)

]

to see that v̌(t,u)−u≤ 0. 
�
We may use this proposition to see the following proposition.

Proposition 8.19. In the domain t ∈ [tM,T ], v ∈ [0,u], we have according to the
foregoing analysis

W (t,u,v) = max{−q−v, (1+ q+)u− q+v−K }.

Proof. We check that trajectories of each sheet remain “above” (w-wise) the other
sheet. This is seen by computing

〈
ν+,h(t,u, v̌, w̌,τ−,ξ−

c )
〉
= (τ+− τ−)(1+ q+)(u− v̌)> 0

and

〈
ν−,h(t,u, v̌, w̌,τ+,ξ+

c )
〉
= (τ+− τ−)(1+ q−)v̌ > 0.

Hence, in the region where both sheets exist, the portion of each between their
intersection D and the target at t = T lies “above” the other sheet.

Remark 8.20. This can be understood in the following way. The hedging portfolio
must be worth enough to hedge both risks, either τ = τ− or τ = τ+, both of which
are risks in the region of interest Λ . For each sheet, the states that correspond to
portfolios actually hedging the risk are those that are “above” the sheet. The states
that hedge both risks are therefore those that are above the maximum w.

It follows that W can be represented as the supremum of two affine functions, and
hence we have the following proposition.

Proposition 8.21. For t ∈ [tM,T ] the function (u,v) �→W (t,u,v) is convex.

We also stress the following proposition.

Proposition 8.22. In the region t ∈ [tM,T ], the representation formula (8.13)

W (t,u,v) = w̌(t,u)+ qε〈v̌(t,u)− v〉 .

still holds.

As a matter of fact, for (t,u) ∈ Λ , this is a direct consequence of the foregoing
analysis. Furthermore, a direct calculation using formulas (8.35), (8.36), and (8.45)
shows that

v̌(t,u�) = 0, w̌(t,u�) = 0, v̌(t,ur(t)) = ur(t), w̌(t,ur(t)) = ur(t)−K .
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Hence, if we extend continuously the definition of (v̌(t,u), w̌(t,u)) to (0,0) to the
left of u�(t) and (u,u−K ) to the right of ur, the representation formula holds for
all (u,v) ∈ R+×R.

We finally stress the following fact, using Proposition 8.18.

Proposition 8.23. Direct calculation using formulas (8.45) yields, on D ,

Q−V̌t = τ−(1+ q−)v̌ ≤ 0, Q+V̌t =−τ+(1+ q+)(u− v̌)≤ 0.

8.2.3 Equivocal Manifold E

We now investigate the domain t ∈ [tm, tM]. We will concentrate on the case t+ < t−,
which is more realistic than the converse. The case where t− < t+ is, indeed, very
similar. We will omit it here. It is dealt with in full detail in [142].

8.2.3.1 Equivocal Junction

Let, therefore, t ∈ [t+, t−]. The sheet {τ−} does not exist in that domain. In t = t−,
that sheet has a slope −C− in the plane (v,w). It will be replaced before t− by a
negative jump manifold, denoted {ι−} – with reference to Sect. 8.1.4 – that joins on
the sheet {τ+} by an equivocal junction. We refer the reader to [33] for a general
constructive theory of such junctions and to [142] for a detailed description of how
to construct them. But we give here a sufficient description of it.

We know that the jump manifold will have a slope −C− in the (v,w) plane,
so that the Hamiltonian 〈ν,h〉 for this manifold at the junction will be singular
in ξ , as long as ξ ≤ 0. Therefore, it is possible to pick a control ξ ≤ 0 from other
considerations without allowing the state to cross the jump manifold. The equivocal
junction, denoted E , is made of trajectories lying on the sheet {τ+}. We thus identify
a control strategy

ξ̃ (τ) =
(τ+− τ)(1+ q+)(u− v)

C−− q+
≤ 0

that has the property that

∀τ ∈ [τ−,τ+],
〈

ν+,h
(
u,v,τ, ξ̃ (τ)

)〉
= 0.

This is not a nonanticipative strategy because knowing instantly τ amounts to
knowing the immediate future. But, on the one hand, this should be considered
a technical device to compute a solution of the DQVI, of which we will verify
later on that it is a VS. On the other hand, the section on discrete trading and
convergence will provide a strictly causal hedging strategy providing an arbitrary
good approximation of the value function thus computed.



130 8 Vanilla Options

Let ν−
j = (n−j p−j C− 1 )t denote the normal to the negative jump manifold. The

scalar product
〈

ν−
j ,h(z,τ,ξ )

〉
= n−j + τ[p−j u+(1+C−)v] (8.46)

is independent of ξ and linear in τ . It is therefore minimized in τ by either τ− or τ+.
Let us assume that it is minimized by τ−, and let us integrate both the state dynamic
equations and the generalized adjoint equations below for the normal ν−

j with the

controls τ = τ−, ξ = ξ̃ (τ−). Verifying that τ− indeed minimizes the Hamiltonian
in the field thus constructed, and therefore that no control τ can cause the state to
cross the jump manifold in the negative direction, is done via the following device.

Proposition 8.24. The control τ = τ− minimizes the Hamiltonian (8.46) if and only
if n−j ≥ 0.

Proof. Computing state and gradient variables with the dynamic and (generalized)
adjoint equations insures that the hamiltonian (8.46) remains zero. Thus it suffices
to verify that n−j (t)≥ 0 to ensure that τ−[p−j u+(1+C−)v]≤ 0, and therefore that
τ− is the minimizing τ in (8.46). 
�

8.2.3.2 Sign of n−j on E

According to Proposition 8.24, we need to prove the following proposition.

Proposition 8.25. On E , n−j ≥ 0.

Proof. The normal ν−
j will be obtained using the generalized adjoint equations

(see [33])

ν̇−
j =−∂H

∂ z
+α(ν−

j −ν+).

Thus

ṅ−j = αn−j −αn+.

We have that n+ > 0. Integrating this affine ordinary differential equation (ODE)
(via Lambert’s formula) backward, we see that it suffices to verify that α ≥ 0 and
n−j ≥ 0 on the boundary, say at t = tb, to ensure that for all t ≤ tb, indeed n−j ≥ 0.

Now, α should be chosen in such a way as to guarantee that the generalized
adjoint equations keep q−j = C−, to preserve the singularity in ξ , i.e., q̇ = 0. This
yields here

q̇−j =−τ−(1+C−)+α(C−− q+) = 0,

and hence α = τ−(1+C−)/(C−− q+)> 0, as needed.
Let us therefore investigate the boundary ∂E . The trajectories of E are generated

by the dynamics

ż = h
(

z, ξ̃ (τ−),τ−
)
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integrated backward in time from the boundary at t = t− and z ∈ D , that is to say,
(v(t−),w(t−)) = (v̌(t−,u(t−)), w̌(t−,u(t−))) as in (8.45). But this does not fill the
region t ∈ [t+, t−], (t,u) ∈ Λ . We must also generate trajectories from u = u�(tb),
tb ∈ [t−, t+], with v(tb) = w(tb) = 0 to join continuously with the negative jump
sheet at u ≤ u�. (From any state on this boundary, either τ = τ+ for all t, and we
just reach D , or at some time τ < τ+, and then the state drifts in the trivial region
where v = w = 0 is a safe hedge.)

Let us first investigate the boundary at t−. We denote by E2 the manifold
generated by the trajectories of E ending there. The normal ν−

j to the jump manifold

is necessarily orthogonal to ∂E2 and, hence, to the vector (0 1 v̌u −C−v̌u )t .
This yields p−j = 0. It is also normal to the trajectories that traverse E , i.e., to

h(z,τ−, ξ̃ (τ−)). This yields

n−j + p−j τ−u+(1+C−)τ−v = 0, (8.47)

i.e., taking into account that p−j = 0, n−j (t−) =−(1+C−)τ−v > 0, as needed.
Let us proceed in the same manner along the boundary on u�. We denote by E1

the manifold generated by the trajectories of E ending there. The tangent to ∂E1 is
(1 τ+u�(t) 0 0 )t . Therefore, orthogonality to it yields

n−j (tb)+ τ+u�(tb)p−j (tb) = 0,

while the same calculation as for E2 yields again (8.47), which becomes

n−j (tb)+ τ−u�(tb)p−j (tb) = 0,

hence n−j (tb) = 0. The verification is complete. 
�
Remark 8.26. In the case where t− < t+, the trajectories of E are with τ = τ+. The
boundary of E1 is on ur, with (v,w) = (u,u−K ). The remainder of the verification
proceeds similarly.

8.2.3.3 Synthesis Concerning E

This generates, via backward integration in t, a piecewise smooth two-dimensional
manifold, composed of the pieces E1 and E2, as shown in Fig. 8.4.

The reference [142] gives closed form solutions of these equations. We will not
need them. This manifold can be parameterized by t and u. We will let (v w ) =

( v̌(t,u) w̌(t,u) ), or equivalently V = V̌ (t,u), be such a parameterization. We will
show later on that V̌ still satisfies the PDE (8.12).
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Fig. 8.4 Projection on (t,u) plane of dispersal manifold D and equivocal manifold E

It is, however, useful to mention one more property.

Proposition 8.27. On E , we have, for all (t,u), and both ε ∈ {−,+}, QεV̌t ≤ 0.

Proof. The manifold E and two tangents are parameterized as

E =

⎛

⎜
⎜
⎝

t
u

v̌(t,u)
w̌(t,u)

⎞

⎟
⎟
⎠ , DtE =

⎛

⎜
⎜
⎝

1
0

v̌t (t,u)
w̌t(t,u)

⎞

⎟
⎟
⎠ , DuE =

⎛

⎜
⎜
⎝

0
1

v̌u(t,u)
w̌u(t,u)

⎞

⎟
⎟
⎠ .

Writing that ν−
j and ν+ are both normal to DtE yields

n−j +C−v̌t + w̌t = 0,
n++ q+v̌t + w̌t = 0.

From these two equalities, (8.44) and Proposition (8.25), we obtain the claim. 
�
This last fact will be useful in proving that the function W thus constructed satisfies
the viscosity condition.

Remark 8.28. The trajectory of E ending in u�(t−) may bear a discontinuity of the
gradient of W . It comes from some u(t+) = u0 of whose complicated expression we
spare the reader.

Remark 8.29. In Breakwell’s parlance, the condition that τ− minimizes the scalar

product
〈

ν−
j ,h(z,τ, ξ̃ )

〉
is that the corner “does not leak.” It is equivalent to the

viscosity condition, as seen here from the fact that both are equivalent to n−j ≥ 0.
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8.2.4 Focal Manifold F

8.2.4.1 Preliminaries

For t < t+, both sheets {τ−} and {τ+} are replaced by the jump manifolds
{ι−} and {ι+}, respectively. They join on a (singular) focal manifold F . The
general constructive theory of such manifolds can be found in [116]. The main
point is Melikyan’s discovery that they are traversed by two noncollinear fields of
trajectories, both extremal in the nonsingular control, here τ . This fact is the crucial
point in proving that the present focal manifold satisfies the fundamental Eq. (8.12).
But rather than proving that only, we prove a more complete result.

We recall the notation Qε = (qε 1 ), already introduced, and 1l as a vector whose
entries are all ones and

S =

(
1 0
1 0

)
.

Lemma 8.30. For ε ∈ {−,+}, if the manifold V : V = V̌ (t,u) is either a sub-
manifold of the sheet {τε} or a submanifold of a jump manifold {ιε} traversed
by trajectories generated by τ = τε and a ξ of sign ε , then it satisfies

QεV̌t + τε Qε (V̌uu−S V̌
)
= 0. (8.48)

Proof. If the manifold V is a submanifold of the sheet {τ−}, then its tangents

DtV =

⎛

⎜
⎜
⎝

1
0
v̌t

w̌t

⎞

⎟
⎟
⎠ and DuV =

⎛

⎜
⎜
⎝

0
1
v̌u
w̌u

⎞

⎟
⎟
⎠

are orthogonal to the normal ν− = (−τ−Q−S V̌ 0 q− 1 ) to the sheet {τ−} [see
(8.41)]. This gives two equations:

Q−V̌t − τ−Q−S V̌ = 0,
Q−V̌u = 0.

Multiplying the second equation by τ− and adding to the first one yields (8.48).
If the manifold V is a submanifold of the sheet {τ+}, then these same tangents

are orthogonal to the normal ν+ = (−τ+Q+1l(v̌−u) −Q+1l q+ 1 ) to the sheet
{τ+} [see (8.43)]. Again, this yields two equations:

Q+V̌t − τ+Q+1l(v̌−u) = 0,
Q+V̌u−Q+1l = 0.

Multiplying the second equation by τ+u and adding to the first one yields (8.48).
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Finally, if V is a submanifold of a jump manifold {ιε}, then necessarily t ≤ tε and
qε =Cε . If it is traversed by trajectories generated by τε and a ξ with sign(ξ ) = ε ,
then take Lagrangian derivatives along such a trajectory:

˙̌v = v̌t + τε v̌uu= τε v̌+ ξ ,
˙̌w = w̌t + τε w̌uu= τε v̌−Cεξ .

(8.49)

Multiplying the first equation by Cε and adding to the second one yields (8.48). 
�

8.2.4.2 State and Costate Dynamics on F

We want to show that the focal manifold F is the unique solution of the PDEs (8.48)
with appropriate boundary conditions. To this end, we must show two things:

1. That the singular controls ξ− and ξ+ that let the state traverse F with τ− and
τ+, respectively, satisfy sign(ξ ε) = ε;

2. That the two normals ν− and ν+ to the jump manifolds {ι−} and {ι+},
respectively, both have nε nonnegative.

We will find that this is one and the same condition.
(Notice that we omit the index j for νε as there is no possible confusion with the

normals to the sheets {τε} since they do not exist in the region investigated here.)
We also need to show that the PDE we will end up with indeed has a unique solution.
This will prove a classic exercise in hyperbolic PDEs.

We first investigate the controls ξ ε . We will assume that they have the required
signs, investigate the trajectory fields constructed with that hypothesis, and check
a posteriori that it does give the required signs for these controls.

Each of the two dynamics h(z,τ−,ξ−) and h(z,τ+,ξ+) must be normal to both
ν− and ν+, where we recall that, for ε ∈ {−,+}, νε = (nε pε Cε 1 ). This yields
four equations:

n−+ τ−[p−u+(1+C−)v] = 0,

n++ τ−[p+u+(1+C+)v]+ (C+−C−)ξ− = 0,

n−+ τ+[p−u+(1+C−)v]+ (C−−C+)ξ+ = 0,

n++ τ+[p+u+(1+C+)v] = 0.

(8.50)

From these equations we easily derive

ξ− =− (τ+− τ−)n+

τ+(C+−C−)
, ξ+ =

(τ+− τ−)n−

−τ−(C+−C−)
. (8.51)

Hence, if the nε are both nonnegative, then sign(ξ ε) = ε for both ε .



8.2 Geometric Approach 135

Let ε̄ be the opposite sign to ε . The normals νε obey the generalized adjoint
equations

ν̇ε =−∂H
∂ z

+αε(νε −νε̄),

i.e., here

ṅε = αε (nε − nε̄), (8.52)

where, as previously, the αε should be chosen so as to keep qε constant in the adjoint
equation

q̇ε =−τε(1+Cε)+αε(Cε −Cε̄),

i.e., here

αε = τε 1+Cε

Cε −Cε̄ > 0. (8.53)

Yet this is not a constructive theory because these are Lagrangian derivatives along
different trajectories. Adapting a proof of Gronwall’s lemma to this case (see [142])
lets one prove that these equations with zero terminal conditions have nε = 0 for
unique solution and, hence, via Fredholm’s alternative, that they always have a
unique solution. We now investigate the boundary conditions to conclude on the
signs of the nε .

8.2.4.3 Signs of the nε Solutions of (8.52)

Trajectories generated by (τ−,ξ−) terminate on ∂E at t−b = t+, u ∈ [u�(t+),ur(t+)]
or on t−b < t+, u= u�(t

−
b ). Trajectories generated by (τ+,ξ+) terminate on the same

boundary of E , or on t+b < t+, u= ur(t+b ).
We remark first that F is both a submanifold of {ι−} traversed by trajectories

(τ+,ξ+) and a submanifold of {ι+} traversed by trajectories (τ−,ξ−), with
sign(ξ ε) = ε if our construction succeeds. Therefore, according to Lemma 8.30,
it satisfies both Eqs. (8.48). This is also true for E , as we will emphasize in the next
subsection. However, V̌ will be, by construction, continuous across ∂E , and, hence,
also V̌u along t = t+. As a consequence, QεV̌t is continuous across this boundary, as
are the two nε =−QεV̌t . Hence, on that boundary, n− = 0 and n+ > 0.

By continuity, n+ will remain positive in a neighborhood t < t+. And this, with
(8.52), shows that it is also true of n−.

On u = u�(t), for the same reason as on E , we need to have v̌ = w̌ = 0. As a
consequence,

Q− ˙̌V = Q−V̌t + τ+Q−V̌uu= 0.

And, as everywhere on F , (8.48) holds with ε =−, i.e.,

Q−V̌t + τ−Q−V̌uu= τ−Q−S V̌ = 0.

Hence Q−V̌t = 0 = n−.
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To find the boundary conditions on u = ur, we integrate backward the dynamic
equations from t = t+, u = ur(t+), v = v̌(t+) = ur(t+), w = w̌(t+) = ur(t+)−K .
Integration with τ = τ−, ξ = 0, leads to v̌(t) = ur(t), w̌(t) = ur(t)−K . Indeed,
from such a point, either for all t, τ = τ−, and the state reaches ∂E , or for some t,
τ > τ−, and the state drifts in the trivial region where V = (u u−K )t is a safe
hedge.

As previously, the fact that V̌ = (u u−K )t leads by differentiation to

Q+ ˙̌V = Q+V̌t + τ−Q+V̌uu= τ−(1+C+)u,

and (8.48) with ε =+

Q+V̌t + τ+Q+V̌uu= τ+(1+C+)v̌,

and since v̌ = u, Q+V̌t = 0 =−n+.

Proposition 8.31. The preceding construction yields nε > 0, and as a consequence
QεV̌t ≤ 0, ∀ε ∈ {−,+} over the whole interior of F .

Proof. It may be useful, in investigating this question, to introduce, for ε ∈ {−,+},
mε(t) = exp[αε(t+− t)]nε(t), which have the same signs as the corresponding nε ,
so that the two differential equations (8.52) become

ṁε =−αε e(α
ε−αε̄)(t+−t)mε̄ .

Recall that the two αε are (constant and) positive. Now, at t = t+, u ∈ (u�,ur), we
know that m+ > 0. It is therefore true in a neighborhood t < t+. It results that m−
strictly decreases toward 0, hence m− > 0 for some t < t+ in the field covered by
the trajectories τ+ arriving in u ∈ (u�,ur). This in turn implies that in that field, for
t close to t+, m+(t) > m+(t+) = n+(t+) > 0. Also, by continuity, on the trajectory
τ+ reaching ur at t+, and in a neighborhood of it, we get m− > 0, and thus also m+.
And as long – backward – as in a neighborhood of the trajectory ur(·), m− > 0, it
causes m+ > 0 in that neighborhood.

We therefore have that m− > 0 in a neighborhood of the trajectory ur(·), and that
m+ > 0, decreasing (hence, larger than at t+). A similar but simpler reasoning holds
in the neighborhood of the trajectory u�(·).

Now, let t1 be the last instant when at an interior point one has mε = 0 for one
of the two ε . This requires that at a strictly later time on the trajectory τε through
that point, mε reaches a maximum. Hence that ṁε = 0, hence mε̄ = 0, which is a
contradiction since t1 is by assumption the last time when this happens.

We conclude that n− and n+ are both strictly positive in the interior of the region
of interest for t < t+. 
�
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8.2.4.4 Synthesis Concerning F

The two Eqs. (8.48) can be regrouped in the following way. Let

Q :=

(
Q+

Q−

)
=

(
q+ 1
q− 1

)
. (8.54)

The two equations can be written as

QV̌t +

(
τ+ 0
0 τ−

)
Q(V̌uu−S V̌ ) = 0,

or, multiplying to the left by Q−1 and noticing that

Q−1
(

τ+ 0
0 τ−

)
Q =

1
q+− q−

(
τ+q+− τ−q− τ+− τ−

−(τ+− τ−)q+q− τ−q+− τ+q−

)
= T

as defined in (8.10), exactly (8.12):

V̌t +T (V̌uu−S V̌ ) = 0. (8.12)

The boundary conditions are imposed by the solution in the trivial regions – or,
equivalently, by the same considerations as for E :

V̌ (t,u�(t)) =

(
0
0

)
, V̌ (t,ur(t)) =

(
ur(t)

ur(t)−K

)
. (8.55)

The existence and uniqueness of the solution of this (pair of) hyperbolic equation(s)
will be checked in the next subsection.

It follows from the foregoing analysis that the manifold solution of this equation
is indeed traversed by the trajectories generated by τ− and, specifically, ẇ = τ−v−
C−ξ− and by τ+ and ẇ = τ+v−C+ξ+, according to (8.51). The associated jump
manifold normals are then positive according to Proposition 8.31, implying that
sign(ξ ε) = ε , so that the trajectories generated are, as we just said, indeed those of
the dynamics of the game.

Finally, if τ takes an intermediate value in (τ−,τ+), then it follows from (8.50)
that sign([pεu+(1+Cε)v] = ε̄ , so that 〈νε ,h(z,τ,0)〉 > 0 for both ε . Hence the
control ξ = 0 suffices to ensure that the state drifts in the region w >W (t,u,v). As
a matter of fact, it suffices that

− (τ+− τ)n+

τ+(C+−C−)
≤ ξ ≤ (τ − τ−)n+

−τ−(C+−C−)

to ensure that the states remains “above” (w-wise) the composite barrier.
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8.2.4.5 Existence and Uniqueness

For the previous two singular surfaces, D and E , we had a constructive theory based
upon the integration of ODEs. Concerning F , we only have the PDE (8.12). This
is an evolution equation whose numerical integration requires some care to avoid
numerical instabilities – typical of a hyperbolic PDE – but is not very difficult. Yet,
to make it a solid theory, since this is the only definition we have for F , we need to
check the existence – and uniqueness, although this will also be a consequence of
its yielding a VS of the DQVI (8.7) – of the solution in the domain Λ restricted to
t ∈ [0, t+]. We therefore prove the following theorem.

Theorem 8.32. Let Λ+ = {(t,u) | t ∈ [0, t+], u ∈ [u�(t),ur(t)]}, and let ∂0Λ+ =
{t = t+,u∈ [u�(t+),ur(t+)]}∪{t ∈ [0, t+],u= u�(t)}∪{t ∈ [0, t+],u= ur(t)} be its
boundary deprived of its part at t = 0. The fundamental Eq. (8.12) in the domain Λ+

with continuous initial conditions given on ∂0Λ+ has a unique continuous solution.

Proof. We use the form (8.48) of the PDE, with qε =Cε :

∀ε ∈ {−,+}, Cε v̌t + w̌t + τε [(qε v̌u+ w̌u)u− (1+ qε)v̌] = 0.

To make things simpler, we change the unknown functions and consider, for ε ∈
{−,+} (this is a notation local to this subsection, not to be mistaken with the
strategy φ ),

φε (t,u) =Cε (t)v̌(t,u)+ w̌(t,u);

then we take the trajectories u� and ur as new coordinate axes. First, let t0,u0 be
their intersection:

t0 = T +
1

τ+− τ−
ln

1+ c+

1+ c−
, u0 = K (1+ c−)

−τ+
τ+−τ− (1+ c+)

τ−
τ+−τ− ,

and let

{
λ =−τ−(t0 − t)− ln u

u0
,

μ = τ+(t0 − t)+ ln u
u0
,

i.e.,

{
t = t0 − λ+μ

τ+−τ− ,

u= u0 exp
(
− τ+λ+τ−μ

τ+−τ−
)
,

Finally, let

ψε(λ ,μ) = φε (t,u).

We introduce additional notation, the two positive constants

a =
τ+(1+C+)

(τ+− τ−)(C+−C−)
, b =

−τ−(1+C−)
(τ+− τ−)(C+−C−)

.
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Using (8.49), we find

ψ+
λ =

−1
τ+− τ−

(φ+
t +φ+

u τ+u) =
−(1+C+)τ+

τ+− τ−
v̌ = a(ψ−−ψ+),

ψ−
μ =

−1
τ+− τ−

(φ−
t +φ−

u τ−u) =
−(1+C−)τ−

τ+− τ−
v̌ = b(ψ+−ψ−).

(8.56)

We differentiate the first preceding equality with respect to μ , substitute ψ−
μ using

the second equality, and substitute again (ψ+−ψ−) using the first equality to get

ψ+
λ μ + aψ+

μ + bψ+
λ = 0.

Now, let χ(λ ,μ) = exp(aλ + bμ)ψ+(λ ,μ) and ab = c to obtain, finally,

∀(λ ,μ) ∈ Λ+, χλ μ(λ ,μ) = cχ(λ ,μ). (8.57)

The domain considered, Λ+, becomes

λ ≥ 0, μ ≥ 0,

ν+ := ln
1+ c+

1+ c−
+

τ+− τ−

τ+
ln

1+C+

1+ c+
≤ λ + μ ≤ (τ+− τ−)T + ln

1+ c+

1+ c−
=: ν0,

and, using shorthand – hopefully unambiguous – notation,

∂0Λ+ = {(λ ,μ) ∈R+×R+ | λ + μ = ν}∪{([ν+,ν0],0)}∪{(0, [ν+,ν0])}.

Both φε , hence both ψε , are known on this boundary, and thus ψ+
λ is also known

according to (8.56). For a given pair (λ ,μ), let λ0 = max{0,ν+ − μ} and μ0 =
max{0,ν+−λ}, so that (λ0,μ) and (λ ,μ0) are boundary points in ∂0Λ+. Integrating
(8.57) from (λ ,μ0) to (λ ,μ), we obtain

χλ (λ ,μ) = χλ (λ ,μ0)+ c
∫ μ

μ0

χ(λ ,μ ′)dμ ′. (8.58)

Let, for any (α,β ),

Λα ,β
+ = Λ+∩{λ ≤ α,μ ≤ β}.

Integrating (8.58) from (λ0,μ) to (λ ,μ), we obtain

χ(λ ,μ) = χ(λ0,μ)+
∫ λ

λ0

χλ (λ ′,μ0(λ ′))dλ ′+ c
∫∫

Λλ ,μ
+

χ(λ ′,μ ′)dλ ′ dμ ′.
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The first two of the preceding terms are known boundary terms. This is a fixed-point
equation for the function χ . It suffices to find a norm for which the space is complete
and such that the mapping

χ �→ Γ (χ)(λ ,μ) = c
∫∫

Λλ ,μ
+

χ(λ ′,μ ′)dλ ′ dμ ′

be contracting to conclude. This is performed by choosing

‖χ‖α = sup
(λ ,μ)∈Λ+

e−α(λ+μ)|χ(λ ,μ)|.

This norm is defined for all continuous functions since the domain Λ+ is bounded.
Using the majoration χ(λ ,μ)≤ exp(α(λ + μ))‖χ‖α , we find that

‖Γ (χ)‖α ≤ c
α2 ‖χ‖α ,

so that choosing α >
√

c gives the desired result.
This proves the existence and uniqueness of χ , and hence of ψ+, but also,

through formula (8.58), of ψ+
λ , and hence, through the use of (8.56), of ψ−. 
�

8.2.5 Synthesis: Representation Formula

At this stage, we have a constructive theory of three singular manifolds:

D In the region t ∈ [t−,T ], the dispersal manifold D is a submanifold of both sheets
{τ+} and {τ−}.

E In the region t ∈ [t+, tm], the equivocal manifold is a submanifold of the sheet
{τ+} and a submanifold of the manifold {ι−} traversed by the trajectories {τ−}.

F In the region t ∈ [0, t+], the focal manifold is a submanifold of the two jump
manifolds {ι−} and {ι+} and traversed by the trajectories {τ−} and {τ+}.

Therefore, all three satisfy both PDEs (8.48), and hence, as we stressed in the case of
F , all satisfy the fundamental Eq. (8.12). We have already noted that this equation
is also satisfied by the solutions v̌= w̌= 0 and v̌= w̌+K = u, which we identified
in the trivial regions.

In all cases, these singular manifolds are the intersection of two sheets, either
standard semipermeable or jump manifolds. The normals to these manifolds in the
plane (v,w) are the two (qε , 1), and therefore their slopes in that plane are −qε , as
given by (8.33), with ε = sign(v̌−v). A graphical representation in the plane (v,w)
for a fixed (t,u) is therefore as in Fig. 8.5.

Hence, we have the representation [see (8.13)]

W (t,u,v) = w̌(t,u)+ qε〈v̌(t,u)− v)〉 .
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v

w

v̌

w̌
1

−q−1
−q+

Fig. 8.5 Graph of W in the (v,w) plane for fixed (t,u)

This, together with (8.12) and the boundary conditions according to Table 8.1, gives
a representation formula about which we claim that it is the VS of the DQVI (8.7).
This will be verified in the next section.

It is useful to remark that, in all cases, nε > 0, whether it is the normal to a
sheet {τε}, because of (8.44), or because of the specific arguments developed for
jump manifolds. And as a result, since (1 0 v̌t w̌t ) is always orthogonal to both

(nε pε qε 1 ), it follows that we always have

QεV̌t ≤ 0. (8.59)

And let us also stress that

sign(v̌− v) = sign(−σ). (8.60)

Remark 8.33. We have developed here the theory in the case t+ < t−. The opposite
case is not ruled out by the standing hypotheses. The analysis is very similar.
The only difference comes from the fact that in that case, the envelope junction
is between a positive jump manifold and the sheet {τ−} (instead of a negative jump
manifold joining on the sheet {τ+} as here). The same representation formula holds.

Remark 8.34. As was already stressed, in the case c− = C− and c+ = C+,
t− = t+ = T , both D and E collapse, and the focal manifold F accounts for the
whole region of interest. This simplifies the calculations because then both qε =Cε

are constant.

8.3 Viscosity Solution

In this section, we will show that the VS of the DQVI (8.7) is unique and use this
fact to confirm that the function given by the representation formula (8.12), (8.13)
is indeed the value of the minimax problem, i.e., gives the best premium for the call
as in (7.23).
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Fig. 8.6 A two-dimensional sketch of the four-dimensional geometry of the barrier, case t+ < t−

8.3.1 Uniqueness

While the value of the minimax problem is necessarily a VS – classical proofs as
in [69] carry over to that case – uniqueness does not seem to be a consequence
of known theorems. Even [137], which considers a problem similar to, and more
general than, ours, rules out positively homogeneous impulse costs.

8.3.1.1 Viscosity Solutions and Opposite Viscosity Solutions

We first recall the definition of VSs and introduce the concept of opposite viscosity
solution for convenience.
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Definition 8.35. Let f : R
n → R be a uniformly continuous function. Its

subdifferential at x ∈R
n is the subset of Rn

∂− f (x) :=

{
p ∈ R

n | liminf
y→x

f (y)− f (x)−〈p,y− x〉
‖y− x‖ ≥ 0

}
.

The superdifferential is the subset

∂+ f (x) :=

{
p ∈ R

n | lim sup
y→x

f (y)− f (x)−〈p,y− x〉
‖y− x‖ ≤ 0

}
.

Only one of these two is nonempty at each x, except if f is differentiable at x,
in which case both are the singleton { f ′(x)}. We further have (see, e.g., [12]) the
following proposition.

Proposition 8.36.

• ∂− f (x) is the set of slopes g′(x) of differentiable functions g(·) such that f − g
has a local minimum at x.

• ∂+ f (x) is the set of slopes g′(x) of differentiable functions g(·) such that f − g
has a local maximum at x.

Let Q ⊂ R
n be an open region with a smooth boundary ∂Q. Let F : Q×R×R

n

and G : ∂Q → R be given continuous functions, and consider the PDE

∀x ∈ Q F(x, f (x),D f (x)) = 0, ∀x ∈ ∂Q, f (x) = G(x).

The following definition is classic (see, e.g., [21, 22]).

Definition 8.37.

• f is a viscosity subsolution if

∀x ∈ Q, ∀p ∈ ∂+ f (x), F(x, f (x), p) ≤ 0,

∀x ∈ ∂Q, f (x) ≤ G(x).

• f is a viscosity supersolution if

∀x ∈ Q, ∀p ∈ ∂− f (x), F(x, f (x), p) ≥ 0,

∀x ∈ ∂Q, f (x) ≥ G(x).

• f is a VS if it is both a viscosity subsolution and a viscosity supersolution.

It should be stressed that this very useful definition has the strange feature that a
opposite viscosety solution of F(x, f ,D f ) = 0 is not a VS of −F(x, f ,D f ) = 0.
Moreover, the classic choice of signs, arising from fluid mechanics and the calculus
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of variations, is not well suited to the Hamilton–Jacobi–Isaacs equation. Hence, we
give the following definition:

Definition 8.38. f is an opposite viscosity solution (OVS) of F(x, f ,D f ) = 0 if it
is a VS of −F(x, f ,D f ) = 0.

Consequently, Theorem 8.12 also reads as follows.

Theorem 8.39. The value function W is a continuous OVS of the PDE

∀(t,u,v) ∈ [0,T )×R+×R,

min

{
∂W
∂ t

+ τε
〈

∂W
∂u

u+

(
∂W
∂v

− 1

)
v

〉
,

∂W
∂v

+C+,−
(

∂W
∂v

+C−
)}

= 0,

∀(u,v) ∈ R+×R, W (T,u,v) = N(u,v).
(8.61)

8.3.1.2 An Auxiliary Problem with a Bounded Value

Let us fix a number a, and let b be the associated b as in Proposition 8.9. Let Φb ⊂Φ
be the set of strategies ϕ that keep |v(t)| ≤ b for any v(0)≤ a. Let also P[c,d] denote
the simple projection of R onto [c,d]. Finally, let

Nb(u,v) = N(P
[0,aeτ�T ]

(u),P[−b,b](v)), Lb(v) = P[−b,b](v)

and

Jb(t,u(t),v(t);ξ ,τ(·)) = Nb(u(T ),v(T ))+
∫ T

t
[−τLb(v(s))+Cε ξ (s)]ds

and

Wb(t,u,v) = inf
ϕ∈Φb

sup
τ(·)∈Ω

Jb(t,u,v;ϕ(τ(·)),τ(·)).

An easy result is the following proposition.

Proposition 8.40. The function Wb is bounded uniformly continuous (BUC) over
[0,T ]×R+×R.

Proof. Boundedness follows from the fact that

Wb(t,u,v)≤ sup
τ(·)∈Ω

Jb(t,u,v;0,τ(·)) ≤ max
u∈[0,aexp(τ�T )],|v|≤b

N(u,v)+Tτ�b.

Wb is continuous. For u(0) ≥ aexp(2τ�T ), for all τ(·) ∈ Ω , u(T ) is larger than
aexp(τ�T ), so that Jb is independent of u. But then we are left with a simple control
problem whose Value is a continuous function of v(0) = v alone. Moreover, if
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|v(0)| is so large, say |v(0)| ≥ c, that the cost of bringing it back to b is larger
than N(aexp(τ�T ),b) + T τ�b, then the best ξ can do is ξ = 0, so that Wb is
constant for v outside a compact [−c,c]. Hence Wb is uniformly continuous for
u ≥ aexp(2τ�T ). Similarly, for |v| ≥ c, there is nothing ξ can do, and Wb is
just the Value function of a simple minimization problem depending on u alone,
and constant if u is large. Therefore, Wb is a continuous function in the compact
[0,aexp(2τ�T ]× [−c,c], hence uniformly continuous there and, as we have just
seen, also uniformly continuous outside this compact. 
�
We claim that the following proposition holds.

Proposition 8.41. The restrictions of W and Wb to [0,T ]× [0,a]× [−a,a] coincide.

Proof. Notice first that for trajectories with |v(0)| ≤ a, we already know that the
restriction to strategies ϕ ∈ Φb does not change the Value of the game. Additionally,
it follows from the game’s dynamics that if u(0)≤ a, then u(t)≤ aexp(τ�T ) for all
t ∈ [0,T ]. But in constructing Jb, we have modified J only for states (u,v) outside
of the region reachable from the initial states in [0,a]× [−a,a] with the strategies of
Φb. Hence for these initial states, and under strategies of Φb, the two performance
indices coincide. 
�
The value function Wb is therefore an OVS of the modified DQVI

∀(t,u,v) ∈ [0,T )×R+×R,

min

{
∂Wb

∂ t
+ τε

〈
∂Wb

∂u
u+

∂Wb

∂v
v−Lb(v)

〉
,

∂Wb

∂v
+C+,−

(
∂Wb

∂v
+C−

)}
= 0,

∀(u,v) ∈R+×R, Wb(T,u,v) = Nb(u,v). (8.62)

The next two subsections are devoted to the proof of the following theorem.

Theorem 8.42. The DQVI (8.62) admits a unique bounded uniformly continuous
(BUC) OVS.

From this result and Proposition 8.41 follow the next corollary, and consequently
Theorem 8.2

Corollary 8.43. The DQVI (8.7) admits a unique continuous viscosity solution.

Proof. Assume that two different solutions W1 and W2 exist. There is a triplet
(t̄, ū, v̄) for which W1(t̄, ū, v̄) �= W2(t̄, ū, v̄). Choose a > max{u, |v̄|}, and let b
correspond to it as in Proposition 8.9. Then, on the one hand, Wb(t̄, ū, v̄) is
uniquely defined, and on the other hand, W1(t̄, ū, v̄) = Wb(t̄, ū, v̄) = W2(t̄, ū, v̄), a
contradiction. 
�
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8.3.1.3 Uniqueness of BUC OVS of (8.62)

We now set out to prove Theorem (8.42). We omit all indices b, but it should be
understood all along that we are dealing with the modified problem.

Proof of the Theorem

We will consider the DQVI for V = etW . It satisfies another DQVI, (8.72). Assume
that it has two BUC OVSs, V and V ′. Choose ε > 0 and ε < ‖V‖∞ (ε is to go to 0).
Choose μ ∈ (1− ε/‖V‖∞,1), and let U = μV . Then

∀(t,u,v), |V (t,u,v)−U(t,u,v)| ≤ ε.

Let M = supt,u,v(U(t,u,v)−V ′(t,u,v)). It follows that

sup
t,u,v

[V (t,u,v)−V ′(t,u,v)]≤ M+ ε. (8.63)

We now claim that the following lemma is true.

Lemma 8.44. There exists μ� ∈ (1 − ε/‖V‖∞,1) and a constant K > 0, both
depending only on the data of the problem, such that, if μ ∈ (μ�,1), then M ≤ Kε .

As a consequence,

sup
t,u,v

[V (t,u,v)−V ′(t,u,v)]≤ (K+ 1)ε. (8.64)

Since ε was chosen arbitrarily, it follows that for all (t,u,v), V (t,u,v)≤V ′(t,u,v).
But since the argument is symmetric in V and V ′, necessarily V = V ′, and
Theorem 8.42 is proved. 
�

Proof of Lemma 8.44

Notice first that if M ≤ 0, then it follows from (8.63) that, supt,u,v[V (t,u,v)−
V ′(t,u,v)] ≤ ε , and (8.64) is satisfied for any positive K. We may, therefore, from
now on concentrate on the case M > 0.

Let, thus, 0 < ε < ‖V‖∞ be given. Let

b := max
v∈R

|L(v)|= ‖L‖∞, c := max
u∈R+ ,v∈R

|N(u,v)| = ‖N‖∞

(remember here that L and N stand for Lb and Nb), and choose μ such that

1 > μ ≥ μ� = 1− ε
max{‖V‖∞,beT,ceT} < 1. (8.65)
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For three positive numbers α,β ,γ (which we will choose small later on), introduce
the test function φα ,β ,γ : [0,T ]×R

2 × [0,T ]×R
2 → R:

φα ,β ,γ(t,u,v, t
′,u′,v′) =U(t,u,v)−V ′(t ′,u′,v′)

−α(u2 +u′2+ v2 + v′2)− (u−u′)2+(v−v′)2

β 2 − (t−t′)2

γ2 .

This function reaches its maximum at

maxφα ,β ,γ(t,u,v, t
′,u′,v′) = φα ,β ,γ(t̄, ū, v̄, t̄

′, ū′, v̄′) =: Mα ,β ,γ .

We claim the following two lemmas, both for μ ∈ (μ�,1) fixed and under the
hypothesis that M > 0.

Lemma 8.45. There exists α�, β �, γ� all positive such that for any α ≤α�, β ≤ β �,
γ ≤ γ�,

|U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)−M| ≤ ε, (8.66)

α(ū2 + ū′2 + v̄2 + v̄′2)+
(ū− ū′)2 +(v̄− v̄′)2

β 2 +
(t̄ − t̄ ′)2

γ2 ≤ 2ε. (8.67)

Lemma 8.46. For any α ≤ α�, β ≤ β �, γ ≤ γ�,

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ max{2,7τ�}ε. (8.68)

The main lemma follows clearly, with K=max{3,7τ�+1}, from inequalities (8.66)
and (8.68). 
�

Inequality (8.67) is used in the proof of Lemma 8.46. We have split the assertions
into two separate lemmas because the first one does not make use of the DQVI while
the second one does.

8.3.1.4 Proof of Lemma 8.45

Assume that M > 0. Choosing (t,u,v) = (t ′,u′,v′), it follows that

∀(t,u,v), Mα ,β ,γ ≥U(t,u,v)−V ′(t,u,v)− 2α(u2+ v2). (8.69)

Pick a point (t�,u�,v�) such that M is approached within ε/2:

U(t�,u�,v�)−V ′(t�,u�,v�)≥ M− ε/2,
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and let α1 = ε/[4(u�2 +v�2)] if (u�2 +v�2) �= 0 (and α1 = ∞ otherwise). It follows
that for any α ≤ α1,

U(t�,u�,v�)−V ′(t�,u�,v�)− 2α(u�2 + v�2)≥ M− ε,

and using (8.69),

M− ε ≤ Mα ,β ,γ . (8.70)

Hence,

−ε ≤ M− ε ≤ Mα ,β ,γ

≤ ‖U‖∞+ ‖V ′‖∞ −α(ū2 + ū′2+ v̄2 + v̄′2)− (ū− ū′)2 +(v̄− v̄′)2

β 2 − (t̄ − t̄ ′)2

γ2 .

Let r2 := ‖V‖∞+‖V ′‖∞+ε , and note that ‖U‖∞ < ‖V‖∞. It follows that, for α ≤α1,

α(ū2 + ū′2 + v̄2 + v̄′2)+
(ū− ū′)2 +(v̄− v̄′)2

β 2 +
(t̄ − t̄ ′)2

γ2 ≤ r2,

and in particular that

α(ū2 + ū′2+ v̄2 + v̄′2)≤ r2, |ū− ū′| ≤ rβ , |v̄− v̄′| ≤ rβ , |t̄ − t̄ ′| ≤ rγ. (8.71)

Now, V ′ is uniformly continuous by hypothesis. Let, for p and q positive,

m(p,q) = sup
|t − t ′ | ≤ q

|u−u′ | ≤ p

|v−v′ | ≤ p

|V ′(t,u,v)−V ′(t ′,u′,v′)|.

Clearly, m is decreasing with its arguments and decreases to 0 with p+ q. Using
(8.71), it follows that

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤U(t̄, ū, v̄)−V ′(t̄, ū, v̄)+m(rβ ,rγ)≤ M+m(rβ ,rγ).

Choose β1 and γ1 such that for β ≤ β1 and γ ≤ γ1, m(rβ ,rγ)≤ ε . Using again (8.70),
we get

M− ε ≤ Mα ,β ,γ ≤U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ M+ ε.

Conclusions (8.66) and (8.67) of the lemma follow. 
�

8.3.1.5 Proof of Lemma 8.46

We first apply a classic transformation to DQVI (8.62), introducing

V (t,u,v) := etW (t,u,v),
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which is BUC if and only if W is. Now, W is an OVS of (8.62) if and only if V is an
OVS of the modified DQVI

∀(t,u,v) ∈ [0,T )×R
2,

0 = min

{
∂V
∂ t

−V(t,u,v)+ τε
〈

∂V
∂u

u+
∂V
∂v

v− etL(v)

〉
,

∂V
∂v

+ etC+,−∂V
∂v

− etC−
}
,

V (T,u,v) = eTM(u,v), ∀(u,v) ∈ R
2.

(8.72)

We will also make use of the following remark. For any positive μ , which we
will take to be smaller than one, let U(t,u,v) = μV (t,u,v). It is an OVS of the third
DQVI

∀(t,u,v) ∈ [0,T )×R
2,

0 = min

{
∂U
∂ t

−U(t,u,v)+ τε
〈

∂U
∂u

u+
∂U
∂v

v− μetL(v)

〉
,

∂U
∂v

+ μetC+,−∂U
∂v

− μetC−
}
,

U(T,u,v) = μeTM(u,v), ∀(u,v) ∈ R
2.

As a matter of fact, the DQVI (8.72) is a particular case of this one with μ = 1. We
gave it separately for subsequent reference.

Case t̄ and t̄ ′ Smaller Than T

By definition of (t̄, ū, v̄) and (t̄ ′, ū′, v̄′), we have

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)−α(ū2 + ū′2 + v̄2 + v̄′2)− (ū−ū′)2+(v̄−v̄′)2

β 2 − (t̄−t̄′)2

γ2

≥U(t,u,v)−V ′(t̄ ′, ū′, v̄′)−α(u2 + ū′2 + v2 + v̄′2)− (u−ū′)2+(v−v̄′)2

β 2 − (t−t̄′)2

γ2 ,

and also

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)−α(ū2 + ū′2 + v̄2 + v̄′2)− (ū−ū′)2+(v̄−v̄′)2

β 2 − (t̄−t̄′)2

γ2

≥U(t̄, ū, v̄)−V ′(t ′,u′,v′)−α(ū2 +u′2 + v̄2 + v′2)− (ū−u′)2+(v̄−v′)2

β 2 − (t̄−t′)2

γ2 .
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Define the two test functions:

φ(t,u,v) =V ′(t̄ ′, ū′, v̄′)+α(u2 + ū′2 + v2 + v̄′2)+ (u−ū′)2+(v−v̄′)2

β 2 + (t−t̄′)2

γ2 ,

φ ′(t ′,u′,v′) =U(t̄, ū, v̄)−α(ū2 +u′2 + v̄2 + v′2)− (ū−u′)2+(v̄−v′)2

β 2 − (t̄−t′)2

γ2 .

The first inequality above means that (t̄, ū, v̄) is a maximal point of U −φ , and the
second that (t̄ ′, ū′, v̄′) is a minimal point of V ′ −φ ′. Using the definition of an OVS
and Proposition 8.36, it follows that

at t̄, ū, v̄, min

{
∂φ
∂ t

−U + τε
〈

∂φ
∂u

ū+
∂φ
∂v

v̄− μet̄L

〉
,

∂φ
∂v

+ μet̄C+,−∂φ
∂v

− μet̄C−
}
≥ 0,

at t̄ ′, ū′, v̄′, min

{
∂φ ′

∂ t ′
−V ′+ τε

〈
∂φ ′

∂u′
ū′+

∂φ ′

∂v′
v̄′ − et̄′L

〉
,

∂φ ′

∂v′
+ et̄′C+,−∂φ ′

∂v′
− et̄′C−

}
≤ 0.

The first inequality can be decomposed into three inequalities:

2
t̄ − t̄ ′

γ2 −U(t̄, ū, v̄)+ 2τε
〈

αū2 +
ū− ū′

β 2 ū+α v̄2 +
v̄− v̄′

β 2 v̄− μ
2

et̄L(v̄)

〉
≥ 0,

(8.73)

− μet̄C+ ≤ 2α v̄+ 2
v̄− v̄′

β 2 ≤−μet̄C−. (8.74)

The second inequality reads

min

{
2

t̄ − t̄ ′

γ2 −V ′(t̄ ′, ū′, v̄′)

+2τε
〈
−αū′2 +

ū− ū′

β 2 ū′ −α v̄′2 +
v̄− v̄′

β 2 v̄′ − 1
2

et̄′L(v̄′)
〉
,

−2α v̄′+ 2
v̄− v̄′

β 2 + et̄′C+, 2α v̄′ − 2
v̄− v̄′

β 2 − et̄′C−
}
≤ 0.

(8.75)

Now we want to use inequalities (8.74) to show that the last two terms of (8.75) can
be made positive, which will imply that the first one is negative. Let us therefore
write the following string of inequalities, which makes use of (8.74) between the
second and third lines, then of (8.71):
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−2α v̄′+ 2
v̄− v̄′

β 2 + et̄′C+

= 2α v̄+ 2
v̄− v̄′

β 2 + μet̄C+− 2α(v̄+ v̄′)+ (et̄′ − μet̄)C+

≥−2α(|v̄|+ |v̄′|)+ (et̄′ − et̄)C++(1− μ)et̄C+

≥−4r
√

α − eT rγC++(1− μ)C+.

Hence, choose

α2 = min

{

α1,
(1− μ)2C+2

64r2

}

and γ2 = min

{
γ1,e

−T 1− μ
2r

}
.

