
Service Brokerage with Prolog

Cheun Ngen Chong1, Sandro Etalle1,3, Pieter Hartel1,
Rieks Joosten2, and Geert Kleinhuis2

1 University of Twente, P.O. Box 217, 7500 AE Enschede
{chong,etalle,pieter}@cs.utwente.nl

2 TNO Telecom Groningen, P.O. Box 15000, 9700 CD Groningen
{H.J.M.Joosten,G.Kleinhuis}@telecom.tno.nl

3 Center for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam
Sandro.Etalle@cwi.nl

Abstract. Service brokerage is a complex problem. At the design stage the se-
mantic gap between user, device and system requirements must be bridged, and at
the operational stage the conflicting objectives of many parties in the value chain
must be reconciled. For example why should a user who wants to watch a film
need to understand that due to limited battery power the film can only be shown
in low resolution? Why should the user have to understand the business model
of a content provider? To solve these problems we present (1) the concept of a
packager who acts as a service broker, (2) a design derived systematically from a
semi-formal specification (the CC-model), and (3) an implementation using our
Prolog based LicenseScript language.

1 Introduction

A service is a combination of an application and its maintenance. The application im-
plements the functionality required, e.g. making available a communication channel,
playing a song. The maintenance ensures availability e.g. fast delivery, high bandwidth,
24 hour access.

Services are characterized by a wide variety of parameters [17], for example the
capability of the service delivery (e.g. bandwidth), the flexibility of the service access
(e.g. availability of the service 24 hours), and the restrictions on the service usage (e.g.
device limitation). These parameters make service brokerage a complex problem.

Users have a wide variety of service requirements. For instance, they want to: have
their services delivered promptly and installed properly; use their services anywhere and
anytime; have a wide choice of services with various prices, qualities, etc; and they want
to ensure that the technical limitations of their devices are taken into account when they
acquire (purchase, lease etc) the service. In addition, users would like to protect their
privacy. On the other hand, service providers have their own requirements. They need to
have their services published, promoted, and more importantly paid for promptly. They
also need to control the access rights of the services according to contracts established
with the users. Therefore, with these different requirements from both sides of the value
chain, service management becomes a complex issue.

We present the concept of a packager who acts as a service broker, and we present
an implementation as part of the Residential Gateway Environment (RGE) project [14,

2 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

13]. Our contribution is two-fold: (1) During the design stage, we show how to derive
the complex infrastructure for the service management from a semi-formal high-level
description: the “Calculating with Concept” (CC) [9]. We encode all aspects of service
brokerage in LicenseScript [3, 4] using logic programming. (2) During the operational
stage, we show efficiently LicenseScript handles the diverse requirements of all parties
involved.

LicenseScript is based on Prolog and multiset rewriting and allows one to express
licenses, i.e. conditions of use on dynamic data. Prolog has the advantage of combining
an operational semantics (needed, e.g., in negotiations) with a straightforward declara-
tive reading. Elsewhere, Prolog has also proven itself to be suitable for describing com-
plex access policies, as demonstrated by the security language Binder [8]. Our addition
of multiset rewriting to Prolog allows to encode in an elegant and semantically sound
way the state of a license. The semantics of LicenseScript is given in terms of traces
[4]. Here, we demonstrate the practical value of LicenseScript by using it as intelligent
messaging middleware for the RGE project. The result is a large distributed software
platform which we describe in this paper. The platform consists of the following main
components (we will elaborate these components later in section 4): Tomcat Server,
MySQL database, JDBC database interface, etc: 50 JSP (Java Server Page) files, 20
SWF (Shockwave Flash) files. In addition we have the Prolog-based components: the
ECLiSe Prolog inference engine, the LicenseScript meta-interpreter, Java user interface
and RMI interfacing with RGE components: 6 Java and 2 Prolog source files.

Section 2 introduces the overall infrastructure of the RGE service management and
its CC model. Section 3 derives LicenseScript from the CC model. Section 4 describes
the RGE implementation. Section 5 discusses related work and the last section con-
cludes and presents future work.

