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In a numerical simulation, wrinkles can be detected by a visual inspection of the deformed 
mesh. However, this implies that the finite element mesh used is fine enough to allow a 
proper capture of the wrinkles. This, in general, makes it cumbersome to proceed with the 
analysis. Rather, it is desirable to proceed with a selective refinement to keep the 
computational cost low (acceptable). Whenever the mesh needs to be modified, it is 
generally not necessary to reconstruct the whole mesh but only to modify it locally using 
mesh densities based on wrinkling indicators from the previous mesh.  
 
Furthermore, in designing optimal forming tools it is desirable that wrinkle formation 
tendencies can be assessed at a low computational cost at an early stage of the 
simulation, so that, if necessary, it can be stopped and started over again from the 
beginning with a new design. 
 
In sheet metal forming numerical simulations it is important to create and maintain 
appropriate meshes. In this context, the use of discretisation error estimation in 
connection with adaptive mesh refinement plays an essential role (NIMR Publication : 
P.00.1.022).  However, to answer a frequently asked question, when wrinkling takes place 
the discretisation errors estimator is generally not able to detect the initiation of wrinkling 
nor it can capture shallow wrinkling. It will only spot wrinkles when large rotations develop, 
at which stage it is too late to proceed with a mesh refinement. Therefore, it is necessary 
to develop separate wrinkling prediction tools to tackle this problem. 
 
In part I of the present project (NIMR Publication : P.00.1.016)  we have concentrated our 
attention on contact free wrinkling prediction based on Hutchinson analysis.  
We considered a doubly curved sheet element with principal radii of curvature and 
thickness assumed to be constant over the region of the sheet being examined for 
susceptibility to wrinkling.   
Simplifications did arise from the fact that the anticipated short-wavelength modes are 
shallow and can be analysed using Donnell-Mushtari-Vlasov (DMV) shallow shell theory. 
We also assumed that the stress state prior to wrinkling to be a uniform membrane state 
and, for simplicity, that the principal directions of the uniform membrane stress state 
coincide with the principal axes of curvature.  
We could under these assumptions, limitations and simplifications obtain a simple 
wrinkling criterion with some restrictive applicability. Nonetheless, the results were used to 
locally define a wrinkling risk factor or simply a wrinkling indicator, which in turn, was used 
to detect the zones (elements) to be refined in a subsequent adaptive mesh refinement 
process. To complete the analysis, the wave length number was used to determine the 
appropriate new mesh size (please refer to Part I of this report). 
 
When contact is taken into account the problem is further complicated and no simple 
criterion can be expected.  
 
Furthermore, given that numerical simulations of complex sheet metal forming involve 
large scale models, it is obvious that global wrinkling indicators found in the literature -
mostly based on eigen value analysis of the global tangent stiffness matrix - should not be 



 4

used because of their high computational cost. This is to avoid over-loading the already 
time consuming deep drawing simulations. Consequently, a method based on local 
indicators, such as the one presented by Per Nordlund (1997) looks very attractive and 
was in our view worth implementing.  
 
Nordlund’s approach stems from the fact that the formation of wrinkles is characterised by 
the occurrence of areas where the deformation is dominated by strong out of plane 
rotations. The algorithmic procedure presented by P. Nordlund is based on the local value 
of the second order increment of internal work for capturing the initiation of wrinkling. 
Evaluated element wise, it gives an indication when becoming negative to when and 
where wrinkles start to grow. It requires no assumptions about shapes of wrinkles and 
handles contact conditions without extra manipulation. 
 
The wrinkling analysis as presented by P. Nordlund, is now briefly described. 
 
2. Wrinkling analysis 
 
An important observation in wrinkling prediction context is that the formation of wrinkles is 
characterised by the occurrence of areas where the deformation is dominated by strong 
local out of plane rotations. This behaviour can be traced by following the evolution of a  
scalar quantity namely the second-order increment of internal work  which is given, in a 
matrix format, by 
 

{ } dS dV dV )  )(( sb ∫∫∫ +=−+=
tSVV

trσtrI vfvfLLL &&& σσ                           (1) 

 
where }{  tr  is the trace operator and )(vL grad=  the velocity gradient tensor.  Other 
terms are the well know Cauchy stress and its rate, the body and surface loads rates. 
 
