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Abstract

Item-exposure control in computerized adaptive testing is implemented by imposing

item-ineligibility constraints on the assembly process of the shadow tests. The method

resembles Sympson and Hetter's (1985) method of item-exposure control in that the

decisions to impose the constraints are probabilistic. However, the method does not

require time-consuming simulation studies to set values for control parameters prior to

the operational use of the test. Instead, the probabilities of item ineligibility can be set

"on the fly" using an adaptive procedure based on the actual item-exposure rates. An

empirical study using an item pool from the Law School Admission Test (LSAT) showed

that application of the method yielded perfect control of the item exposure rates and had

negligible impact on the bias and MSE functions of the ability estimator.

Key words: computerized adaptive testing; item-selection constraints; item-

exposure control; randomized control; shadow test approach.
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Constraining Item Exposure - 3

Constraining Item Exposure in
Computerized Adaptive Testing with Shadow Tests

Computerized adaptive testing (CAT) can be viewed as an item-selection process

in which an objective function is optimized subject to several constraints. A popular

objective function in CAT is Fisher's information measure at the estimated ability

level of the examinee (for alternative functions see, van der Linden & Pashley, 2000).

Constraints have to be imposed on the item-selection process to give the test the necessary

composition with respect to such attributes as item content, format, gender orientation,

word counts, and statistical item parameters. It is the purpose of this paper to show that

the set of constraints can also be extended with constraints that control the exposure rates

of the items in the test.

The optimization problem involved in CAT can be represented by a test assembly

model with 0-1 decision variables for the items. Let i = 1, ..., I denote the items in the

pool. Decision variable xi is defined to take the value 1 if this item is selected in the test

and the value 0 if item i remains in the pool. Suppose that the objective is to maximize

Fisher's information measure, which takes the value Ii (0) for item i at ability level O. In

addition, suppose that the constraints have to control the composition of the tests with

respect to a set of categorical attributes (e.g., item content and format) and quantitative

attributes (e.g., statistical item parameters and word counts). The categorical attributes

partition the item pool into subsets of items with the same value on the attribute, whereas

the quantitative attributes have numerical values. We will use Vg, g = 1, ..., G, as a

generic symbol to denote subsets of items that share a categorical attribute and qi as a

generic symbol to denote the value of item i on a quantitative attribute.

A general representation of the optimization problem in CAT is:

maximize E (0)xi (1)



subject to
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E xi < ug, g = 1, G,
iEVg

E xi > 19, g = 1, G ,

iEVg

qixi < u9,
i=i

E xi = n,
i=i

xi E {0,1}, i = 1, I. (2)

The objective function maximizes the test information at the examinee's true ability

value. The first two sets of constraints require the number of items from the set I' to be

between upper bound u9 and lower bound 19. Likewise, the next two constraints require

the sum of values of attribute gi to be between upper and lower bound uq and /q. The

final two constraints define the length of the test and the range of the decision variables.

For examples of more specific types of constraints that may be needed in test assembly

models for CAT, see van der Linden (1998; 2000).

Shadow lest Approach

If all items in the test were to be selected simultaneously and 9 could be set to a known

value, the model in (1)-(2) could be solved immediately for an optimal set of values for
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the decision variables xi, i = 1, I, using a general-purpose software packages for 0-1

linear programming (LP), for example, the software package CPLEX 6.6 (ILOG, Inc.,

2000). These values tell us which set of items constitutes the optimal test. However, in

adaptive testing items are selected one at a time and each next item has to be optimal at

an estimate of 0 that changes during the test.

An effective way to solve the assembly model for adaptive tests is through a shadow

test approach (van der Linden, 2000; van der Linden & Reese, 1998). In this approach,

prior to the selection of each item, the model in (1)-(2) is solved for a full-size linear

test (=shadow test) at the current ability estimate with the decision variables of the items

already administered fixed to the value 1. The CAT algorithm then picks the optimal

item at the ability estimate from the free items in the shadow test for administration.