The choice of α ≤ α2, γ ≤ γ2 ensures that this term is positive, without destroying
the effects sought with the choice of α1 and γ1.

In a similar fashion, we have

2α v̄′ − 2
v̄− v̄′

β 2 − et̄′C−

=−2α v̄− 2
v̄− v̄′

β 2 − μet̄C−+ 2α(v̄+ v̄′)− (et̄′ − μet̄)C−

≥ −4r
√

α + eT rγC−− (1− μ)C−.

Again, define

α3 = min

{

α2,
(1− μ)2C−2

64r2

}

and γ3 = min

{
γ2,e

−T 1− μ
2r

}
,

and the choice α ≤ α3, γ ≤ γ3 ensures that both terms are positive.
Therefore, with these choices of parameters α,β ,γ , we have

2
t̄ − t̄ ′

γ2 −V ′(t̄ ′, ū′, v̄′)

+2τε
〈
−αū′2 +

ū− ū′

β 2 ū′ −α v̄′2 +
v̄− v̄′

β 2 v̄′ − 1
2

et̄′L(v̄′)
〉
≤ 0.

(8.76)

We now make the difference (8.76) – (8.73) and make use of τ� = max{τ+,−τ−}
and the fact that

max
τ∈[τ−,τ+]

τA− max
τ∈[τ−,τ+]

τB ≤ max
τ∈[τ−,τ+]

τ(A−B)≤ τ�|A−B|.
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This yields

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ 2τ�
[

α(ū2 + ū′2 + v̄2 + v̄′2)+
(ū− ū′)2 +(v̄− v̄′)2

β 2

+
1
2
(et̄′L(v̄′)− μet̄L(v̄))

]
.

Using (8.67), the first line on the right-hand side of the preceding equation is less
than 4τ∗ε for any (α,β ,γ)≤ (α1,β1,γ1), and a fortiori for (α,β ,γ)≤ (α3,β3,γ3).
Also,

et̄′L(v̄′)− μet̄L(v̄) = (et̄′ − et̄)L(v̄′)+ et̄(L(v̄′)−L(v̄))+ (1− μ)L(v̄)

≤ eT[rγb+ |L(v̄′)−L(v̄)|+(1− μ)b].

According to our choice [see (8.65)] of μ , the last term on the right-hand side of
the preceding equation is not larger than ε . Let β4 be small enough so that, for any
|v̄′ − v̄| ≤ rβ4, |L(v̄′)−L(v̄)| ≤ ε , which is possible since L is uniformly continuous.
Choosing β ≤ β4 and γ ≤ γ4 = min{γ3,ε/(eTrb)}, the first two terms are also not
larger than ε . Therefore, with this choice of (α,β ,γ), we have

0 <U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ 7τ�ε.

It remains to use inequality (8.66) to obtain M ≤ (7τ�+ 1)ε . This is the inequality
M ≤ Kε predicted in Sect. 8.3.1.3.

Case t̄ = T or t̄ ′ = T

If t̄ = T , then it follows that U(t̄, ū, v̄) = μeTN(ū, v̄). It also holds that V ′(t̄, ū, v̄) =
eTN(ū, v̄) and |V ′(t̄ ′, ū′, v̄′)−V ′(t̄, ū, v̄)| ≤m(rβ ,rγ)≤ ε . (This last inequality holds
as soon as β ≤ β1 and γ ≤ γ1.) Recall that ‖N‖∞ = c and (8.65). Hence,

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ (1− μ)eTc+m(rβ ,rγ)≤ 2ε.

If t̄ ′ = T , then V ′(t̄ ′, ū′, v̄′) = eTN(ū′, v̄′). Choose β5 < β4 and γ5 ≤ γ4 such that
for |u− u′| ≤ rβ5, |v − v′| ≤ rβ5, and |t − t ′| ≤ rγ5, it results that |U(t,u,v)−
U(t ′,u′,v′)| ≤ ε . (This is possible since, like V ′, U is assumed to be uniformly
continuous.) It results that

U(t̄, ū, v̄)−V ′(t̄ ′, ū′, v̄′)≤ ε +(μ − 1)eTN(ū′, v̄′)≤ ε +(1− μ)eTc ≤ 2ε.

Finally, the case where t̄ = t̄ ′ = T is taken care of by any of the preceding two
cases.
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We may now set α� = α3, β � = β5, and γ� = γ5, and the two lemmas are proved,
as are Lemma 8.44 and the theorem.

8.3.2 Verification of Representation Formula

In this subsection, we will prove the following fact.

Theorem 8.47. The value function defined by (8.13) is the VS of the DQVI (8.7).

The rest of this subsection is devoted to that verification. Therefore,W always stands
for its representation (8.13). Again, we will be dealing with the case t+ < t−. The
other case is very similar.

There are three ways in which W may have a discontinuous gradient: at v =
v̌, because qε is discontinuous across this manifold, or at t = tε , because q̇ε

is discontinuous there, or, finally, along manifolds where V̌ has a discontinuous
gradient. We will investigate first the regular regions, then these three cases.

Recall that we seek an OVS of (8.61). We use the notation

H(t,u,v;DW ;τ) =
∂W
∂ t

+ τ
[

∂W
∂u

u+

(
∂W
∂v

− 1

)
v

]

and
H̄(t,u,v;DW ) = max

τ∈[τ−,τ+]
H(t,u,v;DW ).

8.3.2.1 Regular Regions

In regions where the function W is C1, it suffices to check that it satisfies the DQVI.

Case t < t+

If t < t+, then we are in the “focal” domain. Thus both qε =Cε . It suffices to check
that H̄(t,u,v;DW )≥ 0. Here, ε = sign(v̌− v):

H̄(t,u,v;DW ) = w̌t +Cε v̌t + max
τ∈[τ−,τ+]

τ[w̌uu+Cεw̌uu− (Cε + 1)v].

Again, we notice, using (8.48) for the third equality, that

H(t,u,v;DW ;τε ) = w̌t +Cε v̌t + τε [w̌uu+Cε v̌uu− (Cε + 1)v]

= QεV̌t + τε [Qε(V̌uu−S V̌ )+ (1+Cε)(v̌− v)]

= τε (1+Cε)(v̌− v)≥ 0.
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According to Proposition 8.31, QεV̌t ≤ 0, hence

τε [w̌uu+Cε v̌uu− (Cε + 1)v]≥ 0,

and therefore τ = τε maximizes the Hamiltonian.

Case t > t−

If t > t−, then both |qε | < |Cε |. The last two terms in the DQVI are both positive.
We must check that H̄(t,u,v;DW ) = 0. Notice also in that case

qε
t =−τε(1+ qε).

Inserting this into Wt directly yields

H̄(t,u,v;DW ) = QεV̌t − τε(1+ qε)(v̌− v)+ max
τ∈[τ−,τ+]

τ[QεV̌uu− (1+ qε)v].

We notice then that

H(t,u,v;DW ;τε) = QεV̌t + τε Qε(V̌uu−S V̌ ) = 0.

According to Proposition 8.23, QεV̌t ≤ 0. A fortiori, QεV̌t − τε(1+ qε)(v̌− v)≤ 0.
Thus, it follows from H(t,u,v;DW ;τε ) = 0 that τε maximizes the Hamiltonian
since τε [QεV̌uu− (1+ qε)v]≥ 0.

Case t+ < t < t−

In the region of the equivocal manifold, ∂W/∂v+C+ ≥ 0 and ∂W/∂v+C− = 0.
Thus we must verify that H̄(t,u,v;DW ) ≥ 0. Using Proposition 8.27, if v < v̌, i.e.,
ε = +, then the same argument as we just used yields H̄(t,u,v;DW ) = 0, and if
v > v̌, then the same argument as for the focal region holds.

8.3.2.2 Manifold v = v̌(t,u)

On the manifold v = v̌(t,u), W has a local minimum, as Fig. 8.5 shows. All
subdifferentials are obtained by replacing qε in (8.13) by λ q− +(1− λ )q+, λ ∈
[0,1]. We have seen that, using ε = sign(v̌− v),

H̄(t,u,v;DW ) =

{
0 if t > tε ,
τε(1+Cε)(v̌− v) if t < tε .
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Hence, at v = v̌, H̄ = 0. Thus, for any fixed τ , H(t,u,v;τ;DW )≤ 0. For fixed τ , H
is affine in q. Therefore, replacing qε by λ q−+(1−λ )q+ replaces H by a convex
combination of two Hamiltonians, each nonpositive for any fixed τ ∈ [τ−,τ+]. Thus
this convex combination is itself nonpositive, and therefore so is its maximum in τ .
This is the viscosity condition.

8.3.2.3 Manifold t = tε

Since V̌ and W are continuous, along a manifold at t = constant, only their partial
derivative in t may be discontinuous. For V̌ we have already stressed that this
fact, together with the fact that it satisfies everywhere (8.48), implies that QεV̌t is
continuous. Concerning W , we have

Wt = QεV̌t + qε
t (v̌− v).

The time derivative of qε is discontinuous

• At t = t− if ε =−, i.e., if v̌− v < 0;
• At t = t+ if ε =+, i.e., if v̌− v > 0,

jumping from 0 to −τε(1 + qε) as t increases across tε . Thus Wt jumps from
QεV̌t to QεV̌t − (1+ qε)τε 〈v̌− v〉. The jump in slope is negative. Hence this is a
local maximum, a place where the superdifferential is nonvoid. All elements of the
superdifferential are obtained as

∂+W =

⎧
⎨

⎩

⎛

⎝
QεV̌t + δ

Wu

−qε

⎞

⎠

∣
∣
∣∣
∣
∣
− (1+ qε)τε 〈v̌− v〉 ≤ δ ≤ 0

⎫
⎬

⎭
.

We have also seen that if we set δ = −(1 + qε)τε 〈v̌− v〉, we obtain H̄ = 0.
Hence for any larger δ , we obtain H̄ ≥ 0, which is the viscosity condition for a
superdifferential.

8.3.2.4 Discontinuities of DV̌

Lemma 8.48. Assume that on a smooth manifold u = ũ(t) of (t,u) space, V̌ is
continuous but V̌t and V̌u have discontinuities δV̌t and δV̌u, respectively. Then,
necessarily, there is an ε ∈ {−,+} such that ũ′(t) = τε ũ(t), δV̌t = −τεV̌u, and
Qε δV̌t = Qε δV̌u = 0.

Proof. The continuity of V̌ implies that the discontinuity of the gradients of v̌ and
w̌ are orthogonal to the discontinuity manifold, i.e.,

δV̌t + ũ′δV̌u = 0.
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Also, V̌ satisfies (8.12) in both half-spaces on both sides of the manifold. If we take
the difference, it holds that

δV̌t +T δV̌uu= 0.

Combining the preceding two equations, we obtain that

(
ũ′

u
I −T

)
δV̌uu= 0.

This is possible with a nonzero δV̌u only if ũ′/u is an eigenvalue of T , i.e., either
τ− or τ+, and δV̌u must be an eigenvector, i.e., a multiple of (−1 qε ), hence
orthogonal to Qε , as well as δV̌t =−ũ′δV̌u. 
�
As a corollary, we have the following proposition.

Proposition 8.49. The gradient of W is continuous across discontinuities of DV̌ .

Proof. It follows from the representation formula that

∂W
∂ t

= Qε
t V̌ +QεV̌t − qε

t v,
∂W
∂u

= QεV̌u,
∂W
∂v

=−qε .

Hence V̌t and V̌u appear only premultiplied by Qε , causing no discontinuity.

8.4 Discrete Trading and Fast Algorithm

We now tackle the discrete-time minimax problem described in Sect. 7.2.5, with
dynamics (7.7), (7.13), and its sequence of Value functions {W h

k }k∈K, with Kh = T .
This will provide us with our various algorithms to compute the premium (7.22).

8.4.1 Dynamic Programming and Algorithms

8.4.1.1 Fundamental Property

As we have stressed, the sequence of Value functions {W h
k }k is the sampling at

instants tk of the Value function of a game whose underlying dynamics are the same
as those of the continuous-time game, with the same disturbances τ(·) ∈ Ω , but
where the minimizer is constrained to a set Φh of admissible strategies that is a
strict subset of the set Φ of continuous-time strategies.

As a consequence, we have the following fundamental property.
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Proposition 8.50. For any time step h, we have

∀k ∈N, ∀(u,v) ∈R+×R, W h
k (u,v)≥W (kh,u,v).

8.4.1.2 Isaacs Equation and Standard Algorithm

We write Isaacs’ main equation for the game at hand:

∀(u,v) ∈ R+×R, W h
K(u,v) = N(u,v), (8.77)

∀k ∈ [0,K − 1], ∀(u,v) ∈R+×R,

W h
k (u,v) = inf

ξ∈R
sup

τ∈[τ−h ,τ+h ]

{
W h

k+1 ((1+ τ)u,(1+ τ)(v+ ξ ))− τ(v+ ξ )+Cε〈ξ 〉
}
.

It is useful to split the last recursion into two steps, according to the following fact.

Proposition 8.51.

1. The preceding recurrence relation can be written as follows:

W h
k+ 1

2
(u,v) = max

τ∈{τ−h ,τ+h }

{
W h

k ((1+ τ)u,(1+ τ)v)− τv
}
, (8.78)

W h
k (u,v) = min

ξ∈R

{
W h

k+ 1
2
(u,v+ ξ )+Cε〈ξ 〉

}
. (8.79)

2. The functions W h
k and W h

k+ 1
2

are convex for all k.

3. Let v̌ε
k be the unique value of v for which −Cε̄ ∈ ∂−W h

k+ 1
2
(u, ·); it holds that

W h
k (u,v) =

⎧
⎪⎪⎨

⎪⎪⎩

W h
k+ 1

2
(u, v̌−k )+C+(v̌−k − v) if v ≤ v̌−k ,

W h
k+ 1

2
(u,v) if v̌−k ≤ v ≤ v̌+k ,

W h
k+ 1

2
(u, v̌+k )+C−(v̌+k − v) if v̌+k ≤ v,

(8.80)

as depicted graphically in Fig. 8.7.

Proof. Notice that WK is convex. As a recurrence hypothesis, assume that Wk+1 is
convex.

1. Notice that in (8.78), we have written τ ∈ {τ−h ,τ+h }, not τ ∈ [τ−h ,τ+h ]. If in (8.78)
and (8.79) we replace maxτ∈{τ−h ,τ+h } by supτ∈[τ−h ,τ+h ] and minξ by infξ , then the
equivalence with Isaacs’ equation is by inspection. Since Wk+1 is convex, τ �→
Wk+1((1+ τ)u,(1+ τ)v)− τv is convex, hence continuous. Therefore, the max
in τ is reached at either τ− or τ+.
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v

w
Wh
k+ 1

2

Wh
k

v̌−
k v̌+

k

1

−C−1
−C+

Fig. 8.7 The inf-convolution

2. As supremum of a family of convex functions Wk+ 1
2

is convex. We rewrite

operation (8.79) as follows. First, let ξ =−ξ ′. Thus

W h
k (u,v) = min

ξ ′∈R

{
W h

k+ 1
2

(
u,v− ξ ′)+Cε〈−ξ ′〉

}
. (8.81)

Let

Γ (η ,ξ ) =
{
+∞ if η �= 0,
Cε〈−ξ 〉 if η = 0.

This is a convex extended function. We may reinterpret (8.81) as an inf-
convolution:

W h
k (u,v) = inf

(η,ξ )
{W h

k+ 1
2
(u−η ,v− ξ )+Γ (η ,ξ )}.

The inf-convolute of two convex extended functions is convex. Hence W h
k is

convex. Finally, the particular form of this inf-convolute is best explained by
Fig. 8.8, where we see that the minimum value for W h

k+ 1
2
(u,v− ξ ′)−C−ξ ′ is

obtained when v− ξ ′ = v̌+k . In practice, because of the shape of Wk+1, we will
have v̌−k = v̌+k . 
�

Definition 8.52. The algorithm (8.77), (8.78), (8.80) is called the standard algo-
rithm.

8.4.1.3 Representation Formula and Fast Algorithm

We make use of the extension (8.18) of the notations used in the continuous
trading problem. This subsubsection is devoted to proving Theorem 8.8 stated in
Sect. 8.1.3.4.
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Fig. 8.8 Computing the inf-convolution

Notice first that the recursion (8.17) yields exactly qε
k = qε(kh). We adopt as a

recurrence hypothesis that Wk+1 satisfies the representation formula (8.20):

W h
k+1(u,v) = w̌h

k+1(u)+ qε
k+1

〈
v̌h

k (u)− v)
〉
.

We observe that this is true at the terminal time k+ 1 = K.
Consider the step (8.78). For each u, we seek the maximum of two functions,

one for τ = τ− and one for τ = τ+. Each is piecewise affine in v, and its graph as
a function of v can be represented as a wedge with one branch sloping downward
(Fig. 8.9). These can be written as

W−
k+ 1

2
:= w̌−

k+ 1
2
+ qε

k+ 1
2

〈
v̌−

k+ 1
2
− v

〉
, W+

k+ 1
2

:= w̌+
k+ 1

2
+ qε

k+ 1
2

〈
v̌+

k+ 1
2
− v

〉
,

where, as a simple calculation shows,

v̌ε
k+ 1

2
= v̌h

k+1((1+τε )u)/(1+τε),

w̌ε
k+ 1

2
= w̌h

k+1((1+ τε)u)− τε v̌h
k+1((1+ τε)u)/(1+τε).

As a result, v̌k is obtained as the abscissa of the intersection of the two wedges in
this graph. (In the figure, v̌ε stands for v̌ε

k+ 1
2

and v̌k for v̌h
k .)
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Fig. 8.9 Four possible configurations. Here v̌ε stands for v̌ε
k+ 1

2
and v̌k for v̌h

k

Now we claim the following fact.

Proposition 8.53. We have for all (k,u)

v̌−
k+ 1

2
≤ v̌h

k (u)≤ v̌+
k+ 1

2
.

Proof. Remember that W h
k (u,v) is the worth of the cheapest hedging portfolio from

the state (u,v) at time tk. Assume that the left-hand inequality does not hold. Then
a decrease in the price of the underlying stock (by a factor 1+ τ−) would result
in the cheapest hedging portfolio having a larger content (in number of shares) in
this stock than the previous one, a contradiction for a call (and for any option with
an increasing payment function), and similarly, mutatis mutandis, for the right-hand
inequality. 
�
As a consequence, the point (v̌h

k , w̌
h
k ) is the intersection of the two upward sloping

parts, ending up in formula (8.8).
This makes the step (8.78) explicit. Then the step (8.80) directly leads to the

correct representation formula (8.20) for W h
k . 
�

Several remarks are in order, first concerning the algorithm itself.
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Remark 8.54. • While the standard algorithm is already much faster than a “naive”
dynamic programming algorithm implementing Isaacs’ equation, this one is two
orders of magnitude faster, since the functions to be computed, v̌h

k and w̌h
k , are

functions of one scalar variable instead of two. If the range of possible v is
discretized, typically, with 200 points, this is about 100 times faster. As a result,
with a discretization of u and v in several hundred points, the computer time on
a modern PC is negligible.

• A first-order expansion lets one verify that formula (8.19) is a finite difference
discretization of the fundamental PDE (8.12). One could undertake a direct
analysis of its convergence along the lines of the numerical analysis of a finite
difference scheme. The direct argument that W h →W saves us that analysis.

Then, some additional important remarks concerning its use:

Remark 8.55.

• This provides a sure – as long as hypothesis (7.3) is not violated, but see Chap. 10
– discrete-time hedging strategy, an impossibility in the Black–Scholes model.

• Because of the wedge shape of the functionsW h
k , we will have v̌+k = v̌−k = v̌h

k (uk).
It follows from our analysis of the minimization step in ξ that the optimal ξ is
such that vk + ξ �

k = v̌h
k (uk). Hence, the sequence {v̌h

k (uk)}k∈N has the status of
the sequence of optimal portfolio compositions, which the trader should strive to
achieve at each step in his trading.

• This defines a causal strategy: the optimal ξk does not depend on τk.
• For realistic data on a classic stock market, one finds that T − t+ and T − t− are

both less than 1 day. Hence, except perhaps for modern high-frequency trading,
the algorithm simplifies even further, with qε

k =Cε . Other types of markets, with
large transaction costs and no closing costs, could require the use of variable qε

k
near exercise time. Notice that for t > tM , no trading should occur.

• A consequence of the convergence theorem of the next subsection is that this is
also an algorithm by which to approach the continuous trading premium.

8.4.2 Convergence

8.4.2.1 Discretized Games

We already know (Proposition 8.10) that the original game G and the game trans-
formed by the Joshua transformation J have the same Value. It will nevertheless
be convenient to call V the Value of the game J . It is independent of the artificial
time but has t as one of its arguments. Proposition 8.10 therefore translates into

∀t ∈ [0,T ], ∀(u,v) ∈ R+×R, V (t,u,v) =W (t,u,v). (8.82)

Let us furthermore consider the game J ′ derived from the game J by forbidding
the use of the control ξc. We have the following fact.
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Proposition 8.56. The games J and J ′ have the same value.

Proof. This is a direct consequence of the uniqueness of the VS of the DQVI. As a
matter of fact, ξ does not appear in the DQVI, so that it is also the Isaacs equation
of the game J ′. 
�

We introduce two other games. Let G h be the discrete-time game of the previous
subsection with a discretization step h and a Value {W h

k }k and, similarly, let J h

be the discrete (artificial)-time game derived from J ′ in the same fashion, with
Value V h. Finally, let � be a (small) positive number, define G h,�, with Value {Wh,�

k }k,
as the game G h but where a further restriction is applied, that ξk itself is discretized
in ξk ∈ �Z. We claim that the following proposition holds.

Proposition 8.57.

∀k ≤ K,k ∈ N, ∀(u,v) ∈ R+×R, W (kh,u,v)≤W h
k (u,v)≤W h,�

k (u,v). (8.83)

Proof. The left inequality is just Proposition 8.50. In going from G h to G h,l , we
further constrain the minimizer’s controls, hence the right-hand inequality. 
�

The dynamics of the game J h are, using the same conventions tk = t(kh), uk =
u(kh), vk = v(kh), ιk = ι(kh), and ῑk = 1−|ιk| as previously,

tk+1 = tk + ῑkh,

uk+1 = uk + ῑkτkuk,

vk+1 = vk + ῑkτkvk + ιkh,

with ιk ∈ B = {−1,0,1}, τk ∈ [τ−h ,τ+h ] as given by (7.6), and the payoff defined by
tK = T and

Jh(0,v0,u0;{τk},{ιk}) = N(uK,vK)+
K−1

∑
k=0

(−ῑkτkvk + ιkhCιk).

Let us write Isaacs’ equation for this game: ∀(t,u,v)
V h(t,u,v) = min

ι∈B
max

τ∈[τ−h ,τ+h ]
{V h(t + ῑh,u+ ῑτu,v+ ῑτv+ ιh)− ῑ τv+ ιhCι}. (8.84)

As in the original Joshua transformation, splitting the minι into its three possible
cases, we obtain

∀(t,u,v), V h(t,u,v) = min

{

max
τ∈[τ−h ,τ+h ]

[
V h(t + h,(1+ τ)u,(1+ τ)v)− τv

]
,

V h(t,u,v− h)−C−h , V h(t,u,v+ h)+C+h
}
,

∀(u,v), V h(Kh,u,v) = N(u,v).
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The critical remark is that, as could be expected given the identity of the games G
and J , and according to our analysis of the inf-convolution in Proposition 8.51,
this equation would be satisfied by W h if the possible values of ξ were quantified
with ξ ∈ hZ. Hence the following fact.

Proposition 8.58. ∀k ≤ K, k ∈ N, ∀(u,v) ∈R+×R, V h(kh,u,v) =W h,h
k (u,v).

In the next subsubsection, we prove the following theorem.

Theorem 8.59. Let h = 2−dT , d ∈N. As d → ∞, V h(t,u,v) converges uniformly on
any compact toward V (t,u,v).

The convergence theorem, Theorem 8.7, is for discretization time points t = kh,
k ∈ N, a corollary of this theorem, together with (8.82) and (8.83). For intermediate
points, the definition of the interpolation W h(t,u,v) that we have chosen is such that
the proof is the same because all the foregoing arguments apply at any fixed time
where an impulse is permitted.

8.4.2.2 Proof of Theorem 8.59

We first claim that the following proposition is true.

Proposition 8.60. As d → ∞, V h decreases monotonously and converges uniformly
on every compact toward a function V̂ .

Proof. As the subdivision of the interval [0,T ] is refined, the restrictions on
the admissible controls ξ (·) are relaxed: if d′ > d, then any minimizing control
admissible in the discrete-time problem with h = 2−dT is also admissible in the
problem with h = 2−d′T , playing ξ = 0 at time instants that are not multiples of
2−dT . Hence, V h decreases monotonously as d increases. And since it is bounded
below by 0, it converges monotonously toward some function V̂ . Moreover, V h

coincides with W h,h, which is easily seen to be continuous. Hence, by Dini’s
theorem, its limit is uniform on any compact. 
�

Now we only need to prove the following fact.

Proposition 8.61. The limit function V̂ is a VS of the DQVI (8.7).

Then the theorem follows from the uniqueness of this solution (Theorem 8.42).

Proof. This proof is, in its essence, due to [51]. For the sake of readability of the
proof, we introduce some short-hand notation:

τh =
τ
h
∈
[

τ−h
h
,

τ+h
h

]
.
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We recall that from formula (7.6) it follows that τε
h /h → τε as h → 0. Let also

y =

⎛

⎝
t
u

v

⎞

⎠ , g(y,τ, ι) =

⎛

⎝
ῑ

ῑτhu

ῑτhv+ ι

⎞

⎠ , L(y,τ, ι) =−ῑτhv+ ιCι

(meaning C− for C−1 and C+ for C+1). With this notation, Isaacs’ Eq. (8.84) also
reads

min
ι∈B

max
τh∈
[

τ−h
h ,

τ+h
h

][V
h(y+ hg(y, ι,τh))−V h(y)+ hL(y, ι,τh)] = 0. (8.85)

Let Ψ : R3 →R be a C1 function, y� ∈ N a point where Δ := V̂ −Ψ has a strict
local maximum, and N ⊂ R

3 a compact neighborhood of y� within which y� is a
strict maximum. Let also Δ h := V h −Ψ , and let yh ∈ N be a point where Δ h has a
maximum over N . (All the functions involved are continuous.)

We need the following lemma, which can be found in [51].1

Lemma 8.62. Let N be a compact neighborhood of Rn and {Δ h} a sequence of
continuous functions from N to R converging uniformly over N to a continuous
function Δ as h converges to 0. Let Δ have a strict minimum over N [respectively
a strict maximum] at x�. Let xh be a minimum of Δ h over N [respectively a
maximum]. Then xh → x� as h → 0.

Therefore, yh → y� as h → 0. Hence, for h small enough, yh +hg(yh, ι,τh) ∈ N .
Using (8.85) at yh and the fact that the operator minmax is nondecreasing, it follows
that

min
ι∈B

max
τh∈
[

τ−h
h ,

τ+h
h

][Ψ(y+ hg(y, ι,τh))−Ψ(y)+ hL(y, ι,τh)]≥ 0.

The function Ψ was chosen of class C1. Using the finite increment theorem, there
exists a point ỹ on the segment [yh,yh+hg(yh, ι,τh)] such that this can also be written

min
ι∈B

max
τh∈
[

τ−h
h ,

τ+h
h

]h

[
dΨ
dy

(ỹ, ι,τh)g(y
h, ι,τh)+L(y, ι,τh)

]
≥ 0.

Divide the right-hand side above by h (which is positive), and take the limit as h→ 0.
It follows that

min
ι∈B

max
τ∈[τ−,τ+]

[
dΨ
dy

(y�, ι,τ)g(y�, ι,τ)+L(y�, ι,τ)
]
≥ 0.

1It is a consequence of Lemma 9.22, proved in the next chapter.
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This shows that V̂ is an opposite viscosity subsolution of the DQVI (8.61). Clearly,
the same analysis starting with a local minimum of V̂ −Ψ will yield the other
inequality, so that V̂ is indeed an OVS of the DQVI (8.61), i.e., a VS of the DQVI
(8.7), this being unique according to Theorem 8.42, V̂ =W . 
�



Chapter 9
Digital Options

9.1 Introduction and Main Results

9.1.1 Digital Options

9.1.1.1 Definition

A “cash-or-nothing,” or digital, option is a contract by which a seller agrees to pay
a buyer a fixed amount D if, at a given exercise time T , the market price S(T ) of
a share of the underlying stock is higher – resp. lower – than an agreed strike K ,
leading to a digital call – resp. put.

It should be noted that one could, without loss of generality, let D = 1 and, for an
option with a different D, assume that D options have been traded. Yet, we retain D
in our development to emphasize that it is not dimensionless but a currency value.

As a consequence, the payment function M(s) can be expressed with the help of
the Heaviside function

ϒ (s) =

{
0 if s < 0,
1 if s ≥ 0,

as

M(s) =

{
Dϒ (s−K ) for a digital call,

Dϒ (K − s) for a digital put.
(9.1)

In our definition, we have ruled out payments “in kind.” Such “one-stock-or-
nothing” options exist. We will not consider them here. And, as in the vanilla case,
we will concentrate on call options. The case of put options is very similar and
symmetrical.

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 9,
© Springer Science+Business Media New York 2013
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9.1.1.2 Terminal Payment

At exercise time, the seller must close out his position and pay M(S(T )) to the buyer.
Hence his total terminal cost is N(u(T ),v(T )) with

N(u,v) =

{
M(u)− c−v if v > 0,
M(u)− c+v if v < 0.

(9.2)

We can write this as in (8.4)

N(u,v) = w̌(T,u)+ cε〈v̌(T,u)− v〉 , (9.3)

with

v̌(T,u) = 0, w̌(T,u) = M(u), (9.4)

and M(u) still given by (9.1).

Proposition 9.1. The function v �→ N(u,v) is convex for all u ∈ R+.

Note, however, that N is no longer convex in u, or even continuous.

9.1.2 Main Results

These are the main results for digital options. They are on several counts less
complete and more complicated (less elegant?) than for vanilla options. To avoid
complicated statements, we limit ourselves here to call options. Put options are very
similar, the symmetry with call options leading to a reversal of the sign of v.

9.1.2.1 DQVI

We consider the same differential quasivariational inequality (DQVI) (8.7) as
previously:

∀(t,u,v) ∈ [0,T )×R+×R,

max

{
−∂W

∂ t
− τε

〈
∂W
∂u

u+

(
∂W
∂v

− 1

)
v

〉
,−
(

∂W
∂v

+C+

)
,

∂W
∂v

+C−
}
= 0,

∀(u,v) ∈ R+×R, W (T,u,v) = N(u,v),

but where the function N is now given equivalently by (9.2) or its representation
(9.3) and (9.4).

All of Sect. 8.1.4 applies to the current problem. In particular, the same proof via
the Joshua transformation yields the following theorem.
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Theorem 9.2. The Value function W is a (discontinuous) viscosity solution (VS)
(see [22]) of the DQVI.

Its uniqueness is not proved, however, and we will need a conjecture.

Conjecture 9.1. The discontinuous VS (in the sense of Barles [22]) of the DQVI is
unique.

For digital options, we can only state the following theorem.

Theorem 9.4. For all (t,u) ∈ [0,T ]×R+, the function v �→W (t,u,v) is convex.

9.1.2.2 Representation Theorem

We introduce two special u-trajectories:

u�(t) := K e−τ+(T−t),

ur(t) := K e−τ−(T−t),

and as previously we let the following definition hold.

Definition 9.5. The region of interest Λ of the (t,u) plane is

Λ = {(t,u) ∈ [0,T ]×R+ | u ∈ [u�(t),ur(t)]}.

Next, we define two positive values u+ < u−,

uε =
(1+ c−)K

1+Cε , ε ∈ {−,+}, (9.5)

and two time instants t− and t+, the latter being different from its counterpart in the
vanilla case, defined by

T − tε =
1
τε ln

1+Cε

1+ c−
, ε ∈ {−,+}, (9.6)

so that u�(t+) = u+ and ur(t−) = u−.
We now define q− – the same as for vanilla options – and q+, different from, and

more complicated than, its counterpart:

q−(t) = max{(1+ c−)eτ−(T−t)− 1,C−}, (9.7)

or, equivalently,

q−(t) =
{

C− if t ≤ t−,
(1+ c−)eτ−(T−t)− 1 if t ≥ t−

(9.8)
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t

ln(0, T)u+

t+

u−

t−

q+= eτ+(T−t)−1

q+ = C+ q+=(1+c−) u −1

q+=(1+c−)eτ−(T−t)−1

q+ = C−

Fig. 9.1 Five regions defining q+

Concerning q+, we first set aside a case we will hardly consider: If v < 0, then we
have as in (8.8)

q+ = min{(1+ c+)eτ+(T−t)− 1,C+}.
If v > 0, then we set

q+(t,u) =

⎧
⎪⎨

⎪⎩

min{(1+ c+)eτ+(T−t)− 1,C+} if u≤ u�(t),

min{max{(1+ c−)K
u − 1,C−},C+} if (t,u) ∈ Λ ,

max{(1+ c−)eτ−(T−t)− 1,C−} if u≥ u�(t),

(9.9)

or, equivalently,

q+(t,u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C+ if t ≤ t+ and u≤ u+,

(1+ c−)eτ+(T−t)− 1 if t ≥ t+ and u≤ u�(t),

(1+ c−)K
u − 1 if (t,u) ∈ Λ ∩{[0,T ]× [u+,u−]},

C− if t ≤ t− and u≥ u−,

(1+ c−)eτ−(T−t)− 1 if t ≥ t− and u≥ ur(t).

(9.10)

The five regions thus defined are depicted in Fig. 9.1.

Remark 9.6.

1. q+ thus defined is continuous.
2. For u≥ min{ur(t), u−} we have q+ = q−.
3. We will see that q+ is not really needed outside the region Λ . We defined it for

convenience in the subsequent analysis.
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Finally, we recall the fundamental equation (8.12), a pair of linear PDEs for V̌ t =
( v̌(t,u) w̌(t,u) ) initialized as in (9.4), using the notation (8.10):

∂V̌
∂ t

+T

(
∂V̌
∂u

u−S V̌

)
= 0, V̌ (T,u) =

(
0

M(u)

)
. (9.11)

Theorem 9.7. The Value function is given by the formula similar to (8.13):

W (t,u,v) = w̌(t,u)+ qε(t,u)〈v̌(t,u)− v〉 , (9.12)

with:

1. For v < 0: q+ given by (8.8), v̌ = 0, w̌(t,u) = M(eτ+(T−t)u) [which is a solution
of (9.11)];

2. For v ≥ 0: q− given by (8.8), q+ given by (9.9), and v̌ and w̌ are given

a. In the region where q− �= q+ (i.e., u < min{ur(t), u−}) by the fundamental
equation (9.11) with the initial conditions (9.4);

b. In the region where q− = q+, by v̌(t,u) = 0, w̌(t,u) = D.

9.1.2.3 Discrete Trading and Convergence Theorem

The discrete trading problem considered here is as in the vanilla case, i.e., keeping
the market model unchanged, but restricting the seller to impulse trading at given
time instants tk = kh, h = T/K a given step size, K ∈ N. We let W h

k (u,v) be the
Value function of the discrete-time problem (Sect. 7.2.5).

Theorem 9.8. The Value function is given by Isaacs’ Eq. (8.14) or, equivalently,
by the standard algorithm: ∀(u,v) ∈ R+×R, ∀k ∈K,

W h
k+ 1

2
(u,v) = max

τ∈[τ−h ,τ+h ]

[
W h

k+1 ((1+ τ)u,(1+ τ)v)− τv
]
,

W h
k (u,v) = min

ξ

[
W h

k+ 1
2
(u,v+ ξ )+Cεξ

]
,

W h
K(u,v) = N(u,v).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9.13)

where N is given by (9.2)

(Notice that, as compared with the vanilla case (8.15), we are obliged, in the maxτ
operation, to let τ range over the interval [τ−h ,τ+h ] as opposed to its end points
{τ−,τ+}.)

The next two theorems are weaker than their vanilla counterpart due to the loss
of convexity in u.
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Theorem 9.9. The functions v �→W h
k (u,v) are convex for all k ∈K and u ∈ R+.

We use the same interpolation technique as in the vanilla case, and we get the
following theorem.

Theorem 9.10. If Conjecture 9.1 is correct, as the step size is subdivided and goes
to zero (e.g., h = T/2d, d → ∞ ∈ N), for all t ∈ [0,T ], then the function W h(t,u,v)
decreases and converges pointwise to the function W (t,u,v).

9.1.2.4 Fast Algorithm

To state the fast algorithm, we need a second conjecture.

Conjecture 9.2. In the domain (t,u,v) ∈ [0,T ]×R+ ×R+, the function W h
k+ 1

2
of

formula (9.13) is piecewise affine in v with two branches.

This conjecture is well substantiated by numerical computations using the standard
algorithm.

Theorem 9.11. If Conjectures 9.1 and 9.2 hold, then the Value function W h
k (u,v)

is given by the same representation formula (8.20),

W h
k (u,v) = w̌h

k (u)+ qε
k(u)

〈
v̌h

k (u)− v
〉
,

as in the vanilla case, with, for q−, the same algorithm

q−K = c−, q−
k+ 1

2
= (1+ τ−h )q−k+1 + τ−h , q−k = max

{
q−

k+ 1
2
,C−

}

and

1. Outside of the region Λ , v̌h
k (u) = 0, w̌h

k (u) = M(u),
2. In the region Λ ,

∀(k,u) | (kh,u) ∈ Λ , q+k (u) = min

{
(1+ c−)

K

u
− 1,C+

}
,

and v̌h
k (u) and w̌h

k (u) given by the same recursion (8.19)

V̌ h
k (u) =

1

q+
k+ 1

2
− q−

k+ 1
2

(
1 −1

−q−
k+ 1

2
q+

k+ 1
2

)⎛

⎝
Q+

k+1V̌ h
k+1

(
(1+ τ+h )u

)

Q−
k+1V̌ h

k+1

(
(1+ τ−h )u

)

⎞

⎠ ,

v̌h
K(u) = v̌(T,u), w̌h

K(u) = w̌(T,u)

as in the vanilla case.
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9.2 Geometric Approach

The principle of the geometric investigation is as in the vanilla case (Sect. 8.2.1).
In particular, Propositions 8.13, 8.14, and 8.15 still hold. Also, the equations of the
characteristics (8.30) are unchanged, as is the conclusion (8.29).

9.2.1 Trivial Regions

We first set aside some elementary cases.

9.2.1.1 Regular Terminal Conditions

If u(T ) �= K , then the terminal payoff N is differentiable at (u(T ),v(T )), giving
the terminal conditions for the adjoint equations (with the same sign conventions as
in Sect. 8.2.2.1):

(n p q r ) = (n 0 cε 1 ), ε = sign(−v),

and using

H� = n+ min
τ∈[τ−,τ+]

[pu+(q+ 1)v]+max
ξ

(q−Cε)〈ξ 〉= 0,

n = τε(1+ cε)〈−v〉.
We will see later that for u(T ) = K , necessarily p(T )≤ 0.

9.2.1.2 Negative v, Sheets {τ+}

If v(T ) < 0, then it follows that σ(T ) = p(T )u(T ) − (1 + cε)〈−v(T )〉 < 0.
The optimal τ is τ� = τ+. Also, ξ �(T ) = 0. Integrating backward the characteristic
system with these controls, σ is constant, and we obtain a sheet {τ+} similar, in the
domain v < 0, to that of the vanilla case, but with the new (discontinuous) N:

w(t) = M(e−τ+(T−t)u)− q(t)v(t),

with

q(t) = [(1+ c+)eτ+(T−t)− 1]

(the q+ of the vanilla case), which is smaller than C+ only when

T − t ≤ 1
τ+

ln
1+C+

1+ c+
.
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For smaller t, the sheet {τ+} is replaced by a positive jump manifold of the form
w = M(eτ+(T−t)u)−C+v, i.e., the same formula as if we set, as in the vanilla case,

q(t) = min{(1+ c+)eτ+(T−t)− 1,C+}=: q+V . (9.14)

These are actually two disjoint sheets because of the discontinuity along the
trajectory u�(t).

This yields formula (9.12) with v̌(t,u) = 0, w̌(t,u) = M(exp[τ+(T − t)]u), and
q given by (9.14), identical to q+ in (8.8), proving the corresponding statement of
the representation Theorem 9.7.

Indeed, there is no reason for the seller to have a short portfolio since the payment
is increasing in u. If he does have one, he should close it out immediately, going back
to the position v = 0, unless the remaining time before exercise time is so short that
the worst extra loss due to a possible increase in his debt is less than the difference
between running and closing transaction costs.

From now on, we consider only cases with positive v. (The signs would be
reversed for a put.)

9.2.1.3 Positive v, Sheets {τ−}

If u(T ) �= K , then we have ν−(T ) = (n p q r ) = (n 0 c− 1 ); therefore σ =
(1+ c−)v(T ) > 0, hence τ� = τ−. If u(T ) < K , then we obtain exactly the same
combination of a negative jump manifold followed for time t− to T by a sheet {τ−}
as in the vanilla case. We will call that sheet {τ−� }. It exists in the (t,u) plane in the
region u≤ ur. Its cartesian equation is as previously

w =−q−v, ⇔ Q−V = 0, (9.15)

and its (semipermeable) normal is

ν− = (−τ−(1+ q−)v 0 q− 1 ) =
(−τ−Q−SV 0 q− 1

)
. (9.16)

Notice also that ur(t−) = u−.

Region u < u�(t), the Manifold B

In the region u < u�, the underlying asset will end up out of the money: u(T )< K
whatever the market evolution, τ(·), is. Hence there is no need for the seller to
hedge anything. If he has some of the underlying asset in his portfolio, he should
sell it back before it loses value, unless the remaining time before exercise time is
so short that the worst possible loss from a decrease in u is less than the difference
between the running and the closing transaction costs. (We will see that no other
semipermeable hypersurface intersects the sheet {τ−� } in that region.)

Therefore, in that region, we have again representation (9.12) with q− as in (8.8),
v̌ = 0, w̌ = 0. We refer to this as the basic manifold B.



9.2 Geometric Approach 175

Region u > ur(t), the Manifold C

If u(T ) > K , then we have a second combination of a negative jump manifold
followed from time t− to T by a sheet {τ−}, which exists for u > ur. We will call it
{τ−r }; it has w(T ) = D− c−v(T ). Hence it is disjoint from the sheet {τ−� }.

Again, in that region, the asset will end up in the money – u(T ) > K , for
every possible market evolution. The final payment is therefore equal to D and
independent of the market evolution. Hence, there is no point in having some
underlying asset in the portfolio, which might lose value but is not needed to help
hedge against the final payment. Therefore, the most sensible policy is to sell all
assets in the portfolio, again unless the remaining time is so short that waiting until
exercise time is cheaper even if τ = τ−. But this time, the seller needs to have an
amount D in cash (or riskless bonds). The cartesian equation of this sheet {τ−r } is

w = D− q−v, ⇔ Q−V = D. (9.17)

Therefore, W is again given by formula (9.12), with v̌ = 0, w̌ = D, a manifold we
call C (for constant). There, q− is as in formula (8.8).

The two trivial regions can be covered by the formula v̌ = 0, w̌ = M(u).

9.2.2 Region of Interest

The problem is now solved everywhere except in the region of interest u ∈ [u�,ur],
i.e., for prices from which the underlying asset may end up either in the money or
out of the money. As in the vanilla case, this is the region where there is a dilemma
for the seller and where analysis is really needed.

We will carry out a detailed investigation of that region in the case where t− < t+.
The other case, which is as plausible, is not very different, and we will give brief
indications of how it is solved. (It presents no envelope junction of the type E +

but a third envelope E −.) Notice, however, that in the case cε =Cε , contrary to the
vanilla case, t+ < T while, as in the vanilla case, t− = T . This is therefore a case
where t− > t+, and two equivocal junctions E − survive.

For this whole subsection, the reader is referred to Fig. 9.3, and to Fig. 9.4 for the
case t− > t+.

9.2.2.1 Singular Sheet {K }

At u(T ) =K , N is not differentiable. We chose it as N(K ,v) = D+cε〈−v〉, hence
upper semicontinuous. Therefore, it has a superdifferential in the v > 0 half-space

∂+N(K ,v) = {(p c−) | p ≤ 0}.
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We recall that the switch function determining the optimal (worst) τ is σ = pu+
(1+ q)v. Hence, at exercise time for u(T ) = K , we have

σ = pK +(1+ c−)v.

Because the component p is negative, this may be of either sign.
Remember also that as long (backward) as the characteristic system holds, i.e.,

as long as C− < q < C+, the switch function σ is constant. In the final period,
all extremal trajectories ending with σ < 0 at u(T ) = K have τ = τ+, u(t) =
u�(t), v(t) = exp(−τ+(T − t))v(T ), and q(t) = (1+ c−)exp(τ+(T − t))− 1. This
is valid from time t+ as in (9.6) and u(t+) = u+ as in (9.5). In a similar fashion,
all extremal trajectories ending with σ > 0 at u = K have τ = τ−, u(t) = ur(t),
v(t) = exp(−τ−(T − t))v(T ), and q(t) = (1+ c−)exp(τ−(T − t))−1. This is valid
from time t− as in (9.6) and u(t−) = u− as in (9.5).

However, for p(T ) = −(1+ c−)v(T )/K , we get σ(T ) = 0, hence σ(t) = 0 as
long as the characteristic trajectories hold. This gives rise to singular characteristics
where all controls τ ∈ [τ−,τ+] are extremal. Let

θ (t) =
∫ T

t
τ(s)ds.

We now have characteristic trajectories of the form

u(t) = K e−θ(t), p(t) =−(1+ c−)v(T )eθ (t)/K ,

v(t) = v(T )e−θ(t), q(t) = (1+ c−)eθ (t)− 1,
w(t) = D+(e−θ(t)− 1− c−)v(T ), r(t) = 1.

This defines a three-dimensional manifold in (t,u,v,w) space, with parameters t ∈
[0,T ], v(T )> 0, θ (t) ∈ [τ−(T − t),τ+(T − t)]. We call it the sheet {K }. However,
the characteristics that make up this manifold are only valid if C− ≤ q ≤C+; hence
the above formulas only hold for

1+C−

1+ c−
≤ eθ ≤ 1+C+

1+ c−
⇐⇒ u+ ≤ u≤ u−,

whence the definition of q+ given in (9.10). In that region, the semipermeable
normal νK to the sheet {K } can be expressed in terms of q+ as

νK =

(

0 − (1+ q+(u))v
u

q+(u) 1

)
=
(

0 − 1
u

Q+SV q+ 1
)
. (9.18)

In the same region, a cartesian equation for this hypersurface is

w = D− q+(u)v ⇔ Q+V = D. (9.19)
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9.2.2.2 Dispersal Manifold D

Recall that we stress the case t− < t+. In the region Λ ∩{t ≥ t−}∩{u ≥ u+}, the
sheets {τ−� } and {K } intersect along a two-dimensional manifold v = v̌(t,u), w =
w̌(t,u) defined by

w̌ =−q−(t)v̌ = D− q+(u)v̌;

hence, as long as q− �= q+,

v̌(t,u) =
D

q+(u)− q−(t)
, w̌(t,u) =−q−(t)v̌(t,u). (9.20)

This is a dispersal manifold, which we call D . As a matter of fact, it is a somewhat
degenerate dispersal: all trajectories of {K } (except those with τ = τ−) leave {τ−r }
“above” it since, using (9.16) and minH = 0, we obtain

〈
ν−, ż

〉
= n+(c−+ 1)τv > n+(c−+ 1)τ−v = 0,

but trajectories of {τ−r } stay on D since, by construction, for any τ , 〈νK , ż〉= 0.
If u> (1+c−)K , then the slope in the (v,w) plane of the sheet {K } is positive,

as is that of the sheet {τ−� }. Hence, in that region, the cheaper hedging portfolio is
not v = v̌(t,u), but v= 0. This is because in that case, both sheets are limit portfolio
values to hedge against a decrease in u. Therefore, having some of the underlying
asset in the portfolio is harmful.

Formula (9.20) shows that v̌ and w̌ are positive on u�, hence discontinuous there
as they are null for u < u�, and diverge to infinity in the neighborhood of the
boundary u= ur(t), where q− = q+. Yet we have the following proposition.

Proposition 9.12.

1. The function W is bounded in the neighborhood of the manifold u = ur(t) and
continuous and smooth across that manifold.

2. The function W has a jump discontinuity across the manifold u = u�(t) for v <
v̌(t,u) and is continuous for v > v̌(t,u).

Proof.