For physical interpretation, the Jaumann stress rate τ̂  of the Kirchhoff stress tensor 

στ J= , is introduced 
 

Ttr W WD  )(ˆ σσσστ −−+= &                                                     (2) 
 

where D  and W  are the symmetric and anti-symmetric parts of the velocity gradient 
tensor, respectively. D  is usually called the rate of deformation tensor and W  the body 
spin tensor. 
 
Inserting (2) into (1) gives the following expression for the second-order increment of 
internal work  
 

{ }dV )(ˆ∫ +++−+=
V

TTTtrI WWDWDWDDD στ                                  (3) 
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Nordlund’s approach consists of computing the scalar I  over local regions of the 
structure. In particular the local regions are chosen to consist of finite elements. Potential 
areas for wrinkles will be found where this quantity becomes negative. 
 
 
3. Nordlund’s wrinkling indicator 
 
At this stage there is a need to introduce a scaling that makes it possible to define a 
wrinkling indicator that always takes values in the interval ],[ 11− . 
 
I  is split according to 

 
030201 IIII ++=                                                          (4) 

 
where 

 

{ }dV )(ˆ 
 

01 ∫ −+=
elemV

TtrI DDD στ                                             (5) 

{ }dV )( 
 

02 ∫ +=
elemV

TtrI DWDWσ                                             (6) 

{ }dV )( 

 

03 ∫=
elemV

TtrI WWσ                                                  (7) 

 
The following wrinkling indicator, is then defined 

 

030201

030201
elem III

IIII
++
++

=                                                    (8) 

 
 

From the definition in (8), it is observed that elemI  satisfies the relation 1  Ielem ≤ . 
Therefore, 
 
• When the incremental displacement is dominated by the body spin  
 

                                                           1
I
II

03

03
elem ±=→                                                       (9) 

 
where the minus sign is valid for a buckling situation (compressive membrane 
stresses). 
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• When the incremental displacement is dominated by the rate of deformation tensor 
 

                                                             1
01

01 =→
I
I

I elem                                                      (10) 

 
 

4. Results and discussion 
 
Per Nordlund’s wrinkling indicator has been implemented and tested on a number of 
numerical examples. 
 
A first test has been carried out on a simple pin jointed bar (Figure 1a). The exact results 
were obtained for this example as the solution actually follows the load-displacement 
curve.  
It should be stressed here that the couple of bars are rotating under compressive 
stresses. 
The same observations stand for the Euler beam example (Figure 1b) that is treated in 
details in Nordlund’s publication. 

 
Another situation where Nordlund’s indicator gives good results, is in deep drawing 
simulations, in the part of the sheet under the blank holder. When the blank holder force is 
low to very low, or when a (large) gap is set between the blank holder and the die, large 
wrinkles (rotations) develop under strong compressive stresses.  
Such situations are very much in favour of a good wrinkling indication by Nordlund’s 
indicator. 
 
 

 
 
 
 

 
 
 

                                  
 

 
(a)  (b) 
 

Figure 1 : (a) Pin-jointed structure and (b) Euler beam. 
 

 
Next, Nordlund’s indicator was tested on the hemispherical product that has been used to 
test the contact free wrinkling indicator based on Hutchinson’s approach in part I of the 
present project. A high blank holder force was then used to avoid wrinkling under the 
blank holder as Hutchinson’s approach covers contact free wrinkling only. Given the set of 

F

F
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geometric and material parameters used, wrinkling did occur in the hemispherical part of 
the product. Although the wrinkles were shallow with a rather large wave length, the 
Hutchinson’s approach based wrinkling indication was good, and could be used, to drive a 
successful adaptive mesh refinement.  
 
However, when Nordlund’s indicator was tested on that very same example, it did not give 
the expected results i.e. no clear indication of the wrinkles was obtained. What was a 
clear picture with Hutchinson’s approach became a blur picture, and could not be used to 
drive the adaptive mesh refinement. Different meshes, ranging from coarse to very fine, 
were used to see if that was not the cause of the poor indication and much efforts were 
also devoted to check the formulation and debug the code. Still, the results were not 
satisfactory. 
 