Because each shadow test meets the constraints, the adaptive test automatically meets

them. Likewise, because each shadow testis optimal at its ability estimate and the optimal

item at the estimate is administered, the adaptive test is optimal.

On-line assembly of shadow tests has become possible through recent developments

in 0-1 LP The techniques in this area have become so fast that, for a current PC, it takes

less than a second to assemble a test from an item pool of the size typically used in CAT

( \ldkamp, 2001). However, the shadow test approach is a general scheme for optimizing

the selection of items in CAT, it can also be used in combination with other techniques for

optimal test assembly, such as the algorithms proposed by Luecht (1998) and Swanson

and Stocking (1993).

Number of Constraints and Feasibility

For a typical test assembly problem, the number of constraints in the model needed

to represent all test specifications can easily run Into the hundreds. A set of values for the

decision variables that meets all constraints is known as a feasible solution. Algorithms

in 0-1 LP algorithms search for a set of values that has the best value for the objective

function among the feasible solutions. This solution is known as an optimal feasible

solution.
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In principle, LP algorithms are able to solve problems with unlimited numbers of

constraints. However, a possible effect of adding a constraint to the model is a decrease

in the value of the objective function for the optimal solution. The tighter the constraints,

the larger the effect can be. It is even possible to overconstrain the model, in which case

no feasible solution is left and the LP problem is said to be infeasible.

Feasibility of an LP model is a property that depends only on the constraints. In an

adaptive test, the only quantity in the model for the shadow test that changes during the test

is the objective function. Therefore, if the model for the shadow tests in (1)-(2) is feasible

for any examinee, it is feasible for all examinees. Also, feasibility is maintained during

the adaptive test because the items for which the decision variables are fixed at xi =1

were part of a previous solution. In practical applications, feasibility of test assembly

problems is never a problem. If it would, the event should be taken to signal a flaw in

the composition of the item pool relative to the specifications of the test (van der Linden,

\ldkamp, & Reese, 2000; \ldkamp & van der Linden, 2000).

Item-Exposure Control

Item-exposure control in CAT is necessary to prevent possible item compromise due

to overexposure of items. Methods for item-exposure control based on Sympson and

Hetter's (1985) proposal have become the de facto standard of the CAT industry. These

methods are based on the definitions of two events: (1) item i is selected by the CAT

algorithm (Si) and (2) item i is administered (Ai). Because

it holds that

Ai C Si, (3)

P(Ai) = P(Ai I Si)P(Si) (4)
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The probabilities P(Si) are determined by the composition of the item pool and

the nature of the CAT algorithm. However, the conditional probabilities P(Ai I Si) are

control parameters that can be set to guarantee that

P(Ai) < rma, i = 1, /, (5)

with rm being a target value determined by the testing agency. In the Sympson-

Hetter methods, after an item is selected the control parameters, P(Ai I Si), are

implemented through a probability experiment conducted to determine if the item is

actual administered. If an item is not administered, it is removed from the pool and the

experiment is repeated for the next best item.

Admissible values for the control parameters in the Sympson-Hetter method can not

be calculated analytically. Instead, they have to be found through a series of iterative

adjustments, with each iteration step being based on a sufficiently large number of

simulated administrations of the adaptive test. Though it is possible to modify the

Sympson-Hetter method to speed up the iterative adjustment process considerably (van

der Linden, 2002), the process is generally tedious and time consuming, particularly if

the control parameters have to be set conditional on a set of realistic ability values for the

population of examinees.

For empirical studies on the Sympson-Hetter method or other implementations of

the idea to determine item administration probabilistically, see Davey and Parshall (1995,

April), Eggen (2001), McBride and Martin (1983), Parshall, Hogarty and Kromrey (1999,

June), Revuelta and Ponsoda (1998), van der Linden (2002), and van der Linden and

Abldkamp (2002).