1. As formula (9.20) shows, in the neighborhood of u = ur, both v̌ and w̌ go to
infinity. Hence ε =+ in the representation formula, and

W (t,u,v) = (q+ 1 )

(
1

−q−

)
D

q+− q−
− q+v = D− q+v

remains bounded, and even continuous and smooth as u crosses the boundary
ur(t), according to formula (9.17) and remembering that at u= ur, q− = q+.
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2. In the neighborhood of u= u�(t), for v ≥ v̌, we have, on the dispersal manifold,
using (9.20)

W (t,u,v) =−q−v̌(t,u)+ q−(v̌(t,u)− v) =−q−v,

which coincides with (9.15).
For v < v̌, in the closed Λ region, we get

W (t,u,v) =−q−v̌(t,u)+ q+(u)(v̌(t,u)− v) = D− q+v.

The difference with W in the adjacent open “trivial” region is thus

D− q+v+ q−v = (q+− q−)(v̌− v)> 0.

Therefore, we have a positive jump as u increases across u�. We may notice that,
due to our choice for M, W is u.s.c. 
�

A last important remark is that on D , by direct calculation,

Q−V̌t(t,u) = τ−(1+ q−(t))V̌ (t)≤ 0, Q+V̌t = 0.

9.2.2.3 Envelope Junction E +

At u = u+, q+ = C+. Thus for smaller u, the sheet {K } is replaced by a positive
jump manifold {ι+}. As a consequence, in the region t ∈ [t−, t+], u ∈ [u�(t),u+],
we have an envelope junction of a jump manifold {ι+} with the sheet {τ−� }. The
construction is similar to that of the envelope junction of Sect. 8.2.3.

The control ξ = ξ̃ (τ) that keeps a trajectory on {τ−� } is

ξ̃ (τ) =
(τ − τ−)(1+ q−)v

C+− q−
≥ 0.

We integrate both the dynamics and the generalized adjoint equations with that
control and τ = τ+, and we check a posteriori that this yields a normal ν+

j of
the jump manifold with n+j > 0, so that τ = τ+ indeed minimizes the Hamiltonian
〈ν+

j , ż〉.
The terminal conditions for E + are on the boundary u = u+ of D , where q+ =

C+, as on the jump manifold, i.e., at a time t = tb ∈ [t−, t+]. The boundary is therefore
given, together with its tangent, as

∂E + =

⎛

⎜
⎜
⎝

t
u

v

w

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

tb
u+

v̌(tb,u+)
−q−(tb)v̌(tb,u+)

⎞

⎟
⎟
⎠, Dt(∂E +) =

⎛

⎜
⎜
⎝

1
0

v̌t(tb,u+)
−C+v̌t(tb,u+)

⎞

⎟
⎟
⎠ .
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The requirement that its tangent in (t,u,v,w) space must be orthogonal to the
semipermeable normal ν+

j = (n+j p+j C+ 1 ) simply yields n+j (tb) = 0.
We must integrate backward the generalized adjoint equation

ν̇+
j =−∂H

∂ z
+α
(

ν+
j −ν−

)
,

i.e., here

ṅ+j = α
(

n+j − n−
)

from n+j (tb) = 0, with α chosen such that q+j is constant, equal to C+, i.e.,

q̇+j =−τ+(C++ 1)+α(C+− q−) = 0;

hence

α =
τ+(C++ 1)

C+− q−
> 0,

yielding, via Lambert’s formula, a positive n+j as needed.

Integrating the dynamics backward from ∂E with τ = τ+ and ξ = ξ̃ (τ+)
yields a field v̌(t,u), w̌(t,u). Closed-form formulas are given in [142], but they
are complicated and not needed for the sequel of the analysis. We only need the
following fact.

Proposition 9.13. For t ∈ [t−, t+], it holds that v̌(t,u�(t)) > 0, and w̌(t,u�(t)) =
−q−(t)v̌(t,u�(t)> 0.

Proof. Formula (9.20) shows that v̌(t+,u�(t+)) > D/(C+ −C−) > 0. Then, we
integrate backward with τ = τ+ and

ξ = ξ̃ (τ+) =
(τ+− τ−)(1+ q−)

C+− q−
v̌,

hence we have ˙̌v = a(t)v̌ for some finite a(t); hence v̌ cannot change sign or reach
zero. Finally, E + lies on the sheet {τ−}, hence w̌ =−q−v̌. 
�

Of course, the Value function in the region covered here is still given by the
representation formula (9.12); note that Proposition 8.27 remains unchanged.

9.2.2.4 Envelope Junction E −
1

At t = t−, q−(t−) = C−. Hence, for smaller t, the sheet {τ−} is replaced by a
negative jump manifold {ι−1 }. In the region t ≤ t−, u ∈ [u+,u−], the sheet {K }
still exists. The jump manifold joins onto it via an envelope junction {E −

1 }.
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Due to the singular character (in τ) of the sheet K , the control ξ̃ that keeps a
trajectory with an arbitrary τ on {K } is just ξ̃ = 0. We therefore integrate both the
dynamics and the generalized adjoint equations with the controls (ξ ,τ) = (0,τ−).

The terminal conditions are found on the boundary t = t− of D for u = ub ∈
[u+,u−], together with its tangent:

∂E −
1 =

⎛

⎜⎜
⎝

t
u

v

w

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

t−
ub

v̌(t−,ub)

−C−v̌(t−,ub)

⎞

⎟⎟
⎠ , Du(∂E −

1 ) =

⎛

⎜⎜
⎝

0
1

v̌u(t−,ub)

−C−v̌u(t−,ub)

⎞

⎟⎟
⎠ .

The requirement that this tangent in (t,u,v,w) space must be orthogonal to the
semipermeable jump normal ν−

j = (n−j p−j C− 1 ) yields p−j (t−) = 0, and the
equation H� = 0 yields n−j (t−) =−τ−(1+C−)v̌(t−,ub)> 0.

Since nK = 0, it follows that the generalized adjoint equation is now simply

ṅ−j = αn−j ,

so that n−j does not change sign on a trajectory, and hence n−j (t)> 0 for all t ≤ t−.
Since on the trajectories of E −

1 one has ξ = 0, τ = τ−, the dynamics integrate
trivially as for the primaries in terms of v̌(t−,ub) and w̌(t−,ub). An elementary
calculation shows that they can be expressed in terms of q̃− := (1+c−)eτ−(T−t)−1
(which is not q− in that region since t < t−) as

V̌ (t,u) =

(
1

−q̃−(t)

)
D

q+(u)− q̃−(t)
.

Typical sections of the graph of W on the (v,w) plane for a given (t,u) are therefore
as in Fig. 9.2.

Fig. 9.2 Region E −
1 : two sections of the graph of W for different values of u (and of D)
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This whole construction holds as long as q+ ≥ C−, i.e., u ≤ u−. The leftmost
trajectory of this junction is u = u+ exp(−τ+(t− − t)) =: u1(t). It only exists for
t ∈ [t1, t−], with

t−− t1 =
1

−τ−
ln

(
1+C+

1+C−

)
, T − t1 =

1
−τ−

ln

(
(1+ c−)(1+C+)

(1+C−)2

)
.

For many realistic sets of parameters, this is a short time, say on the order of 1 day.
For t < t1, only the next subsection holds.

The same remarks that were made at the end of Sect. 9.2.2.3 hold.

9.2.2.5 Envelope Junction E −
3 and Focal Manifold F

Preliminaries

We investigate now the region t < t−, u ∈ [u�(t),u1(t)], which decomposes into the
following two regions:

1. u∈ [u+,u1(t)]. The situation is analogous to that of the adjacent region where we
constructed the envelope junction E −

1 . But the boundary reached by trajectories
τ+ is u= u+, where v̌ and w̌ are not known, nor are the semipermeable normals.

2. u ∈ [u�,u+]. In that region, none of the sheets {τ−} nor {K } exists. We must
have a focal junction of two jump manifolds of opposite signs. We know
(Sect. 8.2.4) that such a junction is traversed by two fields of trajectories: one
with τ = τ−, which takes its terminal values either on the boundary of E + at
t = t− or on u = u�(t), and one with τ = τ+, which takes its terminal values
either on the boundary of E + at t = t− or on the boundary of E −

3 at u= u+.

Consequently, we cannot construct E −
3 and F separately.

We extend Lemma 8.30 to cases where the singular sheet {K } is involved.

Lemma 9.14. If a manifold V : V = V̌ (t,u) is either

1. a submanifold of the sheet {K } and of a sheet {τ−} (case of D) or
2. a submanifold of a jump manifold {ι−} traversed by trajectories τ− and a

submanifold of the sheet {K } (case of both E −),

then it satisfies the two Eqs. (8.48):

QεV̌t + τε Qε(V̌uu−SV ) = 0, ∀ε ∈ {−,+},

or, equivalently, the fundamental Eq. (9.11):

V̌t +T (V̌uu−S V̌ ) = 0.
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Proof.

1. If the manifold V is a submanifold of a sheet {τ−}, then its two normals
(1 0 v̌t w̌t ) and (0 1 v̌u w̌u ) are orthogonal to ν− given by (9.16), which
yields

Q−V̌t − τ−Q−S V̌ = 0,

Q−V̌u = 0.

Multiply the second line by τ−u and add the product to the first one to obtain
Eq. (8.48), with ε =−.

If it is a submanifold of the sheet {K }, then its two normals are orthogonal
to νK , given by (9.18), yielding

Q+V̌t = 0,

Q+V̌u− 1
u

Q+S V̌ = 0.

Multiply the second line by τ+u and add the product to the first one to obtain
(8.48), with ε =+.

2. If the manifold V̌ is a submanifold of a negative jump manifold traversed by
trajectories τ−, then it satisfies (8.48) with ε = − for the same reason as in
Lemma 8.30. If it is a submanifold of the sheet {K }, then it satisfies this
equation with ε =+ for the same reason as above. 
�

Of course, Lemma 8.30 still holds, so that E + and F also satisfy (9.11). The man-
ifolds F and E −

3 are therefore to be obtained as the (continuous) solution of this
equation, with the boundary conditions on the three-piece boundary of the combined
region: {t = t−, u ∈ [u�,u+]}∪{t ≤ t−, u= u�(t)}∪{t ≤ t−, u= u1(t)}.

Boundary Conditions for V̌

Concerning the boundary t = t−, u ∈ [u�(t−),u+], v̌ and w̌ are known on E +.
Concerning t ≤ t−, u= u1(t), v̌ and w̌ are known on E +

1 .
Concerning t ≤ t−, u= u�(t), we know that if at any time τ is different from τ+,

then the state drifts out of Λ , and since we are before t−, q− =C−, i.e., the optimum
behavior for the seller is to sell all the underlying asset in his portfolio at once, at
a cost −C−v. And since the seller needs to be left with a nonnegative portfolio, he
must have w+C−v=Q−V ≥ 0. The cheapest such portfolio thus satisfies Q−V = 0.
We therefore impose Q−V̌ = 0 on this “left” boundary of F . This imposes

ξ = τ+
1+C−

C+−C− v̌, (9.21)
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which is positive (as assumed to get that formula). Integrating the dynamics
backward from V̌ (t−,u�(t−)) obtained on E + yields V̌ . We may also note that both
components will be strictly positive, for the same reason as on E +.

Normals

As previously, we need to check that the normals νε
j to the jump manifolds have their

time components nε
j nonnegative. According to formula (8.51), which still holds

here, this also serves to check that the signs hypothesized for the controls ξ of both
fields traversing F are correct.

On E −
3 , the only jump manifold present is with a negative jump. As on E −

1 , n−j
has a constant sign, given by its terminal condition, here on the boundary u = u+,
as usual according to n−j =−Q−V̌t (orthogonality of ∂E −

3 and ν−
j ). If the normal to

the manifold V̌ has a discontinuity on u= u+, then the continuity of V̌ implies that
its u component is also continuous. But Eq. (9.11), where T is invertible, implies
then that Q−V̌t is continuous as well. Therefore, E −

3 will inherit continuously n−j
on F .

Concerning F it is the junction of two jump manifolds {ιε} and traversed by two
fields of trajectories, generated by (τ,ξ ) = (τε ,ξ ε), for ε =−,+. The components
nε

j again satisfy (8.52), (8.53).
The terminal conditions for the components n−j on the trajectories τ− are either

on the boundary t = t−, where the jump manifold inherits the normal of the sheet
{τ−}, again continuously because the u component is necessarily continuous and
(9.11) imposes the continuity of V̌t , or on u�(t). On that last boundary, either
comparing (8.51) and (9.21) or using both

d
dt

Q−V̌ = Q−V̌t + τ+Q−V̌uu= 0

and (8.48) with ε =−, we obtain

n−j =
−τ−τ+

τ+− τ−
(1+C−)v̌ > 0.

The terminal conditions for the components n+j on the trajectories τ+ on the
boundary t = t− are taken from the normal to E +, again positive, as seen in
Sect. 9.2.2.3. On the boundary u = u+, the normal sought is common with that of
the sheet {K } (9.18) known to have nK = 0.

In the rest of the domain of F , the reasoning goes as in the vanilla case, leading
to the conclusion that, indeed, both n−j and n+j so constructed are positive all over

the domain of F , validating the construction and yielding a positive n−j for E −
3 .
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9.2.2.6 Extending C

The last part of the region of interest, and of the plane (t,u), not accounted for so far
is the region t ≤ t−, u ∈ [u−,ur(t)]. There, (1+ c−)exp(τ−(T − t))− 1 < C− and
(1+ c−)K /u− 1 < C−. Hence q− = q+ = C−, and both sheets {K } and {τ−}
are replaced by negative jump manifolds of slope −C− in the plane (v,w). Their
equations are Q−V = 0 for the first one and Q−V = D for the second one. Hence the
latter is “above” the former, and is therefore the boundary of the capturable states,
the graph of W .

Therefore, in that region, we may still set v̌ = 0, w̌ = D. Hence the manifold C
extends beyond the line u= ur(t) to u= u−. The value function W and its gradient
extend continuously across u= u−.

9.2.3 Synthesis

9.2.3.1 Case t− < t+

The same representation formula (8.13) as in the vanilla case holds for (t,u,v) ∈
[0,T ]×R+ ×R+ , i.e., restricted to v > 0. The pair of functions v̌(t,u), w̌(t,u)
satisfies the fundamental equation (9.11) in the region where q+ �= q−, i.e., for
u ≤ min{ur(t),u−}. The form (8.48) can be extended to the region this excludes,
but since Q is no longer invertible, this is of little help. The composite manifold
V = V̌ (t,u) corresponds to singular manifolds of Isaacs’ equation of various types
defined in various regions according to Fig. 9.3.

The construction of F and E −
3 requires the integration of the fundamental

equation over a domain where q+ is constant on F and variable on E −
3 . We did

not investigate the properties of existence and uniqueness of this more complex
case (as compared to the vanilla case). Our experience is that numerical integration
poses no difficulty – provided one makes sure to have a small enough ratio of the
time step to the u step, a classic feature of hyperbolic equations – and, moreover,
the Value function thus computed agrees to a high precision with that obtained by
the “standard algorithm,” making no use of the representation formula.

Remark 9.15.

1. The discontinuity of the value function W along u= u�(t) for v < v̌, stressed in
Proposition 9.12, propagates through regions E + and F down to t = 0, while W
is, as emphasized previously, continuous across u= ur(t).

2. Additionally, v �→ W (t,u,v) is indeed continuous and convex over R. This is so
because, at v = 0, the slope in the positive v half-space is either −q− (in the
“trivial regions” of (t,u) space) or −q+ (in the region of interest) and −q+V in
the negative v half-space. Clearly, −q+V < 0 < −q−, but also, in the region of
interest, K /u < exp(τ+(T − t)), hence q+ < q+V , as one easily sees. We have
used this fact in the sketch of Fig. 9.3.
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Fig. 9.3 Regions of definition of singular surfaces, case t− < t+

Fig. 9.4 Regions of definition of singular surfaces, case t− > t+

9.2.3.2 Case t− > t+

The case t− > t+ has not been described in detail here. It is very similar to the
former one, except that E + no longer exists, and another piece E −

2 of envelope
junction with a negative jump manifold appears between E −

1 and E −
3 , as shown by
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Fig. 9.4. Its trajectories are computed as those of E −
1 concerning the dynamics and

as the trajectories τ− of the focal manifold concerning their terminal values.

Remark 9.16. In the case cε = Cε , for ε = −,+, we get u− = K but u+ < K .
Hence we are in the case t− = T > t+. The manifolds D and E −

1 collapse, but the
manifolds E −

2 and E −
3 subsist together with F , probably for a very small range of

values of u, but a critical one just below K , between u+ and K .

9.3 Viscosity Solution

In this section, we use the notation

H̄(t,u,v DW ) =Wt + τε〈Wuu+(Wv− 1)v〉 ,

and the alternate form of the DQVI:

min{H̄(t,u,v;DW ),Wv +C+,−Wv −C−}= 0,

and we want to verify that the representation formula (8.13) does yield an opposite
viscosity solution (OVS).

9.3.1 The Discontinuity

9.3.1.1 Definition

The Value function W calculated so far is discontinuous along the boundary u =
u�(t) of the region of interest Λ for v < v̌. Therefore, as compared to the vanilla
case, we have neither a simple definition of a VS nor, a fortiori, a uniqueness
theorem. We will use the definition proposed by Barles [22]. We therefore modify
Definition 8.37 as follows.

Definition 9.17. Let f : Q ⊂ R
n → R. Let f �(y) = lim supy′→y f (y′) and f�(y) =

liminfy′→y f (y′) be its u.s.c. upper envelope and its lower semicontinuous lower
envelope, respectively. The function f is said to be a (discontinuous) VS of the PDE

∀y ∈ Q, F(y, f (y),D f (y)) = 0, ∀y ∈ ∂Q, f (y) = G(y),

if f � which is u.s.c., is a subsolution (with f � ≤ G� on ∂Q) and f� which is l.s.c., is
a super solution (with f� ≥ G� on ∂Q).

The rest of this section is devoted to proving the following fact.
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Theorem 9.18. The Value function W is a discontinuous VS of the DQVI (8.7).

However, as the theory stands, this is proved to be neither a necessary nor a sufficient
condition for the Value function. Yet we strongly conjecture that it is both. As a
matter of fact, in any open region where W is continuous, it must satisfy the
viscosity inequalities. The proof, applied to the Joshua transform, proceeds as in the
classic case because it is local. As for the discontinuity, we claim that the following
proposition is true (B in the proposition is a barrier not to be mistaken with the
two-dimensional manifold B of the previous section).

Proposition 9.19. If the Value function W has a simple discontinuity on a smooth
manifold B : B(y) = 0, with smooth restrictions W− and W+ in the open regions
B(y)< 0 and B(y)> 0, admitting smooth extensions across B and with W− <W+

on B, then the viscosity condition implies that B is a semipermeable manifold.

Proof. We need yet another fact: let ∇W− and ∇W+ be the gradients of the
restrictions of W to the two half-spaces.

Proposition 9.20. The superdifferential of W � and the subdifferential of W� on B
are given by

∂+W �(y) = {∇W+(y)+α∇B(y), ∀α > 0},
∂−W�(y) = {∇W−(y)+α∇B(y), ∀α > 0}.

Proof of the proposition. We prove the first statement; the second one proceeds by
changing signs. Let, therefore, y∈B, i.e., B(y) = 0, a test function ψ(·) be such that
W �(y)−ψ(y) = 0 and is a local maximum. For any η such that 〈∇B(y),η〉> 0, and
for small enough θ > 0, B(y+θη)> 0, and therefore W �(y+θη) =W+(y+θη).
Since y is a local maximum of W �−ψ , we also get W+(y+θη)−ψ(y+θη)< 0,
and thus 〈(∇W+−∇ψ),η〉< 0. Therefore, we find that

∀η : 〈∇B(y),η〉> 0,
〈
(∇W+(y)−∇ψ(y)),η

〉
< 0.

Therefore, (∇W+(y)−∇ψ(y)) must be collinear and opposite to ∇B(y), i.e., there
exists a positive α such that ∇W+(y)−∇ψ(y) =−α∇B(y).

Conversely, let α > 0. Let ψ(y′) = W+(y′) + α 〈∇B(y),y′ − y〉+ ‖y′ − y‖2.
Clearly ψ(y) = W+(y), and ∇ψ(y) = ∇W+(y) +α∇B(y). For y′ close enough to
y with 〈∇B(y),y′ − y〉 < 0, B(y′) < 0, so that W �(y′) = W−(y′) < W+(y′), and
ψ being continuous, for y′ close enough to y, W �(y′) < ψ(y′). For y′ such that
〈∇B(y),y′ − y〉> 0, W �(y′) =W+(y′) < ψ(y′). Finally, if 〈∇B(y),y′ − y〉= 0, then
either B(y′)< 0, and the argument of continuity of ψ applies, or B(y′)≥ 0, and the
last argument applies. 
�

We use that proposition in the viscosity statement, using the Joshua transform
to deal with impulses as well as ordinary trajectories, and the shorthand notation of
Sect. 7.2.5.2

∀δ ∈ ∂+W �, min
ι

max
τ

[〈δ ,g(y,τ, ι)〉+L(y,τ, ι)] ≤ 0,
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to get

∀α > 0, min
ι

max
τ

[
〈
(∇W+(y)+α∇B(y)),g(y,τ, ι)

〉
+L(y,τ, ι)] ≤ 0.

Clearly, this implies

min
ι

max
τ

[〈∇B(y),g(y,τ, ι)〉+L(y,τ, ι)]≤ 0.

And the other viscosity inequality similarly implies

min
ι

max
τ

[〈∇B(y),g(y,τ, ι)〉+L(y,τ, ι)]≥ 0.

These two inequalities together prove the proposition. 
�

9.3.1.2 Checking the Representation Formula

We consider the points (t,u,v) with u = u�(t) and v < v̌(t,u), since it is for
those points that W has a discontinuity. We also have W�(t,u,v) = −q−v and
W � = Q+V̌ − q+v.

Call δ = (δt δu δv ) an element of a sub- or superdifferential. We must
verify that

∀δ ∈ ∂−W�, min{δt + τε〈δuu+(δv− 1)v〉 , δv +C+,−δv −C−} ≤ 0,

∀δ ∈ ∂+W �, min{δt + τε〈δuu+(δv− 1)v〉 , δv +C+,−δv−C−} ≥ 0.

We use Proposition 9.20, with B(t,u,v) = u−Dexp(−τ+(T − t)), hence ∇B =
(−τ+Dexp(−τ+(T − t)) 1 0 ), and therefore, on B, ∇B = (−τ+u 1 0 ). This
yields

∂−W� =

{
( τ−(1+ q−)v−ατ+u, α, −q− ) if t > t−,
(−ατ+u, α, −C+ ) if t ≤ t−,

∂+W � =

{
(Q+V̌t −ατ+u, − 1

u (1+ q+)(v̌− v)+Q+V̌u+α, −q+ ) if u > u+,

(Q+V̌t −ατ+u, Q+V̌u+α, −C+ ) if u≤ u+,

with α an arbitrary positive number.

1. We consider the first viscosity inequality: δ ∈ ∂−W�. Two cases arise.

a. Case t > t−: The first term of the min is

H̄(t,u,v;δ ) = τ−(1+ q−)v−ατ+u+ τε〈αu− (1+ q−)v〉

=

{
α(τ−− τ+)u < 0 if αu− (1+ q+)v ≤ 0,
(τ−− τ+)(1+ q−)v ≤ 0 if αu− (1+ q+)v ≥ 0.

This is nonpositive in both cases, hence the minimum is nonpositive.
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b. Case t ≤ t−: This concerns only the region F , where, in particular, −δv −
C− = 0, hence again the minimum is nonpositive.

2. Consider now the second viscosity inequality: δ ∈ ∂+W �. Again, two cases
arise.

a. Case u > u+: The first term in the min is

H̄(t,u,v,δ )

= Q+V̌t −ατ+u+ τε〈−(1+ q+)(v̌− v)+Q+V̌uu+αu− (1+ q+)v
〉

= Q+V̌t −ατ+u+ τε〈−Q+S V̌ +Q+V̌uu+αu
〉
.

For τε = τ+ this term is null, due to Eq. (8.48). Therefore, the maxτ is a-
fortiori nonnegative for all α . Moreover, this concerns the region D , where
both δv +C+ = C+ − q+ and −δv −C− = q+−C− are positive. Hence the
minimum of the three terms is nonnegative.

b. Case u≤ u+: The first term in the min is

H̄(t,u,v;δ ) = Q+V̌t −ατ+u+ τε〈−Q+S V̌ +Q+V̌uu+αu
〉
.

If τε = τ+, then this becomes

H̄ = Q+V̌t + τ+Q+V̌uu−Q+S V̌ +(1+C+)(v̌− v) = (1+C+)(v̌− v)≥ 0.

The other two terms in the min are never negative. Thus, again, the minimum
of the three terms is nonnegative.

The conclusion is that where the representation formula yields a discontinuous
function W , it satisfies the viscosity inequalities according to Definition 9.17.

9.3.2 Continuous Regions

9.3.2.1 Regular Regions

We first investigate regions where W and its gradient are continuous.

Trivial Regions

In the so-called trivial regions, we have W (t,u,v) = M(e−τ+(T−t)u)+qε〈−v〉, with
q+ as in the vanilla case. Hence, for times such that qε =Cε ,

H̄(t,u,v;DW ) = τε〈−(1+ qε)v〉> 0,
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and for times such that |qε |< |Cε |, ε = sign(−v)

H̄(t,u,v;DW ) = τε(1+ qε)v+ τε〈−(1+ qε)v〉 = 0.

Hence, in all cases, either Wv +Cε or H̄ is equal to zero, the other two terms in the
DQVI being positive.

Region F

The focal region t < t−, u < u+, proceeds as in the vanilla case (Sect. 8.3.2.1).

Region E −

In the region t < t−, u > u+, for v > v̌(t,u), H̄(t,u,v;DW ) is as previously, hence
nonnegative. Wv +C+ = C+ − q− > 0 and −Wv −C− = 0. Thus the minimum
is zero.

For v < v̌(t,u) we get

H̄(t,u,v;DW ) = Q+V̌t + max
τ∈[τ−,τ+]

[Q+V̌uu− (1+ q+)(v̌− v)− (1+ q+)v].

We notice that

H(t,u,v;DW ;τ+) = Q+V̌t + τ+Q+[V̌uu−S V̌ ] = 0.

And since we are on the singular sheet {K }, Q+V̌t =−nK = 0 = σ , and therefore
H̄ = 0. Finally, Wv +C+ =C+−q+ > 0 and −Wv−C− = q+−C− > 0. Hence the
minimum is zero.

Region E +

In the region t > t−, u < u+, for v < v̌(t,u), H̄(t,u,v;DW ) is as in the focal region,
hence nonnegative. For v > v̌ we get

H̄(t,u,v;DW ) = Q−V̌t + τ−[Q−V̌uu− (1+ q−)v]− τ−(1+ q−)(v̌− v)

= Q−V̌t + τ−Q−(V̌uu−S V̌ ) = 0.

As always, the fact that Q−V̌t = −n− = τ−(1+ q−)v ≤ 0 guarantees that τ = τ−
indeed maximizes the Hamiltonian. We also have Wv +C+ = C+ − q− > 0 and
−Wv−C− = q−−C− > 0. Again the minimum is zero.

Region D

In the region t > t−, u > u+, H̄(t,u,v) is as in the region E − if v < v̌(t,u) and as
in the region E + if v > v̌(t,u). Hence H̄(t,u,v;DW ) = 0. The other two terms are
positive. The minimum is zero.
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9.3.2.2 Gradient Discontinuities

Proposition 8.49 applies here as in the vanilla case. Hence there is no point
in investigating possible discontinuities of DV̌ . Five hypersurfaces of gradient
discontinuity thus remain, which we investigate hereafter.

Hyperplane v = 0

At v= 0, we stressed in Remark 9.15 that W is convex in v, i.e., the subdifferential is
nonempty. It is obtained by replacing Wv in DW by a convex combination of the two
Wv on both sides of the discontinuity. This makes its v component δv smaller than its
value in the half space v > 0. In the region of interest, it enters H̄ with the coefficient
τ+ > 0. Hence the Hamiltonian, which is nonpositive in that region, is a fortiori so.
In the trivial regions, the Hamiltonian is H̄ =−q−t v+ τε〈(δv − 1)v〉= 0.

Hypersurface v = v̌(t,u)

At v = v̌(t,u), the sign ε changes in the representation formula. The analysis here
is identical to that of the vanilla case.

Hyperplane t = t−

At t = t−, q−t is discontinuous. The analysis here is identical to that of t = tε of the
vanilla case, with ε =−.

Hyperplane u= u+

At u = u+, Wu has a discontinuity for v < v̌(t,u), going from Wu = Q+V̌u in
the half-space u < u+ to Wu = Q+V̌u − (1/u)(1+ q+)(v̌ − v) in the half-space
u > u+. This is a decrease in the slope as u increases, hence a place where the
superdifferential is nonvoid. It is obtained by replacing Wu in DW by a convex
combination of the two gradients; hence, λ ∈ [0,1] and

H̄ = Q+V̌t + τε〈Q+V̌uu−λ (1+ q+)(v̌− v)− (1+ q+)v
〉

= Q+V̌t + τ+
〈
Q+[V̌uu−S V̌ ]+ (1−λ )(1+ q+)(v̌− v)

〉

= τ+(1−λ )(1+ q+)(v̌− v)≥ 0.

The other two terms in the DQVI are always nonnegative, hence so is the min.
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Hyperplane u= u−

At u = u−, for v < v̌(t,u), Wu goes from Wu = Q+V̌u− (1/u)(1+ q+)(v̌− v) in
the half-space u < u− to Wu = Q+V̌u in the half-space u > u−. This is therefore
a place where the subdifferential is nonempty. One of the three terms in the DQVI
should be nonpositive. By construction, we have there Wv = q+ =C−, insuring that
−Wv−C− = 0.

This ends the verification and proves Theorem 9.18.

9.4 Discrete Trading and Algorithms

9.4.1 Algorithms

9.4.1.1 Standard Algorithm

The analysis leading to the standard algorithm of the vanilla case remains valid
here, with one notable exception: the Value function generated by the dynamic
programming procedure is no longer convex in u since N is not. (Convexity in v
is preserved by the same argument.) Hence, the “standard algorithm” (8.78), (8.80)
must be slightly modified: in Eq. (8.78) the maximum is to be found for τ ranging
over the whole segment [τ−h ,τ+h ], yielding system (9.13), where the minimization
with respect to ξ can still be performed according to the rule (8.79).

While this does complicate the algorithm, if the spread τ−, τ+ is not too large,
then the search can be done by direct discretization and exploration. We tested both
this brute force method and a “golden number” search. The latter was faster, but by
a small margin.

Given that the discrete representation formula for this case is based upon a
conjecture, the availability of this direct procedure to check it numerically is
important.

9.4.1.2 Representation Formula and Fast Algorithm

The discrete trading representation formula of the vanilla case, while very similar
to the continuous formula, is based not on an investigation of extremal trajectories
but on a detailed analysis of the standard algorithm. However, the corresponding
analysis here is intractable [142]. We therefore make the following conjecture.

Conjecture 9.2. In the domain (t,u,v) ∈ [0,T ]×R+ ×R+, the function W h
k+ 1

2
of

formula (9.13) is piecewise affine in v with two branches.
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It follows from procedure (8.80) that the value function W h
k itself is piecewise affine.

Henceforth, we use the notation qε
� (u) without assuming a priori that it coincides

with qε(�h,u) as defined previously, although this will turn out to be true as a result
of the analysis.

Therefore, let

W h
k+ 1

2
(u,v)

= max
τ∈[τ−h ,τ+h ]

[
w̌h

k+1((1+ τ)u)+ qε
k+1((1+ τ)u)

〈
v̌h

k+1((1+ τ)u)− (1+ τ)v
〉
− τv

]

= max
τ∈[τ−h ,τ+h ]

{
Qε

k+1 ((1+ τ)u)V̌ h
k+1 ((1+ τ)u)− [(1+ τ)qε

k+1 ((1+ τ)u)+ τ
]
v
}
.

For v = 0, this is just W h
k+ 1

2
(u,v) = Q+

k+1((1+ τ)u)V̌ h
k+1((1+ τ)u). We will verify

that the max is attained at τ = τ+h . For v large enough, in contrast, the dependence on
τ is dominated by the term −τv. The max is therefore obtained at τ = τ−h . If Wk+ 1

2
is, as conjectured, piecewise affine in v with two branches, then we can determine
it as the intersection of the two branches thus constructed. Hence

W h
k+ 1

2
(u,v) = w̌h

k (u)+ qε
k+ 1

2

(
v̌h

k (u)− v
)
,

where

qε
k+ 1

2
(u) = (1+ τε

h )q
ε
k+1((1+ τε

h )u)+ τε
h ,

and (v̌k+1(u), w̌k+1(u)) are the coordinates of the intersection of the two branches.
The calculations at this point are the same as in the vanilla case. Yet, the above
formula has a different consequence for q+ due to a different initialization.

Let us consider the first step of dynamic programming, from k = K − 1 to K.
If uK−1 < K /(1 + τ+h ), then only the region uK < K can be reached, where
WK(u,v) =−c−v. Similarly, if uK−1 >K /(1+τ−h ), then only the region uK > K
can be reached, where WK(u,v) = D− c−v. In both cases, we easily see that the
maximizing τ is τ−, and

WK− 1
2
(u,v) = M(u)− [(1+ τ−h )c−+ τ−h ]v.

Thus we set, as in the vanilla case,

q−
K− 1

2
= (1+ τ−h )c−+ τ−h .

If K /(1 + τ+h ) < uK−1 < K /(1 + τ−h ), then a careful analysis shows that the
maximum in τ is reached either for τ = τ−h or when uK = K at τ� = K /u− 1,
depending on v, leading to

q+
K− 1

2
(u) = (1+ c−)

K

u
− 1
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and

WK− 1
2
(u,v) = max

{
D− q+

K− 1
2
v,−q−

K− 1
2
v

}
.

Therefore, in this region, we have, as claimed,

WK− 1
2
(u,v) = w̌h

K−1(u)+ qε
K− 1

2

〈
v̌h

K−1(u)− v
〉
,

with

V̌ h
K−1 =

(
v̌h

K−1(u)

w̌h
K−1(u)

)
=

(
1

−q−
K− 1

2

)
D

q+
K− 1

2
− q−

K− 1
2

,

but with the q+(u) of the continuous-time digital case. [As compared to formula
(8.19), the term in Q−

KV̌ h
K((1+ τ−h )u) is missing because V̌ h

K((1+ τ−h )u) = 0.]
Now we remark that if q+k+1(u) = (1+ c−)K /u− 1, then the recursion formula

yields q+
k+ 1

2
(u) = q+k+1(u), while the same formula yields the same q−

k+ 1
2

as for the

vanilla case since it is initialized in the same way at k = K.
Finally, Q+

K−1V̌ h
K−1(u) = D or (C+ − q−

K− 1
2
)D/(q+

K− 1
2
− q−

K− 1
2
), which are both

nondecreasing in u, so that the maximum in τ in Q+
K−1((1+ τ)u)V̌ h

K−1((1+ τ)u) is
reached at τ+, as hypothesized. And this will carry over in the recursion.

Remark 9.21. The singularity of the sheet {K } of the continuous trading case
shows up in this discrete trading case also in the fact that as long as q+(u) ∈
(C−,C+) and q− >C−, i.e., qε

k+ 1
2
= qε

k , we find, on the one hand, Q+
k (u)V̌

h
k (u) = D,

which is the equation of the sheet {K }, and on the other hand, the maximization
step in the dynamic programming equation reads, for v ≤ v̌k+1(u),

max
τ∈[τ−h ,τ+h ]

{
D−

[
(1+ τ)

(
K

(1+ τ)u
− 1

)
+ τ
]
v

}
= max

τ∈[τ−h ,τ+h ]
{D− q+(u)v},

which is independent of τ .

9.4.2 Convergence

The convergence analysis of the vanilla case holds here, except on two counts that
result from the lack of continuity of W .

On the one hand, in the proof of Theorem 8.59, we cannot appeal to Dini’s
theorem to assert the uniformity of the convergence on any compact. We must
therefore be content with the weaker statement of Theorem 9.10. [The convergence
is in fact uniform in v over any compact for fixed (t,u), again due to Dini’s theorem.]
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On the other hand, Lemma 8.62 does not suffice to prove Proposition 8.61
because it applies to continuous functions. In that respect we have the following
fact.

Proposition 9.22. The functions (u,v)→W h
k (u,v) are u.s.c.

Proof. Use the notation (uk,vk) = xk, {τk}k∈K = ω ∈ Ω h, {ξk}k∈K = ψ ∈ Ξ h, and
let Φh be the set of nonanticipative strategies from Ω h to Ξ h. We may represent
W h

k as

W h
k (xk) = inf

ϕ∈Φh
sup

ω∈Ωh

[

N(xK)+ ∑
�≥k

(τ�(v�+ ξ�)+Cε�ξ�)

]

.

The application xk → xK is continuous for each ω , and since Ω h is compact in the
product topology, the continuity is uniform in ω . The term due to ψ enters the same
function additively; it subtracts out in the difference. Hence the continuity is also
uniform in ψ . On the other hand, N is u.s.c. Hence the application xk → N(xK) is
u.s.c. in xk, uniformly in (ω ,ψ). The integral term on the right-hand side above is
also continuous in xk, uniformly in (ω ,ψ) for the same reason. Hence the square
bracket in the right-hand side is a function J(xk,ω ,ψ) u.s.c. in xk, uniformly in
(ω ,ψ).

Let xk = x, as well as the strategy φ ∈ Φh, be fixed. Let δ > 0 be given. There
exists a neighborhood N of x such that

∀x′ ∈ N , ∀ω ∈ Ω h, J(x,ω ,φ(ω)) ≥ J(x′,ω ,φ(ω))− δ
2
.

For any x′ choose an ω ′ such that

J(x′,ω ′,φ(ω ′))≥ sup
ω∈Ωh

J(x′,ω ,φ(ω))− δ
2
.

For that ω ′,

J(x,ω ′,φ(ω ′))≥ sup
ω∈Ωh

J(x′,ω ,φ(ω))− δ .

Hence, a fortiori

∀x′ ∈ N , sup
ω∈Ωh

J(x,ω ,φ(ω)) ≥ sup
ω∈Ωh

J(x′,ω ,φ(ω))− δ .

The conclusion is that x → supω J(x,ω ,φ(ω)) is u.s.c., and this property is
conserved upon taking the infimum with respect to φ ∈ Φh. 
�

Now we replace Lemma 8.62 of the vanilla case by the following one, strictly
more powerful in our case of monotonous convergence.
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Lemma 9.23.

1. Let N be a compact neighborhood of Rn, {Δ h} a sequence of u.s.c. functions
from N to R monotonously decreasing to a pointwise limit Δ as h converges
to 0. Let Δ have a strict maximum over N at x�. Let xh be a maximum of Δ h

over N . Then xh → x� as h → 0.
2. Let N be a compact neighborhood of Rn, {Δ h} a sequence of functions from N

to R monotonously decreasing toward a pointwise limit Δ as h converges to 0.
Let Δ h

� and Δ� denote their l.s.c. lower envelopes. Let Δ� have a strict minimum
over N at x�, and let xh denote a minimum of Δ h

� over N . Then xh → x� as
h → 0.

Proof. 1. The sequence {xh} lies in the compact N . We may therefore extract a
converging subsequence, which we still denote by xh. Let x̂ be its limit. We will
show that, necessarily, x̂ = x�, so that it is the whole sequence that converges
to x�.

From the fact that Δ h(x�) ↓ Δ(x�) and the definition of xh, it follows that

Δ(x�)≤ Δ h(x�)≤ Δ h(xh). (9.22)

Assume that Δ(x�)− Δ(x̂) =: δ > 0. Notice that δ = 0 if and only if x̂ = x�

because the maximum at x� is strict by hypothesis. There exists a ĥ such that

∀h ≤ ĥ, Δ h(x̂)≤ Δ(x̂)+
δ
3
.

Since Δ ĥ is u.s.c., there exists a neighborhood N ′ of x̂ such that

∀x ∈ N ′, Δ h(x)≤ Δ h(x̂)+ δ/3 ≤ Δ(x̂)+
2δ
3
.

Since xh → x̂, there exists a h̃ ≤ ĥ such that for any h ≤ h̃, xh lies in N ′, hence

Δ h(xh)≤ Δ(x̂)+ 2δ/3 = Δ(x�)− δ
3
.

This contradicts inequality (9.22). Thus δ = 0, proving assertion 1.
2. The sequence {xh} lies in the compact N . We can extract a subsequence still

denoted by {xh} converging to some x̌. We will show that, necessarily, x̌ = x�, so
that it is the whole sequence that converges to x�.

From the definition of x�, Δ�(x�)≤ Δ�(x̌), with equality if and only if x̌ = x�.
Assume that Δ�(x̌)−Δ�(x�) =: δ > 0. Since xh → x̌, and Δ� is l.s.c., there exists
ĥ > 0 such that

∀h ≤ ĥ, Δ�(xh)≥ Δ�(x̌)− δ
2
= Δ�(x�)+

δ
2
.
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Also, for all x in N , Δ h(x)≥Δ(x), so that Δ h
� (x)≥Δ�(x). Hence for xh we obtain

Δ h
� (xh)≥ Δ�(xh)≥ Δ�(x�)+

δ
2
.

From the definition of xh it follows that

∀x ∈ N , Δ h(x)≥ Δ h
� (x)≥ Δ h

� (xh)≥ Δ�(x�)+
δ
2
.

Let h → 0 in this last inequality to get

∀x ∈ N , Δ(x) ≥ Δ�(x�)+
δ
2
.

From the definition of a lower envelope, there exists a sequence {xn} converging
to x� such that Δ(xn) converges to Δ�(x�). And thus

∃x ∈ N : Δ(x)≤ Δ�(x�)+
δ
3
.

But this contradicts the previous inequality. Thus δ = 0, proving assertion 2.
This ends the proof of Lemma 9.23 and that of Theorem 9.10 
�



Chapter 10
Validation

As a foreword to this chapter, we wish to recall that we have obviously no
claim of overall superiority over Black–Scholes. But a careful analysis may reveal
some interesting features, and some weaknesses of Black–Scholes that we avoid.
Noticeably, in a time of great uncertainty and of crisis, one might be interested in a
theory that does not make use of a probabilistic model of the market pricing process.

It should also be noted that the Black–Scholes theory is too strongly entrenched
to be challenged as a piece of “natural science” describing what will happen or why
things happen the way they do. Rather, our analysis is always in the spirit of an
“engineering” science of decision support, advising one about what to do.

10.1 Numerical Results and Comparisons

10.1.1 Numerical Computations

We give here a few numerical results of our theory. Most computations were
performed with the“standard” algorithm. Default values of the parameters are,
unless otherwise specified, as in Table 10.1. Notice that it follows from (7.1)–(7.3)
that if the relative rate of variation of u is τ , then that of S is τ + μ0 (Table 10.1).

Figure 10.1 show plots of the functions v̌h
k (·), the optimum hedging portfolio

position in the underlying asset, and W h
k (·,0), the worth of the portfolio, both

as functions of the underlying asset’s (normalized) market price u, for tk =
0,10,20,30,40, and 44 = T . Concerning v̌h

k , as tk increases, it gets closer to the
separatrix of Fig. 8.2 and coincides with it for tk = T = 44. In a similar fashion,
W h

k (u,0) decreases as tk increases to become the graph of M for tk = T = 44. Recall
that v̌h

0(u(0)) gives the initial portfolio of the hedging strategy and W h
0 (u(0),0) the

corresponding premium.
Similarly, Fig. 10.2 shows the same graphs for a digital call. The peak in v̌h

k is
more pronounced the closer tk is to T . But because of transaction costs, it remains

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 10,
© Springer Science+Business Media New York 2013
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Table 10.1 Default parameters for numerical computations

μ0 K D T τ−+μ0 τ++μ0 C− C+ c− c+

0.0123% 1 1 44 −5% 3% −0.6986% 0.7014% 0.5×C− 0.5×C+
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Fig. 10.1 Graphs of v̌h
k (u) and W h

k (u,0) for tk = 0,10,20,30,40,44 for a vanilla call
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Fig. 10.2 Graphs of v̌h
k (u) and W h

k (u,0) for tk = 0,10,20,30,40,44 for a digital call

bounded by D/C+. Concerning W h
k (u,0), the same remark applies that was made

previously, but now with the step function M of a digital call.

10.1.2 Numerical Comparison with Black–Scholes

The qualitative aspects of the graphs of W in Fig. 10.1 bear a notable similarity to
that of the Black–Scholes theory. To see that more clearly, we provide in Fig. 10.3 a
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Fig. 10.3 Comparison of Black–Scholes premium for σ = 0.03,0.04,0.05,0.08,0.1,0.2,0.3
(dotted lines) with our premium with and without transaction costs (solid lines)

superposition of the graphs of W (0,u,0), both with and without transaction costs1

(the two solid lines) and the graphs of the Black–Scholes premiums, for volatilities
σ = 0.03,0.04,0.05,0.08,0.1,0.2,0.3 (dotted lines). For this computation, in the
case with transaction costs, we have used the partial differential equation (PDE)
(8.12) and representation formula (8.13) of our continuous-time theory, integrated
with an order-2 Runge Kutta method in time, and a centered (order 2) finite
difference scheme in u. This is also a way to verify the convergence of the discrete
algorithm to the continuous-time solution.

We notice that our premium in the absence of transaction costs is very close to the
Black–Scholes premium for σ = 0.04. This is not surprising in view of the fact that
for a convex terminal payment, and without transaction costs, our theory coincides
with that of Cox, Ross, and Rubinstein, which, for a small enough step size, is close
to Black–Scholes.

Remark 10.1. This convergence argument must be used with care. Indeed, in the
convergence of the theory of Cox, Ross, and Rubinstein toward Black–Scholes, the
interval [d−1,u−1]must decrease toward zero as

√
h. In our theory, the underlying

1Our continuous-time theory trivializes to the stop-loss strategy and premium in the absence of
transaction costs. But this is not so for the discrete-time theory. Here it is used with a step size
equal to 1 (day).
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Fig. 10.4 Comparison of premium for a digital call as derived from the Black–Scholes theory with
σ = 0.03,0.04,0.05,0.08,0.1,0.2,0.3 (dotted lines) with ours with and without transaction costs
(solid lines)

market model is continuous and fixed, which makes the interval [τ−h ,τ+h ] decrease
as h. This is why in the limit and without transaction costs, our theory converges to
the stop-loss strategy and not to a Black–Scholes equivalent.

The convergence argument does not apply to a nonconvex terminal payment,
so that we should not expect to see the digital options premium coincide with
that of formula (2.16). Moreover, the worst-case analysis is clearly more different
from the classical theory in the case of digital options, where our theory gives
a premium equal to D as soon as u(0) ≥ u− � K . Indeed, this shows up in
the graphs we provide in Fig. 10.4. Here, due to the complex partitioning of the
(t,u) space exhibited by Fig. 9.1, using the fundamental PDE would be exceedingly
difficult. Hence the premium of our theory was computed with the discrete-time fast
algorithm, with a step size of 0.1.

10.1.3 Explaining the Volatility Smile

A question raised by a reviewer is: does the new theory say anything about the
volatility smile?
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Fig. 10.5 Black–Scholes implied volatility for premiums of our theory as a function of K /u0.
Thick line: default parameters, thin line: τ+ =−τ− = 0.02

Note first that the interval model does not have a concept of volatility. The nearest
thing might be the width τ+− τ− of the interval of admissible relative variations.
But as stressed in Part II, this is a measure of risk and not of variability.

Yet, we may offer one remark.

Remark 10.2. The premiums computed by the new theory, analyzed with the
tools of the Black–Scholes theory, display a volatility smile (at least for realistic
parameter values).

To show this, we took the premiums computed with our theory for a fixed
maturity, a fixed initial stock price u0, and exercise prices K ranging from .5u0

to 2u0. Then, for each premium we computed the implied volatility of the Black–
Scholes theory. We systematically found that the implied volatility was minimal
for K slightly above u0 and maximum at the extremes, drawing a rather typical
“smile.” Hence, if the premiums on the market follow our theory, one will indeed
observe a smile. Figure 10.5 shows such curves for two sets of parameter values.

We do not give too much credit to this verification, though, as there is no reason
why the actual premiums should obey our theory. On the other hand, that theory
is not known by the agents on the market, and on the other hand, is not known
engineering experience teaches us that Milton Friedman’s “as if” argument [76,
Chap. 1] is more credible for the long-term adaptive processes of evolution – as
suggested by Friedman himself but contrary to his billard expert example – or
economics than for such complex technical matters. We consider our theory more
as a normative one, a decision help, than as a positive theory.

Yet, if one believes that real-life premiums obey a rational rule, this favors our
theory.
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10.2 Compared Strengths and Weaknesses

To go further in a comparison, one must distinguish between what the mathematics
strictly say and what is practically possible beyond the mathematically grounded
facts, thanks to some robustness in the theory.

10.2.1 Strict Mathematical Properties

Clearly, a major weakness of our model is that it rules out from the start very fast
price variations in the market. If we try to take τ− and τ+ so large that the model
is (essentially) always satisfied, then we will end up with an unrealistically large
premium. This relates to the classic fact that because our market model is incomplete
we must resort to superreplication, potentially ending up with that unrealistically
large premium. Hence, only by tolerating some violations of the market model will
we get a reasonable premium.