Residential

Gateway

(power user)

Packager

Service

Provider

Device

(user)

O
ut

si
de

 th
e

ho
us

e

In

si
de

 th
e

ho
us

e

Service

Provider

Service

Provider

Fig. 1. The service management architecture of the RGE.

Service Brokerage with Prolog 3

2 RGE Service Management Infrastructure

We present the overall infrastructure of RGE service management together with the
CC method. As shown in Figure 1, the RGE architecture supports three main roles: the
residential gateway (RG), the packager (P) and the service providers (SP).

– Service providers provide services (S), e.g. access to music, videos, but also band-
width.

– The packager behaves as a service broker, being able to manipulate and integrate
the services provided by the various SPs.

– The residential gateway is where the services actually run. A power user (PU) of
the RG is allowed to (un)subscribe to services. All users (U) are allowed to use the
services.

The packager has some control (on behalf of the SPs) over the services that are
made available on the residential gateway. More importantly, the packager tries to match
service characteristics (C) to user demands (LD). To achieve this, the packager has to
have a business relation with the RG on one hand and with the service providers at the
other end of the value chain.

In the rest section, we briefly introduce the CC method and we specify the RGE
service management infrastructure.

RG

C

LD

sup

ipo

P

req

hbrw2
 S

has1

cpl

p

PU

has2

run

is
t

U

SP

apt

use

prov

hbrw1

Service Model

Contract Model

Service

Provisioning Model

Fig. 2. Three of many CC models of the RGE service management infrastructure.

4 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

2.1 CC Model

To develop the RGE infrastructure, Hartog et al [7] use the Calculating with Concepts
(CC) method, which can be seen as an extension of Entity-Relationship diagrams. The
basic ingredients of a CC model are (a) entities, (b) relations and (c) restrictions. The
rationale behind the CC-method is that every engineer involved in a project has a dif-
ferent interpretation of the system requirements. The CC method is then used in group
discussions to iron out these differences, and thus help to develop a consistent frame of
reference.

Figure 2 presents a simplified CC-model for the RGE architecture centered on ser-
vice brokerage. There are many other, similar models centering on other, relevant as-
pects. The models are related through the use of a common vocabulary for entities,
relations and restrictions.

The roles of the RGE service management infrastructure are represented by the CC
entities RG, SP, PU, U, and P (see Table 1). These roles interact through the entities
service (S), characteristics (C), and list of demands (LD). Entities, relationships and
restrictions are described in further detail in Tables 1, 2 and 3, respectively. Notice that
the restrictions listed in Table 3 largely determine the semantics of the CC model. For
details of the CC model derivation process, the reader may refer to [14].

Abbr. Entity

C Service characteristic, e.g. the quality, etc
LD List of demands, which a service must comply with
P Packager
RG Residential gateway
S Service
SP Service provider
U Normal user who uses the service
PU Power use who possesses the administrative power on RG

Table 1. The CC entities of the Service Model.

3 LicenseScript Derivation

We now briefly introduce the LicenseScript language, then we will show how to derive
a LicenseScript specification from the CC model just presented.

LicenseScript [3] is a formalism that can be used to specify access control and
manipulation of licenses on digital content like music, video, software etc. The unique
feature of LicenseScript is that licenses actually carry Prolog code (representing access
and usage conditions) together with bindings, that can be used to store the state of the
license.

In LicenseScript we work with objects (licenses) and rules. Objects have the form:

object_name(Content,Clauses,Bindings)

Service Brokerage with Prolog 5

Abbr. Relation

apt Power user assigns permission(s) to user.
cpl Service complies with list of demands.
has1 Service has characteristic.
has2 Residential gateway has (is owned by) power user.
hbrw1 Packager has a business relation with service provider.
hbrw2 Packager has a business relation with residential gateway.
ipo Characteristic is part of list of demands.
ist Power user has subscribed to service.
p Packager permits service.
prov Service provider provides service.
req Packager requires list of demands.
run Service runs on residential gateway.
sup Residential gateway supports characteristic.
use User uses service.