Constraining Item Exposure Rates

It is the purpose of this paper to present an alternative method of item-exposure

control that is not based on the idea of controlling for item exposure after an item is

selected but before an examinee takes the test. That is, the decisions to be made are no

9
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longer if an item that is selected should be administered, but which of the items in the

pool are eligible for the examinee. If an item is eligible it remains in the pool; if it is

ineligible it is removed from the pool for the examinee. The idea underlying the method

in this paper is to base the decisions on the outcomes of a probabilistic experiment with

probabilities of eligibility that constrain the item-exposure rates to be below the target

value.

The main advantage of the method is that no time consuming simulation studies

are necessary to find admissible values for control parameters of items. Instead, it

is possible to implement the method "on the fly" during operational testing. The

method automatically adapts the probabilities of item eligibility to their optimal level

and maintains these during the rest of the testing process.

Ineligibility Constraints

A natural way to implement control of item eligibility in adaptive testing with shadow

tests is through the inclusion of constraints in the assembly model in (1)-(2). If the

decision is made that item i is ineligible for the current examinee, the following constraint

is added to the model for the shadow tests:

xi = 0. (6)

If item i remains eligible, no constraint is added. We will refer to the constraints in (6) as

ineligibility constraints.

As noted earlier, a potential effect of adding constraints to a test assembly model is

infeasibility of the model. In principle, infeasibility may thus occur if a large number of

ineligibility constraints is added to the model. However, for a real-life CAT program, the

probability of running into infeasibility due to item ineligibility constraints is generally

small. The reason is that the method in this paper imposes ineligibility constraints only for

the items that have a tendency to be overexposed. It is a common experience in adaptive

testing that this number is low. In fact, the majority of the items in real-life CAT programs

are hardly exposed at all.
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If the addition of ineligibility constraints results in an infeasible model for the shadow

tests, a simple measure to restore feasibility is to remove all ineligibility constraints from

the model and solve the relaxed model. The amount of time needed to detect infeasibility

of the model is negligible. Besides, as will be shown below, the adaptive nature of the

probabilistic experiment in this paper results in an automatic correction for an occasional

extra exposure of an item due to infeasibility later in the testing process.

Probabilistic Constraints on Item Eligibility

The process involved in selecting a tests for an examinee in adaptive testing with

shadow test is as follows: First, for each item in the pool a probability experiment

is conducted to determine which items are eligible and which are ineligible; Second,

ineligibility constraints are added to the model for the shadow tests and the model is

solved for optimal shadow tests at the sequence of updated ability estimates during the

test. Three, if the addition of the ineligibility constraints leads to an infeasible model, the

constraints are removed from the model and the relaxed models for the shadow tests are

solved. Fourth, from each shadow test, the (free) item with maximum information at the

ability estimate is administered.

In summary, the process of item administration is thus defined by the following

events:

E2: item i is determined to eligible for the examinee by the probability experiment;

F: the model for the assembly of the shadow test for the examinee remains feasible

after the eligibility constraints have been added;

Si: item i is selected in a shadow test for the examinee;

Ai: item i is administered to the examinee.

The event of removing the ineligibility constraints from the model is equivalent to

F. Observe that Si is now used to denote selection of the item in a shadow test and not

selection for administration.

Analogous to (3)-( 4), it now holds that

Ai c c {Ei u F}. (7)

11
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P(A2) = P(Ai Si)P(Si Ei U P)P(Ei UT). (8)

P(Ai I Si)P(Si I Ei UT') = P(Ai I Ei UP),

we may ignore event Si and (8) reduces to

P(Ai) = P(Ai U P)P(Ei UT). (9)

and

However, because

The problem is to select values for the probabilities of eligibility, P(Ei), such that

the exposure rate for item i is below r. Combining (5) with' (9), it follows that the target

rmax for the item exposure rate for item i is met if:

P(Ei u P) <
rma.

(10)
P(Ai I EiUP)

However, this inequality does not impose any direct constraint on P(Ei).

We therefore make the following independence assumption

P(Ei n F) = P(Ei)P(F).