Now, the Black–Scholes theory has its own theoretical shortcomings. On the one
hand, it fundamentally assumes that trading is continuous and with no delay. It is
impossible, within Samuelson’s model, to achieve hedging if the trading is not done
continuously, except with the trivial – and too expensive – “buy and hold” strategy
v = u. On the other hand, within Samuelson’s model, there is no nontrivial hedging
portfolio for option pricing with transaction costs [138].

The first problem derives from the fact that Samuelson’s model may display
arbitrarily large price variations in any finite time, while the second problem stems
from the closely related fact that it has almost surely trajectories of unbounded total
variation. (This in itself could be considered as not very realistic.)

Let us concentrate on the continuous versus discrete trading issue. Real trading
must be discrete, forcing a discrepancy between real trading and the Black–Scholes
theory. This is of little consequence as long as the price of the underlying stock does
not change too quickly. But when it does, that discrepancy becomes potentially fatal.

Hence both theories fail under the same circumstances – when there are
unusually fast-moving variations in the price of the underlying stock. In our theory,
the market model is violated; in Black–Scholes, it is the portfolio model that fails.

Mathematically, it is impossible to reconcile a model that allows for arbitrarily
large stock price variations within one time step with discrete-time hedging. Hence
a mathematical theory must give up one of the two features. Black–Scholes gives
up the (theoretical) ability to do discrete trading. We wanted to develop a theory of
discrete trading, the discrete-time market model being consistent with (i.e., the time
sampling of) a continuous-time underlying market model, kept fixed as the time
step is decreased. Thus we had to give up a model that would allow for arbitrarily
large price variations in one time step. Yet we wanted a model less idealized than
that of Cox, Ross, and Rubinstein – and not dependent on the time step. Thus
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we were forced to invent the interval model,2 at the price of relinquishing market
completeness. And it is no surprise that other authors came up with the same model.

Turning now to the transaction-cost issue, such costs are a natural ingredient
of our theory. Indeed we were forced to introduce them to avoid the naive stop-
loss strategy, which is the only solution of the continuous hedging problem in the
absence of transaction costs. While we view our new theory’s ability to deal exactly
with transaction costs, even large ones and with a moderate computational load, as
a strength of the theory, the fact that in their absence the only solution is the naive
one may be viewed as a limitation of any model with bounded variation trajectories.
In contrast, one needs the difficult theory of diffusion limits to deal approximately
with small transaction costs in the Black–Scholes theory, giving up exact replication,
and at the price of very large computational loads [1].

Finally, once transaction costs are introduced, it is only natural to assume that
there are closing costs as well. The introduction of those costs creates a difference
between closure in kind or closure in cash. This is a fact of life. Yet, if this difference
is deemed annoying, closing costs may be removed, just by setting c− and c+ to
zero, this time with no detrimental effect on the theory.

10.2.2 Robustness

Now, it is well known that in practice, the Black–Scholes theory, and the derived
δ -hedging strategy, can be used with discrete transactions, provided that they are
frequent enough. Also, small transaction costs can be tolerated in practice. These
are features of robustness of that theory to small violations of the hypotheses used
to derive it.

The new theory also seems to exhibit a fair degree of robustness, as illustrated by
the following numerical experiments, reported here for a vanilla call only. (Similar
experiments with a digital call are reported in [142].)

10.2.2.1 Stochastic Spillover and Expected Cost

In a first series of experiments, we assumed that the relative one-step variation
τk = (u(tk+1)− u(tk))/u(tk) obeyed a simple independent identically distributed
stochastic model, with compact support [σ−,σ+] possibly larger than [τ−,τ+], and
we computed the expected cost to the seller of applying the strategy ϕ� derived from
our theory for τ ∈ [τ−,τ+]. Specifically, we chose a relative spillover Δ > 0,

σε = (1+Δ)τε , ε ∈ {−,+},
and we used two different probability laws: uniform and “hat,” i.e., a law with
piecewise affine density, equal to zero at both end points σε and maximum at zero.

2But not the name, which was coined by Engwerda et al. [132].
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Fig. 10.6 Theoretical premium P and expected cost QΔ for a vanilla call, a uniformly distributed
τ , and a relative spillover Δ = 0,0.5,1

The computation of the expected cost was done using Kolmogorov’s equation,

W h
k (u,v) = E[W h

k+1((1+ τ)u,(1+ τ)(v+ ξ �
k ))− τ(v+ ξ �

k )]+Cε〈ξ �
k 〉 ,

W h
K(u,v) = N(u,v).

(This requires only a small modification of the computer code for the standard
algorithm.) The expectation at each time step was computed using the trapezoid
formula.

Vanilla call

The results for a vanilla call and the uniform law are drawn in Fig. 10.6. We call
P(u(0)) the premium obtained from our theory and QΔ the expected cost computed
as described. We plotted P and QΔ for Δ = 0,0.5,1. The curve for Δ = 0.85 would
be indistinguishable from the curve of P. The results for the hat law are given in
Fig. 10.7 for Δ = 0.5,1,2. The curve for Δ = 1.62 would be indistinguishable from
the curve of P. Finally, a better representation of the role of Δ can be obtained from
Fig. 10.8, where we plotted P(K )−QΔ (K ) as a function of Δ .

Obviously, according to our previous remarks, the strategy ϕ� remains safe in
expectation up to a relative spillover of 85% for a uniform law and 162% for the
hat law.
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Fig. 10.7 Theoretical premium P and expected cost QΔ for a vanilla call, a “hat” distributed τ ,
and a relative spillover Δ = 0.5,1,2
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Fig. 10.8 Vanilla call: P−QΔ for u(0) = K as a function of Δ
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Fig. 10.9 Theoretical premium P and expected cost QΔ for a digital call, a uniformly distributed τ ,
and a relative spillover Δ = 0,0.5,1
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Fig. 10.10 Theoretical premium P and expected cost QΔ for a digital call, a “hat” distributed τ ,
and a relative spillover Δ = 0.5,1,2

Digital call

Similar computations were performed for a digital call. The corresponding curves
can be seen in Fig. 10.9 for the uniform law and in Fig. 10.10 for the hat law.
The complex behavior of these curves close to u = K remains unexplained at this
time. In both figures, we have drawn two plots with different u scales to show that
behavior, and also the behavior at large u, which exhibits, as expected, an asymptote
at QΔ = 1.

In Fig. 10.11, we give the equivalent of Fig. 10.8, but for the digital call, and with
P and QΔ evaluated at u(0) = 0.8K to stay away from the region close to K where
the “worst-case” effect is strong. The implication is that, here again, a spillover of
80% for the uniform law and one of 150% for the hat law still provide a hedge in
expectation.
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Fig. 10.11 Digital call: P−QΔ for u(0) = 0.8K as a function of Δ

10.2.2.2 Deterministic Spillover and Simulated Cost

In a last set of experiments, we used time series of underlying prices, either real
or simulated as a lognormal sequence à la Samuelson. On each time series, we
narrowed the interval [τ−,τ+] by rejecting a symmetric and increasing proportion
of the samples τk. The proportion p of samples outside the interval used is therefore
a measure of the relative spillover. Next, we computed the hedging strategy derived
from our theory and simulated its application to the given time series, and we plotted
the cost incurred by the seller together with the premium computed according to
our theory. In the following figures, we plotted both against the relative spillover p.
To have a better comparison with Black–Scholes, we also plotted the cost incurred
without the transaction costs, and we have estimated the empirical volatility of the
time series to show the Black–Scholes premium.

Figures 10.12–10.15 show the results of these experiments for two real-time
series, Airfrance shares from August 18 to October 20, 1998 (estimated volatility
0.03), Paris’ stock exchange CAC40 index from March 6 to May 8, 1998 (estimated
volatility 0.01), and two simulated lognormal time series with zero drift and
volatilities 0.1 and 0.01.

We remark that the results are more satisfactory for the simulated lognormal
series, where a relative spillover of 30% seems acceptable, than for the real ones,
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Fig. 10.12 Theoretical premium and cost incurred as a function of spillover, Airfrance series
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where only a 20% relative spillover yields an effective hedge, but with a higher
premium than Black–Scholes. Also, the gap with a Black–Scholes premium is larger
for low volatilities. Indeed, for low volatilities, the worst-case analysis leads to too
high a premium.

10.3 Conclusion

A careful analysis shows that it is rather natural to resort to such “interval models.”
Furthermore, for the strict problem of hedging a contingent claim, the robust control
approach used in this volume allows us to proceed without endowing the set of
admissible stock price trajectories with a probability law. This is so since what is
sought is a hedge for every possible trajectory. (And this remark carries over to the
Black–Scholes theory, as we showed in Chap. 2.)

The resulting theory exhibits a strong mathematical structure that can be
exploited to get semiexplicit formulas leading to a fast algorithm, whether in discrete
or continuous trading. The latter is the limit of the former with vanishing step size,
this, we stress, keeping the same continuous-time model for the underlying price
trajectories. Thus the discrete trading strategy, which is very simple to implement,
is a good and safe approximation of the theoretical continuous strategy.
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Fig. 10.15 Theoretical premium and cost incurred as a function of spillover, lognormal series,
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The premiums computed qualitatively and quantitatively resemble Black–
Scholes premiums, although the presence of transaction costs obviously makes
them larger. Moreover, they display (explain?) the volatility smile observed in
real-life premiums.

The hedging strategies derived from the theory exhibit a fair degree of robustness
to violations of the market model. Our simulations show that a relative spillover of
30% of the relative one-step price variations, as compared to the interval model used,
often leads to a premium comparable to the Black–Scholes premium and an effective
hedge. Yet, these simulations were run using a posteriori “statistical” information on
the price series. If an approach based on the interval model is to be routinely used,
then one must also develop new statistical tools to inform it.

This robustness analysis is carried out in a normative perspective to show that
this theory can be used on the actual market as a decision aid. In spite of the remark
concerning the volatility smile, we have at this point no claim to a positive theory
that would explain premiums actually used by operators, the less so because the
current market is overwhelmingly dominated by the Black–Scholes theory, which
is, in that respect, more or less self-enforcing.

While we obviously claim no overall superiority over the Black–Scholes theory,
we feel that the results provided so far point to the conclusion that our theory might
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be useful in some situations, for instance, when transaction costs are too high to
be neglected or when time discretization is critical. And in any case, it provides a
sensible alternative to the analysis of the problem of option pricing.

Yet this is by all means a young theory. There remains much work to be done
in sensitivity analysis, simulations, and validation, and many theoretical questions
remain open. We hope to have proved that such work is worthwhile pursuing.
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Author: Vassili N. Kolokoltsov
Department of Statistics,
University of Warwick,
UK

In this part, the author expands the ideas in the papers [95, 96] to develop a pure
game-theoretic approach to option pricing in a multidimensional market (rainbow
options), where risk-neutral probabilities emerge automatically from the robust-
control evaluation. The process of investment is considered as a zero-sum game
between an investor and Nature. We also extend the analysis to credit derivatives
such as credit default swaps.

Notation

• T : Exercise time
• t ∈ [0,T ]: Current time
• τ: Time step
• m: Current time step
• n: Last time step; T = nτ
• S j , j ∈ {1, . . . ,J}: Market price of asset j
• d j,u j: Minimum and maximum ratios S j

m+1/S j
m

• ξ j: Actual ratio S j
m+1/S j

m

• r: Riskless interest rate
• ρ = 1+ rτ: Yield of riskless asset
• γ j

m: Number of shares of asset j in portfolio at time step m
• Xm: Portfolio worth at time step m
• K: Exercise price, or “strike”
• f : Terminal payment faced by seller
• β : Proportional transaction cost rate



Chapter 11
Introduction

11.1 Introduction to Game-Theoretic Pricing

Expanding the ideas of the author’s papers [95,96] we develop a pure game-theoretic
approach to option pricing in a multidimensional market (rainbow options), where
risk-neutral probabilities emerge automatically from robust control evaluation.
The process of investment is considered as a zero-sum game of an investor
with Nature.

For basic examples of complete markets, like binomial models or geometric
Brownian motion, our approach yields the same results as the classic (by now) risk-
neutral evaluation developed by Cox–Ross–Rubinstein or Black–Scholes. However,
for incomplete markets, such as those for rainbow options in multidimensional
binomial or interval models, the coexistence of an infinite number of risk-neutral
measures precludes unified pricing of derivative securities by the usual methods.
Several competing methods have been proposed for pricing options under these
circumstances (see, e.g., a review in Bingham and Kiesel [45]), most of them using
certain subjective criteria, say a utility function for payoff or a certain risk measure.
In our game-theoretic approach, no subjectivity enters the game. We define and
calculate a hedge price, which is the minimal capital needed to meet the obligation
for all performances of the markets, within the rules specified by the model
(dominated hedging).

Though our price satisfies the so-called no strictly acceptable opportunities
(NSAO) condition suggested in Carr et al. [53], one still could argue, of course, that
this is not a completely fair price, because the absence of an exogenously specified
initial probability distribution does not allow us to speak about a.s. performance and
implies necessarily the possibility of an additional surplus. However, together with
the hedging price for buying a security, which may be called an upper price, one
can equally reasonably define a lower price that can be seen as a hedge for selling
the security. The difference between these two values can be considered as a precise
measure of the intrinsic risk that underlies incomplete markets. An alternative way
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218 11 Introduction

to deal with possible unpredictable surplus, as suggested, for example, in Lyons
[108] for models with unknown volatility, consists in specifying a possible cash
back that the holder of an option should receive when price moves (unpredictable
initially) turn out to be favorable.

Our method is robust enough to be able to accommodate various market rules
and settings including path-dependent payoffs, American options, real options, and
transaction costs. On the other hand, it leads to rather simple numerical algorithms.
The continuous-time limit is described by nonlinear or fractional Black–Scholes
type equations.

For completeness, we also demonstrate how the standard stochastic models of
financial dynamics come very naturally into play in our game-theoretic setting.

A more detailed description is available at the beginning of each chapter.
The main results are given in Chaps. 12 and 13.

11.2 Related Works

Some bibliographical comments seem to be in order. A game-theoretic (or robust
control) approach to options was used in McEneaney [112], though in that paper
the main point was to prove that the option prices of standard models could be
characterized as viscosity solutions of the corresponding Hamilton–Jacobi equation.
As a byproduct it was confirmed (similarly to analogous results in Avellaneda et al.
[18] and Lyons [108]) that one could hedge prices in stochastic volatility models
by the Black–Scholes strategies specified by the maximal volatility. A related
paper is Olsder [123], where only a basic one-dimensional model was analyzed,
though with some transaction costs included. An ideologically related paper is
De Meyer and Moussa Saley [66] devoted to the strategic origins of Brownian
motion. A completely different approach to bringing game theory to option pricing
is developed in Ziegler [148, 149].

The reasonability of the extension of the binomial model allowing for price jumps
inside an interval (interval model) was realized by several authors; see Kolokoltsov
[95], Bernhard [37], Aubin et al. [17], and Roorda et al. [132]. In the last-named
paper the term interval model was coined. The series of papers by Bernhard et al.
[36, 37, 39] deals with one-dimensional models with very general strategies and
transaction costs including both continuous and jump-type trading. The correspond-
ing Hamilton–Jacobi–Bellman equations have peculiar degeneracies that require
subtle techniques to handle.

Hedging by domination (superreplication), rather than replication, is well
established in the literature, especially in connection with models incorporating
transaction costs; see, for example, [23]. Problems with transaction costs in standard
models are well known, as the title (“There is no nontrivial hedging portfolio
for option pricing with transaction costs”) of Soner et al.’s [138] paper indicates.
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This problem, similar to the story with incomplete markets, leads to the development
of optimizations based on a subjectively chosen utility function; see, for example,
Davis and Norman [65] and Barles and Soner [23].

Upper and lower values for prices have been discussed in many works; see, for
example, El Karoui and Quenez [71] and Roorda et al. [132]. An abstract definition
of lower and upper prices can be given in the general game-theoretic approach to
probability and finance advocated in the monograph by Shafer and Vovk [136].

The well-known fact that the existing (however complicated) stochastic models
are far from being precise reflections of the real dynamics of market prices
leads naturally to attempts to relax the assumed stochastic restrictions of models.
For instance, Avellaneda et al. [18] and Lyons [108] work with unknown volatilities
leading to nonlinear Black–Scholes type equations (though still nondegenerate,
unlike those obtained here subsequently). On the other hand, Hobson [84] (see also
[83, 85] and references therein) suggests model-independent estimates based on
the observed prices of traded securities, the main technique being the Skorohod
embedding problem (SEP). These approaches still build the theory on some basic
underlying stochastic model (e.g., geometric Brownian motion), unlike our method,
which starts up front with robust control. Similarly, hedging with respect to
several (or all) equivalent martingale measures, based on optional decomposition
(see Föllmer and Kramkov [74] and Kramkov [106]), depend on some initial
probability law (with respect to which equivalence is considered). The risk-neutral
or martingale measures that arise from our approach are not linked to any initial law.
They are not equivalent but represent extreme points of risk-neutral measures on all
possible realizations of a stock price process.

“Fractional everything” has become a popular topic in modern literature; see,
for example, the recent monograph by Tarasov [141]. For the study of financial
markets, this is, of course, a natural step in moving from a discussion of power laws
in economics (see, e.g., the various perspectives in Uchaikin and Zolotarev [144],
Maslov [111], and references therein) to the applicability of fractional dynamics in
financial markets (see, e.g., Meerschaert and Scala [114], Meerschaert et al. [113],
Jumarie [92], Wang [145], and references therein. Our game-theoretic analysis leads
to degenerate or nonlinear versions of fractional Black–Scholes type equations.

The main ideas of this exposition were presented in brief in [102].



Chapter 12
Emergence of Risk-Neutral Probabilities
from a Game-Theoretic Origin

12.1 Geometric Risk-Neutral Probabilities
and Their Extreme Points

In this section we will introduce risk-neutral probabilities in an abstract geometric
setting revealing their basic properties and describing their extreme points. This
discussion belongs to convex analysis and is independent of either games or finance,
but it will provide us with basic tools to use later.

For a compact metric space E we denote by P(E) the set of probability
laws on E and by C(E) the Banach space of bounded continuous functions on
E . For our purpose here we will mostly need finite subsets E = {ξ1, . . . ,ξk} of
R

d (in which case probability laws are given by the sets of positive numbers
{p1, . . . , pk} summing up to one). We will work in a bit more general setting
anticipating further applications; more general compact sets pop in very naturally
sometimes, especially when dealing with mixed strategies.

For f ∈ C(E), μ ∈ P(E), the standard pairing is given by the integration or, in
more probabilistic notation, by the expectation (where we will denote, with some
abuse of notation, random and integration variables by the same letter):

( f ,μ) =
∫

E
f (x)μ(dx) = Eμ f (x) = Eμ f .

This pairing also extends to vector-valued functions f .
The set P(E) is known to be a compact set in its weak topology [where μn → μ ,

as n → ∞, whenever ( f ,μn)→ ( f ,μ) for any f ∈C(E), as n → ∞].

Definition 12.1. Let us say that a probability law μ ∈ P(E) on E ⊂ R
d is risk

neutral with respect to the origin or, more concisely, risk neutral if the origin is
its barycenter, that is,

∫
E ξ μ(dξ ) = 0. The set of all risk-neutral laws on E will be

denoted by Prn(E).
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222 12 Emergence of Risk-Neutral Probabilities

It will be convenient to work in a bit more general setting of probability laws with
linear constraints. That is, for a compact subset E ⊂ R

n and a continuous mapping
F : E →R

d let

P(E;F) = {μ ∈ P(E) : (F,μ) =
∫

F(x)μ(dx) = 0}.

This is clearly a convex closed subset of P(E) (which may be empty of course),
and Prn(E) = P(E; Id), where Id is the identical mapping of E .

The key role for the analysis of risk-neutral probabilities belongs to the following
two conditions for a subset of Rd .

Definition 12.2. A set E ⊂ R
d is called weakly (resp. strongly) positively complete

if there exists no ω ∈ R
d such that (ω ,ξ ) > 0 [resp. (ω ,ξ ) ≥ 0] for all ξ ∈ E .

Geometrically, this means that E does not belong to any open (resp. closed) half-
space of Rd .

Clearly E is strongly positively complete if for any ω ∈ R
d there exist vectors

ξ1,ξ2 ∈ E such that (ω ,ξ1) > 0 and (ω ,ξ2) < 0. If E ⊂ R
d is a compact convex

set, then E is weakly positively complete if and only if it contains the origin. It is,
moreover, strongly positively complete whenever the origin is not its boundary
point.

Remark 12.3. Roorda et al. [131] call a finite set E positively complete if it is
weakly positively complete in our sense.

The importance of these notions is revealed in the following statement.

Proposition 12.4. Let E ⊂ R
n be compact and a mapping F : E → R

d continuous.

(1) The set P(E;F) is not empty if and only if F(E) is weakly positively complete
in R

d.
(2) Let E ′ be the support of a measure μ ∈ P(E;F). If F(E ′) does not coincide

with the origin, then it is strongly positively complete in the subspace Rm ⊂ R
d

generated by F(E ′).
(3) Let F(E) be weakly positively complete in R

d. Then either the support of any
μ ∈ P(E;F) is contained in F−1(0) or there exists a subspace R

m ⊂ R
d such

that F(E)∩R
m is strongly positively complete in R

m and any μ ∈ P(E;F) has
a support in F−1(Rm).

Proof. (1) Let F(E) be not weakly positively complete, so that there exists ω ∈R
d

such that (ω ,F(x)) > 0 for all x ∈ E . Then

(ω ,
∫

F(x)μ(dx))> 0 (12.1)

for any μ ∈ P(E), which cannot hold for μ ∈ P(E;F). Conversely, suppose
the set P(E;F) is empty. Then the image of P(E) under the linear mapping
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μ →
∫

F(x)μ(dx)

does not contain the origin. As it is a compact convex set, it follows (by the
Banach separation theorem) that there exists an ω ∈R

d such that

(ω ,
∫

F(x)μ(dx))> 0

for all μ ∈ P(E). In particular, using point measures we conclude that
(ω ,F(x))> 0 for all x ∈ E .

(2) Suppose F(E ′) �= {0}, so that it generates a subspace R
m ⊂ R

d with m > 0.
Then for any ω ∈ R

m there exists x ∈ E ′ such that (ω ,F(x)) �= 0. But since

(ω ,

∫
F(x)μ(dx)) = 0,

there must exist another y ∈ E ′ such that the signs of (ω ,F(y)) and (ω ,F(x))
are different.

(3) Suppose F(E) is weakly positively complete. Then either F(E) is strongly
positively complete (and we are done) or there exists ω ∈ R

d such that
(ω ,F(x))≥ 0 for all x∈E and the set E1 = {x∈E : (ω ,F(x)) = 0} is nonempty.
Let Π be the subspace generated by F(E1). As it belongs to the subspace
orthogonal to ω , its dimension is strictly less than d. Moreover, the support
of any μ ∈ P(E;F) is contained in E1, so that P(E;F) = P(E1;F). As this
set is not empty, F(E1) is weakly positively complete in R

m. The proof is now
completed by induction in the dimension d.


�
Let us turn to the extreme points of sets P(E;F). It is a well-known (and a

simple) fact that the set of extreme points of P(E) coincides with the set of Dirac
measures (or atoms) δx, x ∈ E , that assign the total mass to a single point x. The next
statement is a straightforward extension of this fact.

Proposition 12.5. Let E ⊂ R
n be compact, a mapping F = (F1, . . . ,Fd) : E → R

d

be continuous, and μ be an extreme point of the set P(E;F). Then μ is a linear
combination of not more than d+ 1 Dirac measures.

Proof. Assuming our claim does not hold, one can find a partition of E in d + 2
Borel subsets E = E1 ∪·· ·∪Ed+2 that are pairwise disjoint with μ(Ei)> 0 for all i.
As μ ∈ P(E;F),

(Fi,μ) =
d+2

∑
j=1

∫

E j

Fi(x)μ(dx) = 0, i = 1, . . . ,d.
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For any collection of (d + 1) numbers εi ∈ (−1,1) let

μ+ =
d+2

∑
j=1

(1+ ε j)μ |E j , μ− =
d+2

∑
j=1

(1− ε j)μ |E j .

Clearly, μ± are positive measures such that μ = (μ++μ−)/2. To show that μ is not
an extreme point of P(E;F) (and hence to complete the proof), it is sufficient to
show that there exists a family of ε j such that μ± ∈ P(E;F), that is,

d+2

∑
j=1

ε jμ(E j) = 0,

d+2

∑
j=1

ε j

∫

E j

Fi(x)μ(dx) = 0, i = 1, . . . ,d.

But this is a homogeneous system of d + 1 linear equations for d + 2 variables, so
that the solution space has a positive dimension. 
�

Let us now give more specific results for risk-neutral laws.
From Proposition 12.4 it follows that the set of risk-neutral laws Prn(E) on

a compact subset E ⊂ R
d is not empty if and only if E is weakly positively

complete and the support of any risk-neutral law is strongly positively complete
in the subspace it generates.

Let us start with the most important case of finite subsets E = {ξ1, . . . ,ξk} of
R

d . If such E is strongly positively complete, then k > d (by the Banach separation
theorem). Hence the minimal families of vectors in R

d satisfying strong positive
completeness contain precisely d+ 1 vectors.

Let us say that a finite family of vectors E = {ξ1, . . . ,ξk} in R
d is in general

position if the vectors of any subset of {ξ1, . . . ,ξk} of size d are linearly independent
(in particular, all vectors in E are nonvanishing).

Proposition 12.6. Let a finite set E = {ξ1, . . . ,ξd+1} be strongly positively com-
plete in R

d. Then

(1) The family E is in general position;
(2) The origin belongs to the interior of the simplex Π [ξ1, . . . ,ξd+1], defined as the

convex hull of the family {ξ1, . . . ,ξd+1};
(3) There exists a unique risk-neutral probability law {p1, . . . , pd+1} on the set

{ξ1, . . . ,ξd+1}, with

pi =C−1(−1)i−1 det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ξ 1
1 · · · ξ 1

i−1 ξ 1
i+1 · · · ξ 1

d+1

ξ 2
1 · · · ξ 2

i−1 ξ 2
i+1 · · · ξ 2

d+1

· · ·
ξ d

1 · · · ξ d
i−1 ξ d

i+1 · · · ξ d
d+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, i = 1, . . . ,d,

(12.2)
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where

C = det

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 1 · · · 1

ξ 1
1 ξ 1

2 · · · ξ 1
d+1

· · ·
ξ d

1 ξ d
2 · · · ξ d

d+1

⎞

⎟
⎟
⎟⎟
⎟
⎠
. (12.3)

Proof. (1) If the vectors ξ1, . . .ξd , say, are dependent, then they generate a proper
subspace Π of Rd . Then, for any ω ∈ R

d that is orthogonal to Π we will have
either (ω ,ξi) ≥ 0 for all i or (ω ,ξi) ≤ 0 for all i (depending on the position of
the vector ξd+1), contradicting the strong positive completeness.

(2) If the origin does not belong to the interior of the convex compact set
Π [ξ1, . . . ,ξd+1], then by the Banach separation theorem there exists a closed
half-space of Rd containing all ξ1, . . . ,ξd+1. This again contradicts the strong
positive completeness.

(3) The existence and uniqueness of a risk-neutral probability law on the set
{ξ1, . . . ,ξd+1} follow directly from (2) and (1), respectively. To prove (12.2),
let us consider the following vector-valued determinant:

D = det

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

ξ1 ξ2 · · · ξd+1

ξ 1
1 ξ 1

2 · · · ξ 1
d+1

ξ 2
1 ξ 2

2 · · · ξ 2
d+1

· · ·
ξ d

1 ξ d
2 · · · ξ d

d+1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

defined via its expansion with respect to the first row. Clearly D = 0, as each
of its coordinates is given by a determinant with two coinciding rows. Hence,
expanding it with respect to the first row yields

d+1

∑
i=1

piξi = 0,

with pi given by (12.2). By (1) and (3), a collection of real numbers {pi}, i =
1, . . . ,d+1 (not even necessarily positive) is defined uniquely (up to a constant
multiplier) by the condition ∑d+1

i=1 piξi = 0. Hence it remains to observe that the
probabilities {pi} sum up to one, which one sees by expanding the determinant
defining the normalizing constant (with respect to the first row). 
�

A geometric interpretation of the probabilities {pi} will be revealed in the next
section, where they will arise naturally from certain game-theoretic (or robust-
control) evaluation.

For arbitrary k we have the following proposition.
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Proposition 12.7. Let a family E = {ξ1, . . . ,ξk} be strongly positively complete
and in general position. Then the extreme points of the convex set of risk-neutral
probabilities on {ξ1, . . . ,ξk} are risk-neutral probabilities with supports on strongly
positively complete subsets of E of size precisely d+ 1.

Proof. By Proposition 12.5, any extreme risk-neutral law is supported on no more
than d+ 1 points.

On the other hand, it is clear that risk-neutral probabilities with supports on
strongly positively complete subsets of size precisely d + 1 are extreme points.
In fact, if this were not the case for such a probability law, then it could be presented
as a convex combination of other risk-neutral laws. But these risk-neutral laws
would necessarily have the same support as the initial law, which would contradict
the uniqueness of the risk-neutral law supported by d+1 points in general position.

Finally, by our nondegeneracy assumption, any set of k < d + 1 points forms
a basis in the subspace R

k it generates and hence is not even weakly positively
complete (and hence cannot support a risk-neutral measure). 
�
Remark 12.8. The preceding statement implies that there exist strongly positively
complete subsets of size precisely d+1 because the set of risk-neutral probabilities
is not empty and hence contains extreme points (as any convex compact set). It is
also easy to prove this fact explicitly using Carathéodory’s theorem: if a point x in
R

d lies in the convex hull of a set P, then there is a subset P′ of P consisting of d+1
or fewer points such that x lies in the convex hull of P′.

The most general result is as follows.

Proposition 12.9. Let a compact set E ⊂ R
d be strongly positively complete. Then

the extreme points of the set of risk-neutral probabilities on E are the Dirac mass at
zero (only when E contains the origin) and the risk-neutral measures with support
on families of size m+ 1, 0 < m ≤ d, that generate a subspace of dimension m and
are strongly positively complete in this subspace.

Proof. It is clear that the laws specified in the proposition are extreme points.
Conversely, assume that the support E ′ of an extreme risk-neutral measure contains
m + 1 > 0 points with m > 0. By Proposition 12.5, m ≤ d. If E ′ generates a
subspace of dimension less than m, then, again by Proposition 12.5, it cannot support
an extreme risk-neutral measure. Finally, by Proposition 12.4 (2), E ′ is strongly
positively complete in the subspace it generates. 
�

12.2 Game-Theoretic Origin of Risk-Neutral Laws:
Preliminaries

We will now develop a general technique for the evaluation of minimax expressions
depending linearly on one of the controls showing how naturally the extreme risk-
neutral probabilities arise in such an evaluation. That is, let E be a compact subset of
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R
d and f a continuous function on E . We aim at the evaluation of the game-theoretic

(or minimax) expression

Π [E]( f ) = inf
γ∈Rd

sup
ξ∈E

[ f (ξ )− (ξ ,γ)] (12.4)

and at finding the corresponding minimizing γ (whenever the minimum exists).
More generally, for a compact metric space E and continuous functions f : E → R,
g : E →R

d , we are interested in the expression

Π [E]( f ;g) = inf
γ∈Rd

sup
ξ∈E

[ f (ξ )− (g(ξ ),γ)]. (12.5)

However, this problem can be reduced to the previous one because one has

Π [E]( f ;g) = inf
γ∈Rd

sup
η∈g(E)

[ max
ξ∈g−1(η)

f (ξ )− (η ,γ)]. (12.6)

Similar problems with γ , not from the whole Rd but restricted to its bounded subset,
are also of interest.

In this section we initiate this analysis by looking at Problem (12.4) with a finite
set E having precisely d+1 points. Two remarkable facts that we will reveal are that
in this case expression (12.4) depends linearly on f and the minimizing γ is unique
and also depends linearly on f .

To introduce the main ideas in a simple setting, let us start with a three-point set
E in R

2, that is, with the problem of calculating

Π [ξ1,ξ2,ξ3]( f ) = min
γ∈R2

max
ξ1,ξ2,ξ3

[ f (ξi)− (ξi,γ)], (12.7)

assuming that the set E = {ξ1,ξ2,ξ3} is strongly positively complete in R
2.

Suppose the min in (12.7) is attained on a vector γ0 and the corresponding max
on a certain ξi. Suppose this max is unique, so that

f (ξi)− (ξi,γ0)> f (ξ j)− (ξ j,γ0) (12.8)

for all j �= i. As ξi �= 0, changing γ0 by a small amount we can reduce the left-
hand side of (12.8) by preserving inequality (12.8). This possibility contradicts
the assumption that γ0 is a minimal point. Hence, if γ0 is a minimal point, the
corresponding maximum must be attained on at least two vectors. Suppose it is
attained on precisely two vectors, that is,

f (ξi)− (ξi,γ0) = f (ξ j)− (ξ j,γ0)> f (ξm)− (ξm,γ0) (12.9)

for some different i, j,m. Since the angle between ξi,ξ j is strictly less than π [by
Proposition 12.6 (1)], adding a vector

ε(ξi/|ξ j|+ ξ j/|ξi|)
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to γ0 will reduce simultaneously the first two expressions from the left-hand side
of (12.9) but preserve (for small enough ε) the inequality on the right-hand side of
(12.9). This again contradicts the assumption that γ0 is a minimal point. Hence, if γ0

is a minimal point, it must satisfy the equation

f (ξ1)− (ξ1,γ) = f (ξ2)− (ξ2,γ) = f (ξ3)− (ξ3,γ), (12.10)

which is equivalent to the system

{
(ξ2 − ξ1,γ0) = f (ξ2)− f (ξ1),

(ξ3 − ξ1,γ0) = f (ξ3)− f (ξ1).
(12.11)

Again by Proposition 12.6 (1), the vectors ξ2 − ξ1,ξ3 − ξ1 are independent. Hence
system (12.11) has a unique solution γ0.

For a pair of vectors u,v ∈ R
2, let D(u,v) denote the oriented area of the

parallelogram built on u,v and R(u) the result of the rotation of u on 90◦
anticlockwise. That is, for u= (u1,u2), v = (v1,v2),

D(u,v) = u1v2 −u2v1, R(u) = (u2,−u1).

Notice that the determinant of system (12.11) is

D(ξ2 − ξ1,ξ3 − ξ1) = D(ξ2,ξ3)+D(ξ3,ξ1)+D(ξ1,ξ2),

and by the standard formulas of linear algebra, the unique solution γ0 is

γ0 =
f (ξ1)R(ξ2 − ξ3)+ f (ξ2)R(ξ3 − ξ1)+ f (ξ3)R(ξ1 − ξ2)

D(ξ2,ξ3)+D(ξ3,ξ1)+D(ξ1,ξ2)
(12.12)

and the corresponding optimal value

Π [ξ1,ξ2,ξ3]( f ) =
f (ξ1)D(ξ2,ξ3)+ f (ξ2)D(ξ3,ξ1)+ f (ξ3)D(ξ1,ξ2)

D(ξ2,ξ3)+D(ξ3,ξ1)+D(ξ1,ξ2)
. (12.13)

Hence we arrive at the following proposition.

Proposition 12.10. Let E = {ξ1,ξ2,ξ3} be strongly positively complete in R
2, and

let f (ξ1), f (ξ2), f (ξ3) be arbitrary numbers. Then expression (12.7) is given by
(12.13), and the minimum is attained on the single γ0 given by (12.12).

Proof. The preceding discussion shows that if γ0 is a minimum point, then it is
unique and given by (12.12). It remains to observe that a minimal point does exist
because

max
ξ1,ξ2,ξ3

[ f (ξi)− (ξi,γ)]→ ∞

as γ → ∞. 
�



12.2 Game-Theoretic Origin of Risk-Neutral Laws: Preliminaries 229

Corollary 12.11. Expression (12.13) can be written equivalently as

Π [ξ1,ξ2,ξ3]( f ) = E f (ξ ),

where the expectation is defined with respect to the unique risk-neutral probability
law {p1, p2, p3} on ξ1,ξ2,ξ3:

pi =
D(ξ j,ξm)

D(ξ2,ξ3)+D(ξ3,ξ1)+D(ξ1,ξ2)

[(i, j,k) is either (1,2,3) or (2,3,1) or (3,1,2)].

The main objective of this section is to extend the result obtained to strongly
positively complete sets E = {ξ1, . . . ,ξd+1} of d+1 points in R

d . Methodologically,
it is quite straightforward, but technically it requires certain lengthy manipulations
with determinants. The result is given subsequently by Proposition 12.12, which is
the natural extension of Proposition 12.10 and its corollary (so the reader may wish
to skip the calculations leading to it).

Thus we are interested in evaluating the expression

Π [ξ1, . . . ,ξd+1]( f ) = min
γ∈Rd

max
i=1,...,d+1

[ f (ξi)− (ξi,γ)]. (12.14)

Assume that Rd is equipped with the standard basis e1, . . . ,ed fixing the orienta-
tion. Without loss of generality we will assume now that the vectors ξ1, . . . ,ξd+1 are
ordered so that the vectors {ξ2,ξ3, . . . ,ξd+1} form an oriented basis of Rd . The fact
that the vector ξ1 lies outside any half-space containing this basis allows one to
identify the orientation of other subsets of ξ1, . . . ,ξd+1 of size d. That is, let {ξ̂i}
denote the ordered subset of ξ1, . . . ,ξd+1 obtained by removing ξi. The basis {ξ̂i} is
oriented if and only if i is odd. For instance, if d = 3, then the oriented bases form
the triples {ξ2,ξ3,ξ4}, {ξ1,ξ2,ξ4}, {ξ1,ξ4,ξ3}, and {ξ1,ξ3,ξ2}.

The same argument as for d = 2 leads us to the conclusion that a minimal point
γ0 must satisfy the equation

f (ξ1)− (ξ1,γ) = · · ·= f (ξd+1)− (ξd+1,γ), (12.15)

which is equivalent to the system

(ξi − ξ1,γ0) = f (ξi)− f (ξ1), i = 2, . . . ,d+ 1. (12.16)

By Proposition 12.6, this system has a unique solution, say γ0.
To write it down explicitly, we will use the natural extensions of the notations

used previously for d = 2. For a collection of d vectors u1, . . . ,ud ∈ R
d , let

D(u1, . . . ,ud) denote the oriented volume of the parallelepiped built on u1, . . . ,ud
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and R(u1, . . . ,ud−1) the rotor of the family (u1, . . . ,ud−1). That is, denoting by
upper scripts the coordinates of vectors,

D(u1, . . . ,ud) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u1
1 · · · ud

1

u1
2 · · · ud

2

· · ·
u1

d · · · ud
d

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, R(u1, . . . ,ud−1) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1 · · · ed

u1
1 · · · ud

1

· · ·
u1

d−1 · · · ud
d−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= e1 det

⎛

⎜⎜
⎝

u2
1 · · · ud

1

· · ·
u2

d−1 · · · ud
d−1

⎞

⎟⎟
⎠− e2 det

⎛

⎜⎜
⎝

u1
1 u3

1 · · · ud
1

· · ·
u1

d−1 u3
d−1 · · · ud

d−1

⎞

⎟⎟
⎠+ · · · .

Finally, let us define a multilinear operator R̃ from an ordered set {u1, . . . ,ud} of
d vectors in R

d to R
d :

R̃(u1, . . . ,ud) = R(u2 −u1,u3 −u1, . . . ,ud −u1)

= R(u2, . . . ,ud)−R(u1,u3, . . . ,ud)+ · · ·+(−1)d−1R(u1, . . . ,ud−1).

Returning to system (12.16) observe that its determinant, which we denote by D,
equals

D = D(ξ2 − ξ1, . . . ,ξd+1 − ξ1) = det

⎛

⎜
⎜
⎝

ξ 1
2 − ξ 1

1 ξ 2
2 − ξ 2

1 · · · ξ d
2 − ξ d

1

· · ·
ξ 1

d+1 − ξ 1
1 ξ 2

d+1 − ξ 2
1 · · · ξ d

d+1 − ξ d
1

⎞

⎟
⎟
⎠ .

Using the linear dependence of a determinant on columns, this is rewritten as

D(ξ2, . . . ,ξd+1)−ξ 1
1 det

⎛

⎜⎜
⎝

1 ξ 2
2 · · · ξ d

2

· · ·
1 ξ 2

d+1 · · ·ξ d
d+1

⎞

⎟⎟
⎠−ξ 2

1 det

⎛

⎜⎜
⎝

ξ 1
2 1 ξ 3

2 · · · ξ d
2

· · ·
ξ 1

d+1 1 ξ 3
d+1 · · ·ξ d

d+1

⎞

⎟⎟
⎠−·· · ,

implying that

D = D(ξ2 − ξ1, . . . ,ξd+1 − ξ1) =
d+1

∑
i=1

(−1)i−1D({ξ̂i}) = det

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 · · · 1

ξ 1
1 · · · ξ 1

d+1

· · ·
ξ d

1 · · · ξ d
d+1

⎞

⎟⎟
⎟
⎟
⎟
⎠
.

(12.17)
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Notice that according to the orientation specified above, D({ξ̂i}) are positive
(resp. negative) for odd (resp. even) i, implying that all terms in (12.17) are positive,
so that the collection of numbers

pi =
1
D
(−1)i−1D({ξ̂i}) = (−1)i−1D({ξ̂i})

D(ξ2 − ξ1, . . . ,ξd − ξ1)
, i = 1, . . . ,d+ 1, (12.18)

defines a probability law on the set ξ1, . . . ,ξd+1 with a full support. As one
sees directly, this law is precisely the unique risk-neutral law on {ξ1, . . . ,ξd+1}
constructed previously in Sect. 12.1.

By linear algebra, the unique solution γ0 to system (12.16) is given by the
formulas

γ1
0 =

1
D

det

⎛

⎜
⎜
⎝

f (ξ2)− f (ξ1) ξ 2
2 − ξ 2

1 · · · ξ d
2 − ξ d

1

· · ·
f (ξd+1)− f (ξ1) ξ 2

d+1 − ξ 2
1 · · · ξ d

d+1 − ξ d
1

⎞

⎟
⎟
⎠, (12.19)

γ2
0 =

1
D

det

⎛

⎜
⎜
⎝

ξ 1
2 − ξ 1

1 f (ξ2)− f (ξ1) · · · ξ d
2 − ξ d

1

· · ·
ξ 1

d+1 − ξ 1
1 f (ξd+1)− f (ξ1) · · · ξ d

d+1 − ξ d
1

⎞

⎟
⎟
⎠, (12.20)

and similarly for other γ i
0. One sees by inspection that for any i

f (ξi)− (γ0,ξi) =
1
D

d+1

∑
i=1

[ f (ξi)(−1)i+1D({ξ̂i})] (12.21)

and

γ0 =
1
D
( f (ξ2)− f (ξ1))R(ξ3 − ξ1, . . . ,ξd+1 − ξ1)

− 1
D
( f (ξ3)− f (ξ1))R(ξ2 − ξ1,ξ4 − ξ1, . . . ,ξd+1 − ξ1)

+ · · ·+ 1
D
(−1)d+1( f (ξd+1)− f (ξ1)R(ξ2 − ξ1, . . . ,ξd − ξ1),

which is rewritten as

γ0 =− 1
D

[
f (ξ1)R̃({ξ̂1})− f (ξ2)R̃({ξ̂2})+ · · ·+(−1)d f (ξd+1)R̃({ξ̂d+1})

]
.

(12.22)
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For example, if d = 3, then we have

Π [ξ1, . . . ,ξ4]( f ) =
f (ξ1)D234 + f (ξ2)D143 + f (ξ3)D124 + f (ξ4)D132

D234 +D143 +D124 +D132
,

γ0 =− f (ξ1)R234 + f (ξ2)R143 + f (ξ3)R124 + f (ξ4)R132

D234 +D143 +D124 +D132
,

where Di jm = D(ξi,ξ j ,ξm) and

Ri jm = R(ξi,ξ j)+R(ξ j,ξm)+R(ξm,ξi).

As in the case where d = 2, we arrive at the following proposition.

Proposition 12.12. Let a family {ξ1, . . . ,ξd+1} in R
d be strongly positively com-

plete, and let f (ξ1), . . . , f (ξd+1) be arbitrary numbers. Then

Π [ξ1, . . . ,ξd+1]( f ) =
1
D

d+1

∑
i=1

[ f (ξi)(−1)i+1D({ξ̂i})] = E f (ξ ), (12.23)

and the minimum in (12.14) is attained on the single γ0 given by (12.22) or,
equivalently, by

γ0 = E

[

f (ξ )
R̃({ξ̂})
D({ξ̂})

]

, (12.24)

where the expectation is with respect to the probability law (12.18), which is the
unique risk-neutral probability law on {ξ1, . . . ,ξd+1}.

To better visualize the preceding formulas, it would be helpful to delve a bit
into their geometric meaning. Each term (−1)i−1D({ξ̂i}) in (12.17) equals d! times
the volume of the pyramid (polyhedron) with vertices {0∪{ξ̂i}}. The determinant
D, being the volume of the parallelepiped built on ξ2 − ξ1, . . . ,ξd+1 − ξ1, equals d!
times the volume of the pyramid Π [ξ1, . . . ,ξd+1] in the affine space Rd with vertices
being the end points of the vectors ξi, i= 1, . . . ,d+1. Consequently, formula (12.17)
expresses the decomposition of the volume of the pyramid Π [ξ1, . . . ,ξd+1] into d+1
parts, the volumes of the pyramids Π [{0∪{ξ̂i}}] obtained by sectioning from the
origin, and the weights of distribution (12.18) are the ratios of these parts to the
entire volume. Furthermore, the magnitude of the rotor R(u1, . . . ,ud−1) is known
to equal the volume of the parallelepiped built on u1, . . . ,ud−1. Hence ‖R̃({ξi})‖ is
equal to (d−1)! times the volume (in the affine space Rd) of the (d−1)-dimensional
face of the pyramid Π [ξ1, . . . ,ξd+1] with vertices {ξ̂i}. Hence the magnitudes of
the ratios R̃({ξ̂i})/D({ξ̂i}), playing the roles of weights in (12.24), are the ratios
of the (d − 1)! times (d − 1)-dimensional volumes of the bases of the pyramids
Π [{0∪{ξ̂i}}] to d! times their full d-dimensional volumes. Consequently,
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‖R̃({ξ̂i})‖
D({ξ̂i})

=
1
hi
, (12.25)

where hi is the length of the perpendicular from the origin to the affine hyperspace
generated by the end points of the vectors {ξ̂i}. Hence

|γ0| ≤ ‖ f‖ max
i=1,...,d+1

h−1
i . (12.26)

On the other hand,

|γ0| ≤ ‖ f‖
d+1

∑
i=1

pih
−1
i ,

and by the foregoing geometric interpretation of {pi},

|γ0| ≤ ‖ f‖ 1
d

S(ξ1, . . . ,ξd+1)

V (ξ1, . . . ,ξd+1)
, (12.27)

where S(ξ1, . . . ,ξd+1) is the surface volume of the pyramid Π [ξ1, . . . ,ξd+1] [the
sum of (d−1)-dimensional volumes of all its d+1 faces] and V (ξ1, . . . ,ξd+1) is its
volume. Thus we obtained the following corollary.

Corollary 12.13. The minimizing value γ0 = γ0(ξ1, . . . ,ξd+1) from (12.24) satisfies
estimates (12.26) and (12.27).

These estimates are important for numerical calculations of γ0 (yielding some
kind of stability estimates with respect to the natural parameters). On the other hand,
we will need them subsequently for nonlinear extensions of Proposition 12.12.

12.3 Game-Theoretic Origin of Risk-Neutral Laws:
Main Result

Let us now move to general Problem (12.4) starting with the case of a finite E , that
is, with the expression

Π [ξ1, . . . ,ξk]( f ) = inf
γ∈Rd

max
i
[ f (ξi)− (ξi,γ)] (12.28)

for a finite set E = {ξ1, . . . ,ξk} in R
d .