Table 2. The relations between the entities of the Service Model.

Cardinality Restrictions

1 Every user is created by one and only one power user.
2 Every user has been assigned permissions by one and only one power user.
3 Every residential gateway has one and only one power user.
4 Every packager permits at least one service.
5 Every packager has a business relation with at least one service provider.
6 Every packager has a business relation with at least one residential gateway.
7 Every service is provided by at least one service provider.
8 Every service has at least one characteristic.
9 For every list of demands, there is at least one characteristic that is part of that list of demands.
10 Every packager requires at least one list of demands.

Other Restrictions

11 If a service s complies with list of demands ld, and characteristic c is part of ld, then s has c.
12 If a user u uses service s, then u has been assigned a permission by power user pu that is

subscribed to s.
Table 3. The CC restrictions of the Service Model.

6 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

Here object name is the name of the object; Content is a content identifier
which is associated to this object; Clauses is a set of Prolog clauses, and Bindings
is a set of attributes pertaining to the object. Rules have the form:

rule_name(arguments): lhs -> rhs <== Condition

Here lhs and rhs are multisets of objects. Condition is a logical formula that
may refer to the clauses defined in the objects contained in lhs. Because of this, rules
are second-order constructs; objects are first order.

Intuitively, objects are pieces of enhanced (mobile) Prolog code, while rules are
there to manipulate the objects and to query the code they carry. Rules are not mobile,
and can be thought of as being the interface between the devices and the mobile code.
Consider as an example the following rule:

offer(Service,S,P) :
contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1)

-> contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1’),
characteristics(Service,nil,Bcha2)

<= Ccon |- canoffer(Bcon,Bcha1,Bcha1’,Bcha2,S,P)

This rule rewrites the multiset:

contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1)

into the following multiset:

contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1’),
characteristics(Service,nil,Bcha2)

The proviso is that the query canoffer(·) succeeds when fired in the set of
clauses Ccon.

Deriving Licensescript

We now show how to derive LicenseScript code from the CC model. We propose a set
of derivation rules to map the various CC components (i.e. entities, relations and restric-
tions) onto LicenseScript objects and rules, and/or the content, clauses and bindings of
the objects.

1. We start from the service (entity S, inside the innermost circle) because this is the
central entity in RGE service management. Each instance of S is then mapped onto
the content part of an appropriate LicenseScript object.

2. Entities are split into two groups:
– Those that have a direct relationship with S (C and LD in the middle circle) are

mapped into LicenseScript objects.
– Those that have an indirect relationship with S (RG, P, SP and U, in the outer

circle) are mapped into LicenseScript bindings.
3. Relations between the entities are mapped onto clauses, the body of which must

reflect the cardinality restrictions of the relation.
4. Other general CC restrictions are captured by LicenseScript multiset rewrite rules.

Service Brokerage with Prolog 7

LicenseScript Object Description

characteristics(S,nil,B) Represents characteristics of a service.
demands(S,C,B) Represents list of demands required.
license(S,C,B) Represents permissions/rights.
contracts(S,C,B) Represents business relations.
Table 4. The LicenseScript objects representing CC entities, where S represents the service; C
denotes a set of clauses; and B is a set of bindings.

Objects Objects are the result of mapping entities of the middle circle: LD becomes
demands(S,C,B) while C is mapped onto characteristics(S,C,B). In ad-
dition, to communicate with the external world, (Contract Models and Service Pro-
visioning Models, in Figure 2), we use the objects license(S,C,B) and con-
tracts(S,C,B). Table 4 provides a summary. The reader may refer to the technical
report [14] for more information.

Clauses In principle, derivation rule #3 maps each cardinality relation onto a sepa-
rate clause. To improve efficiency, we map more than one CC relation onto a single
clause. For instance, we use the clause cangrant(·) to capture both relations has2
and apt. This clause allows the power user to assign the license (i.e. grants the usage
permissions) to normal users:

cangrant(Blic1,Blic1’,Blic2,Poweru,User) :-
get_value(Blic1,power_user,Pu),
authenticate(Pu,Poweru),
set_value(Blic1,user,User,Blic1’).