In addition, from (7)

P(Ai n (Ei UP)) = P(Ai).

Using

P(EiU = 1 P(Ei n F),

12

(12)



and

P(Ei) = 1 P(Ei),

it follows that (10) holds if:
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1 rn,aP(Ei U 7)
, P(Ai) > 0, P(F) > 0.P (Ei) < 1 (13)P(F) +

P(Ai)P(F)

Because we want the exposure rates of the items with a tendency to overexposure

to be just below the target in (5), the probabilities of item eligibility should be set at the

upper bound in (13).

Observe that these probabilities are all marginal with respect to the distribution of

0. To obtain constraints that impose item exposure control conditional on 0 (Stocking &

Lewis (1998), all probabilities should be replaced by conditional probabilities given. 0.

This operation is straight-forward, and its results are not presented here. We will return

to the issue of conditional item-exposure control later in this paper.

Adapting the Probabilities of Item Eligibility

The idea is to set this upper bound adaptively during the test. That is, after an

examinee is tested the probabilities of the events in the right-hand side of (13) are updated

using the events recorded for the examinee. More specifically, assume that j examinees

have been tested and j + 1 is the next examinee. The probabilities are then updated by

1 rniaP(i) (Ei ) 11PU+1)(Ei) = min {1 p(i)(F) P(1)(Ai)P(j) (F) I
(14)

provided P(i) (Ai) > 0 and P(3) (F) > 0.

The following argument helps to understand (14). As already noted, for a well-

designed real-life CAT program, the probability of infeasibility is small. That is, we



expect the testing procedure to approximate

and

PW(F) = 1

P(i)(Ei UT') = P(i)(Ei).

Under these conditions, it follows from (14) that

Constraining Item Exposure - 12

(15)

(16)

/90+1)(Ei) < P(i)(Ei) if P(i)(Ai) >

P(i +1)(Ei) = P(i)(Ei) if P(i)(Ai) =

P(i +1)(Ei) > P(i)(Ei) if P(i)(Ai) <

rMaX

rMaX

rMaX

(17)

These relations show the behavior we want the probabilities of item eligibility to have: If

the probability of exposure for an item is too high at some stage during the testing process,

its probability of eligibility should go down. If the probability of exposure for an item is

already below the target, the probability of eligibility should be relaxed. If the conditions

in (15)-(16) do not hold, the relation between Pi+1)(Ei) and P(i)(Ei) is slightly more

complicated because the probability of feasibility intervenes and the actual probability of

item i being available for selection for examinee j is not P(i)(Ei) but P(j)(E, U F).

The adaptive nature of the update in (14) also explains our earlier claim that an

occasional extra exposure of some of the items in the pool due to the addition of

ineligibility constraints to the model for the shadow tests is automatically corrected later

in the testing process. Using (12), the expression in the right-hand side of (14) can be

written as

1
1 (1 rmax rmaxP(i)M)

.13(i) (F) P(0) (Ai) P(i)(Ai)
(18)

If infeasibility occurs for examinee j, P(i) (F) decreases. The effect of this decrease is an

increase in the probabilities of eligibility, P(i +1)(Ei), in (14), provided P(i) (Ai) <

14
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Independence Assumption

This assumption of independence in (11) is the only empirical assumption on which

the method is based. The assumption is generally realistic. Unless the item pool is

badly designed, it typically has multiple sets of items with the combinations of attributes

required by the content constraints in the test assembly model. The probability of a

feasible solution therefore does not depend on the ineligibility of a small number of the

items in the pool.

The assumption can easily be tested for an operational CAT program by a scatter plot

for the items in the pool with estimates of the probabilities P(Ei fl F) against products

of the estimates of P(Ei) and P(F). Deviations from the identity line would point at

violations of the assumption of independence . If some of these probabilities are extremely

low, we could plot estimates of In P(Ei fl F) against In P(Ei) and check for nonlinearity.