Theorem 12.14. Let a family of vectors ξ1, . . . ,ξk in R
d be strongly positively

complete. Then

Π [ξ1, . . . ,ξk]( f ) = max
μ

Eμ f (ξ ), (12.29)

where max is taken over all extreme points μ of risk-neutral laws on {ξ1, . . . ,ξk},
given by Proposition 12.9, and inf in (12.28) is attained on the corresponding γ
given by Proposition 12.12.
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Proof. Clearly

Π [ξ1, . . . ,ξk]( f ) = inf
γ∈Rd

max
p∈P(E)

k

∑
i=1

pi[ f (ξi)− (ξi,γ)]

≥ inf
γ∈Rd

max
p∈Prn(E)

k

∑
i=1

pi[ f (ξi)− (ξi,γ)] = max
μ

Eμ f (ξ ),

where the last max is taken over the extreme points μ of the (nonempty) set Prn(E)
of risk-neutral laws on E . Consequently the left-hand side is bounded from below.
Moreover, as for the support E ′ of an extreme risk-neutral law

max
ξ∈E ′

[ f (ξ )− (ξ ,γ)]→ ∞,

as γ → ∞, and hence also

max
i=1,...,k

[ f (ξi)− (ξi,γ)]→ ∞,

the infinum in (12.28) is attained on some finite γ . Assuming that γ0 is such
a minimum point, let E ′ denote the subset of all ξ , where the maximum is
attained in the expression f (ξ )− (ξ ,γ0). We can now conclude, as in the proof
of Proposition 12.10 above, that E ′ is weakly positively complete in the subspace
it generates. Suppose E ′ is not strongly positively complete in the subspace it
generates. Then there exists ω such that (ω ,ξ )≥ 0 for all ξ ∈ E ′ and (ω ,ξ ) = 0 for
some proper subset E ′′ of E ′. Then for sufficiently small ε , γ ′0 = γ0 + εω is still a
minimum point for (12.28), but the maximum f (ξ )− (ξ ,γ ′0) is attained only on E ′′.
Following the same procedure with E ′′ and so on, we will be able to find eventually
a subset Ẽ of E ′ and a minimal point γ̃ such that Ẽ is the set of maximum points
of f (ξ )− (ξ , γ̃) and either Ẽ coincides with the origin or is strongly positively
complete in the subspace it generates. 
�
Remark 12.15. If d = 2, then the number of allowed triples {i, j,m} supporting μ
on the right-hand side of (12.29) is two for k = 4, can be 3, 4, or 5 (depending on
the position of the origin inside Π ) for k = 5, and can be 4, 6, or 8 for k = 6. This
number seems to increase exponentially as k → ∞.

Remark 12.16. As is easy to see, the max in (12.29) is attained on a family {ξi}i∈I

if and only if

f (ξi)− (γI,ξi)≥ f (ξr)− (γI,ξr) (12.30)

for any i ∈ I and any r, where γI is the corresponding optimal value. Consequently,
on the convex set of functions f satisfying inequalities (12.30) for all r, the mapping
Π [ξ1, . . . ,ξk]( f ) is linear:

Π [ξ1, . . . ,ξk]( f ) = EI f (ξ ).
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Remark 12.17. Notice that min and max in (12.28) are not interchangeable, as

max
i

min
γ∈Rd

[ f (ξi)− (ξi,γ)] =−∞.

It is often important to know the size of a region that the minimizing γ in
expression (12.28) belongs to. For d + 1-point sets E such an estimate is given by
(12.26). Let us supply an appropriate estimate for an arbitrary E . Let

κ0 = κ0(E) = min
ω∈Rd ,|ω|=1

max
ξ∈E

(−ξ ,ω). (12.31)

It is easy to see that κ0 > 0 for any strongly positively complete set E .

Proposition 12.18. Under the assumptions of Theorem 12.14, all minimizing γ in
expression (12.28) (which exist by Theorem 12.14) satisfy the estimate

|γ| ≤ osc( f )/κ0, (12.32)

where

osc( f ) = max
ξ∈E

f (ξ )−min
ξ∈E

f (ξ ).

In particular,

Π [ξ1, . . . ,ξk]( f ) = min
|γ|≤osc( f )/κ0

max
i
[ f (ξi)− (ξi,γ)]. (12.33)

Proof. For any γ

max
i
[ f (ξi)− (ξi,γ)]≥ min

i
f (ξi)+ |γ|κ0.

On the other hand,

Π [ξ1, . . . ,ξk]( f )≤ max
i

f (ξi).

Therefore, if the infinum in (12.28) is attained on a γ , then

min
i

f (ξi)+ |γ|κ0 ≤ max
i

f (ξi),

implying (12.32). 
�
Let us now formulate a mirror image of Theorem 12.14, where min and max are

reversed. Its proof is almost literally the same as the proof of Theorem 12.14.

Theorem 12.19. Under the assumptions of Theorem 12.14 the expression

Π [ξ1, . . . ,ξk]( f ) = sup
γ∈Rd

min
ξ1,...,ξk

[ f (ξi)+ (ξi,γ)] (12.34)
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can be evaluated by the formula

Π [ξ1, . . . ,ξk]( f ) = min
μ

Eμ f (ξ ), (12.35)

where min is taken over all extreme points μ of risk-neutral laws on {ξ1, . . . ,ξk}.
Moreover, sup in (12.34) is attained on some γ and all maximizing γ satisfy (12.32).

Remark 12.20. The right-hand side of (12.35) is similar to the formula for a
coherent acceptability measure [2,131]. However, in the theory of acceptability mea-
sures, the collection of measures with respect to which minimization is performed
is subjectively specified. In our model, this collection is the collection of all extreme
points that arises objectively as an evaluation tool for our game-theoretic problem.

It is worth mentioning that the coherent acceptability measures φ introduced
in Artzner et al. [2] represent particular cases of nonlinear averages in the sense
of Kolmogorov [111]. The distinguishing feature that leads to the representation
of φ as an infimum over probability measures is its superadditivity. Postulating
subadditivity instead of superadditivity would lead similarly to the representation
as a supremum over probability measures and, hence, to the analog of (12.29).

Let us turn to infinite sets E . The crucial argument used at the beginning of
Sect. 12.2 for the identification of optimal γ does not work here. We will substitute
it with a limiting procedure from finite subsets.

Theorem 12.21. Let a compact set E ⊂ R
d be strongly positively complete. Then

Π [E]( f ) = max
μ

Eμ f (ξ ), (12.36)

where max is taken over all extreme points μ of risk-neutral laws on E given by
Proposition 12.9, inf in (12.28) is attained on some γ , and all minimizing γ satisfy
(12.32).

Proof. As in the proof of Theorem 12.14 we show that the left-hand side of
(12.29) is bounded from below by its right-hand side, which is finite and equal to
Eμ0 f (ξ ), where μ0 is the corresponding maximizing extreme risk-neutral law. By
Proposition 12.5, the support of μ0 is a finite set E ′ = {ξ1, . . . ,ξk}, with k ≤ d + 1.
Let {En} be an increasing sequence of 1/n-nets in E containing E ′ and such that the
corresponding κ0(En) converge to κ0(E) as n → ∞. By Theorem 12.21,

Π [En]( f ) = max
μ

Eμ f (ξ ) = Eμ0 f (ξ )

for all n. It remains to show that Π [E]( f ) coincides with the limit of Π [En]( f ) as
n → ∞. But this follows from the fact (which we show literally in the same way as
for a finite set) that inf in the expression for Π [E] is attained, and all minimizing γ
satisfy (12.32). In fact, if an increasing sequence of bounded continuous functions
on a compact set converges to a continuous function, then their minima converge to
the minimum of the limiting function. 
�
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12.4 Nonlinear Extension

A distinguishing feature of the expression under minimax in (12.4) or (12.5) is its
linearity with respect to γ . What can be said in the case of a nonlinear dependence
on γ? One of the standard approaches to nonlinear problems is by attempting to
represent them as small perturbations of a linear one. Using this idea in our setting
(and reducing our attention to finite sets of strategies of a maximizer), we will look
at the problem of evaluating the minimax expression

Π [ξ1, . . . ,ξk]( f ) = min
γ∈Rd

max
ξ1,...,ξk

[ f (ξi,γ)− (ξi,γ)], (12.37)

where f is a continuous function. Its “smallness” will be measured in terms of
its Lipschitz constant. The results obtained here will be used for the analysis of
transaction costs.

We will also assume here that the set E = {ξ1, . . . ,ξk}⊂R
d is strongly positively

complete and is in general position (recall the latter means that the vectors of any
subset of E of size d are linearly independent). Let us introduce two characteristics
of such a set E that measure numerically a spread of the elements of this system
around the origin.

Let κ1 = κ1(ξ1, . . . ,ξk) be the minimum among the numbers κ such that for any
subfamily ξi, i ∈ I ⊂ {ξ1, . . . ,ξk}, that is not itself strongly positively complete in
R

d one can choose a vector ωI ∈ Rd of unit norm such that

(ξi,ωI)≥ κ, i ∈ I. (12.38)

Due to our assumptions on E , this κ1 is strictly positive. Let κ2 = κ2(ξ1, . . . ,ξk)
be the minimum of the lengths of all perpendiculars from the origin to the affine
hypersubspaces generated by the end points of any subfamily containing d vectors.

Theorem 12.22. Let E = {ξ1, . . . ,ξk}, k > d, be a family of vectors in R
d, which is

strongly positively complete and in general position.
Let a function f be bounded below and Lipschitz continuous in γ , i.e.,

| f (ξi,γ1)− f (ξi,γ2)| ≤ κ|γ1 − γ2| (12.39)

for all i, and assume

κ < min(κ1,κ2). (12.40)

Then the minimum in (12.37) is finite and is attained on some γ0 and

Π [ξ1, . . . ,ξk]( f ) = max
I

[EI f (ξ ,γI)], (12.41)

where max is taken over all strongly positively complete families {ξi}i∈I , I ⊂
{1, . . . ,k}, of size |I|= d+ 1, EI denotes the expectation with respect to the unique
risk-neutral probability on {ξi}i∈I (given by Proposition 12.12), and γI is the
corresponding (unique) optimal value, constructed below.
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In particular, if k = d+ 1, then γ0 is the unique solution of Eq. (12.44) below.

Proof. Arguing now as at the beginning of Sect. 12.2, suppose the min in (12.37)
is attained on a vector γ0 and the corresponding max is attained precisely on a
subfamily ξi, i ∈ I ⊂ {ξ1, . . . ,ξk}, so that

f (ξi,γ0)− (γ0,ξi)

coincide for all i ∈ I and

f (ξi,γ)− (γ,ξi)> f (ξ j,γ)− (γ,ξ j) (12.42)

for j /∈ I and γ = γ0, but this family is not strongly positively complete. (This is of
course always the case for subfamilies of size |I| < d + 1.) Let us pick up a unit
vector ωI satisfying (12.38). As for γ = γ0 + εωI ,

f (ξi,γ)− (ξi,γ) = f (ξi,γ0)− (ξi,γ0)− ε[(ξi,ωI)+β ],

with some |β | ≤ κ, and (ξi,ωI)> κ1, this expression is less than

f (ξi,γ0)− (ξi,γ0)

for all ε > 0 and all i ∈ I. But at the same time (12.42) is preserved for small ε ,
contradicting the minimality of γ0. Hence, if γ0 is a minimal point, then the
corresponding max must be attained on a strongly positively complete family. But,
by item (2) of Proposition 12.7 (see remark following it), any such family contains
a subfamily with d + 1 elements only. Consequently, if γ0 is a minimal point, then
the corresponding max must be attained on a strongly positively complete family
containing d+ 1 elements.

To proceed, let us assume first that k = d+1. Then a possible value of γ0 satisfies
the system

(ξi − ξ1,γ0) = f (ξi,γ0)− f (ξ1,γ0), i = 2, . . . ,d + 1, (12.43)

which by (12.24) is rewritten as

γ0 = E

[

f (ξ ,γ0)
R̃({ξ̂})
D({ξ̂})

]

, (12.44)

where the expectation is with respect to the probability law (12.18). This is a fixed-
point equation. Condition (12.39), (12.40), the definition of κ2, and estimate (12.26)
imply that the mapping on the right-hand side is a contraction, and hence (12.44)
has a unique solution γ0. Moreover, the minimum in (12.37) exists and is attained
on some finite γ because

max
ξ1,...,ξk

[ f (ξi,γ)− (ξi,γ)]→ ∞, (12.45)

as γ → ∞ (as this holds already for vanishing f ). And consequently it is attained on
the single possible candidate γ0.
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Now let k > d+ 1 be arbitrary. Using the case k = d + 1 we can conclude that

Π [ξ1, . . . ,ξk]( f )≥ max
I

EI f (ξ ,γI),

and hence the left-hand side is bounded below and (12.45) holds. Thus the minimum
in (12.37) is attained on some γ0, which implies (12.41) due to the characterization
of optimal γ given previously. 
�

In applications to options we need to use Theorem 12.22 recursively under
expanding systems of vectors ξ . To this end, we require some estimates indicating
the change in the basic coefficients of spread under linear scaling of all coordinates.

For a vector z ∈R
d
+ with positive coordinates, let

δ (z) = max
i

zi/min
i

zi.

We will use the Hadamard product on vectors defined as (η ◦ ξ )i = η iξ i.

Proposition 12.23. Let a system {ξ1, . . . ,ξk} of vectors in R
d be strongly positively

complete and in general position. Let κ1,κ2 be the characteristics of the system
{ξ1, . . . ,ξk} introduced previously, and for a vector z ∈R

d with positive coordinates
let κ1(z),κ2(z) denote the characteristics of the system {z◦ ξ1, . . . ,z◦ ξk}. Then

κ1(z)≥ |z|κ1(dδ (z))−1, κ2(z) ≥ |z|κ2(
√

dδ (z))−1. (12.46)

Proof. Let us denote by z−1, just for this proof, the vector in R
d with coordinates

1/zi.
For a unit vector φ = |z−1|−1z−1 ◦ω we get, using (ξi,ω)≥ κ1, that

(z◦ ξi,φ) = |z−1|(ξi,ω)≥ |z|κ1
1

|z| |z−1| .

Hence, to get the first inequality in (12.46), it remains to observe that

|z| |z−1|= (
d

∑
i=1

(zi)2
d

∑
i=1

(zi)−2)1/2 ≤ dδ (z).

Turning to the proof of the second inequality in (12.46) let us recall that for any
subsystem of d elements that we denote by u1, . . . ,ud the length of the perpendicular
h from the origin to the affine hyperspace generated by the end points of vectors
{u1, . . . ,ud} is expressed, by (12.25), as

h =
D(u1, . . . ,ud)

‖R̃(u1, . . . ,ud)‖
. (12.47)



240 12 Emergence of Risk-Neutral Probabilities

From the definition of D as a determinant it follows that

D({z◦ui}) =
d

∏
l=1

zlD({ui}).

Next, for the jth coordinate of the rotor R({z◦ui}) we have

R j({z◦ui}) = 1
z j

d

∏
l=1

zlR j({ui}),

so that

‖R({z◦ui})‖=
d

∏
l=1

zl

(

∑
j

1
(z j)2 (R

j({ui}))2

)1/2

≤
d

∏
l=1

zl 1
min j z j ‖R({ui})‖ ≤ 1

|z|
d

∏
l=1

zl
√

dδ (z)‖R({ui})‖.

Hence

h(z) =
D({z◦ui})
‖R̃({z◦ui})‖ ≥ |z|(

√
dδ (z))−1,

implying the second inequality in (12.46). 
�

12.5 Infinite-Dimensional Setting and Finite-Dimensional
Projections

We saw previously that probability laws emerge naturally from the robust-control
(or minimax) evaluations of payoffs on multidimensional geometric objects. How-
ever, in practice one often must deal with real-valued random variables, describing,
for instance, possible stock price jumps. In our setting, only two-valued real random
variables appear naturally from a risk-neutral evaluation (as d + 1 equals 2 for
d = 1), which in finance corresponds to binomial models of option pricing. Problems
with the extensions of binomial models are well known, as already trinomial models
(in usual setting) lead to incomplete markets. However, if stock price jumps come
from various factors (explicitly or implicitly), then various discrete laws on the
sizes of these jumps can be naturally obtained as projections from multidimensional
objects.

To obtain (via projections) random variables with a countable range, it is
helpful to first extend our construction of risk-neutral probabilities to the infinite-
dimensional setting, which we will carry out for the simplest geometry of orthogonal
basis vectors and related pyramids.
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Let {e1,e2, . . .} be an orthonormal basis in a Hilbert space H. Let ω1,ω2, . . .
be an arbitrary sequence of nonvanishing real numbers and α1,α2, . . . a sequence
of positive numbers with converging ∑∞

j=1(α jω j)2. Let us consider a collection of
vectors {ξ0,ξ1,ξ2, . . .}, where ξ j = ω je j, j = 1,2, . . ., and

ξ0 =−
∞

∑
j=1

α jω je j,

and the corresponding minimax problem

Π [ξ0,ξ1, . . .]( f ) = min
γ∈H

max
i=0,1,...

[ f (ξi)− (ξi,γ)]. (12.48)

Arguing as in a finite-dimensional setting we conclude that if γ0 is a minimum
point, then all expressions f (ξi)− (ξi,γ), i = 0,1, . . ., should be equal, leading to
the system of equations

f (ξ j)− f (ξi) = (ξ j − ξi,γ0), i, j = 0,1, . . . . (12.49)

For i, j > 0, this is rewritten as

γ j
0ω j = γ i

0ω i + f (ξ j)− f (ξi). (12.50)

Substituting this into (12.49) with j = 0 yields

γ i
0ω i +

∞

∑
k=1

γk
0αkωk = f (ξi)− f (ξ0),

or, using (12.50),

γ i
0ω i(1+

∞

∑
k=1

αk)+
∞

∑
k=1

αk( f (ξk)− f (ξi)) = f (ξi)− f (ξ0)

(whenever the sum converges), which implies

γ i
0ω i = f (ξi)−

(

1+
∞

∑
k=1

αk

)−1(

f (ξ0)+
∞

∑
k=1

αk f (ξk)

)

(12.51)

and

f (ξi)− (γ0,ξi) =

(

1+
∞

∑
k=1

αk

)−1(

f (ξ0)+
∞

∑
k=1

αk f (ξk)

)

. (12.52)

Hence we obtain the following theorem.
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Theorem 12.24. Let ω1,ω2, . . . be an arbitrary sequence of nonvanishing real
numbers and α1,α2, . . . a sequence of positive numbers such that the sums

∞

∑
j=1

(α jω j)2,
∞

∑
j=1

α j

converge. Then there exists a unique risk-neutral probability law {p0, p1, . . .} on
{ξ0,ξ1,ξ2, . . .} (that is, satisfying ∑ piξi = 0), where

p0 =

(

1+
∞

∑
k=1

αk

)−1

, pi = α i

(

1+
∞

∑
k=1

αk

)−1

, i = 1, . . . . (12.53)

Moreover, if the expectation E f (ξ.) with respect to this risk-neutral probability law
exists, then expression (12.48) is well defined with

Π [ξ0,ξ1, . . .]( f ) = E f (ξ.),

and the minimum is attained on a single γ0 given by (12.51) or, equivalently, by

γ i
0 = (ω i)−1[ f (ξi)−E f (ξ.)].

Projecting the vectors {ξi} on −ξ0 and shifting transfers the probability law from
the Hilbert space to the discrete law on real numbers β j =−(ξ j,ξ0)+q, j = 0,1, . . .,
q ∈ R, with

β0 =−
∞

∑
j=1

(α jω j)2 + q, β j = α j(ω j)2 + q, j = 1,2, . . . .

For instance, to obtain a discrete approximation to a power (or a stable) law with
the probability of tails (values higher than y for large y) of order y−α , α > 1, we
need p j of order j−rα on points β j = jr for some r > 0 with rα > 1. In terms of the
foregoing α j and ω j, this gives α j of order j−rα and (α jω j)2 of order j−r(α−1).

Similarly, distributions on finite subsets of R or Rd can be obtained by projec-
tions from geometric risk-neutral probabilities on vectors from Euclidean spaces of
higher dimension.

In financial interpretation, we can consider the jumps of size β j as coming from a
large number of factors ξ j, which can be explicit (as for indices based on the average
of several stocks) or hidden (as for individual stocks depending on several factors
of market performance).



12.6 Extension to a Random Geometry 243

12.6 Extension to a Random Geometry

Here we extend the results of Sect. 12.3 to the case of random vectors, reducing
again our attention to finite sets E . To begin with, let us consider the minimax
expression

Π [ξ1, . . . ,ξk]( f ) = min
γ∈Rd

max
i

Ẽ[ f (ξi)− (ξi,γ)], (12.54)

where {ξ1, . . . ,ξk} is a given family of Rd-valued random variables and Ẽ denotes
the corresponding expectation or, equivalently,

Π [ξ1, . . . ,ξk]( f ) = min
γ∈Rd

max
i
[Ẽ f (ξi)− (Ẽξi,γ)]. (12.55)

This expression can be evaluated directly by Theorem 12.14 applied to vectors
Ẽξi instead of ξi. In particular, if k = d + 1 and the set {Ẽξ1, . . . , Ẽξk} is
strongly positively complete, then that implies the existence of a probability law
{p1, . . . , pd+1} such that

d+1

∑
i=1

piẼξi = 0, Π [ξ1, . . . ,ξd+1]( f ) =
d+1

∑
i=1

piẼ f (ξi).

Alternatively, there exists a probability space and two random variables on it, an
R

d-valued ξ , and a {1, . . . ,k}-valued η such that E(ξ |η = i) is distributed like ξi,
i ∈ {1, . . . ,k}, and

Eξ = E(E(ξ |η)) = 0, Π [ξ1, . . . ,ξd+1]( f ) = E f (ξ ).

From a game-theoretic point of view, expression (12.54) describes the payoff of
an investor in the game, where first he chooses γ , then Nature chooses i, and finally
a random element is chosen according to the distribution of ξi.

On the other hand, one can imagine another scenario, where first a random event
is chosen, then the investor chooses γ , and finally Nature makes a choice. Then the
investor’s payoff turns out to be

Π [ξ1, . . . ,ξk]( f )

= Ẽ min
γ∈Rd

max
i
[ f (ξi)− (ξi,γ)]

m

∑
j=1

p j

(
min
γ∈Rd

max
i
[ f (ξi( j))− (ξi( j),γ)]

)
,

(12.56)

where Ẽ denotes the expectation with respect to a given distribution {p1, . . . , pm}
on m possible families {ξ1, . . . ,ξk}. If k = d + 1 and the sets {Ẽξ1, . . . , Ẽξk} are
strongly positively complete almost surely, then by Theorem 12.14 there exist, for
each j = 1, . . . ,m, the laws on the sets {Ẽξ1( j), . . . , Ẽξk( j)} such that

E jξ.( j) = 0, Π [ξ1, . . . ,ξk]( f ) =
m

∑
j=1

p jE j f (ξ.( j)).
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Let us discuss two examples related to stochastic volatility and correlated stock
models.

The first example is one-dimensional. Suppose ξ1(σ) = aσ , ξ2(σ) = −bσ ,
where a,b are positive constants and the “size scale” σ is a positive random variable
(volatility) with a given distribution. Then the minimax expression

Π [ξ1,ξ2]( f ) = Ẽmin
γ∈R

max[ f (ξ1(σ))− (ξ1(σ),γ), f (ξ2(σ))− (ξ2(σ),γ)], (12.57)

where Ẽ denotes the expectation with respect to σ , can be evaluated as

Π [ξ1,ξ2]( f ) = Ẽ
[

b
a+ b

f (aσ)+
a

a+ b
f (−bσ)

]
. (12.58)

For the second example, let φ1, . . . ,φd be independent vectors in R
d , and our

family of vectors {ξ} consists of 2d vectors

ξ±
j =±φ j, j = 1, . . . ,d,

and d(d − 1)/2 vectors

ξ±
jk =±(φ j +φk), j < k.

If the vectors φ1, . . . ,φd are interpreted as (normalized) stock price jumps, including
only vectors ξ±

i in the model corresponds to the independence of jumps (indepen-
dent jumps do not occur simultaneously). Allowing for vectors ξ±

jk includes possible
positive correlations.

Remark 12.25. Negative correlations would yield the vectors

ξ̃±
jk =±(φ j −φk), j �= k,

which could be analyzed analogously.

Introducing an exogeneous probability law on correlations, that is, the numbers
pi, i = 1, · · · ,d, and p jk, j,k ∈ {1, · · · ,d}, j < k, summing up to one, leads to the
following expression of type (12.56):

d

∑
i=1

pi min
γ∈Rd

max[ f (φi)− (φi,γ), f (−φi)+ (φi,γ)]

+ ∑
j<k

p jk min
γ∈Rd

max[ f (φ j +ϕk)− (φ j +φk,γ), f (−φ j −φk)+ (φ j +φk,γ)],

(12.59)

which by (trivial application of) Theorem 12.14 is equal to

1
2

d

∑
i=1

pi[ f (φi)+ f (−φi)]+
1
2 ∑

j<k

p jk[ f (φ j +ϕk)+ f (−φ j −φk)]. (12.60)



12.7 Mixed Strategies with Linear Constraints 245

12.7 Mixed Strategies with Linear Constraints

In this section we extend the results of Sect. 12.3 to risk-neutral probabilities with
linear constraints. Firstly, a trivial extension allows a player choosing ξ in (12.4) to
use mixed strategies, i.e., probability laws on E . Secondly, instead of allowing all
mixed strategies, we restrict them to those compatible with certain linear constraints,
which practically can arise from given market prices (say, of vanilla options). These
restrictions may lead to a completion (at least partial) of a market. That is, if without
restrictions one can have an immense set of risk-neutral laws, algebraic restrictions
can essentially reduce the set, sometimes even to a single element.

Notice first that (12.36) of Theorem 12.21 can be equivalently rewritten in the
following way:

Π [E]( f ) = inf
γ∈Rd

max
μ∈P(E)

Eμ [ f (ξ )− (γ,ξ )] = max
μ∈Prn(E)

Eμ f (ξ ) (12.61)

because for a linear function its maximum on a convex compact set is always
attained on an extreme point of this set.

Let E ⊂ R
d be a compact set and P̃(E) a closed convex subset of P(E) [the

main example is a set of type P(E;F) from Sect. 12.1]. We are interested in the
expression

Π̃ [E]( f ) = inf
γ∈Rd

max
μ∈P̃(E)

Eμ [ f (ξ )− (γ,ξ )]

= inf
γ∈Rd

max
μ∈P̃(E)

[∫
f (ξ )μ(dξ )− (γ,

∫
ξ μ(dξ ))

]
. (12.62)

Let B denote the linear mapping P̃(E)→ R
d given by

Bμ = Eμ ξ =
∫

ξ μ(dξ )

(the barycenter or center of mass). Its image B(P̃(E)) is a compact convex set
in R

d .
The following main result extends Theorem 12.21 to the case of mixed strategies

with constraints.

Theorem 12.26. The set P̃(E)∩Prn(E) is empty if and only if the set B(P̃(E))
is not weakly positively complete, in which case Π̃ [E]( f ) =−∞. Otherwise,

Π̃ [E]( f ) = max
μ∈P̃(E)∩Prn(E)

Eμ f (ξ ). (12.63)

Proof. A convex compact set B(P̃(E)) is not weakly positively complete if and
only if it does not contain the origin, which is equivalent to P̃(E)∩Prn(E) = /0.



246 12 Emergence of Risk-Neutral Probabilities

If this is the case, then there exists a unit vector ω in R
d such that

(ω ,Eμ(ξ ))≥ δ

for some δ > 0 and all μ ∈ P̃(E). Hence

lim
r→∞

max
μ∈P̃(E)

Eμ [ f (ξ )− r(ω ,ξ )] =−∞,

implying Π̃ [E]( f ) =−∞.
Next, by literally the same argument as at the beginning of the proof of

Theorem 12.14, we show that the left-hand side of (12.63) is bounded from below
by its right-hand side. The main point is to show that the equality holds.

Notice that the expression for Π̃ [E]( f ) is of type (12.5) with P̃(E) instead of
E and with linear functions μ �→ ∫

f (ξ )μ(dξ ) and μ �→ Bμ instead of f and g.
Consequently, applying (12.6) we get

Π̃ [E]( f ) = inf
γ∈Rd

sup
z∈B(P̃(E))

[
max

η∈B−1(z)

∫
f (ξ )η(dξ )− (γ,z)

]
. (12.64)

This expression is already of the form (12.4) and can be calculated via Theo-
rem 12.21 yielding

Π̃ [E]( f ) = max
p∈Prn(B(P̃(E)))

∫

B(P̃(E))

[
max

η∈B−1(z)

∫

E
f (ξ )η(dξ )

]
p(dz) (12.65)

whenever B(P̃(E)) is at least weakly positively complete. We must find out
whether this expression equals the right-hand side of (12.63).

To this end, let us consider the multivalued mapping Ω on B(P̃(E)) that maps
z ∈ B(P̃(E)) to the (closed and convex) set Ω(z) of maximum points of the linear
function η �→ ∫

f (ξ )η(dξ ) defined on the (closed and convex) set B−1(z). This
map is clearly upper semicontinuous with nonempty (also closed and convex) set
values. Hence by the standard theory of measurable selections (see, e.g., Jayne and
Rogers [90], Chap. 6) there exists a measurable selector ω(z) of this multivalued
mapping, that is, a measurable function z �→ ω(z) ∈ P̃(E) such that ω(z) ∈ Ω(z)
[in particular, Bω(z) = z] for all z. (This ω can be chosen to be of the first Baire
class, i.e., to be represented as a pointwise limit of continuous functions [90].)

Consequently, denoting by p0 a maximum point for the right-hand side of
(12.65), we have

Π̃ [E]( f ) =
∫

B(P̃(E))

∫

E
f (ξ )ω(z)(dξ )p0(dz) =

∫

E
f (ξ )μ0(dξ ), (12.66)
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where

μ0(dξ ) =
∫

B(P̃(E))
ω(z)(dξ )p0(dz).

Clearly μ0 ∈ Prn(E) since
∫

E
ξ μ0(dξ ) =

∫

B(P̃(E))
Bω(z)p0(dz) =

∫

B(P̃(E))
zp0(dz) = 0

and μ0 ∈ P̃(E), as a limit of convex combinations of measures from P̃(E). Thus
we found a representation for Π̃ [E]( f ) as an integral of f with respect to a measure
from P̃(E)∩Prn(E), completing the proof of (12.63) and, hence, of the theorem.

�

Remark 12.27. To any probability law p on B(P̃(E)) there corresponds its im-
age measure p∗ = ω∗(p) on P̃(E) with respect to the mapping ω , i.e., p∗ ∈
P(P̃(E)) and

∫

P̃(E)
φ(η)p∗(dη) =

∫

B(P̃(E))
φ(ω(z))p(dz)

for any continuous φ on P̃(E), so that in particular
∫

P̃(E)
Bη p∗(dη) =

∫

B(P̃(E))
zp(dz).

Due to the natural projection P(P̃(E))→ P̃(E) that maps a measure P on P̃(E)
to a measure π(P) ∈ P̃(E) given by

∫
f (ξ )π(P)(dξ ) =

∫

P̃(E)

∫

E
f (ξ )dη(ξ )P(dη),

the chain p �→ ω∗(p) = p∗ �→ π(p∗) defines a mapping P(B(P̃(E))) → P̃(E)
preserving risk neutrality. Thus what we proved above was that the maximum on
the right-hand side of (12.63) is always attained on an image measure of a mapping
p �→ π(p∗).



Chapter 13
Rainbow Options in Discrete Time, I

13.1 Colored European Options as a Game Against Nature

Recall that a European option is a contract between two parties where one party
has the right, but not the obligation, to complete a transaction in the future (at a
previously agreed amount, date, and price). More precisely, consider a financial
market dealing with several securities: risk-free bonds (or bank accounts) and J
common stocks, J = 1,2 . . .. If J > 1, then the corresponding options are called
colored or rainbow options (J-color option for a given J). Suppose the prices of the
units of these securities, Bm and Si

m, i ∈ {1,2, . . . ,J}, change in discrete moments
of time m = 1,2, . . . according to the recurrent equations Bm+1 = ρBm, where the
ρ ≥ 1 is an interest rate that remains unchanged over time, and Si

m+1 = ξ i
m+1Si

m,
where ξ i

m, i ∈ {1,2, . . . ,J}, are unknown sequences taking values in some fixed
intervals Mi = [di,ui]⊂R. This model generalizes the colored version of the classic
Cox–Ross–Rubinstein (CRR) model in a natural way. In the latter, a sequence ξ i

m is
confined to taking values only among two boundary points di,ui, and it is supposed
to be random with some given distribution. In our model any value in the interval
[di,ui] is allowed, and no probabilistic assumptions are made. Hence it is often
referred to as an interval model.

An option’s type is specified by a given premium function f of J variables. The
following examples are standard.

Option delivering the best of J risky assets and cash:

f (S1,S2, . . . ,SJ) = max(S1,S2, . . . ,SJ,K); (13.1)

Calls on the maximum of J risky assets:

f (S1,S2, . . . ,SJ) = max(0,max(S1,S2, . . . ,SJ)−K); (13.2)

Multiple-strike options:

f (S1,S2, . . . ,SJ) = max(0,S1 −K1,S
2 −K2, . . . ,S

J −KJ); (13.3)

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 13,
© Springer Science+Business Media New York 2013
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Portfolio options:

f (S1,S2, . . . ,SJ) = max(0,n1S1 + n2S2 + · · ·+ nJSJ −K); (13.4)

And spread options:

f (S1,S2) = max(0,(S2 − S1)−K). (13.5)

Here, the S1,S2, . . . ,SJ represent the expiration date values of the underlying
assets (in principle unknown at the start), and K,K1, . . . ,KJ represent the (agreed
from the beginning) strike prices. The presence of max in all these formulas reflects
the basic assumption that the buyer is not obligated to exercise her right and would
do it only in case of a positive gain.

The investor is supposed to control the growth of her capital in the following way.
Let Xm denote the investor’s capital at the time m = 1,2, . . .. At each time m− 1 the
investor determines her portfolio by choosing the number γ i

m of common stock of
each kind to be held, so that the structure of the capital is represented by the formula

Xm−1 =
J

∑
j=1

γ j
mS j

m−1 +

[

Xm−1 −
J

∑
j=1

γ j
mS j

m−1

]

,

where the expression in brackets corresponds to the part of the investor’s capital
held in a bank account. The control parameters γ j

m can take all real values, i.e., short
selling and borrowing are allowed. The value ξm becomes known at the moment m,
and thus the capital at the moment m becomes

Xm =
J

∑
j=1

γ j
mξ j

mS j
m−1 +ρ

[

Xm−1 −
J

∑
j=1

γ j
mS j

m−1

]

(13.6)

if transaction costs are not taken into account.
If n is the prescribed maturity date, then this procedure repeats n times starting

from some initial capital X = X0 (selling price of an option), and at the end the
investor is obliged to pay the premium f to the buyer. Thus the (final) income of the
investor equals

G(Xn,S
1
n,S

2
n, . . . ,S

J
n) = Xn − f (S1

n,S
2
n, . . . ,S

J
n). (13.7)

The evolution of the capital can thus be described by the n-step game of the
investor with Nature, the behavior of the latter being characterized by unknown
parameters ξ j

m. The strategy of the investor is by definition any sequence of vectors
(γ1, . . . ,γn) such that each γm could be chosen using all previous information:
the sequences X0, . . . ,Xm−1 and Si

0, . . . ,S
j
m−1 (for every stock j = 1,2, . . . ,J). The

control parameters γ j
m can take all real values, i.e., short selling and borrowing are

allowed. A position of the game at any time m is characterized by J+1 nonnegative
numbers Xm,S1

m, . . . ,S
J
m, with the final income specified by the function

G(X ,S1, . . . ,SJ) = X − f (S1, . . . ,SJ). (13.8)
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The main definition of the theory is as follows. A strategy γ1, . . . ,γn of an investor
is called a hedge if for any sequence (ξ1, . . . ,ξn) the investor is able to meet her
obligations, i.e.,

G(Xn,S
1
n, . . . ,S

J
n)≥ 0.

The minimal value of the capital X0 for which the hedge exists is called the hedging
price H of an option.

Looking for guaranteed payoffs means looking for the worst-case scenario
(the so-called robust-control approach), i.e., for the minimax strategies. Thus if
the final income is specified by a function G, then the investor’s guaranteed
income (discounted to the initial time) in a one-step game with initial conditions
X ,S1, . . . ,SJ is given by the Bellman (or Shapley) operator

BG(X ,S1, . . . ,SJ)

=
1
ρ

max
γ

min
{ξ j∈[d j ,u j ]}

G

(

ρX +
J

∑
i=1

γ iξ iSi −ρ
J

∑
i=1

γ iSi,ξ 1S1, . . . ,ξ JSJ

)

, (13.9)

and (as follows from the standard backward induction argument; see, e.g., Bellman
[25] or Kolokoltsov and Malafeyev [104]) the investor’s guaranteed income in the
n-step game with initial conditions X0,S1

0, . . . ,S
J
0 is given by the formula

BnG(X0,S
1
0, . . . ,S

J
0).

In our model, G is given by (13.8). For G of this form,

BG(X ,S1, . . . ,SJ) = X − 1
ρ

min
γ

max
ξ

[ f (ξ 1S1,ξ 2S2, . . . ,ξ JSJ)−
J

∑
j=1

γ jS j(ξ j −ρ)],

and hence
BnG(X ,S1, . . . ,SJ) = X − (Bn f )(S1, . . . ,SJ),

where the reduced Bellman operator of the European option contract specified by
the payoff f is defined as

(B f )(z1, . . . ,zJ) =
1
ρ

min
γ

max
{ξ j∈[d j ,u j ]}

[

f (ξ 1z1,ξ 2z2, . . . ,ξ JzJ)−
J

∑
j=1

γ jz j(ξ j −ρ)

]

,

(13.10)

or, more concisely, using the Hadamard product notation introduced in Sect. 12.4,

(B f )(z) =
1
ρ

min
γ

max
{ξ j∈[d j ,u j ]}

[ f (ξ ◦ z)− (γ,ξ ◦ z−ρz)]. (13.11)

This leads to the following result from Kolokoltsov [95].
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Theorem 13.1. The minimal value of X0 for which the income of an investor is
nonnegative (and which by definition is the hedge price Hn in an n-step game) is
given by

Hn = (Bn f )(S1
0, . . . ,S

J
0). (13.12)

Changing variables ξ = (ξ 1, . . . ,ξ J) to η = ξ ◦ z yields

(B f )(z1, . . . ,zJ) =
1
ρ

min
γ

max
{η∈[zidi,ziui]}

[

f (η)−
J

∑
i=1

γ i(η i −ρzi)

]

, (13.13)

or, by shifting,

(B f )(z1, . . . ,zJ) =
1
ρ

min
γ

max
{η∈[zi(di−ρ),zi(ui−ρ)]}

[ f (η +ρz)− (γ,η)]. (13.14)

Thus we are in the setting of Sect. 12.3. Moreover, assuming f is convex (which is
often the case for option payoffs), we can apply Theorem 12.14, where the max is
taken over the set of vectors

ηI = ξI ◦ z−ρz,

which are the vertices of the rectangular parallelepiped

Πz,ρ =×J
i=1[z

i(di −ρ),zi(ui −ρ)],

where

ξI = {di|i∈I ,u j| j/∈I}
are the vertices of

Π =×J
i=1[di,ui] (13.15)

parameterized by all subsets (including the empty one) I ⊂ {1, . . . ,J}.
Since the origin is an internal point of Π (because di < ρ < ui), the family {ηI}

is strongly positively complete. The condition of the general position is rough (or
generic) in the sense that it is fulfilled for an open dense subset of pairs (di,ui).
Applying Theorem 12.14 (and Remark 12.16) to (13.14) and returning to ξ yields
the following theorem.

Theorem 13.2. If the vertices ξI of the parallelepiped Π are in a general position in
the sense that for any J subsets I1, . . . , IJ the vectors {ξIk −ρ1}J

k=1 are independent
in R

J, then

(B f )(z) =
1
ρ

max
{Ω}

EΩ f (ξ ◦ z), z = (z1, . . . ,zJ), (13.16)

where {Ω} is the collection of all subsets Ω = ξI1 , . . . ,ξIJ+1 of the set of vertices of
Π , of size J+1, such that their convex hull contains ρ1 as an interior point (1 is the
vector with all coordinates 1), and where EΩ denotes the expectation with respect
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to the unique probability law {pI}, ξI ∈ Ω , on the set of vertices of Π , which is
supported on Ω and is risk neutral with respect to ρ1, that is,

∑
I⊂{1,...,J}

pIξI = ρ1. (13.17)

Moreover, if

f (ξ ◦ z)− (γI1,...,IJ+1 ,(ξ −ρ1)◦ z)≥ f (ζ ◦ z)− (γI1,...,IJ+1 ,(ζ −ρ1)◦ z)

for all vertices ξ ,ζ such that ξ ∈Ω and ζ /∈ Ω , where γI1,...,IJ+1 is the corresponding
optimal value for the polyhedron Π [ξI1 , . . . ,ξIJ+1 ], then

(B f )(z1, . . . ,zJ) =
1
ρ

EΩ f (ξ ◦ z). (13.18)

Risk neutrality now corresponds to its usual meaning in finance, i.e., (13.17)
means that all discounted stock prices are martingales.

Notice that the max in (13.16) is over a finite number of explicit expressions,
which is of course a great achievement as compared with the initial minimax over
an infinite set. In particular, it reduces the calculation of the iterations Bn f to the
calculation on a controlled Markov chain. Let us also stress that the number of
eligible Ω in (13.16) is the number of different pyramids (convex polyhedrons with
J + 1 vertices) with vertices taken from the vertices of Π and containing ρ1 as an
interior point. Hence this number can be effectively calculated.

13.2 Nonexpansion and Homogeneity of Solutions

Let us point out some properties of the operator B given by (13.16) that are obvious
but important for practical calculations. ρB is nonexpansive:

‖B( f1)−B( f2)‖ ≤ 1
ρ
‖ f1 − f2‖

and homogeneous (both with respect to addition and multiplication):

ρB(λ + f ) = λ +ρB( f ), B(λ f ) = λB( f )

for any function f and λ ∈R (resp. λ > 0) for the first (resp. second) equation.
Next, if fp is a power function, that is,

fp(z) = (z1)i1 · · ·(zJ)iJ ,
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then fp(ξ ◦ z) = fp(ξ ) fp(z), implying

(Bn fp)(z) = ((B fp)(1))n fp(z). (13.19)

Therefore, power functions are invariant under B (up to multiplication by a
constant). Consequently, if for a payoff f one can find a reasonable approximation
by a power function, that is, there exists a power function fp such that ‖ f − fp‖ ≤ ε ,
then

‖Bn f −λ n fp‖ ≤ 1
ρn ‖ f − fp‖ ≤ ε

ρn , λ = (B fp)(1), (13.20)

so that an approximate calculation of Bn f is reduced to the calculation of one
number λ . This implies the following scheme for an approximate evaluation of B.
First, find the best fit to f in terms of the functions α + fp (where fp is a power
function and α a constant), and then use (13.20).

13.3 Submodular Payoffs: Two Colors

One can obtain an essential reduction in the combinatorics of Theorem 13.2 (i.e., in
the number of eligible Ω ) under additional assumptions on the payoff f . The most
natural one in the context of options turns out to be the notion of submodularity.
A function f : R2

+ →R+ is called submodular if the inequality

f (x1,y2)+ f (x2,y1)≥ f (x1,y1)+ f (x2,y2)

holds whenever x1 ≤ x2 and y1 ≤ y2. Similarly, a function f : Rd
+ → R+ is called

submodular if

f
(

x
∨

y
)
+ f
(

x
∧

y
)
≤ f (x)+ f (y),

where
∨

(resp.
∧

) denotes the Pareto (coordinatewise) maximum (resp. minimum).

Remark 13.3. If f is twice continuously differentiable, then it is submodular if and

only if ∂ 2 f
∂ zi∂ z j

≤ 0 for all i �= j.

As one easily sees, the payoffs of the first three examples of rainbow options
(Sect. 13.1), i.e., those defined by (13.1)–(13.3), are submodular. Let us explain how
the assumptions of submodularity can simplify Theorem 13.2.

First, let J = 2. The polyhedron Π from (13.15) is then a rectangle. From the
submodularity of f it follows that if Ω from Theorem 13.2 is either

Ω12 = {(d1,d2),(d1,u2),(u1,u2)}
or

Ω21 = {(d1,d2),(u1,d2),(u1,u2)},
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then ( f ,ξ )− (γ0,ξ ) coincide for all vertices ξ of Π . Hence Ω12 and Ω21 can be
discarded in Theorem 13.2, i.e., the maximum is always achieved on either

Ωd = {(d1,d2),(d1,u2),(u1,d2)}

or

Ωu = {(d1,u2),(u1,d2),(u1,u2)}.
But the interiors of the triangles formed by Ωu and Ωd do not intersect, so
that each point of Π (in a general position) lies only in one of them (and this
position no longer depends on f ). Hence, depending on the position of ρ1 in Π ,
expression (13.16) reduces to either EΩu or EΩd . This yields the following result
(obtained in Kolokoltsov [95]).

Theorem 13.4. Let J = 2 and f be convex submodular. Denote

κ =
(u1u2 − d1d2)−ρ(u1− d1 +u2 − d2)

(u1 − d1)(u2 − d2)
= 1− ρ − d1

u1 − d1
− ρ − d2

u2 − d2
. (13.21)

If κ ≥ 0, then ρ(B f )(z1,z2) equals

ρ − d1

u1 − d1
f (u1z1,d2z2)+

ρ − d2

u2 − d2
f (d1z1,u2z2)+κ f (d1z1,d2z2), (13.22)

and the corresponding optimal strategies are

γ1 =
f (u1z1,d2z2)− f (d1z1,d2z2)

z1(u1 − d1)
, γ2 =

f (d1z1,u2z2)− f (d1z1,d2z2)

z2(u2 − d2)
.

If κ ≤ 0, then ρ(B f )(z1,z2) equals

u1 −ρ
u1 − d1

f (d1z1,u2z2)+
u2 −ρ
u2 − d2

f (u1z1,d2z2)+ |κ | f (u1z1,u2z2), (13.23)

and

γ1 =
f (u1z1,u2z2)− f (d1z1,u2z2)

z1(u1 − d1)
, γ2 =

f (u1z1,u2z2)− f (u1z1,d2z2)

z2(u2 − d2)
.

Clearly the linear operator B preserves the set of convex submodular functions.
Hence one can use this formula recursively to obtain all powers of B in a closed
form. For instance, if κ = 0, then one obtains for the hedge price the following two-
color extension of the classic CRR formula (for the latter see, e.g., Bingham and
Kiesel [45]):

Bn f (S1
0,S

2
0) = ρ−n

n

∑
k=0

(
n

k

)(
ρ − d1

u1 − d1

)k( ρ − d2

u2 − d2

)n−k

f
(
uk

1dn−k
1 S1

0,d
k
2u

n−k
2 S2

0

)
.

(13.24)

Similar formulas hold for nonvanishing κ .
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13.4 Submodular Payoffs: Three or More Colors

Here we continue the discussion of submodular payoffs looking at options with
more than two colors. Trying to argue as in the case J = 2, suppose first that Ω from
Theorem 13.2 contains the vertex (d1, . . . ,dJ). Next, if it then contains any other
vertex

ξI = {di|i∈I,u j| j/∈I},
then, due to submodularity, the set where the max is attained in (13.11) must contain
all ξ ( j), j /∈ I, which have only one u j on the jth place and di on other places. On
the other hand, the whole set Ω has to be strongly positively complete, so that there
can be no i such that all vectors from Ω have di on this place. From these two facts
it follows that if Ω contains (d1, . . . ,dJ), then the set Ωd consisting of (d1, . . . ,dJ)
and J other vertices with only one coordinate u j, j = 1, . . . ,J, is also maximizing
in (13.16). Consequently, if ρ1 ∈ Ωd , then the max in (13.16) is reduced to only
one term arising from Ωd . Next, ρ1 ∈ Ωd means that the vector v with coordinates
{(ρ − di)/(ui − di)} belongs to the simplex

Σ = {x1, · · ·xJ ≥ 0 : x1 + · · ·+ xJ < 1}

or, equivalently,

J

∑
i=1

ρ − di

ui − di
< 1, (13.25)

and the risk-neutral probabilities p0, p1, . . . , pJ on the vertices of Σ − v for a v ∈ Σ
are clearly 1−∑J

j=1 v
j,v1, . . . ,vJ .

Similarly, if ρ1 ∈ Ωu, that is,

J

∑
i=1

ui −ρ
ui − di

< 1 (13.26)

holds, then the max in (13.16) is reduced to only one term arising from Ωu, where
the set Ωu consists of (u1, . . . ,uJ) and J other vertices with only one coordinate d j,
j = 1, . . . ,J.

This yields the following result, where we use the following notation: for a set
I ⊂ {1,2, . . . ,J}, fI(z) [resp. f̃I(z)] is f (ξ 1z1, . . . ,ξ JzJ) with ξ i = di for i ∈ I and
ξi = ui for i /∈ I (resp. ξ i = ui for i ∈ I and ξi = di for i /∈ I).

Theorem 13.5. Let f be convex and submodular.

(1) If (13.25) holds, then

(B f )(z) =
1
ρ

[

f̃ /0(z)+
J

∑
j=1

ρ − d j

u j − d j
( f̃ j(z)− f̃ /0)

]

. (13.27)
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(2) If (13.26) holds, then

(B f )(z) =
1
ρ

[

f /0(z)+
J

∑
j=1

u j −ρ
u j − d j

( f j(z)− f /0)

]

. (13.28)

Hence, in these cases our B again reduces to a linear form, allowing for a
straightforward calculation of its iterations, i.e., for a multicolor extension of the
CRR formula, as in the previous case J = 2.

