
Classifying and Evaluating Architecture Design Methods

REFERENCE : AMIDST/WP2/N009/V03
DATE OF ISSUE : 15 December 1999
ACCESS RIGHTS : public
STATUS : draft
EDITOR : Mehmet Aksit
AUTHORS : Bedir Tekinerdogan

SYNOPSIS

This document presents methods and necessity of identifying right
fundamental abstractions for architectural design and describes how
these abstract features increase software quality.

Note: This document will be published in M. Aksit (ed.), “Software
Architectures and Component Technology”, Kluwer Academic
Publishers, 2000.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

ii

Document History

DATE VERSION MODIFICATION

15-04-99 01 Initial draft

01-11-99 02 Revisions

15-12-99 03 Revisions: clarify AMIDST context

Abstract

The concept of software architecture has gained a wide popularity and is generally
considered to play a fundamental role in coping with the inherent difficulties of the
development of large-scale and complex software systems. This document first gives a
definition of architectures. Second, a meta-model for architecture design methods is
presented. This model is used for classifying and evaluating various architecture design
approaches. The document concludes with the description of the identified problems.

AMIDST/WP2/N009

iii

Table of Contents

1. INTRODUCTION...1

2. NOTION OF ARCHITECTURE ..2
2.1 DEFINITIONS 2
2.2 ARCHITECTURE AS A CONCEPT 3

3. META-MODEL FOR ARCHITECTURE DESIGN APPROACHES5
3.1 DOMAIN KNOWLEDGE 6

4. ANALYSIS AND EVALUATION OF ARCHITECTURE DESIGN APPROACHES 8
4.1 ARTIFACT-DRIVEN ARCHITECTURE DESIGN 8

4.1.1 Problems 9
4.2 USE-CASE DRIVEN ARCHITECTURE DESIGN 10

4.2.1 Problems 12
4.3 DOMAIN-DRIVEN ARCHITECTURE DESIGN 13

4.3.1 Product-line Architecture Design 14
4.3.2 Domain Specific Software Architecture Design 14
4.3.3 Problems 16

4.4 PATTERN-DRIVEN ARCHITECTURE DESIGN 16
4.4.1 Problems 18

5. CONCLUSION ...20

6. REFERENCES..22

AMIDST/WP2/N009

1

1. Introduction

In the last decade the concept of software architecture has gained a wide popularity and is
generally considered to play a fundamental role in coping with the inherent difficulties of the
development of large-scale and complex software systems [Clements & Northrop 96][Boehm
95]. The term architecture has been used for centuries and basically focuses on the physical
structure of an artifact. The software engineering community has adopted the term for the
gross-level structure of software systems. Currently, a common assumption is that
architecture design should support the required software system qualities such as robustness,
adaptability, reusability and maintainability [Bass et al. 98]. Software architectures include
the early design decisions and embody the overall structure that impacts the quality of the
whole system. For ensuring the quality factors it is generally agreed that, identifying the right
fundamental abstractions for architecture design is necessary. In the literature no consensus is
reached yet for software architecture terminology, representations and architecture design
methods [Clements & Northrop 96] and several open problems have still to be solved. In this
document we will focus on architecture design methods. We maintain that the existing
architecture design methods have several difficulties in deriving the right architectural
abstractions. To analyze, evaluate and identify the basic problems we will present a survey of
the state-of-the-art architecture design methods and motivate the obstacles in each approach
with respect to the identification of the right abstractions.

The document is organized as follows. To provide a short background on software
architectures in section 3.2 we will present existing definitions of software architectures and
provide our own definition. In section 3.3 a meta-model for architecture development will be
given. This meta-model will serve as a basis for identifying the problems in our evaluation of
architecture design approaches. In section 3.4 a categorization, analysis and evaluation of the
contemporary architectural approaches is presented. Finally, in section 3.8 we will present
our conclusions and evaluations.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

2

2. Notion of Architecture

2.1 Definitions

Software architectures are high-level design representations and facilitate the communication
between different stakeholders, enable the effective partitioning and parallel development of
the software system, provide a means for directing and evaluation, and finally provide
opportunities for reuse [Bass et al. 97].

The importance of structure was already acknowledged early in the history of software
engineering. The first software programs were written for numerical calculations using
programming languages that supported mathematical expressions and later algorithms and
abstract data types. Programs written at that time served mainly one purpose and were
relatively simple with respect to current large-scale diverse software systems. Over time due
to the increasing complexity and size of the applications, the global structure of the software
system became an important issue [Shaw & Garlan 96]. Already in 1968, Dijkstra proposed
the correct arrangement of the structure of software systems before simply programming. He
introduced the notion of layered structure in operating systems in which related programs
were grouped into separate layers, communicating with groups of programs in adjacent layers
[Dijkstra 68]. Later, Parnas maintained that the selected criteria for the decomposition of a
system impact the structure of the programs and several design principles must be followed to
provide a good structure [Parnas 72]. Within the software engineering community, there is
now an increasing consensus that the structure of software systems is important and several
design principles must be followed to provide a good structure [Clements et al. 85].

Many definitions of architecture have been introduced over the last decade but a consensus
on standard terminology is still not well established. We consider some of these definitions:

[Perry & Wolf 92]:

We distinguish three different classes of architectural elements: processing elements;
data elements; and connection elements. The processing elements are those
components that supply the transformation on the data elements; the data elements are
those that contain the information that is used and transformed; the connecting
elements (which at times may be either processing or data elements, or both) are the
glue that holds the different pieces of the architecture together.

[Clements 94]:

Software architecture is loosely defined as the organizational structure of a software
system including components, connections, constraints, and rationale. Components
can be small pieces of code, such as modules, or larger chunks, such a stand-alone
programs like database management systems. Connections in an architecture are
abstractions for how components interact in a system, e.g., procedure calls, pipes, and
remote procedure calls. An architecture has various constraints and rationales
associated with it, including the constraints on component selection and the rationale
for choosing a specific component in a given situation.

[Garlan 95]:

AMIDST/WP2/N009

3

The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time.

In all these definitions, there is a common agreement that architecture represents the gross-
level structure of the software system. On the other hand, it appears that different people refer
to different meanings of the notion of structure. The reason for this is that large software
systems can be generally represented from various views, using different abstraction criteria
[Kruchten 95]. As such there is not only one type of view of architecture but also several
important views. For example, the definition given by [Perry & Wolf 92] represents the
functional aspects of the architecture and basically focuses on the data-flow in the system.
Clement’s definition [Clements 94] represents the decomposition of the system into
manageable sub-systems or modules and their arrangement. Garlan [Garlan 95] extends this
definition by including design information in the architectural specification.