To determine the cause(s) of the poor indication, the 03I  indicator, which plays the 
dominating role when wrinkling takes place, was split into two parts :  
 

• A first part that takes into account only the rotation and strain rates and stresses in 
the minor principal direction, and 

• A second part that takes into account only the rotation and strain rates and 
stresses in the major principal direction. 

 
The idea behind this split is to consider the principal directions separately in the hope that 
the compressive direction (alone) will show a better indication for wrinkling. In fact, this 
brings the case to a 1-D problem, which can be better apprehended. 
Recall that in the formulae developed in Section 3, speaking in terms of principal stresses 
and rotations, both directions are taken into account. That is to say, if an element is under 
both compressive and tensile stresses, these play a challenging role in the determination 
of the wrinkling indicator. Note, that this is not the case in Hutchinson’s approach, as the 
principal directions are considered separately. 
The result of this attempt was a slight improvement in the compressive direction 
indication, but unfortunately, was not good enough to be used as such. 
 
The whole exercise, although not successful in improving the results, allowed us by 
looking closely at all data, to find out, again for this particular example, that the change in 
rotations (during a single deep drawing step) is small to very small and that the 
compressive stresses that are already one order lower than the tensile stresses in the 
wrinkling zones, do relax at the initiation of wrinkling.  
 
Now, looking back at Nordlund’s indicator, when wrinkling occurs, the indicator will be, as 
stated above, mainly driven by  
 

                                                     { }dV )( 

 

03 ∫=
elemV

TtrI WWσ                                               (11) 
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which is the product of the stresses and the related change in rotations. Therefore, when 
the rotations are small and squared, the result is that 03I  tends to zero, whereby the global 
indicator will either approach the zero value else go slightly positive and consequently 
cannot be used to properly depict the formation of wrinkles. 
 
Other tests were performed and the same conclusions were drawn. 
 
The experience gained so far, was used to find another way of defining the wrinkling 
indicator. 
 
 
5. A new wrinkling indicator 
 
As already stated above, one of the causes of the poor indication of Nordlund’s indicator  
is that the rotations are small in a shallow wrinkling situation and that these are squared in 
the formulae used. 
This prompted us to use the curvatures in the design of an indicator. More precisely, to 
look at the change of curvatures (during a single deep drawing step) under compressive 
stresses. By doing so, all changes in curvatures that are not due to compressive stresses, 
such as those caused for example by the geometry of the tool and the die, are filtered out. 
These, however, will be taken into account by the (geometric) error estimation indicator if 
and when necessary. That is when the wrinkling prediction routine is used in conjunction 
with the adaptive mesh refinement routine. 
 
The new wrinkling indicator in the i -principal direction is defined as 
 

                                   1,2i            dA
RR
R - R

A
1e

tt
i

t
i

tt
i

t
iw

i ==
∆+

∆+

∫                           (12) 

with i  representing the principal curvature (stress) * direction. 
 
Note that we do consider the principal directions (stress and curvature) one at a time as is 
the case with Hutchinson’s approach, and take the maximum change for each element. 
Consequently, the wrinkling indicator value we  is defined as the maximum of w

ie , i.e. 
 
                                      1,2i e  maxe w

i
w ==                                    (13) 

 
 It should be stressed here, that the change of the curvature in a given direction is 
considered in the same direction as for the compressive stress and not in the 
perpendicular direction as is the case with Hutchinson’s approach in the determination of 
critical stresses (strains).  
 

                                                           
* As for Hutchinson’s approach, we consider that the principal stress and curvature directions do coincide. 
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Finally, we note that the present indicator can be viewed as a generalisation of the 
discretisation error indicators in which a (relative) change, e.g. in the thickness or 
geometry, is measured between the finite element solution and a higher order solution 
obtained by some solution recovery technique. The change in the solution for the wrinkling 
indicator is evaluated between the solution at the beginning and the end of a given deep 
drawing step, considering only elements under compressive stresses in the 1 and/or 2 
principal directions. 
 
As for Hutchinson’s approach, the present indicator is local and is of a post-processing 
type, and is therefore determined at a very low cost. 
 