When condition (13.25) or (13.26) does not hold, the reduced Bellman operator
does not turn to a linear form, even though essential simplifications are still possible
in case of submodular payoffs.

Let us sort our this combinatorics only for three colors, J = 3. Suppose that
ρ1 lies neither in the tetrahedron Ωd nor in Ωu (i.e., neither of the conditions
of Theorem 13.5 holds). From the above reductions of possible Ω it follows that
in that case one can discard all Ω containing either (d1,d2,d3) or (u1,u2,u3).
Hence only six vertices are left for eligible Ω . From the consideration of a general
position we further deduce that altogether only six Ω are possible, namely, the three
tetrahedra containing the vertices (d1,d2,u3), (d1,u2,d3), (u1,d2,d3) and one vertex
from (d1,u2,u3), (u1,u2,d3), (u1,d2,u3), and symmetrically the three tetrahedra
containing the vertices (d1,u2,u3), (u1,u2,d3), (u1,d2,u3) and one vertex from
(d1,d2,u3), (d1,u2,d3), (u1,d2,d3). However, any particular point in a general
position belongs to only three out of these six, leaving in formula (13.16) the max
over three possibilities only. The particular choice of these three tetrahedra depends
on the coefficients

α12 =

(
1− u1 − r

u1 − d1
− u2 − r

u2 − d2

)
,

α13 =

(
1− u1 − r

u1 − d1
− u3 − r

u3 − d3

)
,

α23 =

(
1− u2 − r

u2 − d2
− u3 − r

u3 − d3

)
, (13.29)

and leads to the following result obtained in Hucki and Kolokoltsov [86] (though
with a much more elaborate proof than here).

Theorem 13.6. Let J = 3 and f be convex and submodular, and neither of the
conditions of Theorem 13.5 holds.

(1) If α12 ≥ 0, α13 ≥ 0 and α23 ≥ 0, then

(B f )(z)=
1
ρ

max

⎧
⎪⎪⎨

⎪⎪⎩

(−α123) f{1,2}(z)+α13 f{2}(z)+α23 f{1}(z)+
u3−r
u3−d3

f{3}(z)

(−α123) f{1,3}(z)+α12 f{3}(z)+α23 f{1}(z)+
u2−r
u2−d2

f{2}(z)

(−α123) f{2,3}(z)+α12 f{3}(z)+α13 f{2}(z)+
u1−r
u1−d1

f{1}(z)

⎫
⎪⎪⎬

⎪⎪⎭
.
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(2) If αi j ≤ 0, α jk ≥ 0 and αik ≥ 0, where {i, j,k} is an arbitrary permutation of
the set {1,2,3}, then

(B f )(z)=
1
ρ

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−αi jk
)

f{i, j}(z)+αik f{ j}(z)+α jk f{i}(z)+
uk−r
uk−dk

f{k}(z)

α jk f{i}(z)+ (−αi j) f{i, j}(z)+
uk−r
uk−dk

f{i,k}(z)− di−r
ui−di

f{ j}(z)

αik f{ j}(z)+ (−αi j) f{i, j}(z)+
uk−r
uk−dk

f{ j,k}(z)− d j−r
u j−d j

f{i}(z)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(3) If αi j ≥ 0, α jk ≤ 0 and αik ≤ 0, where {i, j,k} is an arbitrary permutation of
the set {1,2,3}, then

(B f )(z)=
1
ρ

max

⎧
⎪⎪⎨

⎪⎪⎩

αi j f{k}(z)+ (−α jk) f{ j,k}(z)+
ui−r
ui−di

f{i,k}(z)− dk−r
uk−dk

f{ j}(z)

αi j f{k}(z)+ (−αik) f{i,k}(z)+
u j−r
u j−d j

f{ j,k}(z)− dk−r
uk−dk

f{i}(z)

(α123 +1) f{k}(z)−α jk f{ j,k}(z)−αik f{i,k}(z)− dk−r
uk−dk

f{i, j}(z)

⎫
⎪⎪⎬

⎪⎪⎭
.

One must stress here that the application of Theorem 13.6 is rather limited: since
B is not reduced to a linear form, it is not clear how to use it for the iterations of B
because the submodularity does not seem to be preserved under such B.

13.5 Transaction Costs

Let us now extend the model of Sect. 13.1 to include possible transaction costs. They
can depend on transactions in various ways. The simplest for the analysis are the so-
called fixed transaction costs, which are equal to a fixed fraction (1−β ) (with β a
small constant) of the entire portfolio. Hence for fixed costs, Eq. (13.6) changes to

Xm = β
J

∑
j=1

γ j
mξ j

mS j
m−1 +ρ

(

Xm−1 −
J

∑
j=1

γ j
mS j

m−1

)

. (13.30)

As one easily sees, including fixed costs can be dealt with by rescaling ρ , thereby
bringing nothing new to the analysis.

In more advanced models, transaction costs depend on the amount of transac-
tions (bought and sold stocks) at each moment of time, i.e., they are given by some
function

g(γm − γm−1,Sm−1),

and are paid at times when the investor changes γm−1 to γm. In particular, the basic
example presents so-called proportional transaction costs, where

g(γm − γm−1,Sm−1) = β
J

∑
j=1

|γ j
m − γ j

m−1|S j
m−1
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(again with a fixed β > 0). We will assume only that g has the following Lipschitz
property:

|g(γ1,z)− g(γ2,z)| ≤ β |z||γ1 − γ2| (13.31)

with a fixed β > 0.
To deal with transaction costs, it is convenient to extend the state space of our

game, considering the states that are characterized, at time m−1, by 2J+1 numbers

Xm−1,S
j
m−1,vm−1 = γ j

m−1, j = 1, . . . ,J.

When, at time m− 1, the investor chooses her new control parameters γm, the new
state at time m becomes

Xm, S j
m = ξ j

mS j
m−1, vm = γ j

m, j = 1, . . . ,J,

where the value of the portfolio is

Xm =
J

∑
j=1

γ j
mξ j

mS j
m−1 +ρ

(

Xm−1 −
J

∑
j=1

γ j
mS j

m−1

)

− g(γm − vm−1,Sm−1). (13.32)

The corresponding reduced Bellman operator from Sect. 13.1 takes the form

(B f )(z,v) = min
γ

max
ξ

[ f (ξ ◦ z,γ)− (γ,ξ ◦ z−ρz)+ g(γ− v,z)], (13.33)

where z,v ∈R
J , or, changing the variables ξ =(ξ 1, . . . ,ξ J) to η = ξ ◦z and shifting,

(B f )(z,v) = min
γ

max
{η j∈[z j(d j−ρ),z j(u j−ρ)]}

[ f (η +ρz,γ)− (γ,η)+ g(γ − v,z)].

(13.34)

Let us assume that

| f (z,v1)− f (z,v2)| ≤ α|z||v1 − v2|
and α is small enough so that the requirements of Theorem 12.22 are satisfied for
the right-hand side of (13.34). By Theorem 12.22,

(B f )(z,v) = max
Ω

EΩ [ f (ξ ◦ z,γΩ )+ g(γΩ − v,z)]. (13.35)

Notice that since the terms with v enter additively, they cancel from the equations
for γΩ , so that the values of γΩ do not depend on v. Consequently,

|(Bf )(z,v1)−(Bf )(z,v2)| ≤max
Ω

EΩ [g(γΩ −v1,z)−g(γΩ −v2),z)]≤ β |z||v1−v2|.
(13.36)

Hence, if at all steps the application of Theorem 12.22 is allowed, then
(Bkf )(z,v) remains Lipschitz in v with the Lipschitz constant β |z| (the last-step
function does not depend on v and hence trivially satisfies this condition).
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Let κ1 and κ2 be the characteristics, defined before Theorem 12.22, of the set
of vertices ξI − ρ1 of the parallelepiped ×J

j=1[d j,u j]− ρ1. By Proposition 12.23,
the corresponding characteristics κ1(z) and κ2(z) of the set of vertices of the scaled
parallelepiped

×J
j=1[z

jd j,z
ju j]−ρz

have the lower bounds

κi(z)≥ |z|κi
1

dδ (z)
, i = 1,2.

As in each step of our process the coordinates of z are multiplied by d j or u j, the
corresponding maximum δn(z) of the δ of all z that can occur in the n-step process
equals

δn(z) = δ (z)
(

max j u j

min j d j

)n

. (13.37)

Thus we arrive at the following result.

Theorem 13.7. Suppose β from (13.31) satisfies the estimate

β < min(κ1,κ2)
1

dδn(z)
,

where δn(z) is given by (13.37). Then the hedge price of a derivative security
specified by a final payoff f , and with transaction costs specified previously, is given
by (13.12), where B is given by (13.33). Moreover, at each step, B can be evaluated
by Theorem 12.22, i.e., by (13.35), reducing the calculations to finding a maximum
over a finite set.

Of course, for larger β , further adjustments of Theorem 12.22 are required.



Chapter 14
Rainbow Options in Discrete Time, II

14.1 Rainbow American Options and Real Options

In the world of American options, when an option can be exercised at any time, the
operator BG(X ,S1, . . . ,SJ) from (13.9) changes to

BG(X ,S1, . . . ,SJ) =
1
ρ

max
γ

min
{

G(X ,S1, . . . ,SJ),

1
ρ

min
ξ

G(ρX +
J

∑
i=1

γ iξ iSi −ρ
J

∑
i=1

γ iSi,ξ 1S1, . . . ,ξ JSJ)
}
,

(14.1)

so that the corresponding reduced Bellman operator takes the form

(B f )(z1, . . . ,zJ)

=
1
ρ

min
γ

max

[

ρ f (ρz),max
ξ

[ f (ξ 1z1,ξ 2z2, . . . ,ξ JzJ)−
J

∑
i=1

γ izi(ξ i −ρ)]

]

= max

[

f (ρz),
1
ρ

min
γ

max
ξ

[ f (ξ 1z1,ξ 2z2, . . . ,ξ JzJ)−
J

∑
i=1

γ izi(ξ i −ρ)]

]

.

(14.2)

Consequently, in this case the main formula (13.16) of Theorem 13.2 becomes

(B f )(z1, . . . ,zJ) = max

[
f (ρz),

1
ρ

max
{Ω}

EΩ f (ξ ◦ z)

]
, (14.3)

which is of course not an essential increase in complexity. The hedge price for the
n-step model is again given by (13.12).

Similar problems arise in the study of real options. We refer the reader to Dixit
and Pindyck [68] for a general background and to Bensoussan et al. [31] for more
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recent mathematical results. A typical real-option problem can be formulated as
follows. Given J instruments (e.g., commodities, assets), the value of the investment
in some project at time m is supposed to be given by certain functions fm(S1

m, . . . ,S
J
m)

depending on the prices of these instruments at time m. The problem is to evaluate
the price (at the initial time 0) of the option to invest in this project that can be
exercised at any time during a given time interval [0,T ]. Such a price is important
since to keep the option open a firm needs to pay certain costs (say, keep required
facilities ready or invest in research). We have formulated the problem in a way
that makes it an example of the general evaluation of an American rainbow option,
discussed above, at least when underlying instruments are tradable on a market.
For practical implementation, one only has to keep in mind that the risk-free rates
appropriate for the evaluation of real options are usually not those available on bank
accounts used in the analysis of financial options, but rather the growth rates of the
corresponding branch of industry. These rates are usually estimated via the capital
asset pricing model (CAPM); see again [68].

14.2 Path Dependence and Other Modifications

The theory in Sect. 13.1 is rough, in the sense that it can be easily modified to
accommodate various additional pricing mechanisms. We have already considered
transaction costs and American options. Here we will discuss other modifications:
path-dependent payoffs, time-dependent price jumps (including variable volatility),
and nonlinear jump formations. For simplicity, we will discuss these extensions
separately, but any of their combinations (including transaction costs and American
versions) can be easily dealt with.

Let us start with path-dependent payoffs. That is, we generalize the context of
Sect. 13.1 by making the payoff f at time m depend on the whole history of the
price evolution, i.e., as defined by a function f (S0,S1, . . . ,Sm), Si = (S1

i , . . . ,S
J
i ), on

R
J(m+1). The state of the game at time m must now be specified by (m+ 1)J + 1

numbers

Xm, Si = (S1
i , . . . ,S

J
i ), i = 0, . . . ,m.

The final payoff in the n-step game is now G = X − f (S0, . . . ,Sn), and at the
penultimate period n− 1 (when S0, . . . ,Sn−1 are known) payoff equals

BG(X ,S0, . . . ,Sn−1)

= X − 1
ρ

min
γ

max
ξ

[ f (S0, . . . ,Sn−1,ξ ◦ Sn−1)− (γ,Sn−1 ◦ (ξ −ρ1))]

= X − (Bn−1 f )(S0, . . . ,Sn−1),
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where the modified reduced Bellman operators are now defined as

(Bm−1 f )(z0, . . . ,zm−1)=
1
ρ

min
γ

max
{ξ j∈[d j ,u j ]}

[ f (z0, . . . ,zm−1,ξ◦zm−1)−(γ,ξ◦z−ρz)].

(14.4)

Consequently, by dynamic programming, the guaranteed payoff at the initial
moment of time equals X −B0(B1 · · ·(Bn−1 f ) · · · ), and the hedging price becomes

Hn = B0(B1 · · · (Bn−1 f ) · · · ). (14.5)

No essential changes are required if possible jump sizes are time dependent. Only
the operators Bm−1 from (14.4) have to be generalized to

(Bm−1 f )(z0, . . . ,zm−1)

= min
γ

max
{ξ j∈[dm

j ,u
m
j ]}
[ f (z0, . . . ,zm−1,ξ ◦ zm−1)− (γ,ξ ◦ z−ρz)],

where the pairs (dm
j ,u

m
j ), j = 1, . . . ,J, m = 1, . . . ,n specify the model.

Let us turn to nonlinear jump patterns. Generalizing the setting of Sect. 13.1 let
us assume that, instead of the stock price evolution model Sm+1 = ξ ◦ Sm, we are
given k transformations gi : RJ → R

J , i = 1, . . . ,k, which give rise naturally to two
models of price dynamics: either

(1) At time m+1 the price Sm+1 belongs to the closure of the convex hull of the set
{gi(Sm)}, i = 1, . . . ,k (nonlinear interval model) or

(2) Sm+1 is one of the points {gi(Sm)}, i = 1, . . . ,k.

Since the first model can be approximated by the second one (by possibly increasing
the number of transformations gi), we will work with the second model.

Remark 14.1. Notice that maximizing a function over a convex polyhedron is
equivalent to its maximization over the edges of this polyhedron. Hence, for convex
payoffs the two preceding models are fully equivalent. However, on the one hand,
not all reasonable payoffs are convex, and on the other hand, when it comes to
minimization (which one needs, say, for lower prices; see Sect. 14.3), the situation
becomes rather different.

Assuming for simplicity that possible jump sizes are time independent and the
payoff depends only on the end value of a path, the reduced Bellman operator
(13.10) becomes

(B f )(z) =
1
ρ

min
γ

max
i∈{1,...,k}

[ f (gi(z))− (γ,gi(z)−ρz)], z = (z1, . . . ,zJ), (14.6)
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or, equivalently,

(B f )(z) =
1
ρ

min
γ

max
ηi=gi(z)−ρz,i=1,...,k

[ f (ηi +ρz)− (γ,ηi)]. (14.7)

The hedge price is still given by (13.12), and operator (14.6) is calculated by
Theorem 12.14, yielding

(B f )(z) =
1
ρ

max
Ω

EΩ f (ηi +ρz), (14.8)

where EΩ denote expectations with respect to all extreme points of risk-neutral
probability laws on vectors ηi = gi(z)−ρz.

It is worth noting that if k = d + 1 and {gi(z)} form a collection of vectors in a
general position, the corresponding risk-neutral probability is unique. Consequently,
our hedge price becomes fair in the strongest sense of “no arbitrage”: no positive
surplus is possible for all paths of the stock price evolution (if the hedge strategy
is followed). In particular, the evaluation of hedge strategies can be carried out
in the framework of the standard approach to option pricing, that is, by choosing
as an initial (real-world) probability on jumps an arbitrary measure with full
support, one concludes that there exists a unique risk-neutral equivalent martingale
measure, explicitly defined via formula (12.18), and the hedge price calculated by
the iterations of operator (14.7) coincides with the standard risk-neutral evaluation
of derivative prices in complete markets.

14.3 Upper and Lower Values for Intrinsic Risk

The celebrated no-arbitrage property of the hedge price of an option in the Cox–
Ross–Rubinstein (CRR) or Black–Scholes models means that, almost surely, with
respect to the initial probability distribution on paths, the investor cannot get an
additional surplus when adhering to the hedge strategy that guarantees that there
could be no loss. In our setting, even though our formula in the case J = 1 coincides
with the CRR formula, we do not assume any initial law on paths, so that the notion
of “no arbitrage” is not specified either.

It is a characteristic feature of our models that picking up an a priori probability
law with support on all paths leads to an incomplete market, that is, to the existence
of infinitely many equivalent martingale measures, which fail to identify a fair
price in a unique, consistent way. Notice that our extreme points are absolutely
continuous, but usually not equivalent to a measure with full support.

Remark 14.2. The only cases of a complete market among the models discussed
previously are those mentioned at the end of Sect. 14.2, that is, models with precisely
J+ 1 eligible jumps in a stock price vector S in each period.
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For the analysis of incomplete markets it is of course natural to look for some
subjective criteria to specify a price. Lots of work by different authors has been
devoted to this endeavor; see, for example, Bielecki et al. [44]. Our approach is
to search for objective bounds (price intervals), which are given by our hedging
strategies, in the spirit of El Karoui and Quenez [71].

Remark 14.3. Apart from supplying the lower price (as below), one can also argue
about the reasonability of our main hedging price, noting that a chance for a possible
surplus can be (and actually is indeed) compensated by the inevitable inaccuracy
of a model and by transaction costs (if they are not properly taken into account).
Moreover, this price satisfies the so-called no strictly acceptable opportunities
condition suggested in Carr et al. [53].

For completeness, let us recall the general definitions of lower and upper prices,
in the game-theoretic approach to probability, given in Shafer and Vovk [136].
Assume a process (a sequence of real numbers of a fixed length, say n, specifying the
evolution of an investor’s capital) is specified by alternating moves of two players,
an investor and Nature, with complete information (all eligible moves of each player
and their results are known to each player at any time, and the moves become
publicly known at the moment when a decision is made). Let us denote by Xα

γ (ξ ) the
last number of the resulting sequence, starting with an initial value α and obtained
by applying the strategy γ (of the investor) and ξ (of Nature). By a random variable
we mean just a function on the set of all possible paths.

The upper value (or upper expectation) E f of a random variable f is defined as
the minimal capital of the investor such that she has a strategy that guarantees that
at the final moment of time, her capital will be enough to buy f , i.e.,

E f = inf{α : ∃γ : ∀ξ , Xα
γ (ξ )− f (ξ )≥ 0}.

At the same time, the lower value (or lower expectation) E f of a random variable
f is defined as the maximum capital of the investor such that she has a strategy that
guarantees that at the final moment of time, her capital will be enough to sell f , i.e.,

E f = sup{α : ∃γ : ∀ξ , Xα
γ (ξ )+ f (ξ )≥ 0}.

One says that the prices are consistent if E f ≥ E f . If these prices coincide, we are
in a kind of abstract analog of a complete market. In the general case, upper and
lower prices are also referred to as seller’s and buyer’s prices, respectively.

It is seen now that in this terminology our hedging price for a derivative security
is the upper (or seller’s) price. The lower price can be defined similarly, that is, in
the context of Sect. 13.1, the lower price is given by

(Bn
low f )(S1

0, . . . ,S
J
0),
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where

(Blow f )(z) =
1
ρ

max
γ

min
{ξ j∈[d j ,u j ]}

[ f (ξ ◦ z)− (γ,ξ ◦ z−ρz)]. (14.9)

In this simple interval model and for convex f this expression is trivial; it equals
f (ρz). On the other hand, if our f is concave or, more generally, if we allow only
finitely many jumps, which leads, instead of (14.9), to the operator

(Blow f )(z) =
1
ρ

max
γ

min
{ξ j∈{d j ,u j}}

[ f (ξ ◦ z)− (γ,ξ ◦ z−ρz)], (14.10)

then Theorem 12.19 applies giving for the lower price the dual expression to the
upper price (13.16), where maximum is turned to minimum (over the same set of
extreme risk-neutral measures):

(Blow f )(z) =
1
ρ

min
{Ω}

EΩ f (ξ ◦ z), z = (z1, . . . ,zJ). (14.11)

The difference between lower and upper prices can be considered as a measure
of the intrinsic risk of an incomplete market.

14.4 Cash-Back Methodology for Dealing with Intrinsic Risk

Apart from working with upper and lower prices, one can suggest another method
for improving hedge prices in such a way that allows one to avoid arbitrage
completely. This method was worked out in Lyons [108] for models with unknown
volatility. It consists in specifying a possible cash back that a holder of an option
should receive when the price moves (unpredictable initially) turn out to be
favorable (and not the worst possible, as assumed in the minimax evaluation).

It is rather easy to specify this cash-back flow in our setting. Consider, say,
the general model with nonlinear jumps described by the reduced Bellman oper-
ator (14.6), which by Theorem 12.14 can be expressed via (14.8), that is

(B f )(z) =
1
ρ

max
Ω

EΩ f (η +ρz),

where EΩ denote expectations with respect to all extreme points of risk-neutral
probability laws on vectors η from the set {gi(z)−ρz}.

Suppose at some time t the jump of the price turns out to be given by a vector
gi(z), which does not belong to the support St of the optimal risk-neutral law Ωt

(where the max is attained in the preceding expression for B). Then the investor’s
unpredictable surplus (trading with his hedging strategy) equals

f (g j(z))− f (gi(z))− (γ0,g j(z)− gi(z)), i ∈ St
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(the same value for all i ∈ St ) or, equivalently,

EΩt f (η +ρz)− f (gi(z))+ (γ0,gi(z)),

where f = BT−t fT . Thus, to avoid arbitrage, the agreement between a buyer and
a seller of an option can specify payments of this amount in each case of Nature’s
benevolent behavior, where the price jump does not belong to the support of the
optimal risk-neutral law Ωt .

14.5 Degenerate or Random Geometry of Nonsimultaneous
Jumps

The situation becomes essentially different if the jumps in various underlying
stock prices cannot occur simultaneously. The absence of simultaneous jumps is
a performance of certain independence of their behavior. Under this assumption,
instead of 2J possible jumps, there are only 2J possibilities at each moment: one of
the J stock prices jumps up or down and the other just increases at the risk-free rate.
Thus the reduced Bellman operator becomes

(B f )(z) =
1
ρ

min
γ∈RJ

max
i=1,...,J

max[ f (ρ ži,uiz
i)− γ izi(ui −ρ), f (ρ ži,diz

i)− γ izi(di−ρ)],

(14.12)

where (ρ ži, pzi), for p ∈R, denotes the vector obtained from z by multiplying its ith
coordinate by p and all other coordinates by ρ , or, equivalently,

(B f )(z) =
1
ρ

min
γ∈RJ

max
i=1,...,J

max
η∈{ηi,u,ηi,d}

[ f (η +ρz)− (γ,η)], (14.13)

where ηi,u (resp. ηi,d) is a vector with only one nonvanishing ith coordinate that
equals zi(ui −ρ) (resp. zi(di −ρ)).

According to Proposition 12.9, there are precisely J extreme points of risk-
neutral laws on the set of 2J vectors {ηi,u,ηi,d}, i = 1, . . . ,J, and they have support
on pairs {ηi,u,ηi,d}, i = 1, . . . ,J. Hence these risk-neutral laws are effectively one-
dimensional and are given by probabilities

ρ − di

ui − di
,

ui −ρ
ui − di

.

Risk neutrality means that

ρ − di

ui − di
(ui −ρ)+

ui −ρ
ui − di

(di −ρ) = 0.
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Applying Theorem 12.14, we obtain the following proposition.

Proposition 14.4. The minimax expression (14.12) or (14.13) equals

(B f )(z) =
1
ρ

max
i=1,...,J

[
ρ − di

ui − di
f (ρ ži,uiz

i)+
ρ − di

ui − di
f (ρ ži,diz

i)

]
. (14.14)

Assume now that a probability law {p1, . . . , pJ} on stock symbol is given
specifying a name that is going to jump at each particular moment in time, that
is, we find ourselves in the context of random geometry, as in Sect. 12.6. The
corresponding Bellman operator takes the form of type (12.56):

(B f )(z) =
1
ρ

J

∑
i=1

pi max
η=ηi,u,ηi,d

[ f (η +ρz)− (γ,η)], (14.15)

which, similar to (14.14), is evaluated as

(B f )(z) =
1
ρ

J

∑
i=1

pi[
ρ − di

ui − di
f (ρ ži,uiz

i)+
ρ − di

ui − di
f (ρ ži,diz

i)]. (14.16)

This context corresponds to independent jumps (that never occur simultane-
ously). Allowing for correlated jumps, say with positive correlations, we will add
to the family of vectors {ηi,u,ηi,d}, i = 1, . . . ,J, the vectors {η jk,u,η jk,d}, j < k,
where η jk,u (resp. η jk,d) is a vector with only two nonvanishing coordinates, j and
k, that equal z j(u j −ρ) and zk(uk −ρ) [resp. z j(d j −ρ) and zk(dk −ρ)]. Assuming
probabilities pi on the pairs {η jk,u,η jk,d} and p jk on pairs {η jk,u,η jk,d} leads to the
Bellman operator

(B f )(z) =
1
ρ

J

∑
i=1

pi max
η=ηi,u,ηi,d

[ f (η +ρz)− (γ,η)]

+
1
ρ ∑

j<k

p jk max
η=η jk,u ,η jk,d

[ f (η +ρz)− (γ,η)]. (14.17)

Applying formula (12.60) yields the following proposition.

Proposition 14.5. Assume additionally that ui−ρ = ρ−di for all i= 1, . . . ,J. Then
the minimax expression (14.17) equals

(B f )(z) =
1

2ρ

J

∑
i=1

pi[ f (ρz+ηi,u)+ f (ρz+ηi,d)]

+
1

2ρ ∑
j<k

p jk[ f (ρz+η jk,u)+ f (ρz+η jk,d)].
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14.6 Stochastic Interest Rates and Stochastic Volatility

As was mentioned previously, if the distribution of certain parameters is given, it
can be easily accommodated in a game-theoretic model. Here we demonstrate it on
the examples of stochastic interest rates and stochastic volatilities.

Let us start with interest rates. Assume that ρ in the basic context of Sect. 13.1
is not a constant but a random variable with a given distribution. Let us denote here
the corresponding expectation by Ẽ. Then, modeling the corresponding new game
in the spirit of Sect. 12.6, the reduced Bellman operator (13.11) will become

(B f )(z) = Ẽ
1
ρ

min
γ

max
{ξ j∈[d j ,u j ]}

[ f (ξ ◦ z)− (γ,ξ ◦ z−ρz)]. (14.18)

A straightforward extension of the main result of Theorem 13.2 yields

(B f )(z) = Ẽ
1
ρ

max
{Ω}

EΩ f (ξ ◦ z) (14.19)

(with the same notation as in Theorem 13.2).
Next we discuss stochastic volatilities correlated with the dynamics of stock

prices. For simplicity, let us consider the case of only one underlying stock S
whose dynamics depends on (variable) volatility v. Assume that the changes in S
and v come from systematic drifts, rS and Φ(v) respectively, and oscillating (sign
changing) jumps, ψ(v,S) and φ(v) respectively. Thus, at each moment in time
the stock price S can change either to ρS = (1+ r)S (no jumps) or to (1+ r)S±
ψ(v,S), and the volatility v can change either to v+Φ(v) or to v+Φ(v)± φ(v).
Consequently, if we trade stocks choosing to hold γ units, our capital in a one-step
game would change from X to

(X − γS)(1+ r)+ γ((1+ r)S±ψ(v,S))= (1+ r)X ± γψ(v,S).

And if we trade on volatility choosing to hold γ units, our capital in a one-step game
would change from X to

(X − γv)(1+ r)+ γ(v+Φ(v)±φ(v)) = (1+ r)X ± γ(Φ(v)− r±φ(v)).

Assume the probability law {ps, pv, psv} is given, where ps (resp. pv) denotes
the probability that S (resp. v) will jump, and psv denotes the probability of
simultaneous jumps, which we assume to occur always in the same direction
(positive correlations). Then the reduced Bellman operator corresponding to a game
of type (12.56) takes the form

(B f )(z,v) =
pv

1+ r
min

γ
max± [ f (z+ rz,v+Φ(v)±φ(v))− γ(Φ(v)− r±φ(v))]

+
ps

1+ r
min

γ
max± [ f (z+ rz±ψ(v,z),v+Φ(v))∓ γψ(v,z)]
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+
psv

1+ r
min
γ1,γ2

max± [ f (z+ rz±ψ(v,z),v+Φ(v)±φ(v))∓ γ1ψ(v,z)

− γ(Φ(v)− r±φ(v))]. (14.20)

Applying (12.60) yields

(B f )(z,v) =
pv

2(1+ r)
[ f (z+ rz,v+Φ(v)+φ(v))+ f (z+ rz,v+Φ(v)−φ(v))]

+
ps

2(1+ r)
[ f (z+ rz+ψ(v,z),v+Φ(v))

+ f (z+ rz−ψ(v,z),v+Φ(v))]

+
psv

2(1+ r)

[
f (z+ rz+ψ(v,z),v+Φ(v)+φ(v))

+ f (z+ rz−ψ(v,z),v+Φ(v)−φ(v))
]
. (14.21)

As we will see in Sect. 15.4, by passing to a continuous-time limit in this model, one
can obtain various diffusion equations describing stock price models with stochastic
volatility.

14.7 Identification of Pre-Markov Chains

This final section can be viewed as a collection of remarks on the problem of
identification and calibration of pre-Markov models (models with a prescribed set
of possible moves but unknown probabilities) from our game-theoretic perspective.

First let us explain the idea of identification of pre-Markov models on a trivial
example of an interest rate model, where no theory is needed. Suppose possible
interest rates, applied at various times spaced by some τ > 0, can take values
a1, . . . ,ak and evolve according to a certain time-homogeneous Markov chain with
transition probabilities {pi j}. If the interest rate at some time t is ai, then the price,
at time t, of a bond paying one at time t + τ is Bi(t, t + τ) = 1/ai, and the price of a
bond paying one at time t + 2τ equals (again at time t)

B(t, t + 2τ)i =
1
ai

E
1
a
=

1
ai

k

∑
j=1

pi j
1
a j

=
1
ai
(Q1)i,

where we denote by Q a matrix with elements qi j = pi j/a j (and 1 denotes, as usual,
a vector with all coordinates being 1), so that Qa = 1 (a denotes a vector with
coordinates ai). Similarly, the price of a bond paying one at time t+kτ equals (again
at time t)

B(t, t + kδ )i =
1
ai
(Qk−11)i.
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Hence, if the prices of these bonds are given, we know Qk1, which allows us to
identify Q if 1 is a cyclic vector (i.e., in the general position).

Now let us turn to multinomial models of stocks, where one assumes that at
each moment in time the price is multiplied by one of n given positive numbers
a1 < · · ·< an. Risk neutrality for a probability law {p1, . . . , pn} on these multipliers
is expressed by the equation ∑n

i=1 piai = ρ , where ρ denotes the interest rate
[see (13.17)]. Suppose now that the prices of certain contingent claims (options)
specified by payoffs f from a family F are given, yielding

n

∑
i=1

pi f (ai) = ω( f ), f ∈ F,

with certain positive {ω( f )}. If the family F is rich enough, one can expect to be
able to identify a unique eligible risk-neutral probability law, so that max on the
right-hand side of (12.63) disappears. The most natural f are of course the payoffs
of standard European calls. Assume n− 2 premiums of these calls (with different
strike prices) are given. Since we have some flexibility in choosing ai, we can choose
a2, . . . ,an−1 to coincide with strike prices of these call options. Then the probability
law {p1, . . . , pn} will satisfy the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 + · · ·+ pn = 1,

a1 p1 + · · ·+ an pn = ρ ,

(a3 − a2)p3 +(a4 − a2)p4 + · · ·(an − a2)pn = ω3,

. . .

(an−1 − an−2)pn−1 +(an − an−2)pn = ωn−1,

(an − an−1)pn = ωn,

(14.22)

with certain ω j. The determinant of this system is ∏n
k=2(ak − ak−1). The system

is of triangular type and, thus, explicitly solvable. To obtain a simple result, let us
simplify it further by assuming that ai are equally spaced, i.e., ak −ak−1 = Δ for all
k = 2, . . . ,n and certain Δ > 0. Then system (14.22) reduces to a system of type

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + · · ·+ xn = b1,

x2 + 2x3 + · · ·+(n− 1)xn = b2,

x3 + 2x4 + · · ·+(n− 2)xn = b3,

. . .

xn−1 + 2xn = bn−1,

xn = bn

(14.23)
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(where xk = Δ pk,b1 = Δ ,b2 = ρ − 1) with the explicit solution

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn = bn,

xn−1 = bn−1 − 2bn,

xk = bk − 2bk+1 + bk+2, k = 2, . . . ,n− 2,

x1 = b1 − b2 + b3.

(14.24)



Chapter 15
Continuous-Time Limits

15.1 Nonlinear Black–Scholes Equation

Our models and results are most naturally adapted to a discrete-time context, which
is not a disadvantage from a practical point of view, as all concrete calculations are
anyway carried out on discrete data. However, for qualitative analysis, it is desirable
to be able to see what is going on in the continuous-time limit. This limit can also be
simpler and, hence, be used as an approximation to a less tractable discrete model.
With this in mind, let us analyze possible limits as the time between jumps and their
sizes tend to zero.

Let us work with the general model of nonlinear jumps from Sect. 14.2, with the
reduced Bellman operator of form (14.6). Suppose the maturity time is T . Let us
decompose the planning time [0,T ] into n small intervals of length τ = T/n and
assume

gi(z) = z+ ταφi(z), i = 1, . . . ,k, (15.1)

with some functions φi and a constant α ∈ [1/2,1]. Thus the jumps during time τ
are on an order of magnitude τα . As usual, we assume that the risk-free interest rate
per time τ equals

ρ = 1+ rτ,

with r > 0.
From (14.6) we deduce for the one-period Bellman operator the expression

Bτ f (z) =
1

1+ rτ
max

I
∑
i∈I

pI
i (z,τ) f (z+ τα φi(z)), (15.2)

where I are subsets of {1, . . . ,n} of size |I| = J + 1 such that the family of vectors
z+τα φi(z), i∈ I, is in a general position and {pI

i (z,τ)} is the risk-neutral probability
law on such a family, with respect to ρz, i.e.,

∑
i∈I

pI
i (z,τ)(z+ τα φi(z)) = (1+ rτ)z. (15.3)
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Let us deduce the Hamilton-Jacobi-Bellman (HJB) equation for the limit, as
τ→0, of the approximate cost function BT−t

τ , t ∈ [0,T ], with a given final cost fT ,
using the standard (heuristic) dynamic programming approach. That is, from (15.2)
and assuming an appropriate smoothness of f we obtain the approximate equation

ft−τ (z) =
1

1+ rτ
max

I
∑
i∈I

pI
i (z,τ)

[
ft (z)+ τα ∂ ft

∂ z
φi(z)

+
1
2

τ2α
(

∂ 2 ft
∂ z2 φi(z),φi(z)

)
+O(τ3α)

]
.

Since {pI
i} are probabilities and using (15.3), this is rewritten as

ft − τ
∂ ft
∂ t

+O(τ2) =
1

1+ rτ

[
ft (z)+ rτ

(
z,

∂ ft
∂ z

)

+
1
2

τ2α max
I

∑
i∈I

pI
i (z)

(
∂ 2 ft
∂ z2 φi(z),φi(z)

)]

+O(τ3α),

where

pI
i (z) = lim

τ→0
pI

i (z,τ)

(clearly well-defined nonnegative numbers). This leads to the equation

r f =
∂ f
∂ t

+ r(z,
∂ f
∂ z

)+
1
2

max
I

∑
i∈I

pI
i (z)

(
∂ 2 f
∂ z2 φi(z),φi(z)

)
(15.4)

in the case α = 1/2 and to the trivial first-order equation

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)
, (15.5)

with the obvious solution

f (t,z) = e−r(T−t) fT (e
−r(T−t)z), (15.6)

in the case α > 1/2.
Equation (15.4) is a nonlinear extension of the classic Black–Scholes equation.

The well-posedness of the Cauchy problem for such a nonlinear parabolic equation
in the class of viscosity solutions is well known in the theory of controlled
diffusions, as is the fact that the solutions solve the corresponding optimal control
problem; see, for example, Fleming and Soner [72].

Remark 15.1. With this well-posedness, it should not be difficult to prove the
convergence of the foregoing approximations rigorously, but we have no precise
reference. Moreover, one can also be interested in pathwise approximations. For
this purpose a multidimensional extension of the approach by Bick and Willinger
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[43] (establishing pathwise convergence of CRR binomial approximations to the
trajectories underlying the standard Black–Scholes equation in a nonprobabilistic
way) would be quite relevant.

In the case J = 1 and the classic CCR (binomial) context with
√

τφ1 = (u− 1)z = σ
√

τz,
√

τφ2 = (d − 1)z =−σ
√

τz,

(15.4) becomes the usual Black–Scholes equation.
More generally, if k = J + 1, then the corresponding market in discrete time

becomes complete (as noted at the end of Sect. 14.2). In this case (15.4) reduces to

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)
+

1
2

J+1

∑
i=1

pi(z)

(
∂ 2 f
∂ z2 φi(z),φi(z)

)
. (15.7)

This is a generalized Black–Scholes equation describing a complete market (with
randomness coming from J correlated Brownian motions) whenever the diffusion
matrix

(σ2) jk =
J+1

∑
i=1

pi(z)φ j
i (z),φ

k
i (z)

is nondegenerate.

15.2 An Example with Two Colors

As a more nontrivial example, let us consider the case of J = 2 and a submodular
final payoff fT , so that Theorem 13.4 applies to the approximations Bτ . Assume
the simplest (and usual) symmetric form for upper and lower jumps (other terms in
Taylor expansions are irrelevant for the limiting equation):

ui = 1+σi
√

τ, di = 1−σi
√

τ, i = 1,2. (15.8)

Hence
ui −ρ
ui − di

=
1
2
− r

2σi

√
τ, i = 1,2,

and

κ =−1
2

r
√

τ
(

1
σ1

+
1

σ2

)
.

Because κ < 0, we find ourselves in the second case of Theorem 13.4. Hence
the only eligible collection of three vectors φ is (d1,u2),(u1,d2),(u1,u2), and the
probability law pI

i is (1/2,1/2,0). Therefore, (15.4) takes the form

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)
+

1
2

[
σ2

1 z2
1

∂ 2 f

∂ z2
1

− 2σ1σ2z1z2
∂ 2 f

∂ z1∂ z2
+σ2

2 z2
2

∂ 2 f

∂ z2
2

]
. (15.9)
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The limiting Black–Scholes type equation is again linear in this example, but
with a degenerate second-order part. In the analogous stochastic setting, this
degeneracy would mean that only one Brownian motion governs the behavior of
both underlying stocks. This is not surprising in our approach, where Nature was
assumed to be a single player. One could expect uncoupled second derivatives
(nondegenerate diffusion) in the limit if one chose two independent players for
Nature, each playing for each stock.

Thus we are still in the context of an incomplete market. The hedge price
calculated from (15.9) is actually the upper price, in the terminology of Sect. 14.3.
To obtain a lower price, we will use approximations of type (14.11), leading, instead
of (15.4), to the equation

r f =
∂ f
∂ t

+ r(z,
∂ f
∂ z

)+
1
2

min
I

∑
i∈I

pI
i (z)

(
∂ 2 f
∂ z2 φi(z),φi(z)

)
. (15.10)

If J = 2 and the payoff is submodular, then the maximum can be taken over
the triple (d1,d2), (d1,u2), (u1,d2) or (d1,u2),(u1,d2),(u1,u2) [under (15.8) only
the second triple works]. Similarly, the minimum can be taken only over the triple
(d1,d2),(d1,u2),(u1,u2) or (d1,d2), (u1,d2), (u1,u2). Under (15.8) both these
cases give the same limit as τ → 0, yielding for the lower price the equation

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)
+

1
2

[
σ2

1 z2
1

∂ 2 f

∂ z2
1

+ 2σ1σ2z1z2
∂ 2 f

∂ z1∂ z2
+σ2

2 z2
2

∂ 2 f

∂ z2
2

]
, (15.11)

which differs only in the sign at the mixed derivative from the equation for the upper
price.

As f was assumed to be submodular, so that its mixed second derivative is
negative, we have

σ1σ2
∂ 2 f

∂ z1∂ z2
≤ 0 ≤−σ1σ2

∂ 2 f
∂ z1∂ z2

.

Hence, for the solution fu of the upper value Eq. (15.9), the solution fl of the lower
value Eq. (15.11), and the solution fc of the classic Black–Scholes equation of a
complete market based on two independent Brownian motions, i.e., (15.9) or (15.11)
without a term with a mixed derivative (with the same submodular initial condition
fT ) we have the inequality

fl ≤ fc ≤ fu,

as expected.
Equations (15.9) and (15.11) can be solved explicitly via the Fourier transform,

as with the standard Black–Scholes equation, that is, changing the unknown function
f to g by

f (z1,z2) = e−r(T−t)g

(
1

σ1
logz1,

1
σ2

logz2

)
,
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so that
∂ f
∂ zi

= e−r(T−t) 1
σizi

∂g
∂yi

(
1

σ1
logz1,

1
σ2

logz2

)

transforms these equations into the equations

∂g
∂ t

+
1
2
(2r−σ1)

∂g
∂y1

+
1
2
(2r−σ2)

∂g
∂y2

+
1
2

[
∂ 2g

∂y2
1

∓ 2
∂ 2g

∂y1∂y2
+

∂ 2g

∂y2
2

]
= 0 (15.12)

(with ∓ respectively). Equation (15.12) has constant coefficients, and the equation
for the Fourier transform g̃(p) of g is obviously

∂ g̃
∂ t

=
1
2
[(p1 ∓ p2)

2 − i(2r−σ1)p1 − i(2r−σ2)p2]g̃. (15.13)

Hence the inverse Cauchy problem for (15.12) with a given final function gT equals
the convolution of gT with the inverse Fourier transform of the functions

exp

{
−1

2
(T − t)[(p1 ∓ p2)

2 − i(2r−σ1)p1 − i(2r−σ2)p2]

}
,

which equal (after changing the integration variables p1 and p2 to q1 = p1 − p2,
q2 = p1 + p2)

1
2(2π)2

∫

R2
dq1dq2 exp

{
−1

2
(T − t)q2

1,2+
iq1

2

(
y1 − y2 − (σ1 −σ2)(T − t)

2

)

+
iq2

2

(
y1 + y2 +(2r− σ1 +σ2

2
)(T − t)

)}

(with q1,2 corresponding to ∓), or, explicitly,

1
2

1
√

2π(T − t)
δ
(

y1 + y2

2
+(r− σ1 +σ2

4
)(T − t)

)

×exp

{

− 1
8(T − t)

(
y1 − y2 − (σ1 −σ2)(T − t)

2

)2
}

and

1
2

1
√

2π(T − t)
δ
(

y1 − y2

2
− (σ1 −σ2)(T − t)

4

)

×exp

{

− 1
8(T − t)

(
y1 + y2 +(2r− σ1 +σ2

2
)(T − t)

)2
}



278 15 Continuous-Time Limits

respectively, where δ denotes the Dirac δ -function. Returning to (15.9) and (15.11)
we conclude that the solutions fu and fl respectively of the inverse-time Cauchy
problem for these equations are given by the formula

fu,l(t,z1,z2) =
∫ ∞

0

∫ ∞

0
G∓

T−t(z1,z2;w1,w2) fT (w1,w2)dw1dw2, (15.14)

with the Green functions or transition probabilities being

G−
T−t(z1,z2;w1,w2)

=
e−r(T−t)

2
√

2π(T − t)σ1σ2w1w2
δ
(

1
2σ1

log
z1

w1
+

1
2σ2

log
z2

w2
+

(
r− σ1 +σ2

4

)
(T − t)

)

exp

{

− 1
8(T − t)

(
1

σ1
log

z1

w1
− 1

σ2
log

z2

w2
− (σ1 −σ2)(T − t)

2

)2
}

(15.15)

and

G+
T−t(z1,z2;w1,w2)

=
e−r(T−t)

2
√

2π(T − t)σ1σ2w1w2
δ
(

1
2σ1

log
z1

w1
− 1

2σ2
log

z2

w2
− (σ1 −σ2)(T − t)

4

)

exp

{

− 1
8(T − t)

(
1

σ1
log

z1

w1
+

1
σ2

log
z2

w2
+(2r− σ1 +σ2

2
)(T − t)

)2
}

,

respectively. Of course, formulas (15.14) can be further simplified by integrating
over the δ -function. Singularity, presented by this δ -function, is due to the
degeneracy of the second-order part of the corresponding equations.

15.3 Transaction Costs in Continuous Time

The difficulties with transaction costs are well known in the usual stochastic analysis
approach; see, for example, Soner et al. [138] and Bernhard et al. [39].

In our approach, Theorem 13.7 imposes strong restrictions for incorporating
transaction costs in a continuous limit. In particular, assuming jumps of size τα in a
period of length τ , i.e., assuming (15.1), only α = 1 can be used for the limit τ → 0
because δn(z) is of order (1+ τα)n, which tends to ∞, as τ = T/n → 0, whenever
α < 1. We know that for vanishing costs, assuming α = 1 leads to the trivial limiting
Eq. (15.5), which was observed by many authors (e.g., Bernhard [37], McEneaney
[112], Olsder [123]). However, with transaction costs included, the model with
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jumps of order τ becomes not so obvious but leads to a meaningful and manageable
continuous-time limit. To see this, assume that we are in the context of Sect. 15.1 and
transaction costs are specified, as in Sect. 13.5, by a function g satisfying (13.31).
To write a manageable approximation, we will apply the following trick: we will
count at time τm the transaction costs incurred at time τ(m+ 1) (the latter shift in
transaction cost collection does not change, of course, the limiting process). Instead
of (15.2) we then get

Bτ f (z) =
1

1+ rτ
max

I
∑
i∈I

pI
i (z,τ)

[ f (z+ τα φi(z))+ g(γ(z+ τφi(z),τ)− γ(z,τ),z+ τφi(z))] , (15.16)

where γ(z,τ) is the optimal γ chosen in the position z. Assuming g is differentiable,
expanding and keeping the main terms yields the following extension of (15.5):

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)
+ψ(z), (15.17)

where

ψ(z) = max
I

∑
i∈I

pI
i (z)

J

∑
m, j=1

∂g
∂γm (γ(z))

∂γm

∂ z j φ j
i (z),

with γ(z) = limτ→0 γ(z,τ).
This is a nonhomogeneous equation, with the corresponding homogeneous equa-

tion being (15.5). Since the (time-inverse) Cauchy problem for this homogeneous
equation has the explicit solution (15.6), we can write the explicit solution for the
Cauchy problem of (15.17) using the standard Duhamel principle (e.g., Kolokoltsov
[101]), yielding

f (t,z) = e−r(T−t) fT (e−r(T−t)z)+
∫ T

t
e−r(s−t)ψ(e−r(s−t)z)ds. (15.18)

The convergence of the approximations B
[t/τ]
τ fT to this solution of (15.17) follows

from the known general properties of the solutions to the HJB equations (e.g.,
Kolokoltsov and Maslov [105]).

Of course, one can also write down the modified Eq. (15.4) obtained by
introducing the transaction costs in the same way as was done previously. This is
the equation

r f =
∂ f
∂ t

+ r

(
z,

∂ f
∂ z

)

+
1
2

max
I

∑
i∈I

pI
i (z)

[(
∂ 2 f
∂ z2 φi(z),φi(z)

)
+

J

∑
m, j=1

∂g
∂γm (γ(z))

∂γm

∂ z j φ j
i (z)

]

.

(15.19)
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However, as already mentioned, due to the restrictions of Theorem 13.7, only
the solutions to a finite-difference approximation of (15.19) (with time steps τ
bounded below) represent justified hedging prices. Therefore, our model suggests
natural bounds for time periods between relocations of capital, when transaction
costs remain amenable and do not override, so to speak, hedging strategies. Passing
to the limit τ → 0 in this model (i.e., considering continuous trading) leads not to
(15.19) but to the trivial strategy of keeping all the capital in risk-free bonds. This
compelled triviality is, of course, well known in the usual stochastic context (e.g.,
Soner et al. [138]).

15.4 Models with Stochastic Volatility

As has been emphasized, our approach is mostly meant to deal with unknown
volatilities. However, we would like to show here that the standard models with
stochastic volatility can be easily deduced in our setting once appropriate probabil-
ities are specified.