Implementing the Method

Suppose that for the previous j examinees we have recorded the following counts:

(pi: number of examinees for which the shadow test has been feasible (event F);

pii: number of examinees for which item i has been eligible or the ineligibility

constraints have been removed after infeasibility (event Ei U F);

number of examinees to which item i has been administered (event Ai).

Thus, for examinee j + 1, item i is eligible with estimated probability

PU44) (Ei) = min {1 + 3PijTmax
,1 , (19)

aijcoj

with aij > 0 and (pi > 0. The decision to add an ineligibility constraint for item i to the

model for the shadow test is based on a probability experiment with this probability.

Because of the adaptive nature of the method, the method can be applied directly to

an operational test. The only conditions that should be avoided for the estimates in (19),

is aii =0 and (pi = 0. A simple way to avoid these conditions is to initialize P(j +1) (Ei)

at 1 and keep it at this value long as the counts aii and (pi are equal to zero. This measure

was taken in the empirical examples below.

5
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Stabilization of Probability Estimates

If the method is applied directly to an operational test, the relative counts in (19)

stabilize if the number of examinees tested increases. As long as these counts are unstable,

some of the estimates of the probabilities of eligibility may fluctuate considerably. This

behavior is particularly likely for items that are favored by the CAT algorithm (e.g.,

items with high values for the discrimination parameter and values for the difficulty

parameter near the center of the ability distribution). These items will be the first to

become ineligible. Also, as soon as they are eligible again, they tend to be administered.

If the relative counts become stable, the opposite phenomenon will be observed. The

probability estimates in (19) then hardly change and items will remain eligible or

ineligible for long periods.

If a more consistent behavior of the estimates of the probabilities of item eligibility

during the testing process is desirable, they should be updated using the technique of

fading introduced in the literature on Bayesian networks (Jensen, 2001, sect. 3.3.2). In

this technique counts of events are updated by combining new data with old data weighted

by a fading factor chosen from the interval (0,1). Let wi be the choice for the factor for

item i. A common factor w for all items will suffice in most applications. If j examinees

have been tested, the weighed updates of the count of the events Ai is given by the

following relation:

wiaZi + 1 if i was administered to j,
ai*u+i) = wiaZi if i was not administered to j, (20)

where the asterisk is used to denote a weighted versions of the counts. The updates of the

weighted counts co; and pl. are analogous, whereas the weighted count of the number of

examinees is updated by

43+1) = tutili + 1. (21)

If these weighted counts are substitute into (19), the impact of old events fades away

during the testing process. In fact, the choice of weight wi implies an effective sample

16
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size that tends to 1/(1 wi) (Jensen, 2001, sect. 3.3.2). As a consequence, the estimates

of the probabilities of item eligibility tend to be based permanently on the last 1/(1 wi)

examinees.

If operational testing should begin with stable values for the probabilities in (19),

this goal can be realized by simulating the adaptive test on the computer with weighted

updates of the counts for 1/(1 wi) examinees prior to the start of the testing process. In

the empirical example below, we used weights wi =.999, which amounted to an effective

sample size of 1,000 examinees.

Item Sets

In adaptive testing, item pools sometimes have a structure with sets of items

organized around common stimuli (e.g., text passages or descriptions of cases). It is

possible to apply the techniques of item-exposure control in this paper at the level of

individual items within sets. However, in test with item sets the concern typically is

about overexposure of stimuli rather than items. It is therefore recommended to apply the

techniques in this paper at the level of the stimuli. Because the exposure rates of items in

sets can never be larger than the rates of their stimuli, the criterion in (5) is automatically

satisfied for the items if it is for the stimuli.

Empirical Examples

A simulation study was conducted to check the efficacy of the method of exposure

control presented in this paper and estimate its effects on the statistical properties of the

ability estimator. The following conditions were compared:

1. CAT without item-exposure control;

2. CAT with item-exposure control with the probabilities of item eligibility updated

without fading;

3. CAT with item-exposure control with the probabilities of item eligibility updated

with fading.
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The condition without item-exposure control was included to provide a base line

for the evaluation of the performances of the exposure control methods in the other

conditions. For the two conditions with exposure control, the target for the maximum

exposure rate was set at r = .25, a choice believed to be typical of actual targets in real-

life CAT programs. For the condition with fading, factor wi in (20)-(21) was set equal to

.999.