Here Blic and Blic1’ are bindings. To access these bindings we use the
primitives below to get (resp. set) the value associated with Name in Bindings:

get_value(Bindings,Name,Value)
set_value(Bindings,Name,Value,NewBindings)

As a second example, the clause canuse(·) allows to capture the relations run and
use. canuse authenticates and checks that the service actually runs on the residential
gateway (the binding enabled):

canuse(Blic,Blic’,User) :-
get_value(Blic,user,U),
get_value(Blic,enabled,E),
E == true, authenticate(U,User).

We conclude this part by showing a more complex example. canpermit(·) au-
thenticates the packager to ensure its genuineness, before enabling the service to the
residential gateway; relations p and ist are captured here.

canpermit(Bdem,Bdem’,Blic,Clic,Pack) :-
get_value(Bdem,packager,P),
get_value(Bdem,service_provider,S),
get_value(Bdem,license_clauses,Clic),

8 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

authenticate(Pack,P),
set_value(Bdem,enabled,true,Blic).

The parameter Clic allows to extract a whole new set of clause from the bindings
and to create a new LicenseScript object with it.

Other clauses are derived in the same way from the CC model. A summary of the
definitions is given in Table 5.

Clause Object Relations Restrictions

cancomply(·) demands(·) has1, cpl, ipo, sup 8, 9, 10
canpermit(·) demands(·) p, ist 4
canoffer(·) contracts(·) prov 5, 7
canrequest(·) contracts(·) req 6
cangrant(·) license(·) has2, apt 2, 3
canuse(·) license(·) use, run 1
Table 5. The LicenseScript clauses that capture the relations in Table 2 and the conditions of
success for the restrictions in Table 3.

Rules Rules provide the necessary interface between the outside world and the Licens-
eScript objects. The simplest example of rule is use, which is invoked by the user to
actually use a service. The rule just has to check for the presence of a license:

use(Service,U) :
license(Service,Clic,Blic1)

-> license(Service,Clic,Blic2)
<= Clic |- canuse(Blic1,Blic2,U)

canuse(Blic1,Blic2,U) is queried in Clic (a failure of the query would
indicate that the license is no longer valid; e.g. it might have expired); after successful
completion of the query, the license is replaced by another one with a the new set of
bindings Blic2.

A more complex rule is grant, which duplicates a license. The power user would
execute grant to grant some permissions/rights to a normal user:

grant(Service,U1,U2) :
license(Service,Clic,Blic1),

-> license(Service,Clic,Blic1’),
license(Service,Clic,Blic2)

<= Clic |- cangrant(Blic1,Blic1’,Blic2,U1,U2)

This rule generates a new license(·) for the user.
Finally we present the rule permit, with which the packager generates a license

for some service to be run on the residential gateway:

permit(Service,P,S) :
demands(Service,Cdem,Bdem),

Service Brokerage with Prolog 9

characteristics(Service,nil,Bcha)
-> demands(Service,Cdem,Bdem’)

characteristics(Service,nil,Bcha’),
license(Service,Clic,Blic)

<= Cdem |- canpermit(Bdem,Bdem’,Blic,Clic,P),
Cdem |- cancomply(Bdem,Bdem’,Bcha,Bcha’)

The object demands(Service,Cdem,Bdem) indicates that a user has requested
Service; Cdem and Bdem are respectively a set of clauses and a set of bindings that
– combined – specify extra side conditions such as the maximum bandwidth, the price
the user is willing to pay, etc. By calling canpermit, the packager checks if permis-
sion can be granted. canpermit also returns the clauses that will be used in the new
license. On the other hand, cancomply validates the service request (See below).

3.1 Service Requirements Validation

We now define how the packager validates a service request, first using a simplified
version of the cancomply(·) clause:

cancomply(Bdem,Bdem’,Bcha,Bcha’) :-
get_value(Bdem,bandwidth,X1),
get_value(Bcha,bandwidth,X2),
get_value(Bdem,quality,Y1),
get_value(Bcha,quality,Y2),
get_value(Bdem,billing,Z1),
get_value(Bcha,billing,Z2),
X1 >= X2, Z1 = Z2, Y1 =< Y2.