Let us return, then, to the model of Sect. 14.6, with the reduced Bellman operator
being given by (14.21). Of course, to pass to the continuous-time limit, we must
make assumptions about the jumps that are analogous to those of Sect. 15.1. That is,
we scale the systematic drift rz and Φ by τ and the jumps ψ and φ by

√
τ , changing

the foregoing operator to

(Bτ f )(z,v) =
pv

2(1+ rτ)
[

f (z+ τrz,v+ τΦ(v)+
√

τφ(v))

+ f (z+ τrz,v+ τΦ(v)−√
τφ(v))

]

+
ps

2(1+ rτ)
[

f (z+ τrz+
√

τψ(v,z),v+ τΦ(v))

+ f (z+ τrz−√
τψ(v,z),v+ τΦ(v))

]

+
psv

2(1+ rτ)
[

f (z+ τrz+
√

τψ(v,z),v+ τΦ(v)+
√

τφ(v))

+ f (z+ τrz−√
τψ(v,z),v+ τΦ(v)−√

τφ(v))
]
.

Following the same procedure as at the beginning of Sect. 15.1 we obtain

ft − τ
∂ ft
∂ t

+O(τ2) =
1

1+ rτ

[
ft(z,v)++τrz

∂ f
∂ z

+ τΦ
∂ f
∂v

+
1
2

psτr2z2 ∂ 2 f
∂ z2 +

1
2

pvτφ2 ∂ 2 f
∂v2 +

1
2

τ pvs

(
r2z2 ∂ 2 f

∂ z2 +φ2 ∂ 2 f
∂v2 + 2rzφ

∂ 2 f
∂ z∂v

)]
,
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yielding the partial differential equation of the Black–Scholes type for our stochastic
volatility model

r f =
∂ f
∂ t

+ rz
∂ f
∂ z

+Φ(v)
∂ f
∂v

+
1
2
[ps + pvs]r

2z2(z,v)
∂ 2 f
∂ z2 +

1
2
[pv + pvs]φ2(v)

∂ 2 f
∂v2 + pvsrzφ(v)

∂ 2 f
∂ z∂v

.

(15.20)

For instance, if

Φ(v) = a− bv, ψ(z,v) = z
√
v, φ(z,v) = σ

√
v,

with certain positive constants a, b, σ , then (15.20) corresponds to the Heston
stochastic volatility model.

15.5 Fractional Dynamics

So far we have analyzed models where jumps (from a given set) occur with regular
frequency. However, it is natural to allow the periods between jumps to be more
flexible. One can also have in mind an alternative picture of the model: instead
of instantaneous jumps at fixed periods, one could think about waiting times for
the distance from a previous price to reach certain levels. It is clear that these
periods need not be constant. In the absence of a detailed model, it is natural to
take these waiting times as random variables. In the simplest model, they can be
independent and identically distributed (i.i.d.). Their intensity represents a kind of
stochastic volatility. Slowing down the waiting periods is, in some sense, equivalent
to decreasing the average jump size per period.

For simplicity let us deal with two-color options and submodular payoffs, so that
Theorem 13.4 applies, yielding a unique eligible risk-neutral measure. Hence the
changes in prices (for an investor choosing the optimal γ) follow the Markov chain
X τ

n (z) described by the recursive equation

X τ
n+1(z) = X τ

n (z)+
√

τφ(X τ
n (z)), X τ

0 (z) = z,

where φ(z) is one of three points (z1d1,z2u2),(z1u1,z2d2),(z1u1,z2u2) that are
chosen with the corresponding risk-neutral probabilities. As was shown previously,
this Markov chain converges, as τ → 0 and n = [t/τ] (where [s] denotes the integer
part of a real number s), to the diffusion process Xt solving the Black–Scholes type
(degenerate) Eq. (15.9), i.e., a sub-Markov process with the generator

L f (x) =−r f + r(z,
∂ f
∂ z

)+
1
2

[
σ2

1 z2
1

∂ 2 f

∂ z2
1

− 2σ1σ2z1z2
∂ 2 f

∂ z1∂ z2
+σ2

2 z2
2

∂ 2 f

∂ z2
2

]
.

(15.21)
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Assume that the times between jumps T1,T2, . . . are i.i.d. random variables with
a power-law decay, that is,

P(Ti ≥ t)∼ 1

β tβ ,

with β ∈ (0,1) (where P denotes probability and ∼ means, as usual, that the ratio
between the left-hand side and the right-hand side tends to one as t → ∞). It is well
known that such Ti belong to the domain of attraction of the β -stable law (e.g.,
Uchaikin and Zolotarev [144]), meaning that the normalized sums

Θ τ
t = τ1/β (T1 + · · ·+T[t/τ])

(where [s] denotes the integer part of a real number s) converge, as τ → 0, to a β -
stable Lévy motion Θt , which is a Lévy process on R+ with the fractional derivative
of order β as the generator:

A f (t) =− dβ

d(−t)β f (t) =− 1
Γ (−β )

∫ ∞

0
( f (t + r)− f (t))

dr

r1+β .

We are now interested in the process Y τ(z) obtained from X τ
n (z) by changing the

constant times between jumps to scaled random times Ti, so that

Nτ
t = max{u : Θ τ

u ≤ t}, Y τ
t (z) = X τ

Nτ
t
(z).

The limiting process
Nt = max{u : Θu ≤ t}

is therefore the inverse (or hitting time) process of the β -stable Lévy motion Θt .
By Theorem 4.2 and 5.1 of Kolokoltsov [99] (also Chap. 8 in [101]), we obtain

the following result.

Theorem 15.2. The process Y τ
t converges (in the sense of distribution on paths)

to the process Yt = XNt , whose averages f (T − t,x) = E f (YT−t(x)), for continuous
bounded f , have the explicit integral representation

f (T − t,x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
G−

u (z1,z2;w1,w2)Q(T − t,u)dudw1dw2,

where G−, the transition probabilities of Xt , are defined by (15.15), and where
Q(t,u) denotes the probability density of the process Nt .

Moreover, for f ∈ C2
∞(R

d), f (t,x) satisfy the (generalized) fractional evolution
equation (of the Black–Scholes type)

dβ

dtβ f (t,x) = L f (t,x)+
t−β

Γ (1−β )
f (x).
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Remark 15.3. Results similar to Theorem 4.2 of Kolokoltsov [99] used previously,
but with position-independent random walks, i.e., when L is the generator of a Lévy
process, were obtained in Meerschaert and Scheffler [115]; see also related results
in Kolokoltsov et al. [103], Henry et al. [82], and references therein. Rather general
fractional Cauchy problems are discussed in Kochubei [94]. For related questions
of fractional random fields see Kelbert and Leonenko [93].

A similar procedure with a general nonlinear Black–Scholes type equation (15.4)
will lead, of course, to its similar fractional extension. However, a rigorous
analysis of the corresponding limiting procedure is beyond the scope of the present
contribution.



Chapter 16
Credit Derivatives

16.1 Basic Model with No Simultaneous Jumps

Consider a market of N securities that can default in discrete time δ ,2δ , . . .. Let Nt

denote the number of securities defaulted up to time t, and set dt = N −Nt for the
number of not-yet-defaulted ones.

We will work mostly with the instantaneous digital credit default swaps (CDSs).
Entering an instantaneous digital CDS agreement on jth (not yet defaulted) security
at time t means agreeing to pay a (protection) premium α j(t)δ and to receive back
the compensation of one unit of money if j defaults during the period (t, t + δ ]
(and nothing otherwise). The premium α j(t)δ is chosen in such a way that there
is no charge at inception at time t to enter this contract [alternatively, of course,
α j(t)δ can be considered as a charge for receiving one in the case of the jth default].
Working with instantaneous digital CDSs rather than actually traded CDSs means
choosing a convenient basis and is a well-accepted approach in the finance literature
(e.g., Cousin et al. [55]). The infinitesimal premium α j(t) is usually assumed to
depend on the whole history of defaults of our basic securities until and including
time t.

We start in this section with the standard (in the literature) simplifying assump-
tion that only one default can occur in any given short period of time (t, t+δ ]. Thus
we assume that, for any time t, the possible (dt + 1) outcomes at time t + δ are
either no default or a default of only one of dt live (not yet defaulted) securities.
These outcomes can be described symbolically by dt +1 vectors in R

dt : zero vector
e0 and dt basis vectors ei (with the ith coordinate 1 and other coordinates vanishing),
so that any short-term contingent claim starting at t for the period (t, t + δ ] can be
described by a function f on {e0,e1, . . . ,edt}. Suppose that, to replicate any such
claim, an investor, with an amount of capital X at time t, is allowed to enter an
arbitrary amount γ i of an instantaneous digital CDS agreement on the ith security,
i = 1, . . . ,dt (recall that entering such an agreement is costless). Then his capital at
time t + δ in case of event ei becomes
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© Springer Science+Business Media New York 2013

285



286 16 Credit Derivatives

−δ
dt

∑
j=1

γ jα j(t)+ fi + γ i +X ,

where fi = f (ei) and it assumed that γ0 = 0 (to make this formula valid for e0). In
other words, his capital equals

fi − (γ,ηi)+X ,

where η0 = δ (α1(t), . . . ,αdt (t)) and ηi = η0 − ei for i = 1, . . . ,dt . By hedging price
we mean, as usual, the minimal value of X needed to be able to fulfill the obligation
in any case, which is then

Ch = min
γ∈Rdt

max
i=0,1,...,dt

[ fi − (γ,ηi)]. (16.1)

The vectors {ηi} form a strictly positively complete family, so that Proposition 12.6
holds. Hence the corresponding market is complete and

Ch = E{ f.}=
dt

∑
j=0

p j(t) f j ,

where {p j} are the corresponding unique risk-neutral probabilities. Moreover, in
this case these probabilities are easily seen to have simple explicit form: p j(t) =
α j(t)δ for j = 1, . . . ,dt , with

p0(t) = 1− δ
dt

∑
j=1

α j(t).

One can look at the law {p.(t)} as the transition probabilities from time t to
time t +δ of a certain random process of defaults. It is, however, not Markovian, as
α(t) can depend on the past. To make it Markovian, one must assume additionally
that α j(t) depend only on a current state of defaults. Let us consider three natural
Markovian settings.

1. The simplest homogeneous case. The premiums α j(t) are the same for all j and
depend on the past only via dt , that is, they are specified by some deterministic
functions α(t,d). In this case a state of our process is just a number from
{0,1, . . . ,N} (the number of not defaulted securities), and the corresponding risk-
neutral transition probabilities become

pt,t+δ (m,m− 1) = mα(t,m)δ , pt,t+δ (m,m) = 1−mα(t,m)δ , (16.2)

with all other probabilities vanishing.



16.1 Basic Model with No Simultaneous Jumps 287

2. The general case. The state space is the set of all subsets I of {1, . . . ,k}, and
premiums at time t depend on the past only via the present state I(t), that is, they
are given by functions α j(t, I).

The corresponding risk-neutral transition probabilities become

pt,t+δ (I, I \ j) = α j(t, I)δ , pt,t+δ (I, I) = 1−∑
j∈I

α j(t, I)δ . (16.3)

3. The intermediate case. The whole set of securities is decomposed into a finite
number k of classes (say, by a rating agency), the infinitesimal premiums
are the same for securities from the same class and depend on the number
of live securities in each class. The states are now vectors m = (m1, . . . ,mk)
(with nonnegative integers as coordinates), with the jth coordinate denoting the
number of live securities in class j.

The corresponding risk-neutral transition probabilities become

pt,t+δ (m,m− ei) = αi(t,m)δ

for any m with mi > 0, and

pt,t+δ (m,m) = 1− δ ∑
i:mi �=0

αi(t,m),

with all other transitions being forbidden.
As δ → 0, these models have natural limiting Markov processes in continuous

time:

1′. A Markov chain on {0,1, . . . ,N} with transition rates

qt(m,m− 1) = mα(t,m),

so that
d
ds

∣
∣
∣∣
s=0

E( f (kt+s)|kt) = ( f (kt − 1)− f (kt))ktα(t,kt);

2′. A Markov chain on subsets of {0,1, . . . ,N} with transition rates

qt(I, I \ j) = α j(t, I);

3′. A Markov chain on the set of vectors with k nonnegative integer coordinates
with transition rates

qt(m,m− ei) = αi(t,m),

so that

d
ds

∣
∣
∣
∣
s=0

E( f (mt+s)|mt) = ∑
i:mi

t �=0

( f (mt − ei)− f (mt))m
i
tαi(t,mt).

Our exposition here was similar to that of Frey and Backhaus [75], who described
the same Markov models. We have only stressed their game-theoretic origins.
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16.2 Simultaneous Jumps: Completion by Tranching

Allowing for simultaneous defaults makes the preceding models incomplete. They
can then be dealt with by the general techniques of Chaps. 12 and 13. On the other
hand, these models can be completed again by allowing trading in instantaneous
digital CDSs, paying compensation in the event of simultaneous defaults.

For definiteness, let us assume that only two simultaneous defaults can occur
during each period (t, t + δ ]. Assume also that one can enter an instantaneous
digital CDS on these events, that is, for any pair i �= j, one can agree to pay a
(protection) premium αi j(t)δ at time t and to receive back the compensation of one
unit of money in case both i and j default during the period (t, t + δ ] (and nothing
otherwise). For convenience let us set αii = αi, where αi are the premium rates for
the usual one-name-based CDS discussed in the previous section.

We will denote by Md the space of symmetric d × d matrices equipped with the
scalar product

γη =
d

∑
i=1

γ iiη ii +
d

∑
i> j

γ i jη i j .

By ei j we denote a matrix with one at the intersection of the ith column and jth
row and at the intersection of the jth column and ith row and with other elements
vanishing.

Arguing now as in the previous section we can conclude that for a contingent
claim paying fi j , i �= j, in the case of simultaneous default of i and j, paying fi i
defaults, and paying f0 in the case of no default during the period (t, t+δ ] the hedge
price at time t becomes

Ch = min
γ∈Mdt

max
η∈{η0,ηi j}

[ f (η)− (γ,η)], (16.4)

where η0 ∈ Mdt has elements δαi j , ηii = η0 − eii, and ηi j = η0 − ei j − eii − ei j

for i �= j. We have 1+ dt(dt + 1)/2 vectors η in dt(dt + 1)/2-dimensional space.
These vectors are strongly positively complete, so that Proposition 12.12 applies,
specifying unique risk-neutral probabilities (complete market setting!) that can be
looked at as transition probabilities for a Markov chain, just as in the previous
section. Similar limiting continuous-time Markov chains can be identified.

16.3 Mean-Field Limit, Fluctuations, and Stochastic Law of
Large Numbers

In this section we touch briefly on the dynamic law of large numbers (LLN) limit
for Markov chains arising from the evaluation of CDSs. These chains are, after all,
just certain death processes. The simplest LLN limit, the mean-field limit, is well
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studied for them. Thus, applying the results of Sect. 5.11 from Kolokoltsov [101]
(see alternatively Benaı̈m and Le Boudec [20] or Darling and Norris [64]) we can
conclude that this limit for the Markov model (3′) of Sect. 16.1 is a deterministic
process on R

N
+ with the evolution described by the ordinary differential equation

ω̇ j =−ω jα j(t,ω1, . . . ,ωk). (16.5)

Similarly, the results of Kolokoltsov [100, 101] allows one to specify the limiting
Gaussian process for the fluctuations of this Markov model (3′) around its mean-
field limit (16.5).

The deterministic mean-field limit is definitely not the only possible dynamic
LLN for processes of type 3′. Stochastic LLNs are natural sometimes. The most
popular limits of this kind are super processes that come from pure branching (no
interaction) processes. Similar limits that include the interaction of a rather general
type (including processes of type 3′ above) are described in Kolokoltsov [98, 101].
They are given by Markov processes on R

N
+ with pseudodifferential generators of

the Lévy–Khintchine type.
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Notation

• T : Exercise time
• t ∈ [0,T ]: Current time
• ρ : Time step of discrete-time theory
• tn = nρ : Current time at step n
• N = T/ρ : Total number of steps
• tn: Time of nth impulse
• ψ(x): Reachable states by an impulse from x
• K: Exercise price
• U : Terminal payment
• δ : Transaction cost ratio
• S0: Riskless bond price
• r0: Riskless return rate
• p0: Number of riskless bonds in portfolio
• S: Risky asset price
• Sn: Risky asset price at tn
• r: Risky asset return
• r�,r�: Minimum and maximum risky asset return rate
• p: Number of risky shares in portfolio
• E = pS: Portfolio exposure
• E♥: Optimal hedging strategy
• W : Portfolio worth
• W n: Portfolio worth at tn.
• W♥: Optimal portfolio worth



Chapter 17
Computational Methods Based
on the Guaranteed Capture Basin Algorithm

17.1 Guaranteed Capture Basin Method for Evaluating
Portfolios

17.1.1 Classical Option Evaluation

The fundamental problem arising in the framework of dynamic replicating port-
folios is to determine a hedging strategy p(·) such that, whatever the uncertain
evolution of the underlying asset price S(·) is, a payoff is realized at the exercise
time or at any time before, depending on the type of option. This can be formalized
in terms of viability and target capturability in the presence of uncertainty, guaran-
teeing the capture of a target. This is the main issue of viability theory. Therefore,
one can deduce from the mathematical and geometrical properties of capture basins
the optimal rules for managing complex financial instruments. Furthermore, once
discretized in this natural formulation, the Guaranteed Capture Basin Algorithm
provides the valuation of an optimal portfolio and its management under different
representations of uncertainty. We refer the reader to Chap. 18 by Jean-Pierre Aubin,
Luxi Chen, and Olivier Dordan.

A put or call is an agreement conferring the right to sell (put) or buy (call) a
quantity of an asset at a given date (European put or call) or at any date before
a fixed date T (American put or call). We aim at determining the value of the
agreement at the start. This value is the price the seller should ask for to protect
herself against risk. It measures the cost of risk covering. Facing the risks inherent in
her position, the seller builds up a theoretical portfolio by investing in the underlying
asset through self-financing. This permanently adjusted portfolio yields the same
losses and profits as the put or call. It is said to replicate the put or call.

For European “vanilla” options we know that the Guaranteed Capture Basin
Algorithm provides both approximated values of the option depending on the
refinement level of the discretization, on the maturity and price of the underlying
asset, and on the option hedging strategy. In cases where uncertainty is characterized
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by a geometric Brownian motion leading to the Black–Scholes option pricing
formula and considering approximation of this Brownian motion by random walk
following the Cox, Ross, and Rubinstein (CRR) discrete approach, the Guaranteed
Capture Basin Algorithm returns classic valuation results but also provides valuation
and hedging strategies when considering other types of uncertainty such as tychastic
uncertainty.

17.1.2 Limits of Classic Evaluation Methods

Taking into account transaction costs in the framework of the Black–Scholes
approach becomes intricate [23,126]. The Guaranteed Capture Basin Method can be
applied to handle any constraints on asset prices or share quantities or any financial
restrictions and in the presence of transaction costs. In addition, when studying
barrier options or Bermuda options, the extension of the capture basin method to
impulse dynamics authorizes the evaluation of such options where discontinuity
appears.

After all, since numerical processes necessarily require discretization of both
space and time variables, uncertainty representation must be matched to the discrete
models being considered [147].

However, since, due to the complexity of models, a more analytic formula cannot
be developed, unlike the Black–Scholes formula in the classic case, the “cost to pay”
will come from computation limitations.

17.2 The Dynamic System Underlying Financial Instruments

The viability/capturability algorithm constitutes a helpful tool to evaluate and
manage a portfolio. The usual framework of stochastic control is superseded by the
dynamic game approach, where the notion of guaranteed viable-capture basin plays
a prior role in selecting the appropriate portfolio in due time. In this section we
introduce the mathematical concepts that will be needed to embed the option
valuation problem in the framework of viability theory, allowing an implementation
of the Guaranteed Capture Basin Algorithm that extends the Viability Kernel
Algorithm. We define the state and control variables, the constraint set and the target
to be reached, the uncertainty parameterization, and the dynamic system governing
the evolution of all variables. Even if we just need to consider discrete (in time)
dynamic systems for numerical issues, we present both continuous and discrete
formulations of the dynamics.
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17.2.1 State and Control Variables

Let S0 and p0 denote the price and the quantity of a riskless asset and S and p
the price and the quantity of a risky asset, which constitute the portfolio. Let W :=
p0S0+ pS be the value of the portfolio. Time t evolves in the interval [0,T ], where T
is the maturity time. We denote by τ := T − t the time left before maturity. In the
time discretization process we will introduce the number N of time steps ρ = T

N .

17.2.2 Viability Constraints and Target

Constraints and targets are formalized by a couple of functions, (b,c), b ≤ c,
where

• ∀(t,S) ∈ R+×R
2
+, b(t,S) describes the financial constraints;

• ∀(t,S) ∈ R+ ×R
2
+, c(t,S) describes the objective to reach at maturity time,

which serves as the target.

For instance, the intrinsic value of an option is associated with the payoff function
U(S) = (S−K)+ for a call or U(S) = (K − S)+ for a put. In that case we express
the two functions b and c in terms of U :

b : (t,S) �→ b(t,S) =
{

U(S) for American options,
0 for European options,

(17.1)

and

c : (t,S)→ c(t,S) =
{

U(S) if t = 0,
+∞ otherwise.

(17.2)

Managing a portfolio requires that the constraint b(t,S(t)) ≤ W (t), or
b(nρ ,Sn)≤W n in the discrete case, be satisfied.

The condition characterizing the target reads c(t,S) ≤ W , or c(nρ ,Sn) ≤ W n in
the discrete case.

One already notices that maps b and c are only lower semicontinuous since
their epigraphs are closed. Sometimes their values may coincide, but their roles
are different: the constraint must not be violated, while reaching the target stops the
process.

We define the constraint set

K := {(τ,S,W) ∈ R
3 such that b(T − τ,S)≤W, τ ≥ 0,

S�(T − τ)≤ S(T − τ)≤ S�(T − τ), P(S)∩ [0,1] �= /0}, (17.3)

where P(S) is the set of asset quantities available on the market if the price is S.
The property P(S)∩ [0,1] �= /0 means that there exists p ∈ P(S) with p ∈ [0,1].
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Fig. 17.1 Examples of constraints and targets for guaranteeing cash flows

Fig. 17.2 Three examples of constraints and targets: European, American, and capped-style
constraint and target specifications. In the case of capped-style options, the target is a union of
targets so that the function c is defined as a function whose epigraph is the union of the epigraphs
of functions ci

Indeed, the seller of an option looks to secure the best price. One can always insure
against risk by buying the asset, choosing p0 = 0 and p = 1, but better covering will
be p less than 1. Also, we can restrict the set of available controls to P(S)∩ [0,1].
For option evaluation, usually P(S)∩ [0,1] is set to [0,1], assuming that market
liquidity holds.

We define the target set

T := {(τ,S,W ) ∈ R
3 such that c(T − τ,S)≤W}. (17.4)

Figures 17.1 and 17.2 illustrate the situation where constraints are imposed,
depending on the financial context. In the first example, some predetermined
cash flows could be paid, but not necessarily, at a fixed date: the value of the
financial instrument must always remain above the series of upright frames. This
problem arises when aiming at guaranteeing capital. In the second example, the
value of the portfolio must remain at any time greater than the payoff value,
but for American options this occurs at any time t ∈ [0,T ]. This amounts to
choosing b(t,S) = U(S) := max(0,S−K), ∀t ∈ [0,T ] instead of b(t,S) = 0, ∀t ∈
[0,T [ and b(T,S) = max(0,S−K) for European options. For Bermuda options, we
must choose b(ti,S) =max(0,S−Ki), ∀i ∈ I and b(ti,S) = 0, ∀t �= ti, where (ti)i∈I is
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a finite set of dates when the option can be exercised. For capped-style options, we
must choose c(ti,S) =max(0,S−Ki), ∀i ∈ I and c(ti,S) =+∞, ∀t �= ti, where (ti)i∈I

is a finite set of dates when the option, if the price of the underlying asset closes at
or above Ki, is automatically exercised since, in that case, the option expires.

17.2.3 Uncertainty of the Environment

The velocity of the price evolution t → S(t) is, in the framework of continuous

models, governed by its return r(t) := S′(t)
S(t) . Uncertainty arises from the lack of

full knowledge of the return evolution, for instance, when uncertainty is described
using an observable tychastic measure, r(t)∈ DΣ(t,S(t))

S(t) (see Chap. 18 by Jean-Pierre
Aubin, Luxi Chen, and Olivier Dordan.) This is the core of financial modeling for
continuous models covering the two main concepts of uncertainty: the stochastic
approach based on statistical measurement and the tychastic approach closely
related to differential game theory, games against nature, and robust control. In this
chapter dealing with numerical issues, we will consider discrete-time models with
returns of the form

r(tn, tn+1,S)) ∈ Qn(S) :=
1
S

Succ(S, tn, tn+1)− S
tn+1 − tn

,

where uncertainty is wrapped up in the definition of the set-valued map (S, t−, t+)�
Succ(S, t−, t+) describing all the possible evolutions of the asset price S between
dates t− and t+. Uncertainty is parameterized by a variable v belonging to a set Q
or Qρ generating the set Succ(S, t−, t+). For instance, in the CRR discrete binomial
model that approximates the stochastic uncertainty appearing in Wiener processes,
Succ(S, t−, t+) = {(1+ rd(t+− t−))S,(1+ ru(t+− t−))S}, where rd and ru are the
“up” and “down” return rates. In this case, Succ(S, t−, t+)= {(1+v(t+−t−))S, v ∈
Q := {rd,ru}}, where {rd,ru}= {e−σ√ρ −1,e+σ√ρ −1}, ρ = t+− t−, denotes the
time step and σ the volatility.

Without loss of generality, we will assume that the returns r0, rd, and ru are
independent of S0.

17.2.4 Differential and Discrete Games Describing Portfolio
Evolution

Riskless asset and risky asset are governed by differential or discrete equations
{

S′0(t) = r0S0(t),

S′(t) = r(t)S(t),
or

{
Sn+1

0 = Sn
0(1+ρr0),

Sn+1 = Sn(1+ rn
ρ).
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The self-financing principle of the portfolio reads

∀t ≥ 0, p′0(t)S0(t)+ p′(t)S(t) = 0
or
∀n ∈ {0, . . . ,N}, (pn+1

0 − pn
0)S

n
0 +(pn+1 − pn)Sn = 0,

so that the value of the portfolio satisfies

W ′(t) = p0(t)S0(t)r0 + p(t)S(t)r(t)
or

W n+1 =W n +ρ pn
0Sn

0r0 + pnSnrn
ρ .

We can definitely choose S0(0) = 1 and r0(S0) = r0 so that the evolution of Sn
0 is

completely determined and the value of the portfolio becomes

W ′(t) =W (t)r0(S(t))− p(t)S(t)(r0− r(t))
or

W n+1 = (1+ρr0)W n − pnSn(ρr0 − rn
ρ).

To summarize, the time τ(t) left before maturity, the asset price S(t), and the capital
W (t) are solutions to the dynamic or discrete system

⎧
⎨

⎩

τ ′(t) = −1,
S′(t) = S(t)r(t),
W ′(t) = W (t)r0 − p(t)S(t)(r0 − r(t)),

or
⎧
⎪⎨

⎪⎩

τn+1 = τn −ρ ,
Sn+1 = Sn(1+ rn

ρ),

W n+1 = (1+ρr0)W n − pnSn(ρr0 − rn
ρ),

(17.5)

where p(t) ∈ P(S(t)) or pn ∈ P(Sn) and r(t) ∈ Q(t,S(t)) or rn
ρ ∈ Qn

ρ .
Our aim is to determine the set of initial conditions (S(0),W (0)) ∈

R
2
+ or (S0,W 0) ∈ R

2
+ for which there exists a map (τ,S,W ) → p̂(τ,S,W ) or a

sequence of maps ((S,W )→ p̃n(S,W ))n=0,...,N−1 such that, whatever the realization
v(·) or sequence (vn)n=0,...,N−1 of uncertainty, the evolution t → (τ(t),S(t),W (t))
or (τn,Sn,W n)n=0,...,N solution to

⎧
⎨

⎩

τ ′(t) = −1,
S′(t) = S(t)r(t),
W ′(t) = W (t)r0 − p̂(τ(t),S(t),W (t))S(t)(r0 − r(t))

or
⎧
⎪⎨

⎪⎩

τn+1 = τn −ρ ,
Sn+1 = Sn(1+ rn

ρ),

W n+1 = (1+ρr0)W n − p̂n(Sn,W n)Sn(ρr0 − rn
ρ)

(17.6)

remains in the constraint set before reaching the target.
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We refer the reader to [7, 134] for the convergence theorems of approximated
solutions to (17.5) when ρ → 0 and to [13] for the stochastic case.

Let us denote x := (τ,S,W ), u= p, v = r and define the maps

Φ(x,u,v) := (−1,Sv,Wr0 − pS(r0 − v))

and

Φρ(x,u,v) := (τ −ρ ,S(1+ v),(1+ρr0)W − p(ρr0 − v)), (17.7)

which are the right-hand sides of (17.5).
An evolutionary game, continuous or discrete, is defined by a retroaction

(feedback) map x �→ U (x), a perturbation map x �→ Q(x), and a dynamic system

⎧
⎨

⎩

x′(t) ∈ Φ(x(t),u(t),v(t)),
u(t) ∈ U (x(t)),
v(t) ∈ Q(x(t)),

or

⎧
⎨

⎩

xn+1 ∈ Φρ(xn,un,vn),

un ∈ U (xn),

vn ∈ Qn
ρ .

Definition 17.1. A guaranteed capture domain of T in K for the evolutionary
game (Φ,U ,Q) (resp. (Φρ ,U ,Qρ)) is a subset D of elements x0 ∈ K (resp. x0 ∈
K ) such that there exists a feedback ũ : x → ũ(x) ∈U (x) (resp. (ũn)n) such that all
the solutions to x′(t) ∈ Φ(x(t), ũ(x(t)),Q(x(t))) (resp. xn+1 ∈ Φρ (xn, ũn,Qρ (xn))
reach the target T before leaving K . The guaranteed capture basin of T in K is
the largest guaranteed capture domain of T in K contained in K . It is denoted by
Capt(K ,T ,(Φ,U ,Q)) (resp. Capt(K ,T ,(Φρ ,U ,Qρ))).

Obviously we are interested in initial positions in the guaranteed capture basin
with t = 0 (n = 0). We refer to [52] for more details about Differential Games and
discriminating kernels, and to [17, 128] about evolutionary games.

17.2.5 Guaranteed Capture Basin Algorithm

To compute approximations of the guaranteed capture basin we introduce an
extension of the Viability Kernel Algorithm to the case of dynamic games. It consists
in the construction of a decreasing sequence of subsets K i

ρ defined by

K 0
ρ := K ∪T ,

K i+1
ρ := {x ∈ K i

ρ such that ∃u ∈ U (x), Φρ(x,u,Qρ )⊂ K i
ρ }. (17.8)

This algorithm is strongly related to so-called set-valued numerical analysis since
it consists in the construction of sets converging in the sense of Painlevé-Kuratowski
to a set of elements sharing a given property. It is beyond the scope of this chapter
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to study the full discretization in space, with respect to x, of this algorithm, but
we simply state that, using the Painlevé–Kuratowski definition of set limit, one
can prove that Limρ→0Limi→∞K i

ρ exists and coincides with the guaranteed capture
basin of T in K of (Φ,U ,Q).

17.2.6 Approximation of Valuation Function

By construction, since the time component τ of x belongs to the interval [0,T =
Nρ ], we are interested in the initial positions (τ0,S0,W 0) ∈ K N

ρ with τ0 = T . The
question becomes ones of determining the subset of initial capital W such that the
capture condition respecting the financial constraints is satisfied for a given initial
price S and then the right decision rule that will ensure the capture, i.e., the payoff
requirement. Let us define the function Vρ : R+×R+ �→R+ by

Vρ(τ,S) := inf{W such that (τ,S,W ) ∈ Capt(K ,T ,(Φρ ,U ,Qρ ))},

which associates with each couple (τ,S) the cheapest value of capital such that, if τ
is the time to maturity and if S is the current asset price for any initial portfolio value
W 0 ≥Vρ(T,S0), then there exists a feedback control that guarantees the objectives to
be reached while preserving the constraints, for any realization of the uncertainties.
It is immediate to prove that Epi(Vρ) := Capt(K ,T ,(Φρ ,U ,Qρ)). Let us
associate to the sequence of sets K i

ρ the sequence of functions V i
ρ epigraphically

defined by

Epi(V i
ρ) := K i

ρ .

The following result makes clear the relation between viability, capturability, and
financial instrument evaluation.

Theorem 17.2. For any τ = nρ ∈ {0, . . . ,Nρ} and S ∈ [S�(T − τ),S�(T − τ)], let
us define recursively the functions V i

ρ by

V 0
ρ (τ,S) = min(b(T − τ,S),c(T − τ,S)),

V i+1
ρ (τ,S) = max

(
[V i

ρ(τ,S),

inf
u∈U (S)

sup
v∈Qρ

V i
ρ(τ −ρ ,S(1+ v))+uS(ρr0− v)

1+ρr0

)
. (17.9)

Then V n
ρ (nρ ,S) coincides with the value of an option for the discrete model if the

time to maturity is τ = nρ and the price at time t = T − nρ of the underlying
asset is S.



17.2 The Dynamic System Underlying Financial Instruments 301

Proof. From Algorithm 17.8, since Epi(V 0
ρ ) = K ∪T and since

Epi(V i+1
ρ ) = {x ∈ Epi(V i

ρ) | ∃u ∈ U (S), ∀v ∈ Qρ ,

Φρ(x,u,v) ∈ Epi(V i
ρ)},

from the definition of Ki+1
ρ given by (17.8), x ∈ Ki+1

ρ if and only if

⎧
⎪⎨

⎪⎩

x = (τ,S,W ) ∈ Ki
ρ and ∃u ∈U(x) such that ∀v ∈ Qρ ,

Φρ(x,u,v) := x+ρϕ(x,u,v)
= (τ −ρ ,S(1+ v),W(1+ρr0)−uS(ρr0− v)) ∈ Ki

ρ .

Using the epigraphic characterization of the sets

{
W ≥V i

ρ(τ,S) and ∃u ∈ U (x) such that ∀v ∈ Qρ ,

W (1+ρr0)−uS(ρr0− v))≥V i
ρ(τ −ρ ,S(1+ v)),

or, equivalently,

⎧
⎪⎨

⎪⎩

W ≥V i
ρ(τ,S) and ∃u ∈U(x) such that ∀v ∈ Qρ ,

W ≥ V i
ρ(τ −ρ ,S(1+ v))+uS(ρr0− v))

1+ρr0
,

so that necessarily

W ≥ V i−1
ρ (τ,S)

:= max

[

V i
ρ(τ,S), inf

u∈U(x)
sup
v∈Qρ

V i
ρ(τ −ρ ,S(1+ v))+uS(ρr0− v))

1+ρr0

]

.


�

17.2.7 Implementing the Guaranteed Capture Basin Method
to Evaluate a European Call

The following results illustrate that, when uncertainty is modeled with Qρ =

[e−σ√ρ − 1,e+σ√ρ − 1], K = 100, and T = 1 (year), as in the CRR binomial
model, the Guaranteed Capture Basin Algorithm provides the same classic results.
Computations were made with ρ = 1/320.

Figures 17.3 and 17.4 show a graph of the evaluation function and the optimal
strategy p, which represents the amount of risky asset necessary to compose the
replicating portfolio. The capture basin is the upper domain lower bounded by this
function, the epigraph of the evaluation function.
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Fig. 17.3 Guaranteed evaluation function of a European call

Fig. 17.4 Optimal strategy p corresponding to guaranteed evaluation function of a European call

Figure 17.5 presents different values of a call for different maturity times and
different values for volatility obtained by the capture basin method. They practically
coincide with the values obtained by the CRR binomial approximation method.

17.3 Extension of Capture Basin Methods to Evaluate
Complex Instruments

We now design models and algorithms that allow us to evaluate and to provide the
optimal strategy in the following situations:

1. When transaction costs hold for standard options;
2. When some conditions must be fulfilled at known dates, like for Bermuda or

capped-style options.
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Fig. 17.5 Comparison of numerical results obtained by the capture basin method and the CRR
binomial method (Source: [129])

We illustrate this approach through numerical applications. For all these appli-
cations we present the continuous and discrete dynamic systems underlying the
corresponding model to which we apply the Guaranteed Capture Basin Algorithm
or its extension to impulse systems.

17.3.1 Taking into Account Transaction Costs and Constraints

We assume that S(t) ∈ [S�(t),S�(t)] and that the quantity P(t) of the risky asset is
also constrained to remain in a given interval [0,P�(t)]. The quantity P (uppercase) is
no longer a control but a state variable. Its variation, which is the quantity of shares
bought or sold at each transaction, denoted by u, becomes the control of the system.
In the presence of transaction costs, the self-financing assumption is superseded by

∀t ∈ [0,T ], P′
0(t)S0(t)+P′(t)S(t)+ δ |P′(t)|S(t)+ δ0(P′(t)) = 0

or

∀n ∈ {0, . . . ,N − 1},
(Pn+1

0 −Pn
0 )S

n
0 +(Pn+1 −Pn)Sn+ δ |Pn+1 −Pn|Sn+ δ0(Pn+1 −Pn) = 0,

where δ is the transaction cost rate, which can possibly depend on |P′|S and
δ0(u)=0 if u = 0 and δ0(u) = δ0 if u �= 0, where δ0 represents the fixed cost.
The function δ0(·) is discontinuous.
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So that, with the same foregoing simplifications, the evolution of the value of the
portfolio becomes

W ′(t) =W (t)r0 −P(t)S(t)(r0 − r(t))− δ |u(t)|S(t)− δ0(u(t))

or

W n+1 = (1+ρr0)W n −PnSn(ρr0 − rn
ρ)− δ |un|Sn − δ0(u

n).

To summarize, the time τ(t) to maturity, the asset price S(t), the capital W (t),
and the number of shares P(t) are solutions to the nonlinear dynamic or discrete
system

⎧
⎪⎪⎨

⎪⎪⎩

τ ′(t) = −1,
S′(t) = S(t)r(t),
P′(t) = u(t),
W ′(t) = W (t)r0 −P(t)S(t)(r0 − r(t))− δ |u(t)|S(t)− δ0(u(t)),

or
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τn+1 = τn −ρ ,
Sn+1 = Sn(1+ρrn

ρ),

Pn+1 = Pn +ρun,

W n+1 = (1+ρr0)W n −PnSn(ρr0 − rn
ρ)− δ |un|Sn − δ0(u

n),

where u(t) ∈ R or un ∈ Uρ (Sn,Pn) (defined subsequently) and r(t) ∈ Q(t,S(t)) or
rn

ρ ∈ Qn
ρ .

The state variable (τ,S,P,W ) must evolve, before reaching the target T , in a
constrained set K , including trading constraints that bound the variation of the
share of the risky asset so as to maintain P(t) ∈ P(S(t)) or Pn ∈ P(Sn). For

instance, if P(S) = [0,1], then Uρ(S,P) =
[
− P

ρ ,1− P
ρ

]
. The sets K and T are

defined by

K := {(τ,S,P,W ) ∈ R
4 such that b(T − τ,S,P)≤W, τ ≥ 0, P ∈ P(S),

S�(T − τ)≤ S(T − τ)≤ S�(T − τ), P ∈ [0,P�]},
T := {(τ,S,P,W ) ∈ R

3 such that c(T − τ,S,P)≤W},

where c(T − τ,S,P) =
{
(S−K)+ if τ = T,
+∞ if not.

Our aim is to determine the set of initial conditions (S(0),P(0),W(0)) ∈ R
3
+

or (S0,P0,W 0) ∈ R
3
+ for which there exists a map (τ,S,P,W ) → û(τ,S,P,W ) or

a sequence of maps ((S,P,W ) → ûn(S,P,W ))n=0,...,N−1 such that, whatever the
realization t �→ v(t) or the sequence (vn)n=0,...,N−1 of uncertainty happens to be,
the evolution t → (τ(t),S(t),P(t),W (t)) or (τn,Sn,P(t),W n)n=0,...,N solution to
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ ′(t) = −1,
S′(t) = S(t)r(t),
P′(t) = û(τ(t),S(t),P(t),W (t)),
W ′(t) = W (t)r0 −P(t)S(t)(r0 − r(t))

−δ |û(τ(t),S(t),P(t),W (t))|S(t)− δ0(ûτ(t),S(t),P(t),W (t))
or⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τn+1 = τn −ρ ,
Sn+1 = Sn(1+ρrn

ρ),

Pn+1 = Pn +ρ ûn(Sn,Pn,W n),

W n+1 = (1+ρr0)W n −PnSn(ρr0 − rn
ρ)

−δ |ûn(Sn,Pn,W n)|Sn − δ0(û
nSn,Pn,W n)

remains in the constraint set K before reaching the target T . To that end, we apply
the Guaranteed Capture Basin Algorithm setting x = (τ,S,P,W ), u= P′, v = r, and

Φ(x,u,v) := (−1,Sv(S,v),u,Wr0 −PS(r0 − v)− δ |u|S),
and

Φρ(x,u,v) := (τ −ρ ,S(1+ v),P+ρu,(1+ρr0)W −P(ρr0 − v)

−ρδ |u|S− δ0(u)).

(17.10)

17.3.2 Approximation of Valuation Function in the Presence
of Transaction Costs

Applying the Guaranteed Capture Basin Algorithm we determine the subset of
initial positions (τ0,S0,P0,W 0) for which there exists a “buy and sell” strategy such
that the financial constraints are satisfied until the payoff is realized, whatever the
considered uncertainty. Let us define the function V : R+×R+×R+ �→ R+ by

Vρ(τ,S,P) := inf{W such that (τ,S,P,W ) ∈ Capt(K ,T ,(Φρ ,U ,Qρ ))},
which associates to each triple (τ,S,P) the cheapest value of capital needed to
guarantee the objectives to be reached while preserving the constraints. We still
have Epi(Vρ) := Capt(K ,T ,(Φρ ,U ,Qρ)), so that we can compute recursively
the functions V i

ρ :

V 0
ρ (τ,S,P) = min(b(T − τ,S),c(T − τ,S)), ∀τ = nρ ∈ {0, . . . ,Nρ},

V i+1
ρ (τ,S,P) = max

[

V i
ρ(τ,S,P),

inf
u∈U (S,P)

sup
v∈Qρ

V i
ρ(τ −ρ ,S(1+ v),P+ρu)+PS(ρr0− v)+ρδ |u|S+ δ0(u)

1+ρr0

]

.

(17.11)
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Fig. 17.6 Evaluation of a European call with transaction costs

Then the approximate value of the option in the presence of transaction costs is
given by

Vρ(S,P) =V N
ρ (T,S,P),

and the initial portfolio, determined by a quantity of shares P̂ depending on the value
S at the initial time, is given by

P̂ = Π(S) := ArgminP (Vρ(τ,S,P)+ρδPS).

We illustrate this method in the same context as above for evaluating European
calls in the presence of transaction costs. Figure 17.6a shows the superimposed
sequence of valuation functions for different values of time. In Fig. 17.6b, only
the first and last valuation functions are superimposed. Shown in the figure is the
curve corresponding to the best choice P̂ of quantity of shares that one must buy to
initialize the portfolio if the price of the risky asset is S.

One interesting question is the following one: taking into account transaction
costs while running the replicating process is obviously different from running the
replicating process without transaction costs and calculating a posteriori the cost
of all the effective transactions done during the life of the option. The difference
becomes very sensitive when the time step – like, for instance, in the CRR procedure
– becomes smaller and smaller since the a posteriori cost becomes infinite, whereas
in our approach, it remains bounded. Figure 17.7 shows the difference clearly.
On the left, the upper figure shows the evolution of the value of the replicating
portfolio

• When there are no transaction costs,
• When the transaction costs are endogenized in the model where the control is the

variation of the quantity of the asset bought or sold, and



17.3 Extension of Capture Basin Methods to Evaluate Complex Instruments 307

Fig. 17.7 Comparison of vanilla option valuation with and without transaction costs (with the
permission of VIMADES Cie)

• When the evaluation of transaction costs is determined ex post on the basis of the
evolution of the quantity of asset of the replicating portfolio as if there were no
transaction costs.

17.3.3 Bermuda and Capped-Style Options: Two Examples
of Constrained and Multitarget Problems

Bermuda options belong to the nonstandard American option family with the
following extended features:

– Early exercise is restricted to certain dates (Ti)i∈I , Ti ∈ [0,T ].
– Early exercise is allowed only for certain parts of the life of the option.
– The strike price may change during the life of the option.

In addition, Bermuda options are characterized by the data of pairs (Ti,Ki)i∈I when
exercise is possible at certain fixed dates Ti within the maturity period [0,T ] with a
strike price Ki. In our formalization, this can simply be written through the definition
of the constraint function. Let

bi(t,S,P) =

{
[S−Ki]

+ if t = Ti,

0 if t �= Ti,
and set b(t,S,P) = maxibi(t,S,P),with

c(t,S,P) =
{
[S−K]+ if t = T,
0 if t �= T.
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Fig. 17.8 Evaluation of a Bermuda option

Capped-style options differ from Bermuda options in the sense that the capped
option is automatically exercised when the underlying asset closes at or above
the option strike. This can simply be written through the definition of the target
function. Let

ci(t,S,P) =

{
S−Ki if t = Ti and S ≥ Ki,

+∞ if not,

and set

c(t,S,P) = minici(t,S,P)with

b(t,S,P) = 0.

This amounts to considering the target T as the union of targets Ti, as shown in
Fig. 17.2.

Then, applying the Guaranteed Capture Basin Algorithm defined previously in
the presence of transaction costs, we obtain an approximation of the evaluation of
these options satisfying ∀i ∈I , ∀S ∈ S�(Ti)≤ S ≤ S�(Ti), W (Ti)≥ [S−Ki]

+, which
means that at each time Ti when the option can or must be exercised, the value of
the replicating portfolio is sufficient to ensure the payoff.

Figure 17.8 illustrates the computation of a Bermuda option with three specific
dates between issue date and expiry date. On Fig. 17.8a, a (discontinuous) graph of
the constraint function b is depicted. The target is the epigraph of c. On Fig. 17.8b
is represented a graph of the evaluation function computed with δ = 0 (without
transaction costs). On Fig. 17.8c is represented the optimal policy, that is to say, the
quantity of shares Π(t,S) of the risky asset in the replicating portfolio.

Figure 17.9 shows the impact of transaction costs when evaluating a Bermuda
call taking or not taking into account a priori the transaction costs.
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Fig. 17.9 Comparison of Bermuda option valuation with and without transaction costs (with
permission of VIMADES Cie)

17.4 Evaluation of Complex Financial Instruments
Using Impulse Systems

Impulse dynamic systems refer to processes whereby the state can “jump” to a
new position following some given rules. Hybrid systems refer to systems that can
change from one mode to another following some change rules depending on several
parameters. Both hybrid and impulse systems can be represented interbreeding
continuous and discrete dynamic systems.

Mathematical and numerical tools developed in the framework of hybrid dy-
namic systems make it possible to solve various control problems in the presence
of uncertainty. Here we integrate uncertainty and impulse thanks to the Guaranteed
Capture Basin Algorithm applied to evolutionary systems. This was developed in
[60] in the context of nonanticipative strategies. We refer mainly to [16, 58, 59] for
theorical studies and numerical issues related to the viability approach to impulse
systems and to [47, 48] for applications to finance (barrier options) and economics
(managing the life cycle). In this context we will be able to evaluate options in two
additional complex situations:

1. When certain conditions must be fulfilled or dismissed at unknown dates. This is
the case for barrier options, which are options that can have four modes – “in-up”
or “in-down” and “out-up” or “out-down” modes – depending on the asset price
evolution;

2. When the “volatility” is periodically adjusted depending on the past and present
asset prices.
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To illustrate how viability techniques can be extended to these nonlinear complex
cases, we briefly recall how to extend viability concepts in the framework of hybrid
systems.

17.4.1 Hybrid Dynamic Systems and Viability Concepts

Consider a two-level system describing the evolution of a state variable x ∈ R
n

governed by either a continuous dynamic system defined by a differential equation

x′(t) = ϕ(x(t),u(t),v(t)), u(t)∈U(x(t)), v(t)∈Q, for almost all t ≥ 0, (17.12)

or a discrete impulse system defined by the reset equation

x+ ∈ ψ(x−), (17.13)

where ψ(x−) is the set of all available states x+ attainable from the position x−.
Resetting is possible when x belongs to a prescribed subset R of RN , called the
reset set, so that ψ(x) = /0 whenever x /∈ R. We assume that the map ψ has no fixed
point and the map ϕ is bounded:

(1) ∃m > 0, inf
x∈K

d(ψ(x),x)≥ m,

(2) ∃M > 0, sup
x∈K

sup
u∈U (x)

sup
v∈Q

||ϕ(x,u,v)|| ≤ M. (17.14)

Definition 17.3. We call a run of impulse system (ϕ ,ψ), with initial condition x0

and given pair (u(·),v(·)) of measurable functions, a collection of finite or infinite
sequences

{δi,xi,ξi(·)}i∈N

in R
+×R

n×SF(R
n,u(·),v(·)), where {δi}i∈N is a sequence of durations such that

for all i ∈N,

ξ ′
i (t) = ϕ(ξi(t),u(t + ti),v(t + ti)), ξi(0) = xi, ξi(δi) ∈ R, xi+1 ∈ ψ(ξi(δi)).