 
6. Adaptive strategy 
 
In the adaptive procedure we need to detect the zones (elements) to be refined and 
determine a new mesh size for those zones (elements). The zones detection is obtained 
by the use of the wrinkling indicator (13) and the new mesh size is obtained by the use of 
the following formula 
 
                                                              

w

avr
w

e
e LL    =                                                           (14) 

 
where avre  is the average value of we  over all rotating elements and L  the old element 
size. 
 
Moreover, to avoid excessive refinement, a check against a user specified minimum size 
is to be operated before the refinement actually takes place. 
 
The general algorithm for wrinkling prediction is presented in Figure 2. 
 
 

At a given step N loop over all elements to 
 

• Input all necessary data at the beginning and at the end of step N 
• Evaluate the principal curvatures and their direction at the end of step N 
• Determine the principal stress directions at the end of step N 
• Check if curvature swap is necessary (See the Appendix) 
• Evaluate the curvatures at the beginning of step N 
• Compute the relative change in the curvature and the wrinkling indicator 
• Determine the new mesh size 

 
Figure 2 : General Algorithm for wrinkling prediction. 
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7. General comments 
 
• The new routine has been tested on the hemispherical product, using a fine uniform 

mesh. The contour plots of the new indicator showed proper indication of the zones 
where wrinkling takes place. The indication is clear, and unlike the one obtained with 
Per Nordlund’s indicator, can be used to drive subsequent mesh refinements. 
Numerical examples can be found in forthcoming publications devoted to 
comprehensive approach to wrinkling prediction analysis. 

 
• It should be stressed that unlike the contact free wrinkling indicator, which can give a 

prediction before wrinkling actually takes place, the present indicator, as Per 
Nordlund’s indicator, would give an indication only when the sheet starts to rotate 
under compressive stresses. It is therefore essential to capture the formation of 
wrinkles at their initiation. However, given that the computational cost to run the 
wrinkling indicator is very low, it is recommended to call the wrinkling indicator routine 
as often as necessary, especially at the beginning of the drawing process. 

 
• The present indicator can of course be used in a contact free situation. However, 

because of the completeness that Hutchinson’s approach provides, we prefer to use 
the new wrinkling indicator to complete Hutchinson’s analysis based wrinkling indicator 
rather than a substitute to it. 

 
• In part I of the report on wrinkling prediction the curvature evaluation has been 

presented in Appendix 3, and will not be repeated here. However, the determination of 
the principal stress directions along with the principal curvature directions has been 
added to the present report, and should also apply to part I of the report.  The reason 
for this (necessary) addition is given in the appendix that is presented at the end of the 
present report. 
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Appendix to Part I and II 
 
 
It is assumed in Hutchinson’s approach that the principal directions of stress and 
curvature do coincide. 
With reference to the critical stress (strain) formulae used in the contact free wrinkling  
report (Part I), it is clear that for instance, to determine the critical stress (strain) in the 1-
direction, the radius of curvature in the opposite direction i.e. the 2-direction is to be used. 
A problem arises when the principal curvature in the first direction coincides with the 
second principal direction of stresses (strains) and not with the first. Therefore, it is 
necessary to find out, prior to the evaluation of the critical stress (strain) values, the 
correct radius of curvature to be used.  
It is the aim of the present additional notes to explain how this problem has been dealt 
with and programmed. 
First the principal curvature directions are determined, then the principal stress directions 
are found. Finally, a dot product between the first directions of stress (strain) and 
curvature is performed to check if a swap of the radii of curvatures is necessary. 
 
The same adjustments have to be made in the new wrinkling indicator (Part II) as we need 
to know which radius of curvature is actually in the direction of the compressive stress.  
 
Principal curvature directions 1 
 
Consider again equation (A3-3) of Appendix 3 (Part I) (See also Figure A1 to A3) 
 

[ ] [ ] 







=








−








0
01

 a
R
11

 b
λλ

                                                (A1) 

Substitute 
R
1  in the above equation by 

2
221211

2
221211

aa2a
bb2b

I
II

R
1

λλ
λλ

++
++

==                                             (A2) 

 
where I  and II  are the first and second fundamental forms of a given surface A, 
respectively.  
Using the first line of equation (A1), the following expression is obtained 
 

0babadbabaddbabad 11121211
2

1122221112222212
2 =−+−+− )()()(     ξηξη                (A3) 

 
in which the ratio ξηλ dd /=   has been introduced. 
 