2.2 Architecture as a concept

From the definitions on architectures in the literature, it is clear that architecture can be
defined as a set of components and relations. However, the components of an architecture
specification should not be selected arbitrarily; they should represent the essential
components from a certain perspective. The term component here is an overloaded term and
depending on the perspective it may refer to abstract concepts, subsystems, software modules
or hardware components. We think that the reason why so many and various definitions on
software architectures exist is because every author approaches a different perspective of the
concept architecture and provides a definition from that perspective.

To provide a consistent and overall definition on architectures, we need to abstract from the
various viewpoints and approach the architecture from a higher abstraction level. For this we
provide the following definition of architecture:

Architecture is a set of abstractions and relations, which form a concept.

We think that this definition is general and covers also the existing definitions on
architectures. In essence it considers architecture as a concept. To clarify this definition we
will describe the notion of concept in the following.

A concept is usually defined as a (mental) representation of a category of instances [Howard
87] and is formed by abstracting knowledge about instances. The process of assigning new
instances to a concept is called categorization or classification. In this context, concepts are
also called categories or classes. There are several theories on concepts and classification
addressing the notions of concepts, classes, instances and categories [Lakoff 87][Smith &
Medin 81][Parsons & Wand 97]. In general three different views on the notion of concept
are distinguished: the classical view, the prototype view and the exemplar view.

The classical view1 holds that all instances of the concept must share all the defining
properties that are considered necessary and sufficient to define the concept. In other words,
an instance must have all of the defining properties to be an instance of the concept and

1 The classical view dates back to the philosophical works of Plato and Aristotle. Plato defined the notion of forms,
that were defined as stable, immutable and ideal descriptions of things. Aristotle continued the research on
classification and his work led to the classical view on categorization and concepts. [Lakoff 87]

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

4

additionally, if an instance has at least the defining properties it is sufficient to denote it as an
instance of the concept. In the prototype view2 the concept is not described by defining
properties but rather by characterizing properties, features that instances tend to have but
need not to have. Basically the view proposes that a concept is to be represented by some
measure of central tendency of some instances, which is described by a prototype. A
prototype is defined as an instance that has all the properties of the central tendency and as
such is a highly typical instance or idealization. The exemplar view of concepts is quite
different from the classical and the prototype view since it does not require a unitary
description of a concept. Hereby, a concept is not represented as an abstracted set of defining
features or as a measure of a central tendency. The theory does not require abstraction of
instances at all. Instead concepts are represented through exemplars. An exemplar is a
specific instance of a certain category, which is used to represent the category.

In our definition we denoted architecture as a concept. Given the different views on concepts
the question here is then which of the view of concepts is suitable for architectures. Basically,
each view has its advantages and disadvantages and can be applied for solving a particular
category of problems [Stillings et al. 95]. The classical view can be best applied for
representing well-defined concepts. The prototype view and exemplar view on the contrary
can be best applied in the early phases of concept formation in which specific instances are
discovered first and are later generalized. Accordingly, we may apply the prototypical and
exemplar view in the early phases of architecture design and the classical view may be
applied to define the stable architectural abstractions at later stages of the architecture design
in which the knowledge on instances and concepts has got mature.

Architectures are closely related to the concept structure. Concepts can be structured in
various ways. Two widely known structures are taxonomies and partonomies [Howard 87].
Taxonomies are usually represented by tree-like structures whereby the top-level concepts
include the lower level concepts. Each taxonomy has both a horizontal and a vertical
dimension. The vertical dimension represents the level of abstraction and the horizontal
dimension represents mutually exclusive categories at the same abstraction level. In practice,
it appears that people communicate at a particular abstraction level that is called the basic-
level that defines the useful abstractions [Rosch et al. 76]. Partonomies define structures in
which concepts are related to each other through part-whole relations rather than class
inclusion.

If we consider architecture as a concept we may apply the same structuring mechanisms. As
such we view architectures as concepts that are structured into taxonomies and partonomies.

2 The prototypical view has emerged from the philosophical treatments of Wittgenstein who maintained that for
most concepts meaning is determined not by definition but by family resemblance [Wittgenstein 53].

AMIDST/WP2/N009

5

3. Meta-Model for Architecture Design Approaches

In this section we provide a meta-model that is an abstraction of various architecture design
approaches. We will use this model to analyze and compare current architecture design
approaches, which we will describe in the subsequent section. The meta-model is given in
Figure 1.

The rounded rectangles represent the concepts and the lines represent the association between
these concepts. The diamond symbol represents an association relation between three or four
concepts. Let us now describe the concepts individually.

The concept Client represents the stakeholder(s) who is/are interested in the development of a
software architecture design. A stakeholder may be a customer, end-user, system developer,
system maintainer, sales manager etc.

The concept Domain Knowledge represents the area of knowledge that is applied in solving a
certain problem. We will elaborate on this concept in the next sub-section.

The concept Requirement Specification represents the specification that describes the
requirements for the architecture to be developed.

In the Figure there is a ternary association relation between the concepts Client, Domain
Knowledge and Requirement Specification. This association means that for defining a
requirement specification both client and the domain knowledge are utilized. The order of
processing is not defined by this association and may differ per architecture design approach.

The concept Artifact represents the artifact descriptions of a certain method. This is for
example, the description of the artifact Class, Operation, Attribute, etc. In general each
artifact has a related set of heuristics for identifying the corresponding artifact instances.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

6

Requirement
Specification

Solution
Abstraction

Domain
Knowledge

Client

Artifact

Architecture
Description

Domain
Knowledge

Requirements
Capturing

Extracting Solution
Structures

Domain
Knowledge

Architecture
Specification

Figure 1: Meta-model for architecture design approaches

The concept Solution Abstraction defines the conceptual representation of a (sub)-structure
of the architecture.

There is a quaternary association relation between the concepts Requirement Specification,
Domain Knowledge, Artifact and Solution Abstraction. This describes the structural relations
between these concepts to derive a suitable solution abstraction.

Finally, the concept Architecture Description defines a specification of the software
architecture. There is a ternary association relation between the concept Solution Abstraction,
Architecture Description and Domain Knowledge. The association relation is named
Architecture Specify and represents the specification of the architecture utilizing the three
concepts.

Various architecture design approaches can be described as instantiations of the meta-model
in Figure 1. Each approach will differ in the ordering of the processes and the particular
content of the concepts.

3.1 Domain Knowledge

In the meta-model the concept Domain Knowledge is used three times. Since this concept
plays a fundamental role in various architectural design approaches we will now elaborate on
this concept.