Let us set ti := ∑i−1
j=0 δ j.

We call a trajectory associated with a run {δi,xi,ξi(·)}i∈N the function xi(·)
given by

ξ (t) =
{

x0 if t < 0,
ξi(t − ti) if t ∈ [ti, ti + δi).

(17.15)

We are interested in trajectories that remain in a constraint set K , eventually
resetting if necessary within the reset rule, until they satisfy at a prescribed time
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T , or eventually before, some specific condition summarized in the definition of
the target T , and this regardless of the evolution of the uncertainty parameter v(·).
We search the largest domain of initial positions from which starts at least one run
switching between continuous motives and impulses but remaining in K until it
reaches the target T , whatever v(·) is. We can assume without loss of generality
that R ⊂ K ∩ψ−1(K ), and we denote by S(ϕ,ψ,K ,T )(x0) the set of runs starting
from x0 and viable in K .

We need to know whether the successor of ξ n is a consequence of a jump or if it
derives from the approximation of the continuous process. For that purpose we add
two variables and their evolution rules: the time t and the total number of resets or
jumps j. If ξ n+1 is a consequence of a jump, then d(ξ n+1,ξ n) ≥ m, whereas if it
derives from a continuous process, then d(ξ n+1,ξ n)≤ ρM. Choosing the time step
sufficiently small, ρ ≤ m

2M , then, if ξ n+1 is a consequence of a jump, we necessarily
have d(ξ n+1,ξ n)≥ 2ρM. Let us define the discrete map (jump counter)

jρ (ξ n) =

{
jn if d(ξ n+1,ξ n)≤ ρM,

jn + 1 if d(ξ n+1,ξ n)≥ 2ρM,

and we consider the following extended semi-implicit discrete dynamic system:

ξ n+1 ∈ {ξ n +ρϕ(ξ n,un,vn)}∪{ψ(ξ n)},

jn+1 =

{
jn if d(ξ n+1,ξ n)≤ ρM,

jn + 1 if d(ξ n+1,ξ n)≥ 2ρM,

tn+1 = tn +( jn+1
p − jn

p)ρ . (17.16)

17.4.2 Guaranteed Hybrid Capture Basin Algorithm

To compute approximations of the guaranteed hybrid capture basin, we construct a
decreasing sequence of subsets K i

ρ defined by

K 0
ρ := K ∪T ,

K i+1
ρ := {(ξ , j, t) ∈ K i

ρ , ∃u ∈ P(ξ ) such that

∀v ∈ Qρ , (ξ +ρϕ(ξ ,u,v), jn, t +ρ) or (ψ(ξ ), j+ 1, t) ∈ K i
ρ }.

(17.17)

We simply point out that Limρ→0Limi→∞K i
ρ exists and coincides with the

guaranteed hybrid capture basin of T in K for (ϕ ,ψ ,U ,Q).
An element (ξ , j, t) ∈ K i+1

ρ if and only if (ξ , j, t) ∈ K i
ρ and either there exists a

control u∈U (x) such that for any v ∈Qρ , Sρ(x+ρ f (x,u,v)) ∈K p
ρ or (ψ(ξ ), j+

1, t) ∈ K i
ρ .
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17.4.3 Evaluation of Barrier Options

Barrier options also belong to nonstandard American or European options depend-
ing on unpredictable events that change in an impulse manner the nature of the
agreement. The barrier mechanism complicates the evaluation of the replicating
portfolio. A barrier is a particular value S∗ for a price S(t) beyond which the
agreement changes. There are four types of options with barriers:
“Up and in”: the agreement becomes effective at the first time t∗ when S(t) <
S∗, ∀t < t∗, S(t∗) = S∗;
“Down and in”: the agreement becomes effective at the first time t∗ when S(t) >
S∗, ∀t < t∗, S(t∗) = S∗;
“Up and out”: the agreement ceases at the first time t∗ when S(t) < S∗, ∀t <
t∗, S(t∗) = S∗;
“Down and out”: the agreement ceases at the first time t∗ when S(t) > S∗, ∀t <
t∗, S(t∗) = S∗.

The challenge is to evaluate today an agreement that can vanish or become
effective at some unknown date in the future. For the sake of simplicity we only
consider here the “up and in” case of a call absent transaction costs, focusing our
attention on the impulse complexion.

To this end, we introduce a discrete variable L ∈ {0,1} that labels the state of the
agreement – effective for L = 1 or noneffective for L = 0 – and consider the hybrid
dynamic system:

Continuous level⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ ′(t) = −1,
S′(t) = S(t)r(t),
L′(t) = 0,

W ′(t) =
{

W (t)r0 −P(t)S(t)(r0 − r(t)) if L(t) = 1,
0 if L(t) = 0;

Impulse level⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ+ = τ−,
S+1 = S−1 ,

L+ =

{
1 if S−1 ≥ S∗,
L− if S−1 < S∗,

W+ = W−.

Note that, as formulated, the evolution of the label’s variable is increasing. This
corresponds to the case of “in” options.

As for previous option evaluations, we wish to determine the guaranteed capture
basins of the epigraph of c while remaining in the epigraph of b and τ > 0.
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Let us remark that, for this problem, the right-hand side is governed by
conditional operations. Let ρ = T

N and n ≤ N. The discrete system then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τn+1 = τn −ρ ,
Sn+1 = Sn(1+ rn

ρ),

Ln+1 =

{
1 if Sn+1 ≥ S∗,
Ln if not,

W n+1 =

{
(1+ρr0)W n − pnSn(ρr0 − rn

ρ) if Ln+1 = 1,
W n if Ln+1 = 0,

(17.18)

under the constraints

K := {(τ,S,W ) ∈ R
3 such that b(T − τ,S)≤W, τ ≥ 0,

S�(T − τ)≤ S(T − τ)≤ S�(T − τ), P(S)∩ [0,1] �= /0},
with the target T := {(τ,S,W ) ∈R

3 such that c(T − τ,S)≤W}.
Let rM

ρ and rm
ρ denote the upper and lower bounds between which the return

r varies over each interval of length ρ . Control and uncertainty are henceforth
assumed to vary within p ∈ [0,1] and rρ ∈ Qρ := [rm

ρ ,r
M
ρ ].

We define the switching function

Λ(L,S,S∗) =
{

1 if S ≥ S∗,
L if not,

and we denote

Φρ(τ,S,L,W, p,rρ )

:= (τ −ρ ,S(1+ rρ),Λ(L,S(1+ rρ),S∗),
W +Λ(L,S(1+ rρ),S∗)

(
Wrρ0(t))+ pS(rρ −ρr0)

)
).

The Guaranteed Hybrid Capture Basin Algorithm leads to the construction of a
decreasing sequence of subsets Ki

ρ as in (17.8), which can be rewritten as epigraphs
of functions (τ,S,L)→V i

ρ(τ,S,L) defined recursively by

V 0
ρ (τ,S,L) =

{
min(b(τ,S),c(τ,S)) if L = 1,
0 if L = 0,

V i+1
ρ (τ,S,L) = max

(
V i

ρ(τ,S,L),

inf
p∈P(S)∩[0,1]

sup
rρ∈[rm

ρ ,r
M
ρ ]

1
1+ rρ0(t)

[
V i

ρ(τ −ρ ,S(1+ rρ),Λ(L,S(1+ rρ),S
∗))

+pΛ(L,S(1+ rρ),S∗)S(ρr0 − rρ)
])

,

∀τ = nρ ∈ {0, . . . ,Nρ}.
(17.19)
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Fig. 17.10 Evaluation of barrier options

Note that for L = 1 the approximated guaranteed evaluation function coincides with
the approximated guaranteed evaluation function corresponding to the case of a
plain call without barriers. Also the true function is not trivial for L = 0 and for
S < S∗.

Figure 17.10 shows the graph of the evaluation function Vρ(t,S,0) =V N
ρ (t,S,0)

of a European call with an “up and in” barrier with s∗ = 150 and the optimal strategy
p. On the right is a graph of the evaluation function of an “up and out” call with s∗ =
150. In both case, the uncertainty is of CRR-type [rm

ρ ,r
M
ρ ] = [e−σ√ρ −1,e+σ√ρ −1].

17.4.4 Evaluation of Options Using NGARCH Uncertainty
Correction and in the Presence of Transaction Costs

We have seen that the formulation of barrier options in the framework of hybrid
dynamic systems using the Hybrid Capture Basin Algorithm leads to the definition
of algorithms allowing for an evaluation of options that are subject to impulse events
translating unpredictable events that change the structure of the agreement in a
discontinuous way. In the barrier option mechanism, the status of the agreement
changes when some risky asset price reaches or leaves a given range set; the date
is unknown. Garch or Ngarch models also belong to the class of impulse systems
where parameters characterizing uncertainty are modified according to the unpre-
dictable result of an observation that occurs at some prescribed dates (see [26]).
The characterization of epigraphs of evaluation functions arising in NGARCH
modelization using the Guaranteed Capture Basin Algorithm was developed with
the collaboration of Michèle Breton (HEC Montreal and GERAD, Quebec).

One can take into account transaction costs taht fixed or dependent on the amount
of monetary exchange between the risky and the nonrisky parts of a portfolio. Fixed
costs again generate a discontinuous evolution of the value of the portfolio. Other
transaction costs are usually nondifferentiable. Thus taking into account transaction
costs prevents the implementation of algorithms based on numerical methods for
approximating continuous valuation functions.
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In what follows we will consider the case of a single risky asset. However, there
are no mathematical difficulties when considering a set of different risky assets
except when attempting to implement the algorithm on computer since the required
memory size grows exponentially with the number of these assets. We now consider
the evaluation of a vanilla put in the presence of transaction costs that is associated
with the dynamic – continuous or discrete – system

τ ′(t) = −1,

S′(t) = S(t)r(t),

P′(t) = u(t),

W ′(t) = W (t)r0 −P(t)S(t)(r0 − r(t))− δ |u(t)|S(t)− δ0(u(t)). (17.20)

17.4.4.1 Garch Process

In our model, uncertainty is formalized by the condition v ∈ Qρ , where Qρ denotes
the uncertainty range, which depends on the time step ρ . In the Garch mechanism
we introduce a sequence of dates of observations (t0 = 0, t1, t2, . . . , t j, . . . , tp = T )
at which the set Qρ is reevaluated such that for all t ∈ [t j, t j+1[, r ∈ Q j(S j−1,S j),
where S j is the observed price or the risky asset at date t j. The set Q j(S j−1,S j) is
constant during the time interval [t j, t j+1[. This amounts to correcting the “volatility”
according to the “past price” and the “actual price” of the risky asset, “past price”
being understood in the sense of a single value of S observed at the beginning of the
previous period [t j−1, t j [ and “actual price” being understood as the price observed
at the beginning of the actual period [t j, t j+1[. We will detail the Garch process when
presenting the discrete process.

Let us introduce two new variables denoted by Sa representing the value of the
risky asset observed at the beginning of the previous period and σ representing the
uncertainty range. In our application, σ2 will correspond to the classic “volatility,”
but it can parameterize any uncertainty representation. Let us denote α := S/Sa.

The hybrid dynamic system associated with this problem is transformed as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Continuous dynamics
τ ′(t) = −1,
S′(t) = S(t)r(t),
S′a(t) = 0,
P′(t) = u(t),
σ ′(t) = 0,
W ′(t) = W (t)r0 −P(t)S(t)(r0 − r(t))

−δ1|u(t)S(t)|− δ0(u(t)),

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Impulse dynamics
τ+ = τ−,
S+ = S−,
S+a = S−a ,
P+ = P−,
σ+ = g(S−,S−a ,σ−),
W+ = W−,

(17.21)
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with u(t) ∈ U (S(t),P(t)) and r(t) ∈ Q(σ(t)) and where σ → g(S−,S−a ,σ)
describes the Garch volatility correction.

Let us introduce the variable α := S
Sa

. Since all along each period [t j, t j+1], Sa(t)

is constant, we have α ′(t) = S′(t)
Sa

= v(t)α(t). To simplify the notations, we suppose
that the volatility reevaluation map g depends only on α . Thus we can rewrite system
(17.21) describing the dynamics of the state (τ,α,Sa,P,σ ,W ) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Continuous dynamics
τ ′(t) = −1,
α ′(t) = α(t)r(t),
S′a(t) = 0,
P′(t) = u(t),
σ ′(t) = 0,
W ′(t) = W (t)r0 −P(t)S(t)(r0 − r(t))

−δ1|u(t)S(t)|− δ0(u(t)),

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Impulse dynamics
τ+ = τ−,
α+ = α−,
S+a = S−a ,
P+ = P−,
σ+ = g(τ,α−,σ−),
W+ = W−,

(17.22)

with u(t) ∈ U (S(t),P(t)) and r(t) ∈ Q(σ(t)).
Let us denote the state variable x := (τ,α,Sa,P,σ ,W ), v := r and the maps

Φ(x,u,v) := (−1,αv,0,u,0,Wr0 −PS(r0 − v)− δ1|uS|− δ0(u)),

Ψ(x) := (τ,α,Sa,P,g(τ,α,σ),W ).

The reset set associated with the hybrid system is that of (τ,α,Sa, p,σ ,W ) on
dates when observations of the risky asset price occurs generating a reevaluation of
the uncertainty estimation. It is given by

R := {(τ,α,Sa, p,W ) such that τ = τ j := T − t j, j = 0, . . . , p}.

The mathematical assumptions for applying viability tools in the context of
hybrid systems need to prove an upper semicontinuity property of the set-valued
map (x,v)→{Φ(x,u,v), u ∈ U (x)}, the convexity and compactness of the images,
and that the graph of the reset map Ψ is closed, which are true here.

To implement the Hybrid Guaranteed Capture Basin Algorithm, we need to
coordinate the time discretization and the observation dates. If ϑ := T

p denotes
the duration of each time interval between two consecutive observations, then we
assume that observations are done periodically and that t j = jϑ . Let us set ρ := T

N
and let us define J := ρ

θ the number of time steps between two observations. Then
we can now write the associated discrete dynamic system associated with (17.22) as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Continuous dynamics
τn+1 = τn − 1,
αn+1 = αn(1+ rn

ρ),

Sn+1
a = Sn

a,

Pn+1 = Pn +ρun,

σn+1 = σn,

W n+1 = W n(1+ρr0)−PnαnSn
a(ρr0 − rn

ρ)

−δ1|unαnSn
a|− δ0(u

n),

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Impulse dynamics
τ+ = τ−,
α+ = α−,
S+a = S−a ,
P+ = P−,
σ+ = g(τ,α−,σ−),
W+ = W−,

(17.23)

where un ∈ U (Pn) := {u ∈ R such that Pn + ρu ∈ [0.1]} and rn
ρ ∈ Qρ(σn) :=

[−σn√ρ +(σn)2,σn√ρ +(σn)2].
The NGarch models specify the impulsive change of the uncertainty set. For

instance, in the framework of stochastic processes, this change is described through
the volatility adjustment given by the following statements:

1. For all n ∈ {0, . . . ,N}, n �= 0 mod J, σn = σn−1,
2. For all n ∈ {0, . . . ,N}, n = 0 mod J, σn = g(αn−1,σn−1),

where g(α,σ) =

√

β0 +β1σ2 +β2σ2

(
ln(α)−r+ σ2

2
σ −θ

)2

.

As previously, the Guaranteed Hybrid Capture Basin Algorithm leads to the
construction of a decreasing sequence of subsets Ki

ρ as in (17.8), which can be
rewritten as epigraphs of the functions (τ,α,Sa,P,σ) → V i

ρ(τ,α,Sa,P,σ) defined
recursively by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 0
ρ (τ,α,Sa,P,σ) = min(b(τ,αSa),c(τ,αSa)),

V i+1
ρ (τ,α,Sa,P,σ) = max

(
V i

ρ(τ,α,Sa,P,σ),

inf
u∈U (P)

sup
v∈Qρ (σ)

1
1+ρr0

[
V i

ρ(τ −ρ ,α(1+ v),Sa,P+ρu,σ)

+PαSa(ρr0 − v)+ δ1|uαnSn
a|+ δ0(u)

])
,

∀τ = nρ ∈ {0, . . . ,Nρ}.

This provides the minimal value of the replicating portfolio and its composition,
which guarantees that, if the initial price of the risky asset is Sa and the initial
volatility is σ2, then one can find a buying/selling strategy u such that, whatever the
uncertainty, in the presence of transaction costs and applying regularly the Garch
correction rule g at prescribed times, the payoff function will be superseded.

Numerical implementation of the Guaranteed Capture Basin Algorithm for
evaluating options in the presence of transaction costs using the NGARCH model is
an ongoing work with Michèle Breton, HEC Montréal.



Chapter 18
Asset and Liability Insurance Management
(ALIM) for Risk Eradication

18.1 Introduction

Asset and liability management (ALM) deals with approaches that allow a company
to manage the composition of its risky assets or underlying in such a way that
they are always larger than its liabilities. Choosing a management rule is a choice
under contingent uncertainty (choosing an exposition of the portfolio) and tychastic
uncertainty (valid for risky returns above a forecasted lower bound).

The objective of portfolio insurance is to enable investors to participate oppor-
tunistically in market performance while providing protection of any type of liability
against all evolutions of risky prices consistent with a prediction model, at each date
up to maturity. The liability is understood in the largest sense, from the standard
protection at exercise time or allowing for variable annuities, as in life insurance or
retirement pension plans. In other words, portfolio insurance’s main objective is

1. Either to evaluate risk
2. Or to eliminate or limit the loss of portfolio value

while allowing the portfolio to benefit opportunistically, to some extent, from a rise
in the “market.” Here, we propose to eradicate losses.

The motivation for such a strategy is based on the simple observation that during,
for example, the crashes of October 1987 and October 1989, strategies such as buy
and hold (which fixes the risky part of the portfolio once and for all) or the constant
proportion portfolio insurance (CPPI) method (which amounts to keeping constant
the “cushion multiplier,” which is the ratio of the expectation over the cushion, or
surplus, defined as the difference between the value of the portfolio and the liability).
CPPI is a widely used fund management technique and a capital guarantee derivative
security that provide participation in the performance of the underlying asset [125]
but “. . . could result in very significant losses,” violating the “I” in CPPI. See, for
instance, the studies of [50, 54], among several authors. Cont and Tankov point out
the fact that the CPPI does not eliminate risk: Yet the possibility of going below
the floor, known as “gap risk,” is widely recognized by CPPI managers: there is a

P. Bernhard et al., The Interval Market Model in Mathematical Finance, Static & Dynamic
Game Theory: Foundations & Applications, DOI 10.1007/978-0-8176-8388-7 18,
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nonzero probability that, during a sudden downside move, the fund manager will
not have time to readjust the portfolio, which then crashes through the floor. In this
case, the issuer has to refund the difference, at maturity, between the actual portfolio
value and the guaranteed amount. It is therefore important for the issuer of the CPPI
note to quantify and manage this “gap risk.”

In their paper [50], the authors describe the CPPI in the following way: [. . . ] An
alternative approach [. . . ] based on the following two ideas: first, the portfolio is
always maintained above a certain minimum level called the floor, the difference or
the “surplus” being called the “cushion” – the floor is assumed to grow at a fixed
rate (for example, at the riskless rate of interest) such that at the maturity of the fund,
it is at least equal to the guaranteed amount; second, the exposure to the market at
any moment is determined as a (non-decreasing) function of the cushion, usually a
constant multiple of the cushion. [. . . ] The CPPI is a technique easy to understand
and implement, and independent of time. [. . . ] There is a small risk of the portfolio
crashing through the floor in between two rebalancements, as happened with some
assured portfolios during the 1987 crash. In such a case, it is impossible even to
meet the guarantee. Therefore, one objective of management might be to minimize
this possibility.

Indeed, CPPI-type models suffer from (at least) two shortcomings: they do not
compute but simply evaluate by statistical methods, optimizing several criteria
including the initial investment (cushion) and the fixed weights or multipliers (used
as controls), and they do not provide the value of the hedging portfolio, but only its
expectation.

Take advantage of highs while protecting against lows is our aim in designing
a management rule, the Viabilist Portfolio Performance and Insurance (VPPI) rule,
which eradicates the gap risk.

The VPPI robot trader of VIMADES (http://vimades.com) is indeed a “risk-
eradication” software for the insurance and management of a portfolio consisting
of a risky asset to hedge a liability up to a given exercise date. It calculates both

1. At the date of investment, the minimum guaranteed investment (MGI) needed to
insure liabilities (serving as a solvency capital requirement (SCR)).1

2. The VIMADES robot trader also calculates the VPPI management rule, which,
on each date until the exercise date, provides the number of shares of the risky
asset (or the exposure of the portfolio) according to the return of the risky asset
known at that time.

The aim of doing this is to ensure that the value of the portfolio to “always” exceed
liabilities during the exercise period.

1The SCR should reflect a level of eligible proprietary funds that enables insurance and reinsurance
undertakings to absorb significant losses and that gives reasonable assurance to policyholders
and beneficiaries that payments will be made as they fall due, as required in “Pillar I” of the
Solvency II framework of the European Directive 2009/138/EC. Unfortunately, it stipulates that
“the Solvency Capital Requirement is calculated using Value-at-Risk techniques” and not risk-
eradication techniques!

http://vimades.com
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The word “always” carries with it some requirements.

1. On the date of investment, the manager uses a predictive model of his choice
providing the lower bounds of future returns on the risky asset (or underlying),
which can be calculated in various ways:

• With probabilistic models requiring the knowledge of a “volatilimeter”.
• Using extrapolation methods based on history-dependent (path-dependent)

dynamic systems as a prediction mechanism. The VIMADES Extrapolator
we suggest in this study is an example that takes into account the velocity,
acceleration, and jerk of the history of an evolution to capture its trend
[8, 14, 15].

2. In addition, that at each date, the actual return is assumed to be greater than
the forecasted lower bound of the risky asset (worst case), so that the number
of shares calculated by the portfolio VPPI management rules provides a value
higher than the liability.

The problem is to insure and manage a portfolio consisting of a risky asset to
hedge a liability flow up to a given exercise date. This is a dynamic mechanism
ensuring that, at each date, the value of the portfolio “always” exceeds liabilities.

This is a very simple viability problem that has prompted the emergence of
concepts and mathematical and algorithmic results gathered under the name of
“viability theory” [see [7] for a recent mathematical presentation or [6] for a essay
(in French)].

Denote by 0 the investment date, by T > 0 the exercise time (or the term, the
horizon, etc.), by t ≥ 0 the current (or spot) time, and by T − t ≥ 0 the time to
maturity. We set:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(t) floor (of liabilities);
S0(t) price of riskless asset;
S(t) price of underlying;

r0(t) =
dS0(t)
S0(t)dt

return on riskless asset;

r(t) =
dS(t)
S(t)dt

return on the underlying;

p0(t) number of shares of riskless asset;
p(t) number of shares of underlying;
W (t) = p0(t)S0(t)+ p(t)S(t) portfolio value;
E0(t) = p0(t)S0(t) liquid component of portfolio.
E(t) = p(t)S(t) the exposure (risky component) of the portfolio

The insurance requirement can be written in the form

∀ t ∈ [0,T ], W (t) ≥ L(t) and W (T ) = L(T ). (18.1)
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Since the VPPI algorithm provides the management rules, few words are
needed to define them: in the simple case of self-financed two-asset portfolios, the
management is done at each instant t by choosing and acting on the exposure E(t)
for investing in more or fewer underlying shares.

The main problem is the choice of a management rule for hedging the portfolio
and, thus, for assessing it. This is a part of uncertainty, called contingent uncertainty,
because we do not know what management rule to choose (in his Essais de
théodicée, Leibniz defines it thus: “Contingency is a non-necessity, a characteristic
attribute of freedom”).

The first step requires looking for such rules in a “contingent reservoir” of
“management rules” (t,W ) �→ Ẽ(t,W ) available to investors (or mechanisms of
regulation). In the last analysis, given the time and value of a portfolio, the
management rule dictates the exposure. In this study, contingent uncertainty is
described by financial constraints on exposures, which require that each period t

∀ t ∈ [0,T ], ∀W ≥ 0, E ∈ [E�(t,W ),E�(t,W )].

Example: If
{

B(t)≥ 0 is the target allocation and

A(t) := −−p0(t)S0(t)
W(t) ≥ B(t)− 1 is the maximum cash allocation,

then we set

E�(t,W ) := B(t)W (t) and E�(t,W ) := (1+A(t))W(t).

If A(t) = −|A(t)| < 0, then the condition −p0(t)S0(t) ≤ A(t)W can be written as
p0(t)S0(t) ≥ |A(t)|W , which means that the portfolio should include a minimum
share of the monetary value of the portfolio.

These bounds A(t) describe more or less severe prudential constraints. The
default values are A(t) = 0 and B(t) = 0 (so that the contingent reservoir is in this
case the interval [0,W ]).

What we do know is, for each asset, the lower prices S�(t) (LOW) and upper
prices S�(t) (HIGH) defining the interval Σ(t) := [S�(t),S�(t)] in which the price
S(t) evolves. They are provided by brokerage firms.

The “tychastic” map S(t) ∈ Σ(t) is an example of a tube, i.e., a set-valued (here,
an interval-valued) map. One can use the (graphical) derivatives of set-valued maps
introduced in [3] to deduce the range of derivatives S′(t) of viable evolutions t �→
S(t) ∈ Σ(t); see also among other references the monographs [12,130]. Introducing
the derivative DΣ(t,S) of this set-valued map σ defined at (t,S), where S ∈ Σ(t),
we derive from the viability theorem that the viable evolutions are governed by the
differential inclusion

∀ t ≥ 0, S′(t) ∈ DΣ(t,S(t)).

In this very simple case of interval-valued tubes, we can compute it under
adequate assumptions.
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The value of the portfolio is governed by a (very simple) tychastic controlled
system, where the controls are the exposures E(t,W ) ∈ [E�(t,W ),E�(t,W )] of the
portfolio and the “tyches” (see Sect. 18.3.2, p. 332) are the prices S(t)∈ [S�(t),S�(t)]
of the underlying:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀ t ∈ [0,T ],
(i) W ′(t) = r0(t)W (t)+E(t)(r(t)− r0(t)) (evolutionary engine),
(ii) E(t) ∈ [E�(t,W (t)),E�(t,W (t))] (controls),

(iii) r(t) ∈ DΣ(t,S(t))
S(t) (tyches),

(18.2)

subject to the floor constraints (18.1) (p. 321).
It may happen that the returns do not satisfy the requirement S(t) ∈ Σ(t) for

some t due to prediction errors whenever the forecasted lower bound S�(t) is too
large. There exists an impulse ratchet mechanism that can be integrated into the
regulated tychastic system (18.2) (p. 323).

Definition 18.1 Minimum Guaranteed Investments. Suppose that the floor t �→
L(t) and the bounds [E�(t,W ),E�(t,W )] describing the contingent uncertainty are
given.

Assume that the lower bounds r�(t) of the returns on the underlying describing
the tychastic uncertainty are known. The problem is to find at each date t

1. The (exposure) management rule E♥(t,W ) ∈ [E�(t,W ),E�(t,W )];
2. The minimum guaranteed investment (MGI) W♥(t).
3. And especially the initial minimum guaranteed investment (“viability insur-

ance”) W♥(0)

such that

1. Starting at investment date 0 from W0 ≥W♥(0), then regardless of the evolution
of the tyches r(t) ≥ r�(t), the value W (t) of the portfolio governed by the
management module

W ′(t) = r0(t)W (t)+E♥(t,W (t))(r(t)− r0(t)) (VPPI management module)

is always above the floor, and, actually, to the MGI;
2. Starting at investment date 0 from W0 < W♥(0), regardless of the management

rule Ê(t,W ) ∈ [E�(t,W ),E�(t,W )] (including the CPPI management rule and its
variants), there exists at least one evolution of returns r(t) ≥ r�(t) for which the
value of the portfolio managed by

W ′(t) = r0(t)W (t)+ Ê(t,W (t))(r(t)− r0(t))

pierces the floor.

The epigraph E p(L) of the floor function L(·) is defined by

E p(L) := {(t,W ) such that W ≥ L(t)} .
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Hence inequality constraint (18.1) (p. 321) can be written as the environment

{∀ t ∈ [0,T ], (t,W (t)) ∈ E p(L) ⊂ R
2
+ (environment),

(T,W (T )) ∈ Graph(L) (target) .

This viability formulation suggests the use of viability theory, and the concept of
guaranteed capture basin of this target viable in the epigraph of L under an adequate
auxiliary system (Chap. 17 or [8] or [7]). The MGI function is the south boundary
of this guaranteed capture basin, which can be computed with the capture basin
algorithm (Fig. 18.4).

18.2 VPPI in Summer 2011 Crisis

We describe the assumptions of the problem and their consequences using the Euro
OverNight Index Average (EONIA). The European cousin of the American Fed
Funds Effective (Overnight Rate) and the British London Inter-Bank Offered Rate
as a riskless asset and the Cotation Assistée en Continu (CAC 40) as an underlying
for two example floors, the classic one and a variable-annuities one. We chose the
period from 2 June to 16 September 2011 as a 75-day exercise period, which is short
enough for the readability of the graphics.

The following figures were automatically provided by the demonstration version
of the VPPI robot trader of VIMADES in a PDF report and are reproduced here for
two types of floor.

18.2.1 Inputs

18.2.1.1 Floor (Liabilities)

The floor is defined by a function L : t ≥ 0 �→ L(t) ≥ 0. The liability flow to insure
plays the role of a constraint: the floor must never be “pierced” by the value of the
portfolio. The capital to guarantee (at exercise time) is the final value L(T ) of the
floor on the exercise date T .

The cushion (analogous to the surplus in ALM) is the difference between the
portfolio value and the floor (to be guaranteed).

18.2.1.2 Forecast Mechanism

At each date t, the forecast mechanism chosen by the investor must provide the
lower bounds S�(τ) and upper bounds of the prices of the risky asset up to exercise
time (τ ∈ [t,T ]).
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Fig. 18.1 Floor examples. Left: example of a classic floor growing at a fixed rate (for example,
at the riskless rate of interest). Right: example of a “variable annuities floor”: the insurer makes
periodic payments during an accumulation phase and receives periodic payments for the payout
phase. It is no longer continuous but punctuated by “jumps” on scheduled dates. In both cases, the
value of the portfolio must always be above the floor, or, in mathematical terms, be viable in the
epigraph of the floor function L(·) up to exercise time

In this case, we can define the lower bound d�Σ(t) of the returns of the prices by
the formula

d�Σ(t) := liminf
h→0+

S�(t + h)− S�(t)
h

because for any differentiable function S(t) ∈ Σ(t),

S�(t + h)− S�(t)
h

≤ S(t + h)− S(t)
h

and, consequently, d�Σ(t)≤ S′(t). We thus infer that returns satisfy

r(t) :=
S′(t)
S(t)

≥ r�(t) :=
d�Σ(t)
S�(t)

.

Hence, knowing extrapolations or forecasts or the upper and lower bounds of prices,
we can forecast the lower bounds of their returns.

The VIMADES Extrapolator is an example of history-dependent differential
inclusion that depends on the history of the evolution, as well as its derivatives
up to a given order, in order to capture the trends. Here, we used the velocity,
the acceleration, and the jerk of the past evolution during the four preceding dates
(Figs. 18.2 and 18.3).

Using the VIMADES Extrapolator and knowing the last four dates, we can
extrapolate the upper and lower bounds of the prices and check that the extrapolated
intervals [S�(t),S�(t)] are very close to the actual ones.
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Fig. 18.2 Extrapolation of an evolution and of the lower bounds of the risky return. Left: Example
of extrapolation of evolution of last-price series by VIMADES Extrapolator. Right: The VIMADES
Extrapolator was used to compute forecasts of the lower bounds of the risky asset

Fig. 18.3 VIMADES Extrapolator. The VIMADES Extrapolator is used to extrapolate the upper
and lower bounds of the price of the risky asset. Left: On the initial date, we assume that the
values of the upper and lower bounds of the prices and the last prices are known for the four
preceding dates. Middle: This figure displays the series of actual prices. Right: This figure displays
the extrapolation of the upper and lower bounds of prices, which are used to compute the forecasted
future lower bounds of the risky asset

18.2.2 Outputs

If the floor L(·) and the forecasted lower bounds r�(t) of the risky asset are given,
then the VPPI robot trader provides eradication insurance.

1. On the date of investment, the insurance (Fig. 18.4):

(a) The MGI,
(b) The VPPI management gule.

2. On each date, the performance (Fig. 18.5):

(a) Value of the portfolio,
(b) Number of shares,
(c) Or, equivalently, the exposure (Figs. 18.4 and 18.5).
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Fig. 18.4 The Floor and the MGI. For each floor, the bottom curve represents the floor L(t) that
should never be pierced by the portfolio value. The top curve W♥(t) represents the MGI, which
depends only on the floor, the riskless return, and lower bounds of underlying returns obtained by
the VIMADES Extrapolator

Fig. 18.5 Mobile minimum guaranteed investments. For each floor, the graphs display the
minimum guaranteed investment up to each date prior to the exercise date

18.2.2.1 Minimum Guaranteed Investment

Although eradication of risk requires an amount of the MGI that may seem too
high, it provides valuable information for investors who wish to measure the risk of
choosing a smaller investment: even if the worst is not certain, it can happen during
a crisis.

The mobile minimum guaranteed investment measures this kind of risk: it
calculates the minimum guaranteed investment up to each date prior to the exercise
date. By inverting this relation, it associates with any investment the final date of the
period during which the hedging of the liability is guaranteed.

We observe that if the reluctance to immobilize a guaranteed investment is
due to the idea of allocating this amount to invest it in other assets hoping that
diversification will be beneficial, it is sufficient to conclude that in this case, the
allocated investments will even be lower than the required mMGI of each of these
assets, worsening the risk taken. This is a strong motivation for either classifying
assets by their required minimum guaranteed investment or studying a portfolio
with many assets and computing the MGI of each asset, which could be used by
credit rating agencies to rate assets.



328 18 Asset and Liability Insurance Management (ALIM) for Risk Eradication

Fig. 18.6 Value of the hedging portfolio. For each floor, the bottom curve represents the floor L(t)
that should never be pierced by the portfolio value. The graphs of the MGI are still displayed. The
top curve is the graph of the value of the portfolio managed by the VPPI management rule when,
on each date, the price of the underlying is known; loans to correct prediction errors, represented
as a histogram, compensate for the difference between the value of the MGI and the portfolio value
when it is lower than that of the MGI. The dotted line represents the evolution of the underlying
price (right scale) to visualize together the behavior of the MGI and of the value of the portfolio
depending on the price

Fig. 18.7 Synoptic tables. For each floor, the synoptic tables are represented. Despite the crisis,
the spreads between the net liquid dividends and the riskless rates during the exercise period are
equal respectively to 1.70% and 0.35% over a 75-day exercise period: takes advantage of highs
while protect against lows, as it was announced, and the “I” in (Viabilist Portfolio Performance
and Insurance) is a real insurance

18.2.2.2 Portfolio Values

The following table summarizes the principal numerical characteristic features of
the portfolio (Figs. 18.6 and 18.7):

1. On the investment date, the information:

(a) The value W♥(0) of the initial MGI (e.g., solvency capital requirement,
economic capital);

(b) The value W♥(0)−L(0) of the initial minimal guaranteed cushion (MGC).

2. On each date, when the asset prices are known, the management of the portfolio
is summarized by

(a) The actualized value e−
∫ T

0 r0(τ)dτW (T ) of the value W (T ) at exercise time.
(b) The cumulative value B̂(T ) of actualized prediction error penalties obtained

by the ratchet mechanism during the exercise period.
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Fig. 18.8 Number of shares. Once the VPPI management rule is calculated and stored in a
computer’s memory, the management module provides the number of shares of the underlying
within its portfolio based on the realization of prices. For each floor, the figure represents the
evolution of the number of shares

(c) The net return (including error predictions corrected by the ratchet mecha-

nism)
e−
∫ T

0 r0(τ)dτW (T )+ B̂(T )
W (0)

, as a percentage.

(d) The net liquidating dividend (including error predictions corrected by the

ratchet mechanism),
e−
∫ T

0 r0(τ)dτ(W (T )−L(T ))+ B̂(T )
W (0)−L(0)

, as a percentage.

(e) The riskless rate during the exercise period,
e
∫ T

0 r0(τ)dτ

W (0)−L(0)
, as a percentage.

18.2.2.3 Number of Risky Shares in Portfolio

The knowledge of the initial MGI, which serves as a pricer, is only a part of
the solution to the problem and needs to be complemented by a knowledge of
the management rule to give it meaning. The VPPI robot trader provides on each
date the amount of shares to manage the portfolio taking advantage of highs while
protecting against lows by remaining viable (above the floor).

This VPPI version does not assume that there are scarcity constraints on the
number of available shares or brokerage fees. A current version taking into account
constraints on shares, brokerage fees, and minimizing transactions (for minimizing
brokerage fees) in process, which will be extended to the case of a portfolio with
several assets.

18.2.3 Flow Chart of VPPI Software

A flow chart of the VPPI software provides a concise way to summarize the
functioning of the robot trader, divided into the computation of the MGI and the
management rule on the date of investment, and then the computation of the shares
of the portfolio along with its values.
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Fig. 18.9

18.3 Uncertainties

Choosing a management rule represents a choice under contingent uncertainty, but
a choice that the investor or the manager can make.

Evaluation or eradication of losses hides behind the fact that there are uncertain-
ties on which the investor cannot act. In this particular insurance problem, these
uncertain variables are the returns, which are assumed to be unknown, whereas
economic theory is concerned with the analysis and computation of supply and
demand adjustment laws, among which is Walras’s tâtonnement, or groping, in the
hope of explaining the mechanisms of price formation (e.g., [5] or Chap. 5 of [6]).
In the last analysis, the choice of the prices is made by the invisible hand of the
“Market,” the new deity in which many economists and investors believe. But it is a
hidden deity that leaves the investor with the task of forecasting it.

In most financial scenarios, investors take into account their ignorance of the
pricing mechanism. They assume instead that prices evolve under uncertainty and



18.3 Uncertainties 331

that they can master this uncertainty. They still share the belief that the “Market
knows best” how to regulate the prices, above all without human or political
regulations. The question becomes to know how to master this uncertainty. For that,
many of them “trade” the Adam Smith invisible hand against a Brownian process,
since it seems that this unfortunate hand is shaking the asset price like a particle on
the surface of a liquid. It should then be enough to assume that average returns and
volatilities are known for the purpose of managing portfolios.

Hence the design of the management rule takes into account not only the floor
but also some “measure” of this kind of uncertainty:

1. Either we choose an a priori management rule and we exchange the Adam Smith
invisible hand on the formation of asset prices against stochastic uncertainty to
derive management rules of the portfolio evaluating losses through a battery of
measures mentioned earlier

2. Or we build a management rule a posteriori that would allow us to eradicate loss
against tychastic uncertainty: the value of the portfolio is “always” greater than
or equal to the liabilities whatever the returns ranging over a “tychastic reservoir”
(composed of risky returns higher than their forecasted lower bounds) in which
returns appear unexpectedly.

The problem is no longer one of assessing the probability of risky return
realizations but determining the subset in which such returns can emerge. Prediction
models or extrapolation techniques no longer consist in determining trends and
volatilities but, in the tychastic case, the lower bounds of risky returns defining the
tychastic reservoir at each future date.

18.3.1 Stochastic Uncertainty

Stochastic uncertainty on returns is described by a space Ω , filtration Ft , the
probability P, a Brownian process B(t), a drift γ(S), and a volatility σ(S):

r(t)dt :=
dS(t)
S(t)

= γ(S(t))dt +σ(S(t))dB(t). (18.3)

1. The random events are not explicitly identified. The set Ω is not described
explicitly (one can always choose the space of all evolutions or the interval
[0,1] in the proofs of theorems). Only the drift and volatility are assumed to
be explicitly known. Random variables are hidden in their laws.

2. Stochastic uncertainty does not study the “package of evolutions” (depending on
ω ∈ Ω ), but functionals over this package, such as the different moments and
their statistical consequences (e.g., averages, variance) used in the evaluation of
risk (they deal with both the space of evolutions and spaces of functionals on
these evolutions). Even though, in some cases, Monte Carlo methods provide an
approximation of the set of evolutions (for constant ω), there is no mechanism
used for selecting those satisfying a particular property.
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3. Required properties are valid for almost all constants ω .
4. Stochastic differential equations provide only the expectation of the package of

evolutions but do not allow for the selection of the right one whenever, for every
time t > 0, the effective ω (which then depends on time) is known.

We cite a few references among many: [28–30, 49, 120] and, in the discrete
case, [147].

18.3.2 Tychastic Uncertainty

What we do know is, for each asset, the range Σ(t) := [S�(t),S�(t)] in which the
price S(t) evolves, which is an observable measure of “tychastic uncertainty.” The
first question we should ask when using a stochastic model is as follows: (18.3) is
the consistency with the price constraint; so do (almost) all evolutions S(·) governed
by this stochastic differential equation satisfy S(t) ∈ Σ(t) for all t ∈ [0,T ]? This is a
stochastic viability problem that can be solved and that shows that it is not the case
for lack of a known “volatilitimeter.”

The motivation for tychastic uncertainty is to start from the constraint S(t)∈Σ(t),
which is an example of a tube, i.e., a set-valued (here, an interval-valued) map. One
can use the (graphical) derivatives of set-valued maps introduced in [3] to deduce
the range of derivatives S′(t) of viable evolutions t �→ S(t) ∈ Σ(t): see also among
other references the monographs [4, 7, 12]. Introducing the derivative DΣ(t,S) of
this set-valued map Σ defined at (t,S) where S ∈ Σ(t), we derive from the viability
theorem that the viable evolutions are governed by the differential inclusion

∀ t ≥ 0, S′(t) ∈ DΣ(t,S(t))

In this very simple case of interval-valued tubes, we can compute it under
adequate assumptions,

DΣ(t,S(t)) =

[

liminf
h→0+

S�(t + h)− S�(t)
h

, lim sup
h→0+

S�(t + h)− S�(t)
h

]

and is easily accessible.
Therefore, it is natural to trade stochastic differential equations (18.3), which do

not necessarily provide viable evolutions S(t) ∈ Σ(t), for the differential inclusion
S′(t) ∈ DΣ(t,S(t)) governing viable evolutions in this tube.

In this study, tyches are the prices of the underlying over which the investor has
no influence [“Mrs. Market” is the common name given to the deity (Tyche) that
sets prices, and, nowadays, “markets,” which are opaque disguises to hide plain
speculators]. The uncertainty is described by the tychastic map t �→ Σ(t).

1. Tyches are identified (prices of the underlying, in our case) and can then be used
in dynamic management systems when they are actually observed and known on
each date during the exercise period.
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2. For this reason, the results are computed in the worst case (eradication of risk
instead of its statistical evaluation).

3. Required properties are valid for all evolutions of tyches t �→ S(t) ∈ Σ(t) instead
of constant ω .

The investor is supposed to provide a tychastic map Σ(t) := [S�(t),S�(t)] of the
forecasted prices. This amounts to forecasting the lower and higher bounds of prices.
There are a myriad of ways for forecasting the upper and lower bounds of prices,
from chartist to the most sophisticated econometric methods, which include the
VIMADES Extrapolator.

Contingent uncertainty “offsets” tychastic uncertainty: In fact, the MGI
decreases when the contingent reservoir increases and increases when the “tychastic
reservoir” ∇(t) increases, that is to say, in this study, when the lower bound of the
underlying return decreases.

Note at this point that the stochastic viability of the tubeΣ(t) under the stochastic
differential equation

dS(t) = ρ(t)S(t)dt+σ(t)S(t)dB(t) (18.4)

is a particular case of its tychastic viability under the Stratonovitch tychastic
differential inclusion

S′(t) = ρ(t)S(t)− σ(t)S2(t)
2

+σ(t)S(t)v(t) where v(t) ∈ R,

where ρ(t)S(t)− σ(t)S2(t)
2 is the Stratonovitch drift, thanks to the Stroock–Varadhan

support theorem (see [139, 140] and [9–11, 61–63]). Since the tyches v(·) of
the Stratonovitch tychastic differential equation range over the whole space R,
the stochastic viability kernel of Σ(t) is empty! In other words, the stochastic
differential equation (18.4) governs the evolution of prices, not all of which are
viable.

18.3.3 Historic Differential Inclusions

The articles [14, 15] propose to replace the use of stochastic differential equations
for forecasting uncertain future evolutions by history-dependent (or path-dependent,
memory-dependent, functional) control systems. At each instant, they associate with
the history of the evolution up to each time t a set of velocities.

Histories are evolutions ϕ ∈H (Rn) := C (−∞,0,Rn) defined for negative times
that play the role of a state space. They require a specific “differential” calculus.
For instance, let a history-dependent functional v : ϕ ∈ H (Rn) �→ v(ϕ) ∈ R.
The addition operator ϕ �→ ϕ + hψ is replaced by the concatenation operator ♦h

associating with each history ϕ ∈C (−∞,0;Rn) the function ϕ♦hψ ∈C (−∞,0;Rn)
defined by
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(ϕ♦hψ)(τ) :=

{
ϕ(τ + h) if τ ∈ [−∞,−h],
ϕ(0)+ψ(τ + h) if τ ∈ [−h,0].

This allows us to define the concept of Clio2 derivatives by taking the limits of
“differential quotients”

∇hv(ϕ)(ψ) :=
v((ϕ♦hψ))− v(ϕ)

h

to obtain

Dv(ϕ)(ψ) := lim
h→0+

∇hv(ϕ)(ψ)

if this limit exists and is linear and continuous on H (Rn). Then the gradient of v at
ϕ is an element of the dual H (Rn)∗ of H (Rn), i.e., a vector measure.

Actually, the first “general” viability theorem was proved by Georges Haddad
in the framework of history-dependent differential inclusions in the late 1970s (see
[4,79–81]). Since these investigations, motivated by the evolutionary systems in the
life sciences, including economics and finance, are much more involved than that of
differential inclusions, most of the viability studies rested on the case of differential
inclusions.

Actually, one can also use history-dependent differential equations or inclusions
depending on the functionals of past evolutions, such as their derivatives up to a
given order.

Hence, these history-dependent differential inclusions can be used for extrapo-
lating asset prices, in particular their upper and lower bounds, providing the lower
bounds of the returns.

The VIMADES Extrapolator (based on Laurent Schwartz distributions and on
[15]) is an example of a history-dependent differential inclusion that bypasses
the use of a “volatilitimeter” by extrapolating each history-dependent on (past)
evolutions of upper (HIGH) and lower bounds (LOW) of the underlying prices,
provided by brokerage firms, from which we can forecast the lower bounds of the
future returns of the underlying [8].

18.3.4 Nature and Measures of Insurance

In the stochastic case, risk is “measured” by real numbers through statistical
evaluation (value at risk, for example). These numbers are abstractions, which differ
according to the methods and techniques used.

2Clio, muse of history, was, like all the muses, the daughter of Zeus and Mnemosyne, goddess of
memory.
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In the tychastic case, risk is “measured” by numbers, providing at each date t the
MGI W♥(t), ensuring that the floor will never be pierced later. The guaranteed cash
flow t �→W♥(t) associates the MGI with each date.

18.4 Comparing VPPI and CPPI

The CPPI and VPPI management rules of a portfolio for hedging a floor are quite
different, the first one belonging to the class of a priori management rules, where the
potential losses are statistically evaluated, the second one belonging to the class of
a posteriori management rules designed to eradicate losses. Hence they are difficult
to compare because they answer different questions, related to either risk evaluation
or risk eradication. The question that the CPPI management rule leaves open is
the empirical determination of the multiplier and the initial cushion, whereas the
VPPI management rule “encapsulates” the cushion multipliers and computes the
guaranteed minimum cushion:

1. CPPI: The floor, the initial investment, and a prediction mechanism are given, as
are multipliers (constant as the CPPI or not as in other rules).

2. VPPI: The MGI and the VPPI management rule are deduced from the floor and
lower bounds of future risky returns.

In both cases, however, the floor is fixed, and the choice of forecasting mech-
anism is open, from chartist methods to statistical and stochastic techniques to
extrapolation mechanisms based on history-dependent differential inclusions.

Whenever the CPPI management rule is chosen and “integrated” into the
stochastic differential equation governing the values of the portfolio, the statistical
evaluations depend naturally on this choice (see [54], for instance).

The same is true for the VPPI management rule, where the MGI (or cushion)
depends on the flow of the lower bounds of forecasted returns for losses to be
permanently eradicated.

Comparison of VPPI and CPPI

VPPI CPPI

Multipliers Computed Given
Regulation Yes Given
Insurance Yes (MGI) Given (loss evaluation)
Prediction Yes Yes
errors (impulse management) (jump processes)
Forecasting Any method for predicting

lower bounds
Stochastic

methods of returns, e.g., VIMADES
Extrapolator

processes
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128. Pujal, D.: Évaluation et gestion dynamiques de portefeuille. Ph.D. thesis, Université Paris-
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