The last line shows the use of constraints to ensure that the maximum bandwidth
of the user’s device meets the minimum bandwidth required for the service; that the
billing status of the user meets the requirement of the service provider; and that the
quality measure required by the user does not exceed the offered quality.

Alternatively, one can use a parametric approach, in which the list of requirements
to be complied with is stored in the license:

cancomply(Bdem,Bdem’,Bcha,Bcha’) :-
get_value(Bcha,requirements,Requirements),
meets_requirements(Requirements).

meets_requirements([]).
meets_requirements([[Req_name,Req_value]|Reqs]):-

check_requirement(Req_name,Req_value),
meets_requirements(Reqs).

Recall that (see rule permit above) the query cancomply is fired in the set of
clauses Cdem specified in the user’s demand demands(Service,Cdem,Bdem).
Therefore cancomply can check that the service specification meets the the con-
straints set out in the user’s demand.

Related to this, Corin et al [6] have demonstrated that LicenseScript allows one to
define flexible payment policies that may be set by users. This is non-trivial as there
may be more than one service provider interacting with one packager.

10 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

Browser

(Webpad)

Tomcat

JavaServer

Pages

Java

Javac
Class

JDBC
MySQL

RGE

Java/C
lass

RMI

ECLiPSe

(Prolog)

RGE Rules

Meta-Interpreter

User Interface

(Java)

LicenseScript

Fig. 3. Configuration of the RGE demonstrator software components.

4 RGE Demonstrator

We have finally come to the RGE demonstrator proper. As shown in Figure 3, the
demonstrator contains a number of off-the-shelf software components. On the right
hand side we find among others the Tomcat server and the MySQL database.

The left hand side of Figure 3 zooms in on the specific LicenseScript compo-
nents. The basic one is the LicenseScript meta-interpreter, which is implemented using
ECLiPSe (http://www.icparc.ic.ac.uk/eclipse/).

The core of the LicenseScript meta-interpreter is a simple extension of the vanilla
meta-interpreter presented in [15]:

solve([],_).
solve([Query|Queries],Program) :-

copy_term(Program,Temps),
member((Query:-Body),Temps),
solve_body(Body),
solve(Queries,Program).

solve_body(true).
solve_body((Goal1,Goal2)) :-

solve_body(Goal1),solve_body(Goal2).
solve_body(Goal) :-

call(Goal).

The only difference lies in the fact that LicenseScript runs a query in a specific
Program. Multiset rewriting has also been implemented in Prolog [3].

The meta-interpreter is interfaced with the Tomcat server via a Java interface, which
is called by remote method invocation (RMI).

Figure 4 reports a snapshot of the (Java) user interface for the LicenseScript com-
ponents. Various buttons allow the user to view the LicenseScript objects in the various
devices of the multiset. The text area underneath the buttons logs and displays the status
of the execution of the meta-interpreter and the ECLiPSe engine. The multiset viewer

Service Brokerage with Prolog 11

Fig. 4. The LicenseScript Interpreter user interface.

allows the users to observe the status of the LicenseScript objects before and after the
execution.

Fig. 5. A dialog shows that the demands and the characteristics of the service do not match.

As shown in Figure 5, when the demands and the characteristics of the service do
not match, a dialog notifies the packager.

To conclude this section, we show a snapshot of the RGE demonstrator in Figure 6.
The leftmost Web browser represents the service provider, the middle is the packager
and the rightmost is the residential gateway.

5 Related Work

We discuss related work on Web service management and service brokerage in sec-
tion 5.1 and section 5.2, respectively.

5.1 Web Service Management

Web services are services provided over the Internet. Web services are described us-
ing the XML-based Web Services Description Language (WSDL) (http://www.w3.