The term domain has different meanings in different approaches. We distinguish between the
following specializations of this concept: Problem Domain Knowledge, Business Domain
Knowledge, Solution Domain Knowledge and General Knowledge. This classification of
domain knowledge concepts is shown in Figure 2.

AMIDST/WP2/N009

7

Domain
Knowledge

Problem Domain
Knowledge

Business Domain
Knowledge

Solution Domain
Knowledge

General
Knowledge

System/Product
Knowledge

is-a

Figure 2: Different specializations of the concept Domain Knowledge

The concept Problem Domain Knowledge refers to the knowledge on the problem from a
client’s perspective. It includes requirement specification documents, interviews with clients,
prototypes delivered by clients etc.

The concept Business Domain Knowledge refers to the knowledge on the problem from a
business process perspective. It includes knowledge on the business processes and also
customer surveys and market analysis reports.

The concept Solution Domain Knowledge refers to the knowledge that provides the domain
concepts for solving the problem and which is separate from specific requirements and the
knowledge on how to produce software systems from this solution domain. This kind of
domain knowledge is included in for example textbooks, scientific journals, and manuals.

The concept General Knowledge refers to the general background and experiences of the
software engineer and also may include general rules of thumb.

The concept System/Product Knowledge refers to the knowledge on a system, a family of
systems or a product.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

8

4. Analysis and Evaluation of Architecture Design
Approaches

A number of approaches have been introduced to identify the architectural design
abstractions. We classify these approaches as artifact-driven, use-case-driven, pattern-driven
and domain-driven architecture design approaches. The criterion for this classification is
based on the adopted basis for the identification of the key abstractions of architectures. Each
approach will be explained as a realization of the meta-model described in Figure 1.

4.1 Artifact-driven Architecture Design

We term artifact-driven architecture design approaches as those approaches that extract the
architecture description from the artifact descriptions of the method. Examples of artifact-
driven architectural design approaches are the popular object-oriented analysis and design
methods such as OMT [Rumbaugh et al. 91] and OAD [Booch 91]. A conceptual model for
artifact-driven architectural design is presented in Figure 3.

Solution Abstraction

Requirement
Specification

Analysis &
Design Models

Client

Artifact

Subsystems

General
Knowledge

1: Describe

2:Search

3:Group

General
Knowledge

Architecture
Description

4: Compose

Figure 3: Conceptual model of artifact-driven architectural design

Hereby the labeled arrows represent the process order of the architectural design steps. The
concepts Analysis & Design Models and Subsystems in Figure 3 together represent the
concept Solution Abstraction in Figure 1. The concept General Knowledge represents a
specialization of the concept Knowledge Domain in Figure 1. We will explain this model
using OMT [Rumbaugh et al. 91], which can be considered as a suitable representative for
this category. In OMT, architecture design is not an explicit phase in the software

AMIDST/WP2/N009

9

development process but rather an implicit part of the design phase. The OMT method
[Rumbaugh et al. 91] consists basically of the phases Analysis, System Design, and Object
Design. The arrow 1:Describe represents the description of the requirement specification.
The arrow 2:Search represents the search for the artifacts such as classes in the requirement
specification in the analysis phase. An example of a heuristic rule for identifying tentative
class artifacts is the following:

IF an entity in the requirement specification is relevant THEN select it as a Tentative
Class.

The search process is supported by the general knowledge of the software engineer and the
heuristic rules of the artifacts that form an important part of the method. The result of the
2:Search function is a set of artifact instances that is represented by the concept Analysis
&Design Models in Figure 3.

The method follows with the System Design phase that defines the overall architecture for the
development of the global structure of a single software system by grouping the artifacts into
subsystems [Rumbaugh et al. 91]. In Figure 3 this grouping function is represented by the
function 3:Group. The software architecture consists of a composition of subsystems, which
is defined by the function 4:Compose in Figure 3. This function is also supported by the
concept General Knowledge.

4.1.1 Problems

In OMT the architectural abstractions are represented by grouping classes that are elicited
from the requirement specification. We maintain that hereby it is difficult to extract the
architectural abstractions. We will explain the problems using the example described in OMT
on an Automated Teller Machine (ATM) which concerns the design of a banking network
[Rumbaugh et al. 91]. Hereby, bank computers are connected with ATMs from which clients
can withdraw money. In addition, banks can create accounts and money can be transferred
and/or withdrawn from one account to another. It is further required that the system should
have an appropriate recordkeeping and secure provisions. Concurrent accesses to the same
account must be handled correctly.

The problems that we identified with respect to architecture development are as follows:

■ Textual requirements are imprecise, ambigue or incomplete and are less useful as a
source for deriving architectural abstractions

In OMT artifacts are searched within the textual requirement specification and grouped into
subsystems, which form the architectural components. Textual requirements, however, may
be imprecise, ambigue or incomplete and as such are not suitable as a source for
identification of well-defined architectural abstractions. In the example, three subsystems are
identified: ATM Stations, Consortium Computer and Bank Computers. These subsystems
group the artifacts that were identified from the requirement specification. The example only
includes one class artifact called Transaction since this was the only artifact that could be
discovered in the textual requirement specification. Publications on transaction systems show
that many concerns such as scheduling, recovery, deadlock management etc. are included in
designing transaction systems [Elmagarmid 91][Date 90][Bernstein 87]. Therefore, we would
expect additional classes that could not be identified from the requirement specification.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

10

■ Subsystems have poor semantics to serve as architectural components

In the given example, ATM stations represents a subsystem, that is, an architectural
component. The subsystem concept serves basically as a grouping concept and as such has
very poor semantics3. For the subsystem ATM stations it is for example not possible to define
the architectural properties, architectural constraints with the other subsystems, and the
dynamic behavior. This poor semantics of subsystems makes the architecture description less
useful as a basis for the subsequent phases of the software development process.

■ Composition of subsystems is not well-supported

Architectural components interact, coordinate, cooperate and are composed with other
architectural components. OMT provides, however, no sufficient support for this process. In
the given example, the subsystem ATM Stations, Consortium Computer and Bank Computers
are composed together, though, the rationale for the presented structuring process is
performed implicitly. One could provide several possibilities for composing the subsystems,
though, the method lacks rigid guidelines for composing and specifying the interactions
between the subsystems.

4.2 Use-Case driven Architecture Design

A use-case driven architecture design approach derives the architectural abstractions
basically from use cases. A use case is defined as a sequence of actions that the system
performs to offer some results of value to an actor [Jacobson et al. 99]. Actors use the system
through the use cases. The actors and the use cases together form the use case model. The use
case model is meant as a model of the system’s intended functions and its environment, and
serves as a contract between the customer and the developers.