                                                           
1 J.L. Batoz and G. Datt 
Modelisation des structures par elements finis Volume 3 : Coques, Hermes, Paris, 1990. 
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Equation (A3) is equivalent to  
 

0
                 
                 

         

221211

221211

2 2

=
−

bbb
aaa
dddd ξηξη

                                              (A4) 

 
Using ξλη dd  =  in (A3) and simplifying by ξ2d , we obtain the following equation 
 

0babababababa 111212111122221112222212
2 =−+−+− )()()(    λλ                      (A5) 

 
Let 1λ  and 2λ  be the roots of the above equation. 
 
The normality condition of the principal directions gives 
 

[ ][ ] 1,2)j(i,           
d
d

 a d  d ij
j

j

ii ==











δ

η

ξ
ηξ ,                                    (A6)   

that is 
1,2)j(i,         addaddaddadd ij22ij12ji21ij11ji ==+++ δηηηξηξξξ                   (A7) 

 
 
Consider 1ji ==  in (A7) 

1   2 22
2

1121111
2 

1 =++ adaddad ηηξξ                                          (A8) 
 
Inserting 111 dd ξλη =  ( 111 dd ξηλ /= ) in (A8), we obtain 
 

1  2 22
2 

1
2
112

2 
1111

2 
1 =++ adadad ξλξλξ                                        (A9) 

 
which gives 

21
22

2
112111

1 aa2a
1d /)( λλ

ξ
++

=                                          (A10) 

and 1dη  is given by  

111 dd ξλη  =                                                       (A11) 
 
In the same way, considering 2ji ==  in (A7), we obtain 
 

21
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2
212211

2 aa2a
1d /)( λλ

ξ
++

=                                          (A12) 

and 2dη  is given by  

222 dd ξλη  =                                                      (A13) 
 



 15

 
Finally the principal directions of curvature are obtained as 2 
 

22212P

12111P

dd
dd
ηξ
ηξ

 a aa
 a aa

+=
+=

                                                (A14) 

 
Again the principal directions are orthogonal, so that  
 

[ ][ ]      a a 0
d
d
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2

2
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=

η
ξ

ηξ ,.                                     (A15)   

and  
 

11P1P = a a .         and        12P2P = a a .                                   (A16) 
 
Principal stress directions  
 
The principal stresses are given by 
 

[ ] 212
xy

2
yyxxyyxx 4

2
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1,2   σσσσσσ +−±+=                              (A17) 

 
The angle between the first principal stress axis and the first local axis (see Figure A4) is 
given by 
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                                    (A18)  

 
The principal stress directions are obtained as 3 
 

)()(
)()
αcosαsin
αsin(αcos

212S

211S

 t ta
 t t    a

+−=
+=

                                         (A19) 

 
Finally a dot product between the first stress principal direction and the first principal 
curvature direction is performed to find out whether these two directions are aligned or 
normal to each other 
 

                                                           
2 1a and 2a are shown in Figure A1 and A2. 
3 1t and 2t are shown in Figure A4. 
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• When these two directions are aligned then the formulae derived so far for the critical 
stresses for instance do apply as such i.e.  

 
)/( 2

cr
1

cr
1 R1σσ =         and        )/( 1

cr
2

cr
2 R1σσ =                         (A20) 

 
• When these two directions are normal to each other, then the radii of curvature used in 

the computation of the critical stresses should be swapped as follows 
 

)/( 1
cr
1
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1 R1σσ =         and        )/( 2
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2

cr
2 R1σσ =                         (A21) 
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Figure A1 : Unit normal and tangent vectors on a shell surface. 
 

 
 

 
 

 
 
 

 
 
 
 
 
 
 

 
Figure A2 : Principal curvature directions. 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

Figure A3 :  ( ηξ , ) – Space. 
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Figure A4 :  Principal stress directions. 
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