Item Pool and Test

The item pool was a previous 753-item pool from the Law School Admission Test

(LSAT). All items fitted the 3-parameter logistic item response model (Hambleton &

Swaminathan, 1985). The pool had both discrete items and items organized as sets around

a common stimulus. The exposure of the items in the sets was at the level of the stimuli.

The total number of discrete items and stimuli in the pool was 353.

A 50-item adaptive version of the LSAT was simulated. The length of this test was

half the length of the paper-and-pencil version of the LSAT; all specifications for the LSAT

were therefore scaled back to 50%. The LSAT consists of three different section, where

two of the sections have an item-set structure. The total number of constraints in the

LP model for the shadow tests needed to represent all test specifications with respect to

such attributes as item and stimulus content, (sub)types, gender and minority orientation,

answer key, word count, was equal to 433.

CAT Algorithm

Test administrations were simulated for examinees randomly sampled from a uniform

distribution over 0=-2.0, -1.5, ...,2.0. For the two conditions with the method in presented

in this paper we used 1, 000 replications to study stabilization of the probability updates,

and then another 9,000 replications to get the results presented below. Sampling from a

uniform distribution of 0 was chosen to enable the estimation of the bias and mean-squared

error (MSE) functions of the estimator of 0 with equal precision along its scale (1,000

replications for each 0 value). The items were selected using the maximum-information

criterion. The estimator of 0 was the expected a posterior (EAP) estimator with an

4 8
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uninformative prior over [-4,4]. In all conditions, the ability estimate was initialized at

= 0.

Results

In both conditions with exposure control, the models for the shadow test completed

with the ineligibility constraints always had a feasible solution. Thus, the independence

assumption in (11) was automatically met for all items.

Figure 1 shows the exposure rates of the discrete items and stimuli in the pool for the

three conditions after 10,000 examinees. For the condition without exposure, 38 of the

items and stimuli had exposure rates that seriously violated the target rate of .25. However,

both conditions with exposure control showed perfect exposure rates. Except for a few

random violations (smaller than .01), all items had exposure rates below the target value

of .25.

[Figure 1 about here]

Observe that the distributions of exposure rates for the two conditions with exposure

control are indistinguishable. Application of the technique of fading thus had no impact

whatsoever on the distribution of the exposure rates. Also, from this figure it is obvious

that the control of the exposure rates of the 38 items and stimuli with a tendency to

overexposure led to an increase in the exposure rates of several of the other items and

stimuli. This result is to be expected because the average exposure rate in the pool is

always equal to nI-1, where n is the length of the test and I the size of the pool (van der

Linden, 2002, proposition 1).

To find out if the exposure rates for the method in this paper stabilized quickly,

we also checked the rates of the items and stimuli after 1,000 examinees. Figures 2

and 3 show the distributions of the differences between the actual rates after 1,000 and

10,000 examinees for the condition without and with probability updates with fading,

respectively. For both conditions nearly all differences were smaller than 1%, indicating

that the method was already stable after 1,000 examinees.

t9
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[Figures 2 and 3 about here]

The bias and MSE functions for the ability estimator estimated from 10,000

simulated examinees are given in Figures 4 and 5, respectively. The differences between

these two functions for the three conditions are negligible for all practical purposes. The

method of item exposure control in this paper thus had negligible impact on the statistical

quality of the ability estimator.