The Unified Process [Jacobson et al. 99] applies a use-case driven architecture design
approach. It consists of core workflows that define the static content of the process and
describe the process in terms of activities, workers and artifacts. The organization of the
process over time is defined by phases. The conceptual model for a use-case driven
architecture design approach in the Unified Process is given in Figure 4.

3 In [Aksit & Bergmans 92] this problem has been termed as subsystem-object distinction.

AMIDST/WP2/N009

11

Solution Abstraction

Requirement Specification

Use-Case
Model

Analysis &
Design
Models

Artifact

Packages

General
Knowledge

Business
Model

Informal
Specification

2: Realize

3:Group

Architecture
Description

4:Compose

Client
Domain
Model

1:Describe

Figure 4: Conceptual model of use-case driven architectural design

Hereby the dashed rounded rectangles represent the concepts of Figure 1. For example the
concepts Informal Specification and the Use-Case Model together form the concept
Requirement Specification in Figure 1.

The Unified Process is composed of six core workflows: Business Modeling, Requirements,
Analysis, Design, Implementation and Test. These core workflows result respectively in the
following separate models: business & domain model, use-case model, analysis model,
design model, implementation model and test model.

In the requirements workflow, the client’s requirements are captured as use cases which
results in the use-case model. This process is defined by the function 1:Describe in Figure 4.
Together with the informal requirement specification, the use case model forms the
requirement specification. The development of the use case model is supported by the
concepts Informal Specification, Domain Model and Business Model that are required to set
the system’s context. The Informal Specification represents the textual requirement
specification. The Business Model describes the business processes of an organization. The
Domain Model describes the most important classes within the context of the domain. From
the use case model the architecturally significant use cases are selected and use-case
realizations are created as it is described by the function 2:Realize. Use case realizations
determine how the system internally performs the tasks in terms of collaborating objects and
as such help to identify the artifacts such as classes. The use-case realizations are supported
by the knowledge on the corresponding artifacts and the general knowledge. This is
represented by the arrows directed from the concepts Artifact and General Knowledge
respectively, to the function 2:Realize. The output of this function is the concept Analysis &
Design Models, which represents the identified artifacts after use-case realizations.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

12

The analysis and design models are then grouped into packages which is represented by the
function 3:Group. The function 4:Compose represents the definition of interfaces between
these packages resulting in the concept Architecture Description. Both functions are
supported by the concept General Knowledge.

4.2.1 Problems

In the Unified Process, first the business model and the domain model are developed for
understanding the context. Use case models are then basically derived from the informal
specification, the business model and the domain model. The architectural abstractions are
derived from realizations of selected use cases from the use case models.

We think that this approach has to cope with several problems in identifying the architectural
abstractions. We will motivate our statements using the example described in [Jacobson et al.
99, pp. 113] that concerns the design of an electronic banking system in which the internet
will be used for trading of goods and services and likewise include sending orders, invoices,
and payments between sellers and buyers. The problems that we encountered are listed as
follows:

■ Leveraging detail of domain model and business model is difficult

The business model and domain models are defined before the use case model. The question
raises then how to leverage the detail of these models. Before use cases are known it is very
difficult to answer this question since use cases actually define what is to be developed. In
[Jacobson et al. 99 pp. 120] a domain model is given for an electronic banking system
example. Domain models are derived from domain experts and informal requirement
specifications. The resulted domain model includes four classes: Order, Invoice, Item and
Account. The question here is whether these are the only important classes in electronic
banking systems. Should we consider also the classes such as Buyer and Seller? The
approach does not provide sufficient means for defining the right detail of the domain and
business models.

■ Selecting architecturally relevant use-cases is not systematically supported

For the architecture description, ‘architecturally relevant’ use cases are selected. The decision
on which use cases are relevant lacks objective criteria and is merely dependent on some
heuristics and the evaluation of the software engineer. For example, in the given banking
system example, the use case Withdraw Money has been implicitly selected as architecturally
relevant and other use cases such as Deposit Money and Transfer between Accounts have
been left out.

■ Use-cases do not provide a solid basis for architectural abstractions

After the relevant use cases have been selected they are realized which means that analysis
and design classes are identified from the use cases. Use-case realizations are supported by
the heuristic rules of the artifacts, such as classes, and the general knowledge of the software
engineer. This is similar to the artifact-driven approach in which artifacts are discovered in
the textual requirements. Although use cases are practical for understanding and representing
the requirements, we maintain that they do not provide a solid basis for deriving architectural
design abstractions. Use cases focus on the problem domain and the external behavior of the
system. During use case realization transparent or hidden abstractions that are present in the
solution domain and the internal system may be difficult to identify. Thus even if all the
relevant use cases have been identified it may still be difficult to identify the architectural

AMIDST/WP2/N009

13

abstractions from the use case model. In the given banking system example, the use case-
realization of Withdraw Money results in the identification of the four analysis classes
Dispenser, Cashier Interface, Withdrawal and Account [Jacobson et al. 99, pp. 44]. The
question here is whether these are all the classes that are concerned with withdrawal. For
example, should we also consider classes such as Card and Card Check? The transparent
classes cannot be identified easily if they have not been described in the use case
descriptions.

■ Package construct has poor semantics to serve as an architectural component

The analysis and design models are grouped into package constructs. Packages are, similar to
subsystems in the artifact-driven approach, basically grouping mechanisms and as such have
poor semantics. The grouping of analysis and design classes into packages and the
composition of the packages into the final architecture are also not well supported and are
basically dependent on the general knowledge of the software engineer. This may again lead
to ill-defined boundaries of the architectural abstractions and their interactions.

4.3 Domain-driven Architecture Design

Domain-driven architecture design approaches derive the architectural design abstractions
from domain models. The conceptual model for this domain-driven approach is presented in
Figure 5.

Requirement
Specification

Client

1:Describe

Solution Domain
Knowledge

Domain Model

Architecture
Description

2:Domain Analysis

3:Domain Design

Figure 5: Conceptual model for Domain-Driven Architecture Design

Domain models are developed through a domain analysis phase represented by the function
2:Domain Analysis. Domain analysis can be defined as the process of identifying, capturing
and organizing domain knowledge about the problem domain with the purpose of making it
reusable when creating new systems [Prieto-Diaz & Arrango 91]. The function 2:Domain
Analysis takes as input the concepts Requirement Specification and Domain Knowledge and
results in the concept Domain Model. Note that both the concepts Solution Domain
Knowledge and Domain Model in Figure 5 represent the concept Domain Knowledge in the
meta-model of Figure 1.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

14

The domain model may be represented using different representation forms such as classes,
entity-relation diagrams, frames, semantics networks, and rules. Several domain analysis
methods have been published, e.g. [Gomaa 90], [Kang & al. 90], [Prieto-Diaz & Arrango 91],
[Simos et. al 96] and [Czarnecki 99]. Two surveys of various domain analysis methods can be
found in [Arrango 94] and [Wartik & Prieto-Diaz 92].