12 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

Fig. 6. The RGE demonstrator.

org/TR/wsdl). WSDL provides a simple way for service providers to describe the
basic format of requests (made by the users) to their systems regardless of the under-
lying protocol and the message encoding format. The underlying protocol of WDSL
is the Simple Object Access Protocol (SOAP) (http://www.w3.org/TR/SOAP/).
SOAP is used to describe the envelope and message format. In addition, SOAP pro-
vides a basic request/response handshake protocol that for exchanging structured in-
formation. WSDL/SOAP have emerged as a standard for handling Web service ar-
chitecture. They have been deployed in some current Web service frameworks, e.g.
IBM WebSphere (http://www.ibm.com/websphere) and Microsoft .Net (http:
//www.microsoft.com/net).

WSDL describes the Web services merely as a set of end-points (of the connec-
tions) operating on the messages. This makes it difficult to match parameterised service
requests to offerings because matching requires flexibility in making the connections.
This is precisely what LicenseScript is good at. On the other hand LicenseScript pro-
vides no facility for the description of message transmission format and message ex-
change protocol, as WSDL/SOAP does; these facilities are beyond the scope of Licens-
eScript.

As mentioned earlier, there exist several frameworks for Web service management,
e.g. Java 2 Platform Enterprise Edition (J2EE) (http://java.sun.com/j2ee) (which
is integrated in the IBM WebSphere) and Microsoft .Net. These frameworks provide
facilities for service description, service implementation, service publishing, discovery
and binding, as well as service invocation and execution [10]. In LicenseScript, we have

Service Brokerage with Prolog 13

concentrated on service description. Actually, the overall RGE project has addressed the
service implementation, service invocation and execution.

5.2 Service Brokerage

We have seen how LicenseScript can be used for service brokerage. We now discuss
related work on this topic.

Bichler and Segev [1] present a framework for service brokerage, where the broker
is represented as an agent. Typically, an agent is programmed to search and aggregate
the information from the Internet. An advanced agent is able, for example, to perform
price comparison on some products (e.g. BargainFinder [11]); or to negotiate and par-
ticipate in an online auction on behalf of its owner [12].

While agents provide an elegant and convenient way to model tasks such as ser-
vice brokerage, their deployment can raise privacy concerns and security problems [2]:
agents need to be protected against possible malicious host, and vice versa.

Our licenses are mobile and contain code (Prolog clauses) and data (Bindings);
in this sense licenses can be interpreted as agents. However, we make a number of
assumptions to alleviate security problems. In particular we assume that the rules and
the prolog engine can be trusted (they represent the firmware of our devices).

6 Conclusions and Future Work

We present one of the central concepts of the LicenseScript-RGE demonstrator, i.e. the
packager, who acts as a service broker. We derive its implementation in our Prolog
based LicenseScript language, using a systematic derivation from a semi-formal speci-
fication (the CC-model).

Prolog proves to be a very suitable platform for implementing a complex broker
such as the one we have presented, in particular:

– To represent complex services in a flexible and efficient manner one needs to em-
ploy executable (mobile) code of some kind. To manipulate services it is therefore
necessary to employ a second-order system. Prolog is perfect for this.

– Services should not only be executable, but should have a clear and concise se-
mantics (after all, they are licenses). The close relation between operational and the
declarative semantics of Prolog is an invaluable advantage.

– Prolog is ideal to match requirements, and good at resolving conflicts. Therefore it
is a natural platform for service brokerage.

Thanks to Prolog’s expressive power – the LicenseScript engine consists of just a
few dozens of lines of code. Also services (which are represented as objects, containing
Prolog code), usually require only few Prolog lines to be described.

In the future, we are planning to implement the concept of authorized domain [16]
in the RGE. We would also like to enhance the security of LicenseScript objects by
using some tamper-resistant hardware [5].

14 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

Acknowledgement

We would like to thank the RGE project members for support, particularly Igor Pass-
chier and Nico Zornig. This work was partially supported by the Telematica Institute.

References

1. M. Bichler and A. Segev. A brokerage framework for internet commerce. Distributed and
Parallel Databases: Special Issue on E-Commerce, 7(2):133–148, April 1999.