[Figures 4 and 5 about here]

From these results it seems safe to conclude that the method works well. The

distribution of the actual exposure rates was exactly as desired and already stable after

1,000 examinees. The fact that the impact of the methods on the statistical properties

of the ability estimator was negligible is easily explained by the model for the assembly

of the shadow tests in (1)-(2). The MSE of the ability estimator depends directly on the

value of the objective function for the optimal shadow test. This value, in turn, depends

on the number and severeness of the constraints. For real-life CAT programs, the number

of ineligibility constraints that have to be added to the model is expected to be small

relative to the number of content constraints. For example, for the LSAT the number of

content constraints was 433, whereas we only had to constrain the exposure rates of 38

items to a value below .25. The average exposure rate of these items in the condition

without exposure control was .70, which implies that on average for each examinee some

17 ineligibility constraints had to be added to the model, which implied an increase in the

number of constraints by only 3.9 percent. If the item pool is well designed, ineligibility

constraints are not severe and their impact on the value of the objective function for the

solution is negligible.

Discussion

A practical advantage of the method of exposure control introduced in this paper is

that, unlike the Sympson-Hetter method, it does not need a long iterative process of setting

values for control parameters. The adaptive nature of the method guarantees that the
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exposure rates are automatically set, and the method can be applied directly to operational

tests.

The adaptive nature of the method also opens up a whole new range strategies of

item pool management. For example, if one or more items are detected to be flawed or

have been the victim of security breaches, these items can simply be removed from the

pool or replaced by other items, and the exposure rates for the items in the new pool are

adapt automatically to below the target value. For the Sympson-Hetter method, the pool

would have to be taken out of operation to set new values for their control parameters

(Chang & Harris, 2002).

We could also use such replacements intentionally, and periodically replace parts of

the item pool for which the absolute numbers of exposures have reached a predetermined

level. This strategy is an alternative to item-exposure control strategies based on random

rotation of multiple item pools (Mills & Steffen, 2000). As a matter of fact, it can be seen

as a rotation method that permanently rotates different item pools among the examinees.

The rotation scheme does not require any physical transport of items. Neither does it

require the assembly of multiple item pools with prior estimation of required overlap

rates (Stocking & Swanson, 1998). Also, the size of the rotating pools as well as their

item overlap rates are automatically set at optimal levels.

As a final example of a new strategy of item pool management, observe that there is

no need to set the maximum exposure rate rmax at a common values for all items and

examinees. This target could be set at different values for different set of items, for

example, at lower values for items or stimuli that are easier to memorize or for item pools

that are used at locations with a higher risk of item compromise. Also, the target could

be set at different levels during the history of an individual item pool. These and other

strategies for optimizing item pool management deserve further investigation.

As already noted, the method presented in this paper can also be applied conditional

on a series of ability levels. Formally, the only thing required to get constraints

on conditional item-exposure rates is to formulate all probabilities conditional on 0.

Practically, in a conditional version of the method, the estimates of the conditional

21
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probabilities of item eligibility in (19) are still updated after the examinee has completed

the test, but the eligibility experiments with these probabilities are conducted more than

once for each examinee, namely at each 0 value at which the item-exposure rates are

to be controlled. Currently, a study is conducted in which, analogous to the one for the

Sympson-Hetter method in Stocking and Lewis (2000), the possible impact of estimation

error in the ability estimates during the test on the actual conditional item-exposure rates

is assessed.

22
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Figure Captions

Figure 1. Distribution of exposure rates for the items and stimuli in the pool for

CAT without exposure control (solid line), with exposure control (dashed line) and with

exposure control and probability updates based on fading (dotted line).

Figure 2. Differences between exposure rates after 1,000 and 10,000 examinees for

the CAT with exposure control.

Figure 3. Differences between exposure rates after 1,000 and 10,000 examinees for

the CAT with exposure control and probability updates based on fading.

Figure 4. Estimated bias functions of the ability estimator for CAT without exposure

control (solid line), with exposure control (dashed line) and with exposure control and

probability updates based on fading (dotted line).

Figure 5. Estimated MSE functions of the ability estimator for CAT without exposure

control (solid line), with exposure control (dashed line) and with exposure control and

probability updates based on fading (dotted line).
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