In this document we are mainly interested in the approaches that use the domain model to
derive architectural abstractions. In Figure 5 this is represented by the function 3:Domain
Design. In the following we will consider two domain-driven approaches that derive the
architectural design abstractions from domain models.

4.3.1 Product-line Architecture Design

In the product-line architecture design approach, an architecture is developed for a software
product-line that is defined as a group of software-intensive products sharing a common,
managed set of features that satisfy the needs of a selected market or mission area [Clements
& Northrop 96]. A software product line architecture is an abstraction of the architecture of a
related set of products. The product-line architecture design approach focuses primarily on
the reuse within an organization and consists basically of the core asset development and the
product development. The core asset base often includes the architecture, reusable software
components, requirements, documentation and specification, performance models, schedules,
budgets, and test plans and cases [Bass et al. 97a],[Bass et al. 98b],[Clements & Northrop
96]. The core asset base is used to generate or integrate products from a product line.

The conceptual model for product-line architecture design is given in Figure 6. The function
1:Domain Engineering represents the core asset base development. The function
2:Application Engineering represents the product development from the core asset base.

Core Asset
Base

1:Domain Engineering

Product

2:Application Engineering

Domain
Knowledge

Figure 6: A conceptual model for a Product-Line Architecture Design

Note that various software architecture design approaches can be applied to provide a
product-line architecture design. In the following section we will describe the DSSA
approach that follows the conceptual model for product-line architecture design in Figure 6.

4.3.2 Domain Specific Software Architecture Design

The domain-specific software architecture (DSSA) [Hayes-Roth 94][Tracz & Coglianese 92]

AMIDST/WP2/N009

15

may be considered as a multi-system scope architecture, that is, it derives an architectural
description for a family of systems rather than a single-system. Figure 7 represents the
conceptual model for the DSSA approach. The basic artifacts of a DSSA approach are the
domain model, reference requirements and the reference architecture. The DSSA approach
starts with a domain analysis phase on a set of applications with common problems or
functions. The analysis is based on scenarios from which functional requirements, data flow
and control flow information is derived. The domain model includes scenarios, domain
dictionary, context (block) diagram, ER diagram, data flow models, state transition diagrams
and object model.

Architecture Description

Domain Model

Scenarios
Informal
Spec.

Application
Architecture

4:Derive

Client

Reference
Requirements

Reference
Architecture

General
Knowledge

3:Map to
General

Knowledge

2:Extract

Problem
Domain

Knowledge

1:Describe

Figure 7: Conceptual model for Domain Specific Software Architecture (DSSA) approach

In addition to the domain model, reference requirements are defined that include functional
requirements, non-functional requirements, design requirements and implementation
requirements and focus on the solution space. The domain model and the reference
requirements are used to derive the reference architecture. The DSSA process makes an
explicit distinction between a reference architecture and an application architecture. A
reference architecture is defined as the architecture for a family of application systems,
whereas an application architecture is defined as the architecture for a single system. The
application architecture is instantiated or refined from the reference architecture. The process
of instantiating/refining and/or extending a reference architecture is called application
engineering.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

16

4.3.3 Problems

Since the term domain is interpreted differently there are various domain-driven architecture
design approaches. We list the problems for problem domain analysis and solution domain
analysis.

■ Problem domain analysis is less effective in deriving architectural abstractions

Several domain-driven architecture approaches interpret the domain as a problem domain.
The DSSA approach, for example, starts from an informal problem statement and derives the
architectural abstractions from the domain model that is based on scenarios. Like use cases,
scenarios focus on the problem domain and the external behavior of the system. We think that
approaches that derive abstraction from the problem domain, such as the DSSA approach, are
less effective in deriving the right architectural abstractions. Let us explain this using the
example in [Tracz 95] in which an architecture for a theater ticket sales application is
constructed using the DSSA approach. In this example a number of scenarios such as Ticket
Purchase, Ticket Return, Ticket Exchange, Ticket Sales Analysis, and Theater Configuration
are described and accordingly a domain model is defined based on these scenarios. The
question hereby is whether the given scenarios fully describe the system and as such result in
the right leverage of the domain model. Are all the important abstractions identified? Do
there exist redundant abstractions? How can this be evaluated? Within this approach and
generally approaches that derive the abstractions from the problem domain these questions
remain rather unanswered.

■ Solution Domain Analysis is not sufficient

There exist solution domain analysis approaches that are independent of software architecture
design which provide systematic processes for identifying potentially reusable assets. As we
have described before this activity is called domain engineering in the systematic reuse
community. Unlike system engineering and problem domain engineering, solution domain
analysis looks beyond a single system, a family of systems or the problem domain to identify
the reusable assets within the solution domain itself. Although solution domain analysis
provides the potential for modeling the whole domain that is necessary to derive the
architecture, it is not sufficient to drive the architecture design process. This is due to two
reasons. First, solution domain analysis is not defined for software architecture design per se,
but rather for systematic reuse of assets for activities in for example software development.
Since the area on which solution domain analysis is performed may be very wide, it may
easily result in a domain model that is too large and includes abstractions that are not
necessary for the corresponding software architecture construction. The large size of the
domain model may hinder the search for the architectural abstractions. The second problem is
that the solution domain may not be sufficiently cohesive and stable to provide a solid basis
for architectural design. Concepts in the corresponding may not have reached a consensus yet
and the area may still be under development. Obviously, one cannot expect to provide an
architecture design solution that is better than the solution provided by the solution domain
itself. A thorough solution domain analysis may in this case also not be sufficient to provide
stable abstractions since the concepts in the solution domain themselves are fluctuating.

4.4 Pattern-driven Architecture Design

Christopher Alexander’s idea on pattern languages for systematically designing buildings and
communities in architecture [Alexander 79] has been adopted by the software community and
led to the so-called software design patterns [Gamma et al. 95]. Similar to the patterns of
Alexander, software design patterns aim to codify and make reusable a set of principles for

AMIDST/WP2/N009

17

designing quality software. The software design patterns is applied for the design phase,
though, the software community has started to define and apply patterns for the other phases
of the software development process. At the implementation phase patterns or idioms
[Coplien 92] have been defined to map object-oriented design to object-oriented language
constructs. Others have defined patterns for the analysis phase in which patterns are applied
to derive analysis models [Fowler 96]. Recently, patterns have also been applied at the
architectural analysis phase of the software development process [Buschmann et al. 99].
Architectural patterns are similar to the design patterns but focus on the gross-level structure
of the system and its interactions. Sometimes architectural patterns are also called
architectural styles [Shaw & Garlan 96]. An architectural pattern is not the architecture itself,
as it is often mistaken, but rather it is just an abstract representation at the architectural level
[Abowd et al. 94][Garlan & Shaw 96][Bass et al. 98].