2. D. M. Chess. Security issues in mobile code systems. In G. Vigna, editor, Mobile Agents and
Security, volume 1419 of Lecture Notes for Computer Science, pages 1–14. Springer-Verlag
Berlin, 1998.

3. C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law. LicenseScript:
A novel digital rights language and its semantics. In K. Ng, C. Busch, and P. Nesi, editors,
3rd International Conference on Web Delivering of Music (WEDELMUSIC), pages 122–129,
Los Alamitos, California, United States, September 2003. IEEE Computer Society Press.

4. C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, and Y. W. Law. LicenseScript: A novel digital
rights language. In Int. Workshop for Technology, Economy, Social and Legal Aspects of
Virtual Goods, page To appear, Ilmenau, Germany., May 2003.

5. C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with tamper-resistant hardware.
In D. Gritzalis, S. D. C. di Vimercati, P. Samarati, and S. K. Katsikas, editors, 18th IFIP
International Information Security Conference (IFIPSEC), volume 250 of IFIP Conference
Proceedings, pages 73–84. Kluwer Academic Publishers, May 2003.

6. R. Corin, C. N. Chong, S. Etalle, and P. H. Hartel. How to pay in LicenseScript. Technical
Report TR-CTIT-03-31, Centre for Telematics and Information Technology, Univ. of Twente,
The Netherlands, July 2003.

7. F. T. H. den Hartog, N. H. G. Baken, D. V. Keyson, J. J. B. Kwaaitaal, and W. A. M. Sni-
jders. Tackling the complexity of Residential Gateway in an unbundling value chain. In
Proceedings of XVth International Symposium on Services and Local AccesS (ISSLS 2004),
page TBA. IEE, March 2004.

8. J. DeTreville. Binder, a logic-based security language. In Proceedings of IEEE Symposium
on Security and Privacy, pages 105–113. IEEE Computer Society, March 2002.

9. R. M. Dijkman, L. F. Pires, and S. M. M. Joosten. Calculating with Concepts: a technique
for the development of business process support. In A. Evans, R. France, A. Moreira, and
B. Rumpe, editors, Proceedings of the UML 2001 Workshop on Practical UML-Based Rig-
orous Development Methods, volume 7 of Lecture Notes in Informatics, pages 87–98. GI-
Edition, October 2001.

10. P. Fletcher, M. Waterhouse, and M. Clark. Web Services Business Strategies and Architec-
tures. APress, July 2003.

11. A. R. Greenwald and J. O. Kephart. Shopbots and pricebots. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, pages 506–511. Morgan Kaufmann
Publishers Inc., 1999.

12. R. H. Guttman and P. Maes. Agent-mediated integrative negotiation for retail electronic
commerce. In Selected Papers from the First International Workshop on Agent Mediated
Electronic Trading Agent Mediated Electronic Commerce, volume 1571 of Lecture Notes in
Computer Science, pages 70–90. Springer-Verlag, 1998.

13. B. Hillen, J. Kwaaitaal, A. van Neerbos, I. Passchier, and D. S. Rivero. Management require-
ments for residential gateways. Technical Report Deliverable D1.1 Project TSIT 1021, KPN
Research and TU/e, The Netherlands, August 2002.

Service Brokerage with Prolog 15

14. R. Joosten, J-W. Knobbe, P. Lenoir, H. Schaafsma, and G. Kleinhuis. Specifications for
the rge security architecture. Technical Report Deliverable D5.2 Project TSIT 1021, TNO
Telecom and Philips Research, The Netherlands, August 2003.

15. Leon Sterling and Ehud Shapiro. The Art of Prolog (Second Edition), chapter 17, pages
319–357. The MIT Press, Cambridge, Massachusetts 02142, Uniter States, 1994.

16. S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kamperman, and P.J. Lenoir. Secure content
management in authorised domains. In The World’s Electronic Media Event IBC 2002, pages
467–474, September 2002.

17. S-J. Yang and H-C. Chou. Adaptive QoS parameters approach to modelling Internet perfor-
mance. International Journal of Network Management, 13:69–82, 2003.