Pattern-driven architecture design approaches derive the architectural abstractions from
patterns. Figure 8 depicts the conceptual model for this approach.

Requirement
Specification

Client

Architectural Pattern
Description

1:Describe

Architecture
Description

2:Search

Intent

Architectural
Pattern

4:Compose

Problem

Solution

3:Apply

Context

General
Knowledge

Figure 8: Conceptual Model for a Pattern-Driven Architecture Design

The concept Requirement Specification represents a specification of a problem that may be
solved using a pattern. The function Search represents the process for searching a suitable
pattern for the given problem description and is supported by the concept General
Knowledge.

The concept Architectural Pattern Description represents a description of an architectural
pattern. It consists mainly of four sub-concepts4: Intent, Context, Problem, and Solution. The
concept Intent represents the rationale for applying the pattern. The concept Context
represents the situation that gives rise to the problem. The concept Problem represents the
recurring problem arising in the context. The concept Solution represents a solution to the
problem in the form of an abstract description of the elements and their relations. For the

4 There are other sub-concepts but we consider these four sub-concepts as important for the identification of the
architectural abstractions.

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

18

identification of the pattern the intent of the available patterns is scanned. If the intent of a
pattern is found relevant for the given problem then the context description (Context) is
analyzed. If this also matches the context of the given problem, then the process follows with
the function 3:Apply. Thereby the sub-concept Solution is utilized to provide a solution to the
problem. The concept Architectural Pattern represents the result of the function 3:Apply.

Finally, the function 4:Compose represents the incorporation of the architecture pattern to the
architecture description.

4.4.1 Problems

The pattern-driven architecture design approach is included as a sub-process in several
architectural design approaches. Although architectural patterns are useful for building
software architectures, the current approaches do not provide sufficient support for the
selection of patterns, the application of these patterns and their composition to the
architecture. We will describe these problems in the following:

■ Pattern base may not be sufficient for dealing with the wide range of architectural
abstractions

For a pattern-driven architecture design approach it is required that a sufficient base of
patterns is available to support the design of software architectures. Currently, patterns have
been catalogued in different publications such as [Buschmann et al. 99], [Shaw & Clements
97], [Gamma et al. 95] and [Pree 95]. Although, these catalogs provide practical vehicles for
software architecture design, they do not and cannot cover all the problem areas for which
architectures need to be developed. The reason for this is that architectures are composed of
concepts representing abstractions from a particular domain and patterns define certain
arrangements of these concepts and relations that are useful in solving recurring problems.
Since there are numerous concepts and relations in the domain area, there are in principle
also numerous architectural abstractions and accordingly numerous patterns. Consequently
when utilizing a particular pattern catalogue, suitable patterns may be missing for a particular
architecture design problem. In such cases it would be useful to provide means for generating
new patterns for coping with novel but recurring problems.

■ Selecting patterns is merely based on the general knowledge and experience of the
software engineer

To ease the selection and manage and improve the understanding of patterns, patterns with
common characteristics are usually classified into same groups. The classification criteria
may differ per approach. For example, in [Shaw & Clements 97] and [Shaw 98] architectural
patterns are classified according to the control and data interactions among architectural
components. In [Buschmann et al. 99] patterns are classified into problem categories,
grouping patterns addressing common problems. Sometimes, together with the categorization
of the patterns a set of rules of thumb for choosing an architectural pattern is given as well. In
[Shaw & Clements 97], for example, heuristic rules are given having the general form “If
your problem has characteristic X then consider architectures with characteristic Y”. An
example of such a heuristic rule is, “If your problem can be decomposed into sequential
stages, consider batch sequential or pipeline architectures”. Despite of these classifications
and heuristic rules it may happen that different alternative patterns are possible. Current
approaches do not provide explicit support for prioritizing and balancing these alternative
patterns. This is usually based on the experience and general knowledge of the software
engineers. Therefore, this impedes the pattern-lookup process and as such the identification
of the architectural abstractions.

AMIDST/WP2/N009

19

■ Applying patterns is not straightforward and requires thorough analysis of the problem

Once a pattern is selected the application of it is also not straightforward. A pattern is
considered as a kind of template consisting of components and relations that must be matched
with the concepts and concept relations identified in the problem domain. Examples of
architectural patterns are Pipes and Filters, Layering, Repositories, Interpreter, and Control
[Shaw & Garlan 95]. Assume for example, that for a given problem the architectural pattern
Pipes and Filters is selected. In the Pipes and Filters architectural pattern the components are
the Pipes and the filters represent the connecting relations between the components. Filters
are components that receive input streams, do some processing and provide some output.
Pipes transmit the output stream of one filter to the input stream of another filter. Important
questions in applying this pattern to the problem are: Which concepts should be represented
as Pipes; which concepts should be represented as Filters; how should be the structuring of
Pipes and Filters etc. Currently, there is no serious support for this matching process and
pattern application is also based on the experiences and general knowledge of the software
engineer.

■ Composing patterns is not well-supported

For developing software architectures usually several individual patterns need to be
composed. Patterns are generally not independent and reveal several relationships with each
other. Specifying the patterns independently will not reflect these interdependencies. In
[Buschmann et al. 99] patterns are collected and organized into problem categories providing
a problem-oriented view in selecting and applying patterns. Systematic approaches with
explicit guidelines for composing patterns, however, is missing5. Assume that after the
problem analysis it appears that the patterns Layering, Repositories, and Pipes and Filters
need to be composed in the architecture. In the Layering pattern the architecture components
are represented through layers and the connectors are the protocols that determine the
interactions between the layers. The Repository pattern consists of a shared data structure and
a set of independent set of components that access the shared data structure. How should we
compose these three patterns? Which should be the basic pattern? Why? What are the
dependencies? Current pattern-driven approaches lack to provide satisfactory answers for
these questions because patterns are specified independently.

5 In architecture design, Alexander introduced the concept of pattern language that defines the structure and the
mutual arrangement of the patterns as integrated whole [Alexander 79].

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

20

5. Conclusion

In this document we have defined architecture as a set of abstractions and relations that form
together a concept. Further, a meta-model that is an abstraction of software architecture
design approaches is provided. We have used this model to analyze, compare and evaluate
architecture design approaches. These approaches have been classified as artifact-driven,
use-case-driven, pattern-driven and domain-driven architecture design approaches. The
criterion for this classification is based on the adopted basis for the identification of the key
abstractions of architectures. In the artifact-driven approaches the architectural abstractions
are represented by groupings of artifacts that are elicited from the requirement specification.
Use-case driven approaches derive the architectural abstractions from use case models that
represents the system’s intended functions. Pattern-driven architecture design approaches
attempt to develop the architecture by selecting architectural patterns from a pre-defined
pattern catalogue. Domain-driven architecture design approaches derive the architectural
abstractions from the domain models. For each approach, we have described the
corresponding problems and motivated why these sources are not optimal in identifying the
architectural abstractions. We can abstract the problems basically as follows:

1. Difficulties in Planning the Architectural Design Phase

Planning the architecture design phase in the software development process is a dilemma6. In
general architectures are identified before or after the analysis and design phases. Defining
the architecture can be done more accurately after the analysis and design models have been
determined because these impact the boundaries of the architecture. This may lead, however,
to an unmanageable project because the architectural perspective in the software
development process will be largely missing. On the other hand, planning the architecture
design phase before the analysis and design phases may also be problematic since the
architecture may not have optimal boundaries due to insufficient knowledge on the analysis
and design models.

In artifact-driven architecture design approaches the architecture phase follows after the
analysis and design phases and as such the project may become unmanageable. In the
domain-driven architecture design approaches the architecture design phase follows a domain
engineering phase in which first a domain model is defined from which consequently
architectural abstractions are extracted. Hereby the architecture definition may be
unmanageable if the domain model is too large. In the use-case driven architecture design
approach the architecture definition phase is part of the analysis and design phase and the
architecture is developed in an iterative way. This solves the dilemma to some extent but the
problems remain partially since the iterating process is mainly controlled by the intuition of
the software engineer.

2. Client requirements are not a solid basis for architectural abstractions

The client requirements on the software-intensive system that needs to be developed is
different from the architectural perspective. The client requirements provide a problem
perspective of the system whereas the architecture is aimed to provide a solution perspective

6 In [Aksit & Bergmans 92] this problem has been denoted as the early decomposition problem.

AMIDST/WP2/N009

21

that can be used to realize the system. Due to the large gap between the two perspectives the
architectural abstractions may not be directly obvious from the client requirements.
Moreover, the requirements themselves may be described inaccurately and may be either
under-specified or over-specified. Therefore, sometimes it is also not preferable to adopt the
client requirements.

This problem is apparent in all the approaches that we analyzed. In the artifact-driven and
pattern-driven approaches the client requirements are directly used as a source for identifying
the architectural abstractions. The use-case driven approach attempts to model the
requirements also from a client perspective by utilizing use case models. In the domain-
driven approaches, such as the domain specific software architecture design approach
(DSSA), informal specifications are used to support the development of scenarios that are
utilized to develop domain models.

3. Leveraging the domain model is difficult

The domain-driven and the use case approaches apply domain models for the construction of
software architecture. Uncontrolled domain engineering may result in domain models that
lack the right detail of abstraction to be of practical use. The one extreme of the problem is
that the domain model is too large and includes redundant abstractions, the other extreme is
that it is too small and misses the fundamental abstractions. Domain models may also include
both redundant abstractions and still miss some other fundamental abstractions. It may be
very difficult to leverage the detail of the domain model.

This problem is apparent in domain-driven and the use-case driven approaches. In the
domain-driven approaches that derive domain models from problem domains, such as the
DSSA approach, leveraging the domain model is difficult because it is based on scenarios
that focus on the system from a problem perspective rather than a solution perspective. In the
use-case driven architecture design approach, for example, leveraging the domain model and
business model is difficult since it is performed before use-case modeling and it is actually
not exactly known what is desired.

4. Architectural abstractions have poor semantics

A software architecture is composed of architectural components and architectural relations
among them. Often architectural components are similar to groupings of artifacts, which are
named as subsystems, packages etc. These constructs do not have sufficiently rich semantics
to serve as architectural components. Architectural abstractions should be more than
grouping mechanisms and the nature of the components and their relations, and the
architectural properties, the behavior of the system should be described. Because of the lack
of semantics of architectural components it is very hard to understand the architectural
perspective and make the transition to the subsequent analysis and design models.

5. Composing architectural abstractions is weakly supported

Architectural components interact, coordinate, cooperate and are composed with other
architectural components. The architecture design approaches that we evaluated do not
provide, however, explicit support for composing architectural abstractions.

Acknowledgement

This activity has been partially supported by the INEDIS, AMIDST and NWO project on
"inconsistency management".

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS

22

6. References

[Abowd 94] G. Abowd, L. Bass, R. Kazman, and M. Webb. SAAM: A Method for Analyzing the Properties of
Software Architectures.. In Proceedings of the 16th International Conference on Software Engineering, IEEE
Computer Society Press, pp. 81-90, May 1994.

[Aksit & Bergmans 92] Aksit, M., & Bergmans, L. Obstacles in Object-Oriented Software Development,
Proceedings OOPSLA ’92, ACM SIGPPLAN Notices, Vol. 27, No. 10, pp. 341-358, October 1992.

[Alexander 79] Alexander, C., Ishikawa, S., & Silverstein, M. A Pattern Language. New York City: Oxford
University Press, 1979.

[Arrango 94] Arrango, G. Domain Analysis Methods. In Software Reusability, Schäfer, R. Prieto-Díaz, and M.
Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994.

[Bass et al. 98] Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, Addison-Wesley 1998.
[Bass et al. 97a] Bass, L., Clements, P., Cohen, S., Northtop, L. & Withey, J. Product Line Practice Workshop

Report, Technical Report, 1997.
[Bass et al. 97b] Bass, L., Clements, P., Chastek, G., Cohen, S., Northrop, L.,. & Withey, J. 2nd Product Line

Practice Workshop Report (CMU/SEI-98-TR-015, ESC-TR-98-015) Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1997.

[Bernstein 87] P.A. Bernstein, V. Hadzilacos & N. Goodman. Concurrency Control & Recovery in Database
Systems, Addison Wesley, 1987.

[Booch 91] Booch, G. Object-Oriented Design with Applications, The Benjamin/Cummings Publishing Company,
Inc, 1991.

[Buschmann et al. 99] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons, 1999.

[Clements & Northrop 96] Clements, P.C., & Northrop, L.M., Software Architecture: An Executive Overview,
Technical Report, CMU/SEI-96-TR-003, Carnegie Mellon University, 1996.

[Clements et al. 85] Clements, P.; Parnas, D.; & Weiss, D. The Modular Structure of Complex Systems. IEEE
Transactions on Software Engineering SE-11, 1 (1985): 259-266.

[Clements 96] Clements, P. A Survey of Architectural Description Languages, Proceedings of the Eighth
International Workshop on Software Specification and Design. Paderborn, Germany, March 1996.

[Coplien 92] Coplien, J.O. Advanced C++ -Programming Styles and Idioms, Addison-Wesley, Reading, MA,
1992.

[Czarnecki 99] Czarnecki, C., Generative Programming: Principles and Techniques of Software Engineering
Based on Automated Configuration and Fragment-Based Component Models, PhD Thesis, Technical
University of Ilmenau, 1999.

[Date 90] Date, C.J. An Introduction to Database Systems, Vol. 3, Addison Wesley, 1990.
[Dijkstra 68] Dijkstra, E.W. The Structure of the`T.H.E.' Mulitprogramming System. Communications of the ACM

18, 8 (1968): 453-457.
[Elmagarmid 91] Elmagarmid, A.K. (ed.) Transaction Management in Database Systems, Morgan Kaufmann

Publishers, 1991.
[Fowler 96] Fowler, M. Analysis Patterns : Reusable Object Models, Addison-Wesley, 1996.
[Gamma et al. 95] Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns, Elements of Object-

Oriented Software. Reading, MA: Addison-Wesley, 1995.
[Garlan 93] Garlan, D. & Shaw, M. An Introduction to Software Architecture. Advances inSoftware Engineering

and Knowledge Engineering. Vol 1. River Edge, NJ: World Scientific Publishing Company, 1993.
[Garlan 95] Garlan, D. et al. Architectural Mismatch: Why It's Hard to Build Systems Out of Existing Parts, 170-

185. Proceedings, 17th International Conference on Software Engineering. Seattle, WA, April 23-30, 1995.
New York: Association for Computing Machinery, 1995.

[Gomaa 92] Gomaa, H. An Object-Oriented Domain Analysis and Modeling Method for Software Reuse. In
Proceedings of the Hawaii International Conference on System Sciences, Hawaii, January, 1992.

[Hayes-Roth 94] Hayes-Roth. Architecture-Based Acquisition and Development of Software: Guidelines and
Recommendations from the ARPA Domain-Specific Software Architecture (DSSA) Program.

[Howard 87] Howard, R.W. Concepts and Schemata: An Introduction, Cassel Education, 1987.

[Jacobson et al. 99] Jacobson, I., Booch, G., & Rumbaugh, J., The Unified Software Development Process,
Addison-Wesley, 1999.

AMIDST/WP2/N009

23

[Kang et al. 90] Kang, K., Cohen, S., Hess, J., & Nowak, W., & Peterson, S. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, November 1990

[Kruchten 95] Kruchten, Philippe B. The 4+1 View Model of Architecture. IEEE Software 12, 6 (November
1995): 42-50.

[Lakoff 87] Lakoff, G. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind, The
University of Chicago Press, 1987.

[Parnas 72] Parnas, D. On the Criteria for Decomposing Systems into Modules. Communications of the ACM 15,
12 (December 1972): 1053-1058.

[Parnas 76] Parnas, D. On the Design and Development of Program Families. IEEE Transactions on Software
Engineering SE-2, 1: 1-9, 1976.

[Parsons & Wand 97] Parsons, J., & Wand, Y. Choosing Classes in Conceptual Modeling, Communications of the
ACM, Vol 40. No. 6., pp. 63-69, 1997

[Perry & Wolf 92] Perry, D.E. & Wolf, A.L. Foundations for the Study of Software Architecture. Software
Engineering Notes, ACM SIGSOFT 17, 4: 40-52, October 1992.

[Pree 95] Pree, W. Design Patterns for Object-Oriented Software Development, Addison-Wesley, 1995.

[Prieto-Diaz & Arrango 91] Prieto-Diaz, R., & Arrango, G. (Eds.). Domain Analysis and Software Systems
Modeling. IEEE Computer Society Press, Los Alamitos, California, 1991.

[Rosch et al. 76] Rosch , E., Mervis, C.B., Gray, W.D., Johnson, D.M., and Boyes-Braem, P. Basic objects in
natural categories. Cognitive Psychology 8: 382-439, 1976.

[Rumbaugh 91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. Object-Oriented Modeling
and Design, Prentice Hall, 1991.

[Shaw 98] Shaw, M. Moving from Qualities to Architectures: Architectural Styles, in: L. Bass, P. Clements, & R.
Kazman (eds.), Software Architecture in Practice, Addison-Wesley, 1998.

[Shaw 94] Shaw, M. Making Choices: A Comparison of Styles for Software Architecture. IEEE Software 12, 6 27-
41, November, 1995.

[Shaw & Clements 97] Shaw, M., & Clements, P. A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems, Proc. COMPSAC97, 1st Int’l Computer Software and Applications
Conference, August, 1997.

[Shaw & Garlan 96] Shaw, M. & Garlan, D. Software Architectures: Perspectives on an Emerging Discipline,.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[Simos et al. 96] Simos, M., Creps, D., Klinger, C., Levine, L., & Allemang, D. Organization Domain Modeling
(ODM) Guidebook, Version 2.0. Informal Technical Report for STARS, STARS-VC-A025/001/00, June 14,
http://www.organon.com, 1996.

[Smith & Medin 81] Smith, E.E., & Medin, D.L., Categories and Concepts, Harvard University Press, London,
1981.

[Stillings et al. 95] Stillings, N.A., Weisler, S.E., Chase, C.H., Feinstein, M.H., Garfield, J.L., & Rissland, E.L.,
Cognitive Science: An Introduction. Second Edition, The MIT Press, Cambridge, Massachusetts, 1995.

[Tekinerdogan 00] Tekinerdogan, B. Towards Automated Design of Adaptable Software Architectures, PhD
Thesis, Dept. of Computer Science, University of Twente, 2000.

[Tracz & Coglianese 92] W. Tracz and L. Coglianese. DSSA Engineering Process Guidelines. Technical
Report, ADAGE-IBM-9202, IBM Federal Systems Company, December, 1992.

[Tracz 95] Tracz, W. DSSA (Domain-Specific Software Architecture) Pedagogical Example. In ACM SIGSOFT
Software Engineering Notes, vol. 20, no. 4, July 1995.

[Wartik & Prieto-Diaz 92] Wartik, S., & Prieto-Díaz, R. Criteria for Comparing Domain Analysis Approaches. In
International Journal of Software Engineering and Knowledge Engineering, vol. 2, no. 3, September 1992, pp.
403-431

[Wittgenstein 53] Wittgenstein, L. Philosophical investigations, Macmillan, New York, 1